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Abstract

This paper intends to explore the bifurcation of limit cycles for planar polynomial systems with even number of

degrees. To obtain the maximum number of limit cycles, a sixth-order polynomial perturbation is added to a quintic

Hamiltonian system, and both local and global bifurcations are considered. By employing the detection function

method for global bifurcations of limit cycles and the normal form theory for local degenerate Hopf bifurcations,

31 and 35 limit cycles and their configurations are obtained for different sets of controlled parameters. It is shown that:

H(6) P 35 = 62 � 1, where H(6) is the Hilbert number for sixth-degree polynomial systems.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The second part of Hilbert�s 16th problem is concerned with the number of limit cycles of planar polynomial differ-

ential equations. It remains unsolved even for quadratic polynomial systems. But this problem has inspired significant

progress in geometric theory, bifurcation theory, normal forms and algebraic geometry [1].

Due to persistence of the problem, it makes sense to consider simplified versions in advance [2]. In 1977, Arnold [3]

posed a ‘‘weakened’’ Hilbert 16th problem which seeks bounds on the number of limit cycles which occur in perturbed

Hamiltonian systems [4]. A number of results have been published regarding the lower bounds of the number of limit

cycles in perturbed Hamiltonian systems. Some of them focus on local bifurcations at non-hyperbolic equilibrium

points [5–7], while others deal with global bifurcations from homoclinic (or heteroclinic) loops or periodic orbits based

on the Melnikov method [8,10,9,11–15].

It has been noted that most articles related to the weakened Hilbert 16th problem consider odd degree of polynomial

Hamiltonian systems, taking advantage of the symmetric distribution of algebraic curves in odd degree planar polyno-

mial systems. With symmetric odd degree perturbations, the systems are able to generate more limit cycles at a given

degree. On other hand, even degree systems are equally important as odd degree systems, but very few results have been
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achieved. This is the major motivation of this paper to study bifurcation of limit cycles in even degree polynomial

systems.

The lowest even degree polynomial systems are quadratic systems, which have been intensively studied (e.g. see

[9,10,14–17]) with the best result of H(2) P 4. Recently, H(4) P 15 has been reported by Zhang et al. [11] based on

a cubic system with quartic perturbations. Thus we study bifurcations of limit cycles in sixth-degree polynomial sys-

tems. To approach the maximal number of limit cycles, both local and global bifurcations are considered in choosing

control parameters. The detection function method [18] is applied to compute global limit cycles, while an early devel-

oped normal form computation technique [19] is employed in calculating local focus values to examine small limit

cycles.

Bifurcation of limit cycles and symmetry are closely connected [19], and symmetric Hamiltonian systems exhibit

great advantage in the study of global limit cycles, by using the detection function method. Desire not to completely

lose this advantage in our investigation of even degree polynomial systems, we will add a sixth-degree polynomial per-

turbation to a fifth-degree Z2 symmetric polynomial Hamiltonian system to examine the highest lower bound of the

number of limit cycles for the sixth-degree polynomial system. The sixth-degree perturbation is expected to break

the symmetry. However, on the other hand, when all the possible terms are included, it gains more flexibility in setting

up control equations with more parameters comparing with fifth-degree symmetric perturbations [21,22]. Such flexibil-

ity also extends to combining more local Hopf bifurcation conditions into parameter control.

We begin with a Z2-equivariant Hamiltonian system of degree 5, given by
dx
dt

¼ y 1� 1

2
y2

� �
1� 1

8
y2

� �
;

dy
dt

¼ �xð1� 2x2Þ 1� 1

2
x2

� �
.

ð1Þ
This system was first studied by Chen et al. [21], who claimed that 29 limit cycles were obtained under the following

quintic perturbation:
dx
dt

¼ y 1� 1

2
y2

� �
1� 1

8
y2

� �
;

dy
dt

¼ �xð1� 2x2Þ 1� 1

2
x2

� �
þ �yðdþ lx2 þ ry2 þ kx4 þ nx2y2 þ y4Þ.

ð2Þ
However, this result was later shown to be incorrect by Li et al. [22], who obtained maximal 23 limit cycles for the same

system with the same perturbation.

In this paper, we investigate system (1) by adding more general sixth-degree polynomial perturbations, leading to a

new system:
dx
dt

¼ y 1� 1

2
y2

� �
1� 1

8
y2

� �
þ �x

X
16iþj65

aijxiyj � k

 !
;

dy
dt

¼ �xð1� 2x2Þ 1� 1

2
x2

� �
þ �y

X
16iþj65

bijxiyj � k

 !
;

ð3Þ
where 0 < �� 1, aij�s and bij�s are parameters, and k is a detection function [18] for detecting the number and locations

of global limit cycles.

The rest of the paper is organized as follows. In Section 2, we will briefly describe the behavior of the unperturbed

fifth-degree Hamiltonian system (1), followed by presenting a procedure of calculating bifurcation parameter values for

the perturbed sixth-degree system using the detection function method. In Section 3, we will outline the normal form

computation technique which will be used to calculate the focus values of local degenerate Hopf bifurcations. Section 4

is devoted to design parameter control by combining both global and local limit cycle computations and show two con-

figurations of limit cycles for the sixth-degree polynomial system (3). The maximal number of limit cycles we obtain

from this system is 35. Finally, conclusion is drawn in Section 5.
2. Computation of global bifurcations of limit cycles

We start from analyzing the global behavior of the unperturbed Hamiltonian system (1). The system has 25 critical

points which locate symmetrically with respect to the x-axis and y-axis. Fig. 1 shows the phase portrait of the system
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Fig. 1. Phase portrait and critical points of system (1).
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and the locations of the 25 critical points, whose coordinates and types are listed in Table 1, where the 25 critical points

are labelled as nine distinct groups as A0, A1, A2, A3, A4, A5, A6, A7, A8 and A9 according to their symmetric locations.

System (1) has the following Hamiltonian:
Table

25 Cri

No.

0

1

2

3

4

5

6

7

8

Hðx; yÞ ¼ 1

2
x2 þ 1

2
y2 � 5

8
x4 � 5

32
y4 þ 1

6
x6 þ 1

96
y6; ð4Þ
1

tical points, U—upper half plane, L—lower half plane

Notation Coordinates Type

A0 (0,0) Focus

A1± ð� 1ffiffi
2

p ; 0Þ Saddle

A2± ð�
ffiffiffi
2

p
; 0Þ Focus

AUL
3 ð0;�

ffiffiffi
2

p
Þ Saddle

AU
4� ð� 1ffiffi

2
p ;

ffiffiffi
2

p
Þ Focus

AL
4� ð� 1ffiffi

2
p ;�

ffiffiffi
2

p
Þ

AU
5� ð�

ffiffiffi
2

p
;
ffiffiffi
2

p
Þ Saddle

AL
5� ð�

ffiffiffi
2

p
;�

ffiffiffi
2

p
Þ

AUL
6 ð0;�2

ffiffiffi
2

p
Þ Focus

AU
7� ð� 1ffiffi

2
p ; 2

ffiffiffi
2

p
Þ Saddle

AL
7� ð� 1ffiffi

2
p ;�2

ffiffiffi
2

p
Þ

AU
8� ð�

ffiffiffi
2

p
; 2

ffiffiffi
2

p
Þ Focus

AL
8� ð�

ffiffiffi
2

p
;�2

ffiffiffi
2

p
Þ
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which is a symmetric sixth-degree polynomial function with respect to both the x-axis and the y-axis. Therefore, there

are a total of 9 distinct Hamiltonian levels from the 9 groups of the 25 critical points, given as follows:
h0 ¼ HðA0Þ ¼ Hð0; 0Þ ¼ 0;

h1 ¼ HðA1Þ ¼ H
�
� 1ffiffiffi

2
p ; 0

�
¼ 11

96
� 0.1145833333;

h2 ¼ HðA2Þ ¼ Hð�
ffiffiffi
2

p
; 0Þ ¼ � 11

96
� �0.166666667;

h3 ¼ HðA3Þ ¼ Hð0;�
ffiffiffi
2

p
Þ ¼ 11

24
� 0.4583333333;

h4 ¼ HðA4Þ ¼ H
�
�

ffiffiffi
2

p
;� 1ffiffiffi

2
p
�
¼ � 55

96
� 0.5729166667;

h5 ¼ HðA5Þ ¼ Hð�
ffiffiffi
2

p
;�

ffiffiffi
2

p
Þ ¼ 7

24
� 0.2916666667;

h6 ¼ HðA6Þ ¼ H
�
0;�2

ffiffiffi
2

p �
¼ � 2

3
� �0.666666667;

h7 ¼ HðA7Þ ¼ H
�
� 1ffiffiffi

2
p ;�

ffiffiffi
2

p �
¼ � 53

96
� �0.55203333;

h8 ¼ HðA8Þ ¼ Hð�
ffiffiffi
2

p
;�2

ffiffiffi
2

p
Þ ¼ � 5

6
� �0.833333333.
Since each critical point associates with one family of closed orbits, there are, in total, 25 closed orbits for the unper-

turbed Hamiltonian system. Fig. 2 shows the transition of algebraic curves with the increase of the level value.

Now, we add a sixth-degree polynomial perturbation to system (1). By taking the form of perturbation used in the

detection function method [21], we apply a more general perturbation to obtain:
dx
dt

¼ y 1� 1

2
y2

� �
1� 1

8
y2

� �
þ �x

X
16iþj65

aijxiyj � k

 !
;

dy
dt

¼ �xð1� 2x2Þ 1� 1

2
x2

� �
þ �y

X
16iþj65

bijxiyj � k

 !
;

ð5Þ
where 0 < �� 1, ai,j�s and bi,j�s are parameters and k is called detection function [20] which will be defined later to exam-

ine the numbers of global limit cycles for system (5). Consequently, the so-called Poincare-Melnikov Abelian integral

[23] associated with system (5) can be written as
IðhÞ ¼
Z
Ch

x
X

aijxiyj � k
� �

dy � y
X

bijxiyj � k
� �

dx ¼
Z Z

Dh

o
P

aijxiyj � k
� �

ox
þ
o
P

bijxiyj � k
� �

oy

� �
dxdy

¼
Z Z

Dh

X
ð1þ iÞaij þ ð1þ jÞbij
� 	

xiyj � 2k
n o

dxdy; ð6Þ
where h is Hamiltonian level, Ch is a family of closed orbits corresponding to h, and Dh is the area inside Ch. According

to the Poincare-Pontrjagin–Andronov theorem [20], the number of isolated zeros of the Abelian integral I(h) is an upper

bound of the number of limit cycles which bifurcate from this family of closed orbits. To study the number of limit

cycles for the system, we set the Abelian integral I(h) = 0. The detection function can then be defined as
k ¼ kðhÞ ¼
RR

Dh
Sðx; yÞdxdyRR
Dh
dxdy

¼
X

16iþj65

sijJ ijðhÞ; ð7Þ
where
Sðx; yÞ ¼
X

16iþj65

sijxiyj;

sij ¼
1

2



ð1þ iÞaij þ ð1þ jÞ

�
bij;

J ijðhÞ ¼
wijðhÞ
/ðhÞ ;

wijðhÞ ¼
Z Z

Dh

xiyjdxdy;

/ðhÞ ¼
Z Z

Dh

dxdy.

ð8Þ



Fig. 2. Flow chart of algebraic curves of system (1).

S. Wang, P. Yu / Chaos, Solitons and Fractals 26 (2005) 1317–1335 1321



Table 2

First- and second-order focus values of Hopf bifurcations

Focus v Focus values

A0 v0 �k
v1 �

1

4
s20 þ

1

4
s02

� �
þOð�2Þ

A2� v0 �ð4s20 þ 8s40 � 2
ffiffiffi
2

p
s10 � 4

ffiffiffi
2

p
s30 � 8

ffiffiffi
2

p
s50 � 2kÞ

v1 �
19

24

ffiffiffi
3

p
s30þ

65

36

ffiffiffi
3

p
s50�

1

2

ffiffiffi
3

p
s12þ

25

144

ffiffiffi
3

p
s10�

ffiffiffi
3

p
s32�

1

2

ffiffiffi
6

p
s22�

1

4

ffiffiffi
6

p
s02þ

11

36

ffiffiffi
6

p
s20þ

8

9

ffiffiffi
6

p
s40

� �
þOð�2Þ

A2+ v0
�ð4s20 þ 8s40 þ 2

ffiffiffi
2

p
s10 þ 4

ffiffiffi
2

p
s30 þ 8

ffiffiffi
2

p
s50 � 2kÞ

v1 � �19

24

ffiffiffi
3

p
s30�

65

36

ffiffiffi
3

p
s50þ

1

2

ffiffiffi
3

p
s12�

25

144

ffiffiffi
3

p
s10þ

ffiffiffi
3

p
s32�

1

2

ffiffiffi
6

p
s22�

1

4

ffiffiffi
6

p
s02þ

11

36

ffiffiffi
6

p
s20þ

8

9

ffiffiffi
6

p
s40

� �
þOð�2Þ

AU
4� v0 � s20 þ 4s02 þ

1

2
s40 þ 8s04 þ 2s22 �

ffiffiffi
2

p
s10 �

1

2

ffiffiffi
2

p
s30 �

1

4

ffiffiffi
2

p
s50 � 2

ffiffiffi
2

p
s12 � 4

ffiffiffi
2

p
s14 �

ffiffiffi
2

p
s32 � 2k

� �

v1 �
5

36

ffiffiffi
2

p
s10�

1

24

ffiffiffi
2

p
s30þ

1

3

ffiffiffi
2

p
s12�

1

9
s02þ

2

9
s40�

5

18
s22þ

8

9
s04�

1

9
s20�

1

18

ffiffiffi
2

p
s32þ

1

9

ffiffiffi
2

p
s14�

35

144

ffiffiffi
2

p
s50

� �
þOð�2Þ

AU
4þ v0 � s20 þ 4s02 þ

1

2
s40 þ 8s04 þ 2s22 þ

ffiffiffi
2

p
s10 þ

1

2

ffiffiffi
2

p
s30 þ

1

4

ffiffiffi
2

p
s50 þ 2

ffiffiffi
2

p
s12 þ 4

ffiffiffi
2

p
s14 þ

ffiffiffi
2

p
s32 � 2k

� �

v1 � � 5

36

ffiffiffi
2

p
s10þ

1

24

ffiffiffi
2

p
s30�

1

3

ffiffiffi
2

p
s12�

1

9
s02þ

2

9
s40�

5

18
s22þ

8

9
s04�

1

9
s20þ

1

18

ffiffiffi
2

p
s32�

1

9

ffiffiffi
2

p
s14þ

35

144

ffiffiffi
2

p
s50

� �
þOð�2Þ

AU
6 v0 �(128s04 + 16s02�2k)

v1 � � 32

9

ffiffiffi
6

p
s04 þ 2

ffiffiffi
6

p
s22 �

11

36

ffiffiffi
6

p
s02 þ

1

4

ffiffiffi
6

p
s20

� �
þOð�2Þ

AU
8� v0 �ð4s20þ16s02þ8s40þ128s04þ32s22�2

ffiffiffi
2

p
s10�4

ffiffiffi
2

p
s30�8

ffiffiffi
2

p
s50�16

ffiffiffi
2

p
s12�128

ffiffiffi
2

p
s14�32

ffiffiffi
2

p
s32�2kÞ

v1 �
25

288

ffiffiffi
2

p
s10þ

19

48

ffiffiffi
2

p
s30þ

ffiffiffi
2

p
s12�

11

36
s02�

8

9
s40�

55

18
s22�

32

9
s04�

11

36
s20þ

34

9

ffiffiffi
2

p
s32þ

82

9

ffiffiffi
2

p
s14þ

65

72

ffiffiffi
2

p
s50

� �
þOð�2Þ

AU
8þ v0 �ð4s20þ16s02þ8s40þ128s04þ32s22þ2

ffiffiffi
2

p
s10þ4

ffiffiffi
2

p
s30þ8

ffiffiffi
2

p
s50þ16

ffiffiffi
2

p
s12þ128

ffiffiffi
2

p
s14þ32

ffiffiffi
2

p
s32�2kÞ

v1 � � 25

288

ffiffiffi
2

p
s10�

19

48

ffiffiffi
2

p
s30�

ffiffiffi
2

p
s12�

11

36
s02�

8

9
s40�

55

18
s22�

32

9
s04�

11

36
s20�

34

9

ffiffiffi
2

p
s32�

82

9

ffiffiffi
2

p
s14�

65

72

ffiffiffi
2

p
s50

� �
þOð�2Þ
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Clearly, each k corresponds to a zero of the Poincare-Melnikov Abelian integral I(h). Therefore, the detection curve

k(h) on the (h,k) plane provides a visual tool in determining the number and locations of limit cycles. Since each family

of closed orbits corresponds to one detection curve, we seek for all detection curves, representing all the families of the

closed orbits, to intersect at the same k ¼ ~k line with the maximal number of intersections. Then the number and loca-

tions of limit cycles generated from each family of closed orbits through the perturbation are identified by the number

and the location of intersections with respect to h. Note that the detection function k(h) is a ratio of two Abelian inte-

grals over a family of closed orbits depending on the Hamiltonian level h. For the symmetric Hamiltonian system (1),

within a symmetric closed orbit group and with the symmetric perturbation terms, the detection curves are identical.

One detection curve can represent the whole group and the intersections, i.e., the number of limit cycles, can be ex-

panded by multiply the number of members in the group, which makes the parameter control much simpler and effi-

cient. But with sixth-degree perturbation terms in system (5), the divergence of the perturbation, i.e. the integration

terms in the detection function integral are no longer symmetric with respect to the x-axis and the y-axis. Therefore,

each detection curve must be considered separately even within the same group. Since the areas for the Abelian integrals

bounded by the closed orbits are symmetric with both the x-axis and y-axis, it is desired to keep the symmetric advan-

tages when choosing the control parameters. Preliminary numerical computation also indicates that it is more efficient

to set parameters sij = 0 when j = 1,3,5, which makes the perturbation terms behave symmetrically with respect to the x-

axis. Therefore, we only need to consider bifurcations of limit cycles on the x-axis and above. The number of limit cycles

can be doubled for the closed orbits with mirror identities at the lower part of the plane.

It is obvious that the detection function k(h) is a ratio of two Abelian integrals over sixth-degree algebraic curves.

Therefore, it can only be calculated numerically. The following are the formulae of /(h) and wij(h) for computing Jij(h)

leading to the detection function k:
/ ¼
Z Z

Ch

dxdy ¼
Z

ðyþ � y�Þdx; w10 ¼
Z Z

Ch

xdxdy ¼
Z

xðyþ � y�Þdx;

w20 ¼
Z Z

Ch

x2dxdy ¼
Z

x2ðyþ � y�Þdx; w02 ¼
Z Z

Ch

y2dxdy ¼ 1

3

Z
ðy3þ � y3�Þdx;

w30 ¼
Z Z

Ch

x3dxdy ¼
Z

x3ðyþ � y�Þdx; w12 ¼
Z Z

Ch

xy2 dxdy ¼ 1

3

Z
xðy3þ � y3�Þdx;

w40 ¼
Z Z

Ch

x4 dxdy ¼
Z

x4ðyþ � y�Þdx; w22 ¼
Z Z

Ch

x2y2 dxdy ¼ 1

3

Z
x2ðy3þ � y3�Þdx;

w04 ¼
Z Z

Ch

y4 dxdy ¼ 1

5

Z
ðy5þ � y5�Þdx; w50 ¼

Z Z
Ch

x5 dxdy ¼
Z

x5ðyþ � y�Þdx;

w32 ¼
Z Z

Ch

x3y2dxdy ¼ 1

3

Z
x3ðy3þ � y3�Þdx; w14 ¼

Z Z
Ch

xy4 dxdy ¼ 1

5

Z
xðy5þ � y5�Þdx.
With the aid of Maple [24], for a given value of h, the closed orbits corresponding to this value can be numerically

obtained. For each family of closed orbits, the values of /(h), wij(h), and thus Jij(h) are calculated, which in turn gives

the value of k(h) in terms of parameters. The parameter values of the first-order Hopf bifurcation at focus points on the

upper half of the plane, A0;A2þ; A2�; AU
4þ; AU

4�; AU
6 ; AU

8þ and AU
8�, can be calculated based on the detection function

theory [14,20]:
bH ¼ kðhiÞ þOð�Þ ¼ lim
h!hi

kðhÞ þOð�Þ ¼ Sðn; gÞ þOð�Þ; ð9Þ
where S is defined in (8), bH is the first-order Hopf bifurcation parameter value at the focus point (n,g) and h is the

Hamiltonian level at this focus point.

For each family of closed orbits, there exists one detection function curve k = k(h) indicating the potential existence

of limit cycles and their locations. Control conditions can be set by laying out all detection curves to make the maximal

possible number of intersections at one line k ¼ ~k. The solutions of the system of linear equations composed of control

conditions are parameter desired to fulfil the objective. The results of bifurcations values calculated using Maple are

displayed in Tables 3 and 4.
3. Computation of focus values for the existence of local limit cycles

In the previous section, we have discussed the computation of global bifurcations of limit cycles. Generally, for a

limited number of perturbation parameters, there is limited flexibility in parameter control to satisfy both local and



Table 3

First-order Hopf bifurcations

h Focus Parameter values

h0 A0 0 + O(�)

h2 A2� 2s20 � 2
ffiffiffi
2

p
s30 þ 4s40 � 4

ffiffiffi
2

p
s50 �

ffiffiffi
2

p
s10 þOð�Þ

A2+ 2s20 þ 2
ffiffiffi
2

p
s30 þ 4s40 þ 4

ffiffiffi
2

p
s50 þ

ffiffiffi
2

p
s10 þOð�Þ

h4 AU
4�

1

2
s20 þ 2s02 �

1

4

ffiffiffi
2

p
s30 þ

1

4
s40 þ 4s04 þ s22 �

1

8

ffiffiffi
2

p
s50 �

1

2

ffiffiffi
2

p
s10 �

ffiffiffi
2

p
s12 � 2

ffiffiffi
2

p
s14 �

1

2

ffiffiffi
2

p
s32 þOð�Þ

AU
4þ

1

2
s20 þ 2s02 þ

1

4

ffiffiffi
2

p
s30 þ

1

4
s40 þ 4s04 þ s22 þ

1

8

ffiffiffi
2

p
s50 þ

1

2

ffiffiffi
2

p
s10 þ

ffiffiffi
2

p
s12 þ 2

ffiffiffi
2

p
s14 þ

1

2

ffiffiffi
2

p
s32 þOð�Þ

h6 AU
6 8s02 + 64s04 + O(�)

h8 AU
8� 2s20 þ 8s02 � 2

ffiffiffi
2

p
s30 þ 4s40 þ 64s04 þ 16s22 � 4

ffiffiffi
2

p
s50 �

ffiffiffi
2

p
s10 � 8

ffiffiffi
2

p
s12 � 64

ffiffiffi
2

p
s14 � 16

ffiffiffi
2

p
s32 þOð�Þ

AU
8þ 2s20 þ 8s02 þ 2

ffiffiffi
2

p
s30 þ 4s40 þ 64s04 þ 16s22 þ 4

ffiffiffi
2

p
s50 þ

ffiffiffi
2

p
s10þ 8

ffiffiffi
2

p
s12 þ 64

ffiffiffi
2

p
s14 þ 16

ffiffiffi
2

p
s32 þOð�Þ

Table 4

Saddle-node bifurcations

h k Parameter values

h1 k0 0.09660567545s20 + 0.05542969145s02 + 0.02033119566s40 + 0.006606314300s04 + 0.002852472700s22
k1 1.196811517s20 + 0.1223109725s02 + 2.190412406s40 + 0.3744837449s04 + 0.1949749145s22
k2� 1.706575249s20 + 0.1532994030s02 � 2.312410954s30 + 3.195886714s40 + 0.05173857653s04

+ 0.2839919421s22 � 4.492011856s50 � 1.288933334s10 � 0.2073961794s12 � 0.07111888065s14 � 0.3931497212s32
k2+ 1.706575249s20 + 0.1532994030s02 + 2.312410954s30 + 3.195886714s40 + 0.05173857653s04 + 0.2839919421s22

+ 4.492011856s50 + 1.288933334s10 + 0.2073961794s12 + 0.07111888065s14 + 0.3931497212s32

h3 k4� 0.4414983175s20 + 1.973735690s02 � 0.3437887825s30 + 0.2829915226s40 + 4.184171632s04
+ 0.8705814272s22 � 0.2422783810s50 � 0.6171961520s10 � 1.216974754s12 � 2.590537344s14 � 0.6782450839s32

k4+ 0.4414983175s20 + 1.973735690s02 + 0.3437887825s30 + 0.2829915226s40 + 4.184171632s04 + 0.8705814272s22
+ 0.2422783810s50 + 0.6171961520s10 + 1.216974754s12 + 2.590537344s14 + 0.6782450839s32

kU5 0.4414983170s20 + 1.973735682s02 + 0.2829915227s40 + 4.184171627s04 + 0.8705814285s22

h5 k1 1.080881838s20 + 0.2992289455s02 + 1.928024472s40 + 0.2061954311s04 + 0.4105030244s22
kU5 0.5298519663s20 + 1.911977133s02 + 0.5021482479s40 + 4.466898115s04 + 1.018713089s22
kU7 1.101391930s20 + 6.753593284s02 + 2.099111549s40 + 50.27779340s04 + 7.344665471s22
kO 0.9425810912s20 + 3.727520403s02 + 1.624923236s40 + 24.58882463s04 + 3.792003542s22

h7 kU6 0.09730649613s20 + 7.934940827s02 + 0.02054218059s40 + 63.24527129s04 + 0.7750411485s22
k7+ 1.181206255s20 + 7.867506474s02 + 2.155850213s40 + 62.46922683s04 + 9.243207325s22
kU8� 1.699351982s20 + 7.835270286s02 � 2.299930325s30 + 3.176609486s40 + 62.09824796s04

+ 13.29131624s22 � 4.464038504s50 � 1.285770705s10 � 10.06401292s12 � 79.72497510s14 � 17.97992067s32
kU8þ 1.699351982s20 + 7.835270286s02 + 2.299930325s30 + 3.176609486s40 + 62.09824796s04

+ 13.29131624s22 + 4.464038504s50 + 1.285770705s10 + 10.06401292s12 + 79.72497510s14 + 17.97992067s32
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global bifurcation conditions. In this article, we consider a sixth-degree polynomial perturbation to a fifth-degree Z2

symmetric Hamiltonian system. Taking into account the symmetric perturbation as mentioned in Section 2, there

are still 11 non-zero parameters to be used. For the 13 focus points in the system under consideration, it is intended

to include the second-order focus values, i.e., to study degenerate Hopf bifurcations.

First we briefly describe an efficient technique for computing local focus values, such that the local limit cycles

around focus points can be investigated. There are a number of methods which can be used to compute focus values.

One of them is the method of normal form associated with Hopf singularity [19]. Usually, normal form theory is em-

ployed before the application of center manifold theory in order to reduce the original equation to a lower dimensional

system. A perturbation technique has been developed to unify the two methods and to compute the normal forms of

Hopf and degenerate Hopf bifurcations directly for general n-dimensional systems [19]. In the following, a brief descrip-

tion is given for the perturbation method.

Consider the following general n-dimensional differential equation:
dx

dt
¼ Axþ FðxÞ; x 2 Rn; F : Rn ! Rn; ð10Þ
where Ax represents the linear part of the system, and the nonlinear function F is assumed to be analytic, satisfying

F(0) = 0, i.e., x = 0 is an equilibrium of the system. Further, assume that the Jacobian of system (10) evaluated at

x = 0 contains a pair of purely imaginary eigenvalues ±i. Thus the Jacobian of system (10) can be assumed in the Jordan

canonical form:
J ¼
0 1 0

�1 0 0

0 0 B

2
64

3
75; A 2 Rðn�2Þ�ðn�2Þ; ð11Þ
where B is a Hurwitz matrix, i.e. all of its eigenvalues have negative real parts.

The basic idea of the perturbation technique is based on multiple scales, treating the time scale with space scale con-

sistently. To achieve this, introducing the new independent time variables Tk = �kt, k = 0,1,2, . . . to obtain partial deriv-

atives with respect to Tk as follows:
d

dt
¼ dT 0

dt
o

oT 0

þ dT 1

dt
o

oT 1

þ dT 2

dt
o

oT 2

þ � � � ¼ D0 þ �D1 þ �2D2 þ � � � ð12Þ
where Dk ¼ o
oT k

denotes a differentiation operator. Further, suppose the solutions of system (10) in the neighborhood of

x = 0 are expanded in the series:
xðt; �Þ ¼ �x1ðT 0; T 1; . . .Þ þ �2x2ðT 0; T 1; . . .Þ þ � � � ð13Þ
where the perturbation parameter, �, is the same as that in multiple scales, implying that both the time and space sca-

lings are uniformed.

Now substituting (12) and (13) into system (10), and solving the resulting ordered linear differential equations yields

the normal form, given in polar coordinates (the detailed procedure can be found in [19]):
dr
dt

¼ or
oT 0

dT 0

dt
þ or
oT 1

dT 1

dt
þ or
oT 2

dT 2

dt
þ � � � ¼ D0r þ D1r þ D2r þ � � � ð14Þ

dh
dt

¼ 1þ oh
oT 0

oT 0

ot
þ oh
oT 1

oT 1

ot
þ oh
oT 2

oT 2

ot
þ � � � ¼ 1þ D0hþ D1hþ D2hþ � � � ð15Þ
where Di r and Dih are uniquely determined. It can be shown that [20] the derivatives Dir and Dih are functions of r only,
and only D2kr and D2kh are non-zero, which can be expressed as D2kq = vkq

2k+1 and D2k/ = tkq
2k, where both vk and tk

are expressed in terms of the original system�s coefficients. vk is called the kth-order focus value of the Hopf-type sin-

gularity. Therefore, the final normal form of system (10) associated with generalized Hopf singularities, up to (2k + 1)th

order term, is described by
dr
dt

¼ rðv0 þ v1r2 þ v2r4 þ � � � þ vkr2kÞ; ð16Þ

dh
dt

¼ 1þ t1r2 þ t2r4 þ � � � þ tkr2k ; ð17Þ
where v0 is the linear perturbation of the system and equals zero at the focus point x = 0. The basic idea of finding k

small limit cycles around the origin is as follows: First, find the conditions such that v1 = v2 = � � � = vk�1 = 0, but vk 5 0,

and then properly perturb these focus values to show the existence of k limit cycles.
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A sufficient condition for system (16) and (17) to have k limit cycles is given in the following theorem. The proof can

be found in [5–7].

Theorem 1 [5–7]. If the focus values vi in Eq. (16) satisfy the following condition:
viviþ1 < 0 and jvij � jviþ1j � 1; for i ¼ 0; 1; 2; . . . ; k � 1;
then the polynomial equation given by dr
dt ¼ 0 in Eq. (16) has k positive real roots of r2, and thus the system has k limit cycles.

There are 13 Hopf-type focus points in system (5). Due to the symmetry, we consider 8 focus points on the x-axis and

the upper half of the plane, symbolled as A0;A2þ;A2�;A
U
4þ;A

U
4�;A

U
6 ;A

U
8þ and AU

8�, see Fig. 1 and Table 1 for their detailed

locations.

To analyze the local Hopf bifurcation at each point using the method of normal form described above, first intro-

duce a transformation into system (5) to make the focus point at the origin. For example, substituting

x ! xþ
ffiffiffi
2

p
; y ! y þ 2

ffiffiffi
2

p
into the system can move the focus point AU

8þ to the origin of the transformed system. Then

the Maple program developed in [19] is applied to obtain its focus values vi. Here we consider up to second-order Hopf

bifurcation associated with the focus value v1. To be consistent with the previous global limit cycle investigation, which

has taken care of perturbation order up to O(�), we take into account the first approximation of v1 by ignoring the O(�2)
terms. For each of the 8 focus points, the first- and second-order focus values are calculated and listed in Table 2. Note

that the first-order focus values are consistent with the first-order Hopf bifurcation values calculated by using the detec-

tion function method. According to Theorem 1, in general, when v0 = v1 = 0 at a focus point, one can perturb these two

focus values to obtain two limit cycles. However, since O(�2) terms are ignored in calculating v1 = 0, it is possible that

the final values may yield one limit cycle or three limit cycles. Therefore, when all the parameter values are determined,

one must recalculate the focus values up to higher order terms to check if the focus point indeed has two limit cycles.

The procedure will be seen in the next section.
4. Parameter control of both local and global bifurcations of limit cycles

Thus far, we have considered global bifurcations of limit cycles that occur at homoclinic, heteroclinic and other peri-

odic orbits, and local bifurcations of limit cycles that occur at focus points. Parameter values corresponding to each

closed orbit around each critical point have been calculated. Now we are ready to set up control conditions to find

parameter groups which can make the sixth-degree polynomial system (5) generate the maximal possible number of

limit cycles. We have obtained two different parameter groups which produce, respectively, 31 and 35 limit cycles with

different distributions.

4.1. Group one of parameter control

In this control group, suppose the following global bifurcation conditions hold:
kU7 ðh5Þ � kU5 ðh5Þ ¼ 0; kU7 ðh5Þ � kU7 ð0Þ ¼ 0;

kU5 ðh5Þ � kU4þðh3Þ ¼ 0; kU5 ðh5Þ � k1ðh1 þ 0.15Þ ¼ 0;

kU8þðh7Þ � kU7 ðh5Þ ¼ 0; kU8þðh7Þ � kU8þðh6Þ ¼ 0;

kU5 ðh5Þ � kU4�ðh4Þ � 0.00004 ¼ 0; kU5 ðh5Þ � kU4�ðh3 þ 0.05Þ ¼ 0;

kU5 ðh5Þ � kU4þðh3 þ 0.05Þ ¼ 0.

ð18Þ
The above 9 conditions can be expressed as a system of 9 linear equations with 11 unknowns, listed as follows:
C1 : 0 ¼ 0.5715399637s20 þ 4.841616151s02 þ 1.596963301s40 þ 45.81089528s04 þ 6.325952382s22;

C2 : 0 ¼ 0.042718755s20 � 0.564158365s02 þ 0.143809789s40 � 6.00969047s04 � 0.360632607s22;

C3 : 0 ¼ 0.5439002537s20 � 1.658783324s02 þ 1.405460563s40 � 4.323022987s04 � 0.6760110445s22;

C4 : 0 ¼ 0.0883536488s20 � 0.061758557s02 þ 0.3437887824s30 þ 0.2191567253s40 þ 0.282726483s04

þ 0.1481316618s22 þ 0.2422783813s50 þ 0.6171961524s10 þ 1.216974754s12 þ 2.590537344s14

þ 0.6782450837s32;
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C5 : 0 ¼ 0.597960045s20 þ 1.081676956s02 þ 2.299930318s30 þ 1.077497930s40 þ 11.82045417s04

þ 5.946650419s22 þ 4.464038485s50 þ 1.285770703s10 þ 10.06401275s12 þ 79.72497468s14

þ 17.97992044s32;

C6 : 0 ¼ �0.176477825s20 � 0.062136204s02 � 0.304472974s30 � 0.470252323s40 � 0.71345001s04

� 1.51812430s22 � 0.683739099s50 � 0.077452985s10 � 0.69994775s12 � 5.87863771s14

� 2.57960391s32;

C7 : 0 ¼ 0.0298519663s20 � 0.088022867s02 þ 0.3535533904s30 þ 0.2521482479s40 þ 0.466898115s04

þ 0.018713089s22 þ 0.1767766955s50 þ 0.7071067814s10 þ 1.414213562s12 þ 2.828427124s14

þ 0.7071067808s32;

C8 : 0 ¼ 0.0491163201s20 � 0.073113074s02 þ 0.3580572593s30 þ 0.2255258024s40 þ 0.355874971s04

þ 0.0645225853s22 þ 0.2201301254s50 þ 0.6750140723s10 þ 1.339780091s12 þ 2.776321103s14

þ 0.7107887035s32 � 0.00004;

C9 : 0 ¼ 0.0491163233s20 � 0.073113071s02 � 0.3580572581s30 þ 0.2255258046s40 þ 0.355874993s04

þ 0.0645225903s22 � 0.2201301240s50 � 0.6750140699s10 � 1.339780091s12 � 2.776321096s14

� 0.7107887016s32.

ð19Þ
Note that in the above calculations with the aid of Maple, we have used the accuracy up to 30 decimal places. Here, we

only present up to 10 decimal places for simplicity. Next, we want to solve system (19) to find the parameters values.

For the 9 equations with 11 unknowns, there are two free variables to be determined. To avoid ill-condition in the

resulting system, the two free variables are carefully chosen as s10 and s30. Then the solution of system (19) is obtained

as
s02 ¼ 0.03276575104s30 þ 0.08181904880s10 þ 0.0003836612616;

s04 ¼ �0.001246972416s30 � 0.003113803448s10 � 0.00001460107497;

s12 ¼ �0.2536959004s30 � 0.6342296417s10 � 0.00003706042662;

s14 ¼ 0.02361479041s30 þ 0.05904288287s10 � 0.00001692066454;

s20 ¼ 0.03199934567s30 þ 0.07990527947s10 þ 0.0003746871675;

s22 ¼ �0.2194212068s30 � 0.5479146047s10 � 0.0002569249953;

s32 ¼ 0.04100838531s30 þ 0.1024777764s10 þ 0.0001889283679;

s40 ¼ 0.01189860701s30 þ 0.02971189456s10 þ 0.0001393233970;

s50 ¼ �0.5127470861s30 � 0.2818690593� 0.0001710721296s10.

ð20Þ
The two free variables, s10 and s30, are used to set conditions in examining degenerate Hopf bifurcations. Consider

the focus point AU
4� and substitute Eq. (20) into the formulas given in Table 2 to obtain
v0 ¼ �ð0.001342173842þ 0.2879361036s10 þ 0.1153086132s30 � 2kÞ;
v1 ¼ �10�15ð0.1334498023� 10�5s230 þ 0.1745895734s30 þ 7.2142551742Þ;
where k is the detection function defined in (7). Note that in the second equation k and � have been set as
k ¼ 0.005 and � ¼ 10�10
for simplicity. Then solving equation v0 = 0 for s10 yields s10 = �0.4004659777s30 + 0.03006856747. In order to investi-

gate the possibility of the existence of the second limit cycles around the focus point AU
4�, let v1 = 0. Solve v1 = 0 for s30

to get two solutions: �130786.5654019026 and �41.3342850370. We take the second value and then s10 is also obtained:
s30 ¼ �41.3342850370 and s10 ¼ 16.5830434356.
Then from Eq. (20) we can determine all the parameter values, which may be called critical values. Under these crit-

ical values, we apply the Maple program [19] to find v2 = 0.1667990443 · 10�12 > 0. Now we want perturb these critical

values such that the global structure are not changed (so the number of global limit cycles are remained the same), but
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hope get two small limit cycles around the focus point AU
4�. To achieve this, we use � = 10�10 for the global perturbation

(i.e., the perturbation on the whole Hamiltonian system) which will not affect the global structure of the system. For the

local perturbations we perturb the coefficients s30 and s10. In particular, we perturb v1 using s30 such that v1 < 0 and

�v1 � v2. For example, suppose we want v1 � �10�17 after perturbation, then we may perturb s30 to s30 + 0.01 =

�41.3242850370 under which v1 = �0.1744792658 · 10�17, while then s10 = �0.4004659777s30 + 0.03006856747 =

16.5790387759 for which v0 is still equal to zero. Similarly, we perturb v0 such that v0 > 0 and v0 ��v1. For example,

we may set v0 � 10�23, and thus we perturb s10 to s10 + 10�13 = 16.5790387758598367486750935870 under which

v0 = 0.2879361036193005690562 · 10�23. Now for the perturbed values s30 and s10, we have
v2 ¼ 0.166784592983115626311� 10�12;

v1 ¼ �0.1744792691488141694049� 10�17;

v0 ¼ 0.2879361036193005690562� 10�23.
Therefore, the normal form associated with the focus point AU
4�, given in Eq. (16) for k = 2, can be written as
dr
dt

¼ 10�12ð0.2879361036193005690562� 10�11 � 0.1744792691488141694049� 10�5r2

þ 0.166784592983115626311r4Þ;
which, in turn by setting dr
dt ¼ 0, yields two positive roots:
r ¼ 0.0028996728056034268787; 0.0014329172186917924944; ð21Þ
indicating that there exist two limit cycles in the vicinity of the focus point AU
4�. However, as pointed out early, due to

ignoring the higher-order terms in determining the critical values (except for s30, all other parameters are solved from

linear equations which are �-order terms), we need to check if higher-order focus values affect the results. Thus, for the

following perturbed parameter values:
s02 ¼ 0.00284376876891491951790469474000;

s04 ¼ �0.000108231841334091253180834195549;

s10 ¼ 16.5790387758598367486750935870;

s20 ¼ 0.00277751627860075322890092245246;

s30 ¼ �41.3242850370282949308745319183;

s40 ¼ 0.00103259532312892335706150201947;

s50 ¼ 16.5156175655002872992657204374;

s12 ¼ �0.0311531992636886178035328422852;

s14 ¼ 0.00299298787256762249861322259400;

s22 ¼ �0.00190432946765384570436243401314;

s32 ¼ 0.00452982108805850126139658217068.

ð22Þ
We execute the Maple program [20] to obtain the normal form up to k = 6:
dr
dt

¼ 10�8ð0.28793610361929833557� 10�15 � 0.17447926914870000000� 10�9r2

þ 0.16678459298311562476� 10�4r4 � 0.02366759946415607382r6 � 0.04699003379514715609r8

� 0.13047272993815828422r10 � 0.38785791320809525520r12Þ.
Solving the equations dr
dt ¼ 0 yields the solutions:
r2 ¼ 0.20513248238306781857� 10�5; 0.85444776034661038713� 10�5; 0.69312956681688582588� 10�3;

� 0.40735337730851201421; 0.03512827061386311063� 0.38571383330043643328i;
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which clearly shows that there are three positive solutions. Hence, there actually exist three limit cycles around AU
4� with

the amplitudes, given by
Fig. 3.
r ¼ 0.00143224468015443443; 0.00292309384102975796; 0.02632735396535105322. ð23Þ
Comparing Eq. (23) with Eq. (21) shows that the first two roots given in Eq. (23) are almost identical to that given in

Eq. (21). The third root given in Eq. (23) comes from v3 = �0.38309145060960631437 · 10�9 which happens to have

opposite sign of v2 and satisfy jv2j � jv3j, though we did not calculate the general symbolic form of v3 since its expres-

sion is too long to handle in symbolic computation. In fact, even the general expression of v2 has already had over 800

lines in printing. However, this is not always the case, that is, one cannot always expect to have one more limit cycle

than that assumed in calculation. In fact, sometimes the expected number of limit cycles may be reduced. This will be

seen in the next subsection when we consider group two of parameter control.

Having found three small limit cycles around the focus point AU
4�, we count its mirror point at the lower part of the

plane to have a total of 6 local small limit cycles for the system. The values for this set of parameters are shown in Eq.

(22), which lead to the detection function graphs shown in Fig. 3(a) and its zoom-in in Fig. 3(b). These graphs show that

the straight line k = 0.005 intersects with kU4þ and kU7 three points each, with kU4�, k
U
8þ, k

U
5 and k1 two points each, and

with kO at one point. Each intersection indicates one limit cycle. Due to symmetry, points AU
4þ; AU

4�; AU
5 ; AU

7 and AU
8þ all

have identical mirrors on the lower part of the plane. Therefore, any limit cycles corresponding to these fixed points

shall be doubled, which makes the total of 27 limit cycles including the first-order Hopf bifurcation at the point AU
4�.

Therefore 4 higher-order local limit cycles at the focus point AU
4� should be added into the total number, resulting in

the total of 31 limit cycles for this group of parameters. The configuration of this set of limit cycles is shown in Fig. 4.
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4.2. Group two of parameter control

Now we turn to another control group, which satisfies the following global conditions:
kU7 ðh5Þ � kU7 ð0Þ ¼ 0; kU7 ðh5Þ � kU5 ðh5Þ ¼ 0;

kU8þðh7Þ � kU7 ðh5Þ ¼ 0; kU8þðh8Þ � kU8þðh6Þ ¼ 0;

kU8þðh7Þ � kU4�ðh3Þ ¼ 0; kU4�ðh4Þ � kU4�ðh3 þ 0.045Þ ¼ 0.

ð24Þ
This condition group considers Hopf bifurcations at the three focus points: AU
8þ, A

U
4� and AU

4þ. We add the second-order

Hopf bifurcation conditions at these focus points, which makes the condition group become a system of 6 linear equa-

tions with 11 unknowns, listed as follows:
C1 : 0 ¼ 0.042718755s20 � 0.564158365s02 þ 0.143809789s40 � 6.00969047s04 � 0.360632607s22;
C2 : 0 ¼ 0.5715399637s20 þ 4.841616151s02 þ 1.596963301s40 þ 45.81089528s04 þ 6.325952382s22;
C3 : 0 ¼ 0.597960045s20 þ 1.081676956s02 þ 2.299930318s30 þ 1.077497930s40

þ 11.82045417s04 þ 5.946650419s22 þ 4.464038485s50 þ 1.285770703s10
þ 10.06401275s12 þ 79.72497468s14 þ 17.97992044s32;

C4 : 0 ¼ �0.124170200s20 � 0.102593556s02 � 0.224023832s30 � 0.353138198s40
� 1.18830242s04 � 1.19055981s22 � 0.509076665s50 � 0.050989874s10
� 0.54974800s12 � 4.90605558s14 � 2.06789264s32;

C5 : 0 ¼ 1.257853658s20 þ 5.861534550s02 þ 2.643719100s30 þ 2.893617956s40
þ 57.91407594s04 þ 12.42073446s22 þ 4.706316865s50 þ 1.902966855s10
þ 11.28098750s12 þ 82.31551202s14 þ 18.65816552s32;

C6 : 0 ¼ 0.0214024448s20 þ 0.016100490s02 þ 0.0044154173s30 � 0.0283600445s40
� 0.119189670s04 þ 0.0506485502s22 þ 0.0464926702s50 � 0.0354529874s10
� 0.081942393s12 � 0.060169666es14 þ 0.0030779389s32.

ð25Þ
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The solutions of system (25) have 5 free variables to be determined. To avoid ill-conditioned coefficient matrix for solv-

ing the linear system, the five free variables are carefully selected as s10, s12, s14, s30 and s32. Then the solutions of system

(25) given in terms of these five free variables are:
s02 ¼ 0.9720580740s30 þ 2.430252778s10 � 1.957515146s12 � 52.99733402s14 � 2.825634586s32;
s04 ¼ �0.1211725002s30 � 0.3029393098s10 � 0.04482923874s12 þ 3.962209968s14 þ 0.2549532493s32;
s20 ¼ �1.201464605s30 � 3.003786292s10 þ 3.356252990s12 þ 70.00066905s14 þ 9.700530669s32;
s22 ¼ 0.2863522411s30 þ 0.7158539050s10 þ 2.561332324s12 þ 13.15267104s14 þ 0.1690147122s32;
s40 ¼ �0.1753809613s30 � 0.4383969924s10 � 4.126515946s12 � 30.13906964s14 � 2.888243285s32;
s50 ¼ �0.6080828790s30 � 0.5201693031s10 � 4.526988862s12 � 35.13214692s14 � 4.845541744s32.

ð26Þ
The five free variables are used in examining higher order Hopf bifurcations at the three focus points AU
4�; AU

4þ and

AU
8þ. Similar to the case considered in the group one of parameter control, we try to use the five free variables to set the

first- and second-order focus values zero at the three focus points. The focus values are listed in Table 2. Since there are

only five free parameters, we cannot let all the three v0s and three v1s zero. We choose to set v0 = v1 = 0 for AU
8þ and AU

4�,

but only v0 = 0 for AU
4þ. The order of solving the five equations is: v8þ0 ¼ v8þ1 ¼ v4þ0 ¼ v4�0 ¼ v4�1 ¼ 0, where the super-

scripts denote the focus points. The parameter order for solving the five equations is: s30, s14, s12, s32 and s10. The solu-

tions are given below:
s30 ¼ 0.11271437276864112863þ 54.93383508871581048574s14
� 2.50011747863523396886s10 þ 0.58482030553969977819s32 þ 1.84427851842337848796s12;

s14 ¼� 0.00022269497908706250þ 0.00002255253349379309s10
� 0.14177789711811484132s32 � 0.07966540620370250299s12;

s12 ¼� 0.08877722783743796896� 0.00081329426541121150s10 þ 5.05927467199378308832s32;
s32 ¼ 0.01887104726437523464� 0.00004299435194368912s10;

s10 ¼ xjf ðxÞ � 0.82995570399407325442� 10�6x2 þ 0.39405332783814565648x
�

þ 12.31108786335826291733 ¼ 0g;

ð27Þ
where k and � have been set as k = 0.1 and � = 10�10. Note that the first four equations in (27) are obtained from the �
terms (leading to linear equations), while the last equation in (27) includes �2 terms, resulting a quadratic equation.

From the last equation of (27) we can find a solution s10 = � 31.24424335137135221334. (The another very large solu-

tion is not chosen.) Then all the other critical parameter values are obtained, which are substituted into the focus values

to obtain
v8þ0 ¼ 0.181� 10�36;

v8þ1 ¼ 0.40375804981566355762� 10�16;

v8þ2 ¼ �0.96983280107200255059� 10�12;

v4þ0 ¼ �0.10403779771774277801�37;

v4þ1 ¼ �0.45417942563917687127� 10�13;

v4þ2 ¼ 0.35644976693833768354� 10�12;

v4�0 ¼ �0.25571220228225722199� 10�37;

v4�1 ¼ �0.14� 10�37;

v4�2 ¼ �0.28346460714959506301� 10�12;
which shows that v8þ0 ¼ v4þ0 ¼ v4�0 ¼ v4�1 ¼ 0. Thus, in the neighborhood of AU
4�, at least two small limit cycles can be

obtained after appropriate perturbations. For AU
4þ, at least one small limit cycle exists. Note that although

v4þ1 v4þ2 < 0, their order difference is not large enough, so most likely one cannot get a second limit cycle. For AU
8þ, note

that v8þ1 6¼ 0. But since v8þ1 v8þ2 < 0 and jv8þ1 j � jv8þ2 j, one can still have two limit cycles around AU
8þ even without per-

turbing s14. Therefore, at least 5 small limit cycles can be obtained from the three focus points.

A careful examination provides a suitable set of perturbations, given below:
s10 ! s10 � 10�3; s32 ! s32 � 10�13; s12 ! s12 þ 10�12; s30 ! s30 � 10�14;
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under which the perturbed parameters are:
Fig. 5.
s02 ¼ 0.0549662359046462180539928890890;

s04 ¼ �0.00199727984987252440107956165250;

s10 ¼ �31.2452433513713522133380028311;

s20 ¼ 0.0627527594453530647504247377000;

s30 ¼ 77.9344256451544966782041444215;

s40 ¼ 0.0184200239539304175151161802000;

s50 ¼ �31.1696899744973055088878464346;

s12 ¼ 0.0389046335630331059453729147160;

s14 ¼ �0.0689266524018588839144009413012;

s22 ¼ �0.0379247381207139722729074744358;

s32 ¼ 0.202144162534903070756675579436.

ð28Þ
With the above perturbed parameter values, in order to find the exact limit cycles which may exist in the vicinities of

the three focus points, we again execute the Maple program [19] up to k = 6 to obtain the following normal forms:
dr
dt

¼ 10�11ð�0.17743966016693497� 10�12 þ 0.40378395967520000000� 10�5r2 � 0.09698580268064667584r4

þ 0.06072444132305964342r6 þ 0.39575511657163542112r8 þ 0.83909717543052170954r10

þ 6.25344679173949611381r12Þ.
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The detection curves for parameter group one: (a) the graph of the detection curves for Eq. (5); and (b) a zoom-in of part (a).
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for AU
8þ,
dr
dt

¼ 10�9ð0.10362452178645170854� 10�12 � 0.45455922757037186000� 10�4r2

þ 0.35644730271889475150� 10�3r4 � 0.44648099476659283667r6 � 0.88681565879094584288r8

� 2.46227509706969767205r10 � 7.31874249126255014454r12Þ.
for AU
4þ, and
dr
dt

¼ 10�9ð0.28793610361929833557� 10�15 þ 0.39400149875790000000� 10�8r2

� 0.28350058882253264350� 10�3r4 þ 0.44691846825234635597r6 þ 0.88726039867955753820r8

þ 2.46343018305992805797r10 þ 7.32350939052446478801r12Þ.
for AU
4�. Solving the above three polynomial equations dr

dt ¼ 0 yields the following positive solutions for the amplitudes

of the limit cycles. Three limit cycles for AU
8þ:
r ¼ 0.00020973957381101313; 0.00644906192745871977; 0.52159534973890180822;
one limit cycle for AU
4þ:
r ¼ 0.00004774589453081618;
and three limit cycles for AU
4�:
r ¼ 0.00113736088342050406; 0.00359099188439600840; 0.02488725842926630350.
Due to the symmetry, there are a total of 14 small limit cycles for this group of parameters. Given the parameter

values in Eq. (28), the global limit cycles are obtained, as shown in Fig. 5(a) along with its zoom-in depicted in Fig.

5(b). These two figures clearly show how the detection curves intersect with single straight line k = 0.1. There are three

intersections on each of the curves corresponding to the points AU
4�;A

U
8þ and AU

7 ; and two intersections on the curves
–3

–2

–1

1

2

3

y

–2 –1 1 2 x

Fig. 6. The layout of the 35 limit cycles for parameter group two.
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corresponding to the points AU
5 and AU

4þ; and one on the curve corresponding to the very outside annulus. Therefore,

there are 27 global limit cycles generated under this group of parameters, which include the first-order Hopf limit cycles.

Without counting redundantly, we shall add 8 higher-order Hopf limit cycles to the 27 global ones, which makes a total

of 35 limit cycles for this perturbed system (5). Fig. 6 depicts the distribution of the 35 limit cycles.

Summarizing the results obtained in this section gives the main theorem of this paper as follows.

Theorem 2. For the 6th-degree perturbed Hamiltonian vector field (3) with the control parameter group given in Eq. (24),

and the perturbed parameter group listed in Eq. (28) when k = 0.1 and � = 10�10, the system has at least 35 limit cycles, i.e.,

H(6) P 35 = 62 � 1.
5. Conclusion

We take detour to study bifurcation of limit cycles for sixth-degree polynomial planar systems. We utilize the advan-

tage of symmetric fifth-degree polynomial Hamiltonian system by adding a sixth-degree perturbation. The detection

function method is applied for global bifurcation computation while the method of normal forms is used for local Hopf

bifurcation calculation. The general sixth-degree perturbation of 20 terms is considered, followed by 11 dominant per-

turbation terms which are symmetric with respect to the x-axis in Abelian integrals. Numerical computation gives rise

to the maximal of 35 limit cycles generated from the sixth-degree system. It matches the previous conjecture for odd

degree systems [14,15] as H(n)P n2 � 1 or H(n)P n2. Further study is expected for the bifurcation of limit cycles in

higher even degree systems.
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