Towards Session-Aware RBAC Delegation:
Function Switch

Meriam Ben Ghorbel-Talbi!, Frédéric Cuppens', Nora Cuppens-Boulahia!-2,
and Stéphane Morucci?

! Institut TELECOM /Télécom Bretagne
2, rue de la Chataigneraie, 35576 Cesson-Sévigné, France
2 SWID, 5 Square du Chéne Germain, 35510 Cesson-Sévigné, France
{meriam.benghorbel,frederic.cuppens,nora.cuppens }@telecom-bretagne.eu
stephane.morucci@swid.fr

Abstract. This paper shows how to extend RBAC sessions with dy-
namic aspects to deal with user switch. Users can authenticate using their
functions which will create a dynamic session and automatically activate
a set of privileges associated with this function. A dynamic session can
be joined, leaved, restarted and reused by authorized users. Moreover,
a user can switch the session to another user in order to continue the
task by preserving the working context. We discuss in this paper how to
manage users privileges in the dynamic session and how to deal with the
switch mechanism.

1 Introduction

The delegation of privileges (permissions, roles) and duties (obligations, respon-
sibilities) has been well studied in recent years and many RBAC extensions have
been suggested to deal with these requirements [21,5,14,16]. In this paper we
aim to introduce a new concept of dynamic session delegation which we call
switch. Unlike traditional delegation models we consider that users may be able
to “delegate” their whole activated session including their activated privileges
and duties, but also their working context which contains running applications
and files in use. Hence, the delegatee can continue to run the session exactly like
the initial user without impacting the applications or services that are connected
to this session, and without any additional authentication burden. This is very
useful in many situations such as the continuity of work, where constant online
user is required, or in the case of emergency management (e.g., in healthcare or
public safety).

We first extend the notion of session suggested in RBAC [15] by dynamic
session to enable (1) shareability: more than one user can use the same session
(collaborative work), (2) reusability: a session can be reopened while keeping the
same states and environments, (3) switchability: a user can transfer his session
to another user which can be in a different time space or location. We focus in
this paper on this last property and we consider that a session switch involves
on itself an authentication, so that the user can directly access to the session



2 Ben Ghorbel-Talbi, Cuppens, Cuppens-Boulahia, Morucci

Fig. 1. Function authentication

without additional authentication and can have the whole privileges that are
activated in this session. To deal with this aspect we introduce a new concept
called function. A function can be seen as a job title, such as doctor on duty,
that can be used as a virtual identity for the user (see figure 1). This means
that, to be authenticated users can provide their function instead of their own
identity. Once authenticated, they act as a function and a set of privileges (e.g.,
roles) that are associated with this function are automatically activated. Hence,
if the user switches to another user, this later is authenticated through the same
function and can reuse the session with the same environment. Moreover, in the
case of collaborative work, many users can be authenticated through the same
function and then can share the same session. During the session switch the user
activity can be changed, it is what we call activity switch. This allows the user to
reuse the working context in order to fulfill another task. Moreover, the working
environment can be modified, in order to preserve the user privacy, for instance.
It is what we call context switch.

These new concepts of switch have been introduced in [8] where authors
have defined a new model called Smatch (Secure MAnagement of swiTCH) to
deal with dynamic session. The Smatch model provides means to specify expres-
sive contextual access control and authentication policies which apply to control
functional behavior of dynamic sessions. We base our work on this model and
we propose to extend the concept of switch in order to deal with the security
administration. In fact, the notion of dynamic session and function authentica-
tion have been defined in this model, but the management of the security policy,
which encompass users’ actions on the dynamic session, has not yet been ad-
dressed. We show in this paper how the security administrator can define the
security policy related to the function activation, the session joining/leaving, the
user switching, the context switching or the function delegation.

This paper is organized as follows. In section 2, we present the basics of
the smatch model that we need for our work. In section 3, we give a detailed
description of dynamic sessions and how functions are managed in our model.
In section 4, we focus on the notion of switch and how to manage the security



Towards Session-Aware RBAC Delegation: Function Switch 3

policy in this context. Namely, how to manage users privileges in the dynamic
session and how to control the switch mechanism (user and context switch).
Finally, in section 5, we propose an implementation of our model using Eyeos,
an open-source web based Operating System.

2 System Description

Our work is based on the Smatch model [8] which is defined as an extension of
the Organization-Based Access Control model OrBAC [6]. This model is based
on first order logic with action. First order logic is used to represent the system
state at a given time. A system state is represented by a set of ground facts and a
set of derivation rules having the form P1A...APn — P. The derivation rules are
syntactically compatible with Datalog [18]. Negative literals are allowed if it is
possible to stratify the derivation rules. Stratifying a Datalog program consists
in ordering derivation rules so that if a rule contains a negative literal then
the rule that defines this literal is computed first. A stratified Datalog program
with negation is computable in polynomial time through the computation of
a fix point. Starting from the initial state, the system state can then change
due to the execution of actions. Actions are specified through dynamic effect
laws having the following form: A(s,o0) causes P if Q1 A ... A Qn where A(s,0)
represents the execution of action A by subject s on object o and P,Q1,...,Qn
are negated or unnegated application-dependent predicates.

In this model there are several concepts that are necessary to specify dynamic
session and switch. Firstly, the concept of organization is central, which means
that several organizations may specify their own security policy. More precisely,
we will use the notion of dynamic organization [2] used in the smatch model
to deal with dynamic session. Secondly, the administration model proposed by
OrBAC [9] is very expressive and provides means to deal with different kinds of
delegations [4,3], which is useful to manage the function switch. Moreover, the
concept of context is explicitly introduced [6], this means that every security
rule (permission, prohibition and obligation) can be associated with a context
defined as constraints that a subject must satisfy to activate the rule. This allows
us to define dynamic security policy. We give in the following the basics of the
Smatch model that we need for our work.

The security policy is specified at the organization level that is independent
of the implementation of this policy. Thus, instead of modeling the policy by
using the concrete concepts of subject, action and object, it is specified using
the roles that subjects, actions or objects play in the organization. The role of a
subject is simply called a role, whereas the role of an action is called an activity
and the role of an object is called a view. A view is an organizational concept
used to structure the policy specification, i.e., a view groups objects to which the
same security rules apply. We consider that there are nine basic sets of entities:
Org (a set of organizations), F' (a set of functions), S (a set of subjects), A (a
set of actions), O (a set of objects), R (a set of roles), A (a set of activities), V'



4 Ben Ghorbel-Talbi, Cuppens, Cuppens-Boulahia, Morucci

(a set of views) and C (a set of contexts). And we consider the following built-in
predicates:

— Assign is a predicate over domains Org x S x R. If org is an organization,
s a subject and r a role, Assign(org,s,r) means that s can activate role r in
org.

— Empower is a predicate over domains Org x S x R. If org is an organization,
s a subject and r a role, Empower(org, s,r) means that role r is activated by
subject s in org.

— Use is a predicate over domains Org x O x V. If org is an organization, o is
an object and v is a view, then Use(org, o,v) means that org uses o in v.

— Consider is a predicate over domains Org x A x A. If org is an organization,
« is an action and a is an activity, then Consider(org, a,a) means that org
considers that action a implements activity a.

— Hold is a predicate over domains Orgx Sx AxOxC. If org is an organization,
s a subject, o an action, o an object and ¢ a context, Hold(org, s, a,o,c)
means that within organization org, context ¢ holds between s, o and o.

A security policy corresponds to a set of contextual organization privileges.
Abstract permissions are defined using the following predicate:

— Permission is a predicate over domains Orgx Rx AxV x C. More precisely,
if auth is an organization, r is a role, v is a view, a is an activity and c is a
context, then Permission(auth,r,a,o,c) means that auth grants permission
to s to perform activity a on view v in context c.

Concrete permissions are derived from abstract permissions when the asso-
ciated context holds (prohibitions and obligations are similarly defined). Five
kinds of contexts have been defined [6]. The Temporal context that depends on
the time at which the subject is requesting for an access to the system. The
Spatial context that depends on the subject location. The User-declared context
that depends on the subject objective (or purpose). The Prerequisite context
that depends on characteristics that join the subject, the action and the object.
Finally, the Provisional context that depends on previous actions the subject
has performed in the system. We can also combine these elementary contexts to
define new composed contexts by using conjunction, disjunction and negation
operators: &, @ and~ This means that if ¢; and co are two contexts, then ¢; &
co is a conjunctive context, c; @ co is a disjunctive context and ¢; is a negative
context.

Hierarchies [7] are defined over organizations, roles, activities, views and con-
texts using predicates sub_organization, sub_role, sub_activity, sub_view and
sub_context, respectively. Privileges are inherited through these hierarchies, for
instance, permission inheritance is modeled by the following rule:

permission(orgs, T, a,v, c) A sub_organization(orgy,orgs)
— permission(orgy,, a, v, c).



Towards Session-Aware RBAC Delegation: Function Switch 5

The Smatch model proposes an authentication policy that activates user’s
privileges according to how users are authenticated: password authentication,
strong authentication, one time password or also function authentication. In our
work we focus on the function authentication that is defined as follows:

Action function_authentication(s, f,pass,org)
Causes function_authenticated(org, s, f)
If password(org, f, pass)

where function authentication(s, f, pass, org) is an authentication action
and pass is the password associated with function f that subject s uses to au-
thenticate in organization org. Obviously, other kinds of function authentication
can be required, such as strong authentication using password and token.

3 Dynamic Session

Once authenticated through a function a set of privileges are automatically ac-
tivated to the user in order to fulfill the task related to this function. And,
according to the security policy, the user can switch to another user by preserv-
ing or not the activity and the working context. He/she can also allow another
user to join the session to fulfill a collaborative task. How to deal with the se-
curity policy has not been addressed in the Smatch model, only the states of
dynamic sessions and actions that users can perform on these sessions have been
described. We give in the following sections our proposition to deal with admin-
istration aspects. For this purpose, we extend the function definition proposed
in [8] and we give details on how to manage the switch in dynamic sessions.

7 N,

U S -7
v Function F

Dynamic session Org'

Organization Org

Fig. 2. Dynamic session

We consider that a dynamic session is created when a function is activated
by a user, i.e., the user is authenticated through a function. This is different
from the “traditional” RBAC session where users are authenticated using their
own identity and activate or deactivate their privileges in the session according
to their needs. A dynamic session is related to a given task (i.e., a function)
so the set of privileges required to fulfill this function is automatically acti-
vated in the session. We use in our model the concept of dynamic organization
introduced in [2] to define dynamic session. This means that, as described in fig-
ure 2, the creation of dynamic session is defined as the creation of a (dynamic)



6 Ben Ghorbel-Talbi, Cuppens, Cuppens-Boulahia, Morucci

sub-organization (Org') of the organization in which the function was activated
(Org). Privileges associated with the function (F) will be activated for the user
(U) in this sub-organization.

As defined in [8] a dynamic session may have different states: active or idle,
and users can ask to fulfill different actions in the session according to its state,
such as create, join, share, asleep or awake (see figure 3). For the sake of simplicity
we only consider in the following the active state and some actions that we need
in our work.

join leave

create —» asleep —»
awake

share 7 uncshare
delete

Fig. 3. Session states

We give in the following a description of how functions are defined in our
model and the different steps required to create dynamic sessions.

3.1 Function Definition

Each function is associated with a set of roles that will be activated when a
session related to this function is created. This is defined using the predicate
Assign as follows:

— Assign(org, f,r) means that in organization org role r is assigned to function

I

We also consider that a function is associated with a context which holds
when it is activated. We define for this purpose the predicate function_context
as follows:

— Function_context(org, f, ctxr) means that in organization org context ctxp
is associated with function f.

This context is used to activate permissions for the user in the dynamic
organization, and more precisely permissions to administrate the session. Hence
users can restrict the access to some of their data in order to preserve their
privacy or to give fewer privileges to other users that join the session. More
details about this context are given in the following section.



Towards Session-Aware RBAC Delegation: Function Switch 7

3.2 Function Activation

We give hereafter the different steps that are needed to activate a function.

=

(1) create session . .
— Dynamic session ss
\

(2) Join session

U

/, \
’
0 \
1
‘ "~ permission |
‘ "4 permission |
\\Ll ’//

Dynamic session ss'

Organization Org

Fig. 4. Dynamic session

Session creation. After the authentication through function f, the user can
choose to create a session as follows (see figure 4 part (1)):

Action create_session(subj, ss, org)

Causes use(org, ss, session) A session_initiator(ss, subj)A
session_function(ss, f)

If function_authenticated(org, subj, f)

where session is a special view and use(org, ss, session) means that organization
org uses object ss as a session. A session is associated with two attributes:
sesston_initiator: the subject who creates the session and session_function:
the function related to this session.

Then the created dynamic session becomes a sub-organization of the parent
organization, so that it inherits all the privileges already defined [7]. The inher-
itance also applies to the assign, use, consider and hold predicates:

use(org, ss, session) — sub_organization(ss, org).

Session joining. Besides creating a new session, user subj can choose to join an
existing session ss’ related to function f that is already activated by another user
subj’ in organization org (see figure 4 part (2)). We consider for this purpose a
new attribute session_member as follows:

Action join_session(subj, ss,org)
Causes session_member (ss, subj)



8 Ben Ghorbel-Talbi, Cuppens, Cuppens-Boulahia, Morucci

The session initiator is also considered a session member:
session_initiator(ss, subj) — session_member(ss, subj).

Obviously, the user can create or join the active session only if he/she is au-
thorized to do so, according to the security policy. The security policy must also
specify which users are permitted to authenticate through a given function, and
the activation constraints that are related to functions, e.g., exclusive functions
or function cardinality. We shall give more details on how to manage the security
policy in the following section 4.

Privileges activation. Once the session is created the user will be empowered in
roles that are assigned to the activated function:

use(org, ss, session) A session_member(ss, subj) A session_function(ss, f)A
assign(org, f,r) — empower(ss, subj,r).

Note that roles are activated for all the session members. So that when a
user joins a session he/she will be automatically empowered on the function
roles, and will lose these privileges when he/she leaves the session.

Moreover, the context related to the function is activated within the session.
This is defined as follows:

use(org, ss, session) A session_function(ss, f) A\ function_context(org, f, ctxp)
— hold(ss, s, a, 0, ctxp) Asession_member(ss, s) A\consider(ss, a, -) \use(ss, o, ).

This context is used to activate a set of permissions related to the session
administration. These permissions can be defined as follows:

Permission(org, role, activity, view, ctz ).

where activity and view are administrative activities and views, respectively,
and role can be defined as a default_role including the session members.

As we said previously, the dynamic session is a sub-organization of the parent
organization then it will inherit these permissions. Moreover, the function con-
text holds within the dynamic session so that these permissions will be activated
only within the scope of this session. We give in the following more details about
how we manage these administrative privileges.

4 Switch management

We present in this section our proposition to manage the security policy. We
specify how users can act on functions and dynamic sessions. These actions have
been defined in the Smatch model, but how to control these actions has not been
addressed. Namely, which users are allowed to authenticate through a function,
which users are allowed to join an active session, to delegate their functions or
also to switch to another user and under which conditions.



Towards Session-Aware RBAC Delegation: Function Switch 9

Activating a function. In our model, authenticated users are allowed to ac-
tivate a given role only if they are assigned to this role:

permission(org, authenticated_user, activate, r, assigned_role).
where context assigned_role is defined as follows:

assign(org,u,r) — hold(org, u, activate, r, assigned_role).

Similarly, we consider that users are allowed to activate a dynamic session,
i.e., a function, only if they are assigned to this function. This is defined as fol-
lows:

permission(org, de fault_user, activate, f,assigned_function).
where context assigned_function is defined as follows:

assign(org, u, f) — hold(org, u, activate, f,assigned_function).

Creating a session. Users are allowed to create a dynamic session only after
function authentication:

permission(org, authenticated_user, create, session, activated_function).
where context activated_function is defined as follows:

function_authenticated(org, subj, f) A session_initiator(ss, subj) A
session_function(ss, f)
— hold(org, subj, create, ss, activated_function).

Joining a sesston. This permission can be specified by the security adminis-
trator in order to allow users to join an existing session:

permission(org,r, join, session, existing_session).
where context existing_session is defined as follows:

function_authenticated(org, subj, f) A use(org, ss, session) A
session_function(ss, f) N\ session_initiator(ss, subj’)
— hold(org, subj, join, ss, existing_session).

This context means that session ss is already activated by another user subj’
and the user subj is already authenticated through function f related to this
session.

The security administrator can also specify other conditions using contexts
(temporal, spatial, user-declared, prerequisite or provisional contexts [6]). For
instance, we can specify that, in the case of an emergency, role doctor is allowed
to join an existing session related to function doctor_on_call:

permission(org, doctor, join, session, activated_session & emergency_doctor).



10 Ben Ghorbel-Talbi, Cuppens, Cuppens-Boulahia, Morucci

where context emergency_doctor holds in the case of an emergency and when
the dynamic session is related to function doctor_on_call':

hold(org, -, -, -,emergency) A session_function(ss, doctor_on_call)
— hold(org, _, join, ss, emergency_doctor).

We can also specify that a user is allowed to join a session only if the initiator
is not available, or if a session member is leaving the session.

Other actions on sessions. Similarly to create or to join a session, we can
specify permissions to make other actions on sessions, namely to leave, to share,
to unshare, to asleep or to awake a session. For instance, in the case of functions
where continuity of work is required, a user is allowed to leave a session only if
there is other members in this session:

permission(org,r,leave, session, other_session_member).
where context other_session_member is defined as follows:

session_member(ss,u) A session_member(ss,u’) A =(u' = u)
— hold(org,u, _, ss, other_session_member).

User switch. This permission allows a user to assign new permissions to other
users in order to join a given session, so that it is called administrative per-
mission. To deal with this kind of permissions we use the administration model
proposed by OrBAC [9,4]. This model is based on an object-oriented approach,
thus we do not manipulate privileges directly (i.e., Permission and Prohibition),
but we use objects having a specific semantic and belonging to specific views,
called administrative views. Inserting an object in these views will enable to
assign permissions, prohibitions or roles to users. Among these administrative
views, we detail in the following the License view that is used to specify and
manage the security policy. Objects belonging to this view have the following
attributes: Type: the object type can be a license, a ban or a duty, Auth: or-
ganization in which the license applies, Grantee: subject to which the license is
granted, Privilege: action permitted by the license, Target: object to which the
license grants an access and Context: specific conditions that must be satisfied
to use the license, the ban or the duty. The existence of an object in this view
is interpreted as a permission, a prohibition or an obligation according to the
object type. For instance, the existence of a valid license is interpreted as a per-
mission by the following rule:

use(org,l, license) A type(l, license) A auth(l, auth) A grantee(l,r) A
privilege(l, act) A target(l,v) A context(l, context)
— permission(auth, r, act, v, context).

We consider a sub_view of license view called session_license as follows:

! The prolog symbol _ is interpreted as representing “do not care” condition



Towards Session-Aware RBAC Delegation: Function Switch 11

use(org,l, license) A target(l, ss) A use(org, ss, session) A privilege(l, a) A
consider(org, a, session_action) — use(org,l, session_license).

where session_action is an activity containing actions that users can perform on
sessions (create, join, leave, etc.).

This means that the existence of an object in this sub_view is interpreted
as the existence of an object in the license view having a session as a target
and a session action as a privilege. Users that are allowed to add objects in this
sub_view can create new permissions for other users related to sessions, such as
a permission to join or to leave a given session.

As previously mentioned, a user switch creates a new permission to join the
session, so we consider that a permission to switch in this view is a permission to
add a new license with privilege join. Permissions to manage switch are defined
as follows:

permission(org,r, switch, session_license, authorized_switch).

where context authorized_switch means that a switch is allowed only for the
session members:

use(org,l, session_license) A target(l, ss) A session_member(ss, u)
— hold(org, u, -, 1, authorized_switch).

We can also add other contexts in order to specify more conditions on the
switch. These conditions may concern, for instance, the user who switches the
session (according to his/her roles, attributes, etc.), the function related to the
session, the user to whom the switch is allowed, e.g., in the case of function
doctor on call the session can only be switched to a doctor:

permission(org, r, switch, session_license, session_switch & doctor_switch).

auth(l, auth) A target(l, ss) A session_function(ss, doctor_on_call) N
grantee(l,u) A assign(auth, u, doctor)
— hold(org, u, _,1, session_license, doctor_switch).

As aresult of the user switch a new license is added to the view session_license
and the user is no longer member of this session (see figure 5):

Action user_switch(subj, usr, ss)

Causes use(org, 1, session_license) Nauth(l, org) A grantee(l, usr) Aprivilege(l,
join) Atarget(l, ss) A context(l, de fault_context) A —session_member(ss, subj))
If sub_organization(ss,org)

Hence the grantee will be allowed to join the session, using his/her own
identity, without the need to perform a function authentication as it is the case
usually (see section 3.2). We can also activate an obligation for the grantee to
join the session before a given deadline, for example before the other user leaves
the session (in the case of continuity of work). Due to space limitation, we do
not address the issue of how to deal with obligations in this paper (see [11] for
more details about the management of obligations with deadlines).



12 Ben Ghorbel-Talbi, Cuppens, Cuppens-Boulahia, Morucci

%‘\
(2") “-member(u, ss)

U

3) Join session 7
® ¥ ey
i}
to join ss Function F
@ i

Dynamic session ss

Organisation Org

Fig. 5. User switch

The joining user has the same privileges (active roles, permissions, working
environment, etc.) as the leaving one. Thus he/she can continue to run the
session exactly as before. But, as previously mentioned, the user can modify the
session context in order to limit the joining user privileges.

Context switch. To deal with context switch, we consider that users have
administrative privileges in the session, namely they are allowed to add prohi-
bitions to other users in order to reduce their privileges. This is managed using
the function context introduced previously in section 3.1. This context is used
with administrative permissions to specify how users are allowed to administrate
dynamic sessions. As defined in section 3.1, context ctz; holds in the dynamic
session after the activation of the function, thus permissions related to it are
activated only in the scope of the session. For instance, we can specify that the
session initiator of a given function f is allowed to add prohibitions for other
users in this session:

permission(org,r, add, license_view, ctx s & c_prohibition).

where ctxy is a context associated with function f, and c_prohibition is defined
as follows:

session_initiator(ss,u) A type(l, ban) — hold(ss, u, -, 1, c_prohibition).

We can also use other contexts to specify more conditions related to the user
to whom the session initiator can give prohibitions, and what kind of prohibition
he/she can add. For instance, to preserve their privacy, users are allowed to
prohibit the access to their personal data. Context switch can also be done
automatically, according to the environment change. For instance, we can specify
that sensitive information can only be accessed in secured context, e.g., when
the user is in his/her office. If the user leaves the office then the access to this
information will be automatically prohibited by the access control policy. This
can be easily defined in our model thanks to the notion of contextual privileges
that is explicitly introduced in the security policy.



Towards Session-Aware RBAC Delegation: Function Switch 13

Delegating a function Besides switching the session, users can also delegate
their functions that are not activated, similarly to role delegation. This means
that the grantee will be able to authenticate through the delegated function
and create a dynamic session related to this function. For this purpose, we use
the same role delegation model proposed in [4]. First, we consider the view
Function_assignment as follows:

use(auth, fa, function_assignment) A auth(fa,org) A assignee(fa,r) A
assignment(fa, f) — assign(org, f,r).

This means that the existence of a valid object fa in this view is interpreted
as an assignment of function f to role (or subject) r in organization org. Then, to
deal with function delegation, we consider a sub-view of function_ assignment
called function_delegation. Objects belonging to this view inherit the semantic
and the attributes of view function_assignment, but, also have an additional
attribute called Grantor: the subject who is delegating the function. Thus in-
serting an object in this view will enable an authorized grantor to delegate a
function to a grantee. The security administrator can specify which users/roles
are allowed to delegate their functions and in which contexts as follows:

permission(org,r, delegate, function_delegation, context).

The security administrator can also specify how much the function can be
delegated and/or re-delegated (multiple and multi-step delegation, respectively),
if the delegation is temporary or permanent, and if the grantor keeps the func-
tion or not after the delegation (transfer). More details about delegation are
given in [4]. Hence to summarize this section, the security policy controls all
the users actions on the session such as the activation, the joining, the switch
and the delegation of functions. Authorized actions must also satisfy the global
constraints specified by the security administrator, i.e., the separation of duty
policies related to the activation/deactivation of functions, the joining/leaving of
sessions, etc. For instance, we have to deal with dynamic separation of duties in
the case of the user switch. Namely, when a user joins a session s, his/her roles
that are activated in another session s, can conflict with roles activated in s;. In
this case, we can choose to refuse the switch or also to activate a pre-obligation
to the user in order to leave the session sy before allowing him /her to join session
s1 (how to manage pre-obligations is presented in [10]). Many other constraints
can be defined to deal with functions similarly to roles like cardinality, exclusive
functions, etc. This is an important issue to consider and we aim to address it
in our future work.

5 Switch enforcement

For the implementation of our model we choose to use Eyeos [12], an efficient
open-source web-based Operating System, following the cloud computing con-
cept. It enables collaboration and communication among users. We have modi-
fied this OS to include a dedicated access control mechanism that overrides the



14 Ben Ghorbel-Talbi, Cuppens, Cuppens-Boulahia, Morucci

Eyeos access control function to provide enhanced capabilities and demonstrate
the switch concept. Access control policies are expressed using MotOrBAC [1]
a tool developed at Telecom Bretagne that implements the OrBAC model. It
provides a user-friendly interface to specify and manage the security policy.

——
MotOrBAC ;
o
—
S ¢ ... \ \ o Inxisz
ub::\(u =lava ubuntu

b o
]

™
4 4
SOAP ‘ ‘ SAML
8 “ I F\ i Database

i Users and Applications storage

. 3 @D
Eyeos modified 4

ubuntu

POP1 PDP 2

Fig. 6. Architecture

As specified in figure 6, these policies are enforced using a specific Policy
Enforcement Point (PEP) and two Policy Decision Points (PDP), only one PDP
is active at a time. A PEP has been implemented in Eyeos as a replacement
of current access control module. Two OrBAC-based PDPs, with two kinds of
requesting methods: 1) A PDP which is queried using a standardized XACML
protocol. OrBAC policies are translated into XACML and processed by the Swid
XACML server. This PDP has the advantage of handling standard protocols.
By contrast, XACML policies cannot express fine-grained access-control policies
with complex context processing. 2) A PDP which is queried using dedicated
Web-services. OrBAC policies are directly interpreted for each query. This PDP
leverages the power of the OrBAC model, making it possible to have advanced
security policies (through expressive context evaluation).

Swid software agents are integrated into Eyeos to handle communication
(either SAML or Web-service) between Eyeos access control mechanism and
PDPs. Using this application, users can be authenticated through a function,
and get an access to a limited set of applications, depending on their rights
(privileges that are assigned to the activated function). Several users can share
the same session once authenticated through the same function. Users can close
their sessions or perform a user switch. This second behavior is similar to the first
one, but in addition it allows another user to join the session. In these two cases,



Towards Session-Aware RBAC Delegation: Function Switch 15

the session can be resumed by authorized users, and all applications previously
launched are displayed. Moreover, all data written by the previous user are kept,
making it possible to append some additional information. The session context
can change after the user switch, for instance, we may consider that if the user
location is not in a secured area, then the security policy forbids the access
to confidential information and applications. Note that the context can also be
modified without the user switch, for instance, when the user moves from his/her
office to another location, some applications will be prohibited or closed. Or also
when an emergency occurs, the user will have an access to additional privileges
in order to deal with urgent situations. As future work, we aim to extend this
application with more administration features that we have discussed in this
paper. For instance, in our model users are able to perform a context switch by
forbidding the access to their personal data to the other session members. This
will update the security policy by adding prohibition rules.

6 Discussion and conclusion

To the best of our knowledge, we have addressed in this paper new issues that
have not been previously considered by access control models. Our concept of dy-
namic session is different from traditional RBAC sessions [15] since, it supports
new features namely, shareability, reusability and switchability. In our model, a
user may create a dynamic session and starts the execution of a task, suspend
the session, reopen it, and continue the execution of this task in another context.
Also, using the switch operation, this task may be continued by another user.
Moreover, we have introduced the concept of function that involves both au-
thentication and access control mechanisms to ease the switch operation. When
function authentication is used a set of privileges that are needed to perform the
related task, are automatically activated for the user. This is different from the
concept of task defined in task based RBAC models such as [20,17,19] since, in
these models, the dynamic behavior of our approach is not addressed.

In [13] authors propose the concept of capability delegation, where a capa-
bility represents a self-authenticating permission to access a specified object in
permitted operations. Our concept of function switch is different form delega-
tion, since the working context of the initial session will not be lost when the
joining user activates the dynamic session, which is not the case in “classical”
delegation. During the switch, the context can change according to the security
policy, to preserve user privacy or for security reasons. The user activity can
also change to fulfill another task by preserving the working environment. An-
other switch issue that has not been addressed in this paper is the organization
switch, when the user hands over to another user belonging to another organi-
zation. This is the most complex case to manage since the user, who is targeted
by the switch, will not be probably assigned to the “same” role as the original
user. We aim to further investigate this feature in future work. We also aim to
study separation of duty policies related to the activation and deactivation of
dynamic sessions especially in the case of user switch.



16

Ben Ghorbel-Talbi, Cuppens, Cuppens-Boulahia, Morucci

Acknowledgments. This research has been supported by the RolelD project.
Role-ID is a european research project funded by Eureka, ITEA 2 programe.
The project is coordinated by EADS Defense and Security Systems, France.

References

10.

11.

12.
13.

14.

15.

16.
17.

18.

19.

20.

21.

Autrel, F., Cuppens, F., Cuppens, N., Coma, C.: MotOrBAC 2: A Security Policy
Tool. In: SARSSI (2008)

. Autrel, F., Cuppens-Boulahia, N.; Cuppens, F.: Reaction Policy Model Based on

Dynamic Organizations and Threat Context. In: DBSec (2009)
Ben-Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N., Bouhoula, A.: An Ex-
tended Role-Based Access Control Model for Delegating Obligations. In: TrustBus
(2009)

Ben-Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N., Bouhoula, A.: A Del-
egation Model for Extended RBAC. The International Journal of Information Se-
curity (IJIS) 9(3) (June 2010)

Crampton, J., Khambhammettu, H.: Delegation in Role-Based Access Control.
International Journal of Information Security (September 2008)

Cuppens, F., Cuppens-Boulahia, N.: Modeling Contextual Security Policies. Inter-
national Journal of Information Security 7(4) (2008)

Cuppens, F., Cuppens-Boulahia, N., Miege, A.: Inheritance hierarchies in the Or-
BAC Model and application in a network environment. In: FCS (2004)

Cuppens, F., Cuppens-Boulahia, N., Nuadi, M.: Smatch Model: Extending RBAC
Sessions in Virtualization Environment. In: ARES (2011)

Cuppens, F.C., Cuppens-Boulahia, N., Coma, C.: Multi-Granular Licences to De-
centralize Security Administration. In: SSS/WRAS (2007)

El-Rakaiby, Y., Cuppens, F., Cuppens-Boulahia, N.: From Contextual Permission
to Dynamic Pre-Obligation. In: ARES (2010)

Elrakaiby, Y., Cuppens, F., Cuppens-Boulahia, N.: Formal enforcement and man-
agement of obligation policies. Data & Knowledge Engineering (2011)

EYEOS: http://www.eyeos.org/

Hasebe, K., Mabuchi, M., Matsushita, A.: Capability-Based Delegation Model in
RBAC. In: SACMAT (2010)

Ray, I., Toahchoodee, M.: A Spatio-temporal Access Control Model Supporting
Delegation for Pervasive Computing Applications. In: TrustBus (2008)

Sandhu, R., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-Based Access Control
Models. IEEE Computer 29(2), 3847 (1996)

Schaad, A., Moffett, J.D.: Delegation of Obligations. In: POLICY (2002)

S.Oh, S.Park: Task-Role-based Access Control Model. Information Systems 28
(2003)

Ullman, J.D.: Principles of Database and Knowledge-Base Systems: Volume II:
The New Technologies. W. H. Freeman & Co., New York, NY, USA (1990)

Yao, L., Kong, X., Xu, Z.: A Task-Role Based Access Control Model With Multi-
Constraints. In: NCM (2008)

Zhang, L., Luo, L., Zhang, L., Geng, T., Yue, Z.: Task-Role-Based Access Control
in Application on MIS. In: APSCC (2006)

Zhang, X., Oh, S., Sandhu, R.: Pbdm: A Flexible Delegation Model in RBAC. In:
SACMAT (2003)



