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STRIP—A Strip-Based Neural-Network Growth
Algorithm for Learning Multiple-Valued Functions

Alioune Ngom, lvan StojmenoVjand Veljko Milutinovic Senior Member, IEEE

~Abstract—\We consider the problem of synthesizing mul- Let K = {0,...,k — 1} with & > 1. A k-valued logic
tiple-valued logic functions by neural networks. A genetic function f maps the Cartesian produkt” into K. Denote by
algorithm (GA) which finds the longest strip in V- C K™ is = pn the set of all such functions: K™ — K. ThusP! consists

described. A strip contains points located between two parallel e ) . . .
hyperplanes. Repeated application of GA partitions the spacd” of &% multiple-valued logic functions. The sg&}' is called the

into certain number of strips, each of them corresponding to a S€t ofn-ary operations o in universal algebras and the set
hidden unit. We construct two neural networks based on these of n-ary functions ofk-valued logic in multiple-valued logic
hidden units and show that they correctly compute the given but g|gebras. The sdf;, defined byP, = U, P2 is the set of

arbitrary multiple-valued fgnctlon. Preliminary experimental all k-valued logic functions. For instance is the set of all
results are presented and discussed. - .
two-valued logic functions.

Index Terms—Constructive algorithm, genetic algorithm, mul-
gglr?i-tgg:ﬁﬁgold perceptron, multiple-valued logic, neural network, A. Multiple-Valued Logic Neural Networks
A discrete neuroiis a processing unit whose transfer function
outputs a discrete value. An example of such transfer function is

the linear threshold function. Lét be the set of real numbers. A
HIS research paper proposes to synthesize multiple-valugidcreten-input multiple-valued neurohas a discrete transfer
logic functions byminimal multilayer feedforward neural function and realizes a function aefvariables ranging in a set

networks. There are various measures that can be used in ¢®r= R with values ink, that is computes a functiofi: S™ —
structing multiple-valued neural networks. The most importaf. For S C K we refer to the processing unit asrailtiple-
measures are depth (number of layers) and size (numbervalued logic neurorsince it simulates a multiple-valued logic
processing units). The depth is related to the speed of cofunction f : K™ — K. Our model of multiple-valued logic
puting a function whereas size decides the hardware cost.nkuron is thez-input k-valueds-threshold perceptroulefined
this paper, we use a novel model of neuron, the multiple-valubdlow.

multiple-threshold perceptron [24], [41], as basic processingln the theory of multiple-valued logic functions there is an

element (i.e., node) of the network and attempt to implemeiniportant class of functions callemhultiple-valued multiple-
multiple-valued logic functions by minimal number of suchhreshold function§l]. Such functions are used in the design of
units. Then we study ways to compose such elements into snuddisses of multiple-valued logic circuits callpdbgrammable
constant-depth networks. logic arrays[30]. A k-valueds-threshold functiorof one vari-

The architecture of a neural network includes its topologicabley € R is defined as
structure, i.e., connectivity, and the transfer function of each i
node in the network. Architecture design is crucial in the suc- 7.5 ) { oo ity <ty

k,s Y) =

I. INTRODUCTION

cessful application of neural networks because the architecture? op Ifti<y<tipaforl<i<s—1 (1)

has significant impact on a network’s information processing 05 ift, <y
capabilities. Given a learning task, a neural network with on
a few connections and nodes may not be able to perform t & _ (00, ..., 05) € output vector;

task at all due to its limited capability, while a network with a P!
large number of nodes and connections may overfit noise in thetﬂ_ (1

7= . 7= . = .., ts) € threshold vector with; < ¢,44 (1 <
training data and fail to have good generalization ability (also RS

9= i <s—1)
learning is slow). 5(1< s <k"—1) number of threshold values.
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W = weight vector;
(wi, ..., wp) € R? 5
WL dot product ofw and . s
The perceptron’dransfer functionis a k-valued s-threshold
function gif‘i : R — K. Itis well known that anyn-input
k-valued Idgic functionf can be transformed into /avalued o, | -----
s-threshold function, for some. A (n, k, s)-perceptron is | I 0,
homogeneous s = k£ — 1 andg is the identity permutation °0
of K, it is permutably homogeneoifss < & — 1 andd'is any
permutation ofs + 1 elements out o. Functions computed X 2)
by single such neurons are callpgrmutably homogeneous
functions 1 &)
A (n, k, s)-perceptron partitions the inputg into s + 1
disjoint classesH([fO}, . -l usings parallel hyperplanes,
whereHi[‘”] = {7 € K™|f(Z) = 0; andt; < WF < t;41} (We Y
assume, = —oo andt,; = 400). Each hyperplane equation | &)y
denoted byH; (1 < i < s) is of the form

(=

H, . 0% =t;. 3 t
A (n, k, s)-perceptron can be decomposed into 1 2y)3

two-hidden-layer network composed ofinput nodes, that is,

one linear combiner in the first hidden laysr(n, 2, 1)-per-

ceptrons (usual linear threshold units) in the second hidd 4

layer and one linear combiner in the output layer [1]. Th

transfer functiongi"z(wf) of the (n, k, s)-perceptron is ex-

pressed as the linear summationsdinear threshold functions

g(WE)1, ..., g(Wd),, thatis

.87 = - . 1 .
g?o(w ) :00+Z a,g(WL); —— 8
=1
and ; 0 ,
- 0 if 0 <t
g(wE); = { o 4)

1 ifadd >4

¥

wherea; = o; — 0;_1 is the weight associated witHwZz), and
1 < ¢ < s. Fig. 1 shows example of such decomposition. Fig. t y
shows the depth-two network corresponding to equation (4). b) :

Multiple-valued logic neural networks, in our definition, ar
thus neural networks composedef k, s)-perceptrons as pro-
cessing units. It should be noted that the units are not neces- . ]
sarily the same. For example, one layer of the network mqu since then various other models have been described (see
contain(2, 4, 8)-perceptrons while another layer may contaifPr instance, [22], [26], [36]).
(5, 4, 3)-perceptrons.

Analog computers are inherently inaccurate due to imperfdg: Problem Statement
tions in fabrication and fluctuations in operating temperatures.The problem we address in this paper is that of learning
The classical solution to this problem uses extra hardwarertultiple-valued logic functions using minimal neural networks
enforce discrete behavior. However, the brain appears to caromposed of(n, k, s)-perceptrons. Multilayer feedforward
pute reliably well with inaccurate components without neceseural networks are in principle able to learn any arbitrary map-
sarily resorting to discrete techniques. T¢mntinuous neural ping, provided that enough hidden units are present [19]. For
networkis a computational model based upon certain observiitese networks, learning algorithms such as backpropagation
features of the brain. Experimental evidence has shown contj29] have been found to be computationally prohibitive. Also,
uous neural network to be extremely fault-tolerant; in particulahe topology of the networks must be fixed before learning.
their performance does not appear to be significantly impairedUntil now, architecture design has been very much a human
when precision is limited. It has been shown by Obrad{®@} expert’s job. It depends heavily on the expert experience and a
that analog neurons of limited precision are essentially muédious trial-and-error process. There is no systematic way to
tiple-valued logic neurons. The first model of multiple-valuedesign a near optimal architecture for a given task automati-
logic neuron (and neural network) was introduced by Chan [é4lly. Research on destructive and constructive algorithms rep-

eFig. 1. Decomposition of ag,f;i(m?) into b) s linear threshold functions.
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L_———— s linear threshold units

linear summers

Fig. 2. Two-hidden-layers network f@{;i(m).

resents an effort toward the automatic design of architectu@s Background and Motivations
[38]. Design of the optimal architecture for a neural network ~p4n [4] described three-valued logic networks called

can be formulated as a search problem in the architecture spagg,a) logic networksvhich combine the strengths of neural

where each point represents an architecture. Given some perfisyorks and expert systems. Such networks are used to

mance criteria about architectures, the performance level of all,esent a set of nonrecursive propositional rules, and to infer
arch!tectures for_ms a dlsc_rete surfac_e in the space. The qptu{rp@ truth values of the unknown propositions by applying the
ar_chltecture design is equivalent to finding the highest point Q& ymon backpropagation training method. Tang [35] proposed
this surface. a multiple-valued logic network with functional completeness
A way to improve the performance of a neural network is tproperties and learning capabilities. The multiple-valued logic
match its topology to a specific task (i.e., a set of input—outpoetwork consists of layered arithmetic piecewise linear units.
pairs) as closely as possible. However, the problem of decidiBgnce the arithmetic operations of the network are basically
whether or not a given task can be performed by a given architedred sums and piecewise linear operations, their implementa-
ture is known to bé&NP-complete [13]. Also, it has been showrtion should be rather simple and straightforward. In Wang [37],
in [3] that the problem of finding the absolute minimal archineural networks composed of a novel model of multiple-valued
tecture for a given task islP-hard. A third problem known to logic neuron suitable for representing arbitrary multiple-valued
beNP-complete [34] and which also concerns us here is the fdbgic expressions are described. Obradoj2&] described
lowing. Given two subset$;, S, C R" suchthatS;USz| = ¢, algorithms for learning multiple-valued logic functions on
determine subsets; C S; andF, C S, such thatF; U E, is  either a single homogeneoys, &, & — 1)-perceptron or a
of maximum cardinality, and for som& € R™ andt € R, depth-two network composed bf(n, 2, 1)-perceptrons in the
W —t > 0foral £ € B, andwZ — ¢t < 0forall £ € E,. hidden layer and one homogenedis k, & — 1)-perceptron
This problem is a generalized version of tmaximum cardi- in the output layer. Ngom [24], [41] introduced learning
nality problem(that is, find a linearly separable subset of maxalgorithms for permutably homogenedus %, s)-perceptrons
imum cardinality). When applied to multiple-valued logic, thesand proved them to be more powerful than the algorithms
three problems are alddP-complete since they are known tomentioned in [25]. These are but a few mentioned methods for
be NP-complete in the synthesis of two-valued logic functiongearning multiple-valued logic functions; the reader can refer
which are special case of multiple-valued logic functions.  to [22] for a survey on multiple-valued logic neural networks.
Our approach to the problem’s solution is discussed Fhe minimal size of a neural network for learning a given but
Section lll. The learning method is based on theneral arbitrary multiple-valued logic function has not been studied
principle of partitioning algorithmsliscussed in Section Il. A in literature. That is, the network is fixed in advance before
partitioning algorithm seeks to construct a minimal networearning and its size does not change during and after learning.
by partitioning the input space into classes that are as laye stated in Section I-B, such networks may not be powerful
as possible. Each class of partition is then assigned to a nemough for learning or may overfit the training data. In partic-
hidden unit. The connections and weights of the new units axkar, there is no evidence of any function for which the size of
determined appropriately in such a way that the constructdt learning network is significantly smaller than the size of its
network will always give the correct answer for any inputsum-of-products or other standard gates implementations.
Distinct partitioning algorithms differ in the way the input Techniques are known in literature for learning multiclass
space is partitioned. Also network topologies obtained frofanctions (multiple-valued logic functions are special cases of
different partitioning algorithms may differ in the way newmulticlass functions). The most powerful one is #reor-cor-
hidden units are connected. recting output codegor ECOQ approach which is a robust
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method for solving multiclass learning problems. Dieterichvery ¥ the valuew;, where L; is thefirst linear test in the
[5] has shown thaECOClearning provides a general purposéist that is satisfied byz. Every two-valued functiorf € FPJ
method for improving the performance of inductive learningan be computed by some linear decision list. For instance, a
programs on multiclass problems. Other simpler and ledsjunctive normal form withn terms can be represented by a
powerful methods use backpropagation (or any appropriditgear decision list of length + 1.
learning algorithm such as madaline or radial basis function,Many heuristics such as Fahlmantascade correlation
etc.) networks with multiple output units assigned to distinalgorithm [6], Frean’supstart algorithm[8], Sethi’'s entropy
classes. All these approaches use fixed-architecture netwanks$s[32], Sirat’'s neural treeg[33], Mezard'stiling algorithm
for learning arbitrary multiclass functions and thus a givefi8], Barkema's patch algorithm [2], Frattale-Mascioli's
network may not be the optimal one for such functions. oil-spot algorithm([7], Young's carve algorithm[39], regular
partitioning [28], and other partitionning algorithms [9], [11],
[16], [17], [20], [21], are proposed as approaches for building
networks which are (near) minimal for a given arbitrary task.
In Marchand [17], given a functiofi € P}, the cubgl0, 1} These heuristics are known aenstructiveor growth algo-
is partitioned into regions by hyperplanes in such away that rithms since they all construct a network starting from a fixed
constant in each region containing input vectors. The halfspasesall number of units.
defined by these hyperplanes correspond to threshold units ifPartitioning techniques such as cascade correlation [6],
the hidden layer. The construction of the halfspaces implies thatstart algorithm [8] and entropy nets [32] apply only for
one can add an output unitin such a way that the resulting neuiaictions with Boolean-valued outputs. Moreover, most of
network indeed computes. The hyperplanes are determinedhe growth algoritms described in literature (see, for instance,
sequentially. First, an hyperplane is found such tha con- [2], [7], [11], [17], [18], [20], [28]) are only applicable to
stant on one of its sides. The points in the corresponding halfseblems with Boolean-valued inputs. Very few constructive
pace are removed and they continue with the remaining poimtgthods deal with multiclass problemk-yalued functions
in a similar manner, until the set of remaining points becomese multiclass functions). For instance, the carve algorithm
empty. Thus each halfspace is used to cut off a set of points Wj#®] and Marchand’s neural decision list [16] apply both to
identical function values from the remaining set of points. Létinctionsf : R* — K.
the halfspaces constructed by their algorithmibe ..., H, The techniques in [16], [39] seek to identify the largest subset
and defineu; to be zero (or one) iff is zero (or one) on the of input vectors of same class that is separable from vectors of
region cut off byH; for 1 < ¢ < r. Then adding an output other classes. The hyperplane determined by the maximum sep-
unit with threshold zero and weight2"~ for the edge leaving arable subset is then assigned to a newly crefated, 1)-per-
the hidden unit corresponding f&;, they get a neural network ceptron. A drawback of Marchand’s NDL (neural decision list)
that computesf. They assume that linear threshold units prd46] is that, since it employs linear programming to determine
duce an output zero or one. In a restricted version of their aphether specific subsets of the input vectors are linearly sep-
proach calledegular partitioning Rujan [28], the hyperplanes arable, the number of possible subsets of points that could be
do not intersect. This description gives the general principle obnsidered for linear separability is exponential in the size of
partitioning algorithms. Particular implementations depend ahe inputs set. In order to circumvent this problem, [16] worked
the way the next hyperplane is selected and the way new hiddetly with a specific class of functions callédlfspace intersec-
units are connected (in term of network weights and topologyjons Young’s CARVE [39], which is an extension of Marchand
Experiments indicate that partitioning algorithms are successful] to multiclass functions with real-valued inputs, avoids the
in the sense that they efficiently construct (near) minimal neurigkue of testing for linear separability of subsets of points by di-
networks [14], [16], [17], [28]. rectly searching for hyperplanes that separate sets of points of
Another way to view this process, without any referencene class only. Le§; be a set of points of clagandH; (the hull
to neural networks, is to consider a sequence of halfspases forsS;) be the set of all points in the training set except those
Hq, ..., H,. For each halfspacé/, we specify the value,;, inS;,7 € K. Clearly, points outside the convex hull formed by
of f for those points inH; that are not contained in any of theH; are all of the same clagsand thus, only points outside the
previoushalfspaces. Thus, for every input vectore {0, 1}*  convex hull can actually be separated by a hyperplane boundary
it holds thatf (%) = u,, wherei is thesmallestindex such that from the hull set. So to find the maximum separable subset,
Z € H;. Itis assumed tha,. contains{0, 1}, thusi is always CARVE considers only hyperplanes that touch the boundary
defined. This model is calledlamear decision lis{16], [27]. [thatis,(n—1)-dimensional faces or vertices] of the convex hull.
More formally, Rivest [27] defines a linear decision listThe hyperplane with the largest set of points in its open halfs-
in the following way. A linear testL over the variable pace outside the convex hull is the maximum separable subset.

Il. KNOWN PARTITIONING METHODS

Z = (21, ..., zn) € {0, 1}" is of the form>_""_, w;z; > ¢, The algorithm is a simple hill-climbing technique that searches
wherewy, ..., w, € R" are the weights and € R is for a (near) optimal hyperplane by partially traversing (or cov-
a threshold. A linear decision lisb over Z is a sequence ering) the convex hull (i.e., the boundary of the hull set) starting
(L1, w1), ..., (L, u.) where L; is a linear test and,; is from a randomly selected convex hull vertex and a hyperplane

zero or one forl < ¢ < r. Itis assumed thaL.., the last that passes through that vertex. This is repeated a fixed number
linear test is true for all input vector8. The length ofD is of timesn, and each time, the initial hyperplane is randomly
r. The two-valued functionfp, computed byD assigns to rotated a fixed number of times. around the boundary of the
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hull set. The set of points encountered during each rotationisde- v
termined; these are potential solutions. The main difficulty with
CARVE is that the likelihood to find the maximum separable
subset depends on the parameterandn,.. For larger values 3
of the productn,n,., the more likely is one to obtain a (near)
optimal hyperplane since large section of the hull set boundary
will be traversed (it should be noted that the number of facets
and vertices of the convex hull may be exponential in the di-
mension of the input space). The optimal valuesifgrandn,,
depend on the actual problem and the user must find such values
by trial and error. In the end, the size of the network obtained 1
by CARVE depends on,, andn,..

In this paper we introduce a method of partitioning alset
K™ using genetic algorithm [10] to grow a multiple-valued logic
neural network for learning a function. In our own approach,
the maximum separable subset is treated as a special case of the
longest strip (as will be discussed later). We introd(eek +
1, 2)-perceptrons which will freely reduce the network size fo[gigj
given arbitraryk-valued functions. '

Both CARVE and NDL use local search to search for good so-
lutions. They extensively search some parts of the space (around
faces of a convex hull as in CARVE, or, around neighborhood
of separating hyperplanes as in NDL), while leaving some other
parts of the search space untouched. On the other hand, GA (in 3
our implementation) performs a global search; it treats all parts
of the space equally, due to its implicit parallelism.

0 1 2 3 X

3. Example of longest strip fdr = 4 andn = 2.

Ill. L ONGESTSTRIP-BASED GROWTH ALGORITHM

In this paper, we describe a novel neural-network growth al- | 1 ] i
gorithm based on the search for the longest strip rather than
the maximum separable subset. Our technique can be applied to
various kinds of functions. That is, it is capable of handling 1)
real-valued and-valued inputs > 2) and 2) two-class prob- 0 /
lems as well as multiclass problems. In particular, we apply our
growth algorithm to the synthesis of multiple-valued logic func- 0 1 2 3 X
tions, that is functions of the formi: K — K.

A strip is a set of points between two parallel hyperplan
which have the same value. Tlomgest strifis the strip with the
maximum possible cardinality. Axaximum separable subsst the sequential learning algorithm described in [17] to multiclass
a set of points having equal values with the maximum possilflenctionsf: R" — K. The growth algorithm of [17] is based
cardinality that can be separated from all other points by exactiy the perceptron learning algorithm (more specifically, on the
one hyperplane. Examples of longest strip and maximum sepacketalgorithm) and its performance was hampered by the fact
rable subset are shown, respectively, in Fig. 3 and 4. that the pocket algorithm does not converge in the case where

We describe a search method for finding the longest strip #® points are not linearly separable. In our own approach, how-
well as the maximum separable subset of a currently given seer, we use an evolutionary approach to find optimal subsets.
of training examples, namely genetic algorithm (GA). The max- In our particular implementation of partitioning algorithm
imum separable subset problem is a special case of the londsst Fig. 5), GA is used to obtain subsequent halfspaces delim-
strip problem. Indeed, they both share the same problem réed by either one or two hyperplanes (depending on the prede-
resentation used by GA, but differ only by their respective olfined objective subset). To each halfspace we assign a hidden
jective functions and constructed network architectures. In thait that correctly classifies all elements of it. Let the objective
next paragraph we briefly describe our main growth algorithsubsetd be the longest strip in the given training set. Our growth
which constructs a network by removal of points in a predefinedgorithm begins with an empty first hidden layer into which
objective subsett C V. A is either the longest strip or the max-new (n, & + 1, 2)-perceptrons are inserted one after another
imum separable subset In. Our main objective is, using GA, until no more insertion is possible. g, k& + 1, 2)-perceptron
to obtain a subse® C V such thalG| is as close as possibleimplements two parallel hyperplanes in the input domain and
to |A] if not equal to| A| (of course we havéF| < |A]). Our the aim is to find two parallel hyperplanes that define a st¥ip
maximum separable subset problem approach is an extensioawth thajG| is as close as possible fd|. The stripG is then

é:ég. 4. Example of maximum separable subsetifer 4 andn = 2.



MILUTINOVIC et al: STRIP—A STRIP-BASED NEURAL-NETWORK GROWTH ALGORITHM 217

Procedure A-BasedSynthesis(n, k, f); algorithms is simulated throughcaossovemechanism that ex-
changes portions between two chromosomes. Another opera-
r=1 tion, mutation causes sporadic and random alterations of the

chromosomes. Mutation too has a direct analogy from nature
and plays the role of regenerating lost genetic material and thus
reopening the search.

S =V,
Repeat

Apply GA to find a subset G, such that |G,| = |4| of Sy; A. Problem Representation
Create a new hidden unit U, with respect to 4; Fundamental to the GA structure is the encoding mechanism
for representing the problem’s variables. For the problem of de-
termining A, the search space is thewer setf the training set
(i.e., the set of all subsets éf™). Each element of the search
space is a potential solution and must be represented in such a
Until S, = ; way that meaningful and suitable genetic operators can be de-
signed for (and applied to) it.
Construct a network with the r hidden units on the first layer;  More formally, our population consists of chromosomes
which encode the potential solutions of the problem. A po-
Fig. 5. A-based synthesis algorithm. tential solution is a subse C K™ and the best solution
is one whose size is closest {d|. Given a weight vector

removed from the training set. The néxt, k + 1, 2)-percep- W= (wy, 7?”") € R’ we can f|nd_ the strip (or separable
tron to be added to the network aims to separate another (ne%l?s_et) of maximum cardinality that_ IS assom_ated_ witsee
longest strig7, but now only from the reduced training set. Oncg€ction IV-B). For instance, the strip shown in Fig. 3 can be
a (near) longest strip for this unit is found, the unit is addepPt@ined given the vectas = (1, 1) and the function’s table

to the layer and the strip is removed from the training set, THBICreover in this example, the obtained strip is the absolute so-
construction of the first hidden layer continues with each sufittion). Given a training set, then searching for a subset whose
sequent unit separating a strip from the remaining training eX4€ S as close tp4] as possible is equivalent to searching the

amples. The first hidden layer is complete when only points ${€ight vectors space (that ") for a vector that generates

one class remain in the training set. Once the first hidden lay&c Subset. In our problem representation, a chromosome

is complete, the remaining weights, layers and units of the néfill P& @ weight vectors € R™ (as in [31]) since such vector
works are determined to complete the network construction (thg2ry encodes (i.e., represents) a potential solution to the

details of the network architecture are described in Section \Aroblem. Each chromosome will uniquely determine a partition

Our principal objective in this paper is to synthesize any ar fV C K™ intos + 1 classes withs p_arallel hyperplanes (_fo_r
trary k-valued logic function by a neural network constructed by°oMes) and the best chromosome is the one that maximizes
our growth algorithms when (portion of) the function is givenl'€ Number of points between a pair of parallel hyperplanes. To
We obtain networks that either exactly or approximately impl&€t€rmine how good is a solution the GA needs an objective
mentk-valued logic functions. functlo.n .tg eyaluate each chromgsorﬁe

We initialize the population with random real-coded chro-
mosomess € R™ whose coordinates are random real hum-
bers taken from the interval{l, 1]. Each initial chromosome

IV. DETERMINING LONGESTSTRIPS BY GENETIC ALGORITHM IS then normalized to a unit vector. Another method we used for
the initialization of the population is to set; = cos«; (for

We use an evolutionary method to find the set of partitioning < ¢ < n) for each vectois, whereq; is a random number in
hyperplanes. Holland [12] first proposed GAs in the early 197@se interval—(w/2), w/2]. Initial population should consist of
as computer program to mimic the evolutionary processesramdom unit hyperplanes. Starting from the initial population,
nature. Genetic algorithms manipulate a population of potewe apply genetic operators such as selection, crossover, and mu-
tial solutions to an optimization (or search) problem. Speciftation to create the next generation of chromosomes. This gener-
cally, they operate on encoded representations of the soluticaspnal cycle is repeated until a predefined maximum number of
equivalent to the genetic material of individuals in nature, argknerations is reached. Sub&getwill be the best solution gen-
not directly on the solutions themselves. Holland’s genetic arated so far in the population.
gorithm encodes the solutions as binatyomosoméstrings Our main objective here is, for a given functignto obtain
of bits). As in natureselectionprovides the necessary drivinga chromosome which generate& such thatG| ~ | A|. Once
mechanism for better solutions to survive. Each solution is asich is found we create a hidden unit to be inserted in the
sociated with ditness valueghat reflects how good or bad it is, neural network. We then eliminate all poiritin G and apply
compared with other solutions in the population. The higher tlagain the genetic algorithm on the remaining points. The algo-
fitness value of an individual, the higher its chances of survivethm terminates as soon as there are no points left. The created
and reproduction and the larger its representation in the subkielden units will then be collected to construct a feedforward
quent generations. Recombination of genetic material in genetigtwork. The parameters (weight, threshold, and output vectors)

Sr41:= 8 — Gr;

ri=r+1;
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a)

Fig. 6. Behaviors of a) Fitne3s and b) Fitnesk; on somef € PZ.

of the hidden units and the topology of the network will be dis-

cussed later.

B. Fitness Function
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BNV

N

* A = maximum separable subset

M(S,B)
5]

Fitnesd () = (6)

The objective function, the function to optimize, provides the Let S, = {¥ € S|f(Z) = ¢, ¢ € K}, that is the set of points

mechanism for evaluating each chromosome.
Let S C K™ be the set of remaining points. Initiallg, =
K™. To compute the longest strip generated«dbywe calcu-

of valuec. An alternative objective is to select a strip of value
¢ i.e., T(c , Which maX|m|ze$T(c)|/|S l, Where|T(c)| denotes
the Iength ofT(c) That is, as in [17], [39], the selection crite-

late for every# € S the valuew and construct a sorted listrion chooses the strip that constitutes the largest proportion of

of records of the form{&Z, f(Z)). The listis sorted usings¥

a class of points that can be separated. We denof& By, )

as primary key andf(r) as secondary key. Let these recordge |ength of the largest strip proportion of vattend denote by

be sorted as followsZ, ..

(W, f(

, )|, Or more preC|ser,PZ =
), 1 <1t¢< |S| Wherewa:, < - S WEg. A
stripinSisa sequenc@é}f@f)) = P, P41 --- P4, such that
1) f(&) = f([@it1) = - = f(@igy);
2) wfi_l 75 IU.’EZ andzUa':’iH 75 wfi+j+1;
with 1 < ¢ < |S] and0 < j < |S| — ¢. The length of the strip

isj — i+ 1andf(Z;) is the value of the strip. For example, in

Fig. 3 we haved = (1, 1) and

PL=(0,3) Pr=(1,0) Py=(1,0) P =(20)
P5:(270) P6:(271) P7:(371) P8:(371)
Po=(3,1) Po=@31) Pu=#1) Pa2=(41)
P3=(4,1) Pu=(52) Pi5=(53 PFe=(623)

which gives the longest stniT(1 by = = P;PyPyPogP11P2Pi3
generated byp.

Given a set of point C K™ and a functionf over S, let
P ---P; and Py, ---Pg (1 < j1 < j2 < |S]) be, respec-
tively, the leftmost and rightmost strips generated:#ywith
strip valuesc; andc,. We denote by.(.S, @) the length of the
longest strip generated by and denote b/ (.S, ) the length

L(S.,, ) andL(S.,, &) the lengths of the leftmost and right-
most strips, respectively, on seand functionf. Our alternative
fitness function with respect td is

» A = largest strip proportion

. L(S., W
Fitnes& () = InaX<M>

5] (")

» A = largest separable proportion

L(S.,, &) L(Sc,1ﬁ)>
- =g ®)
|Se. | |Se |

Fitnesg,,(w) = Inax<

where the maximum is ove¥ for every class: presents in the
training set. As it was stated in [39], choosing the largest propor-
tion rather than the largest set do have some advantage for some
functionsf : S — K. For if the number of points of a class

vy IS small and a strimgbl") constituting the whole clas$., is
found, it may be that a longer st%(”;) with a smaller propor-

tion L(S,,, w)/|S.,| can be found. However, it is preferable

to selectTE ) pecause this removes the entire Set from S

and bnngs the neural-network construction closer to the hidden

of the maximum between the leftmost and rightmost strips, iyer termination criteria of having only points of one class re-

setS and functionf. To evaluate how good i§ we propose the
following fitness function with respect to the definition af

« A =longest strip

Fitnesd () = (5)

maining in the training set. This is illustrated in Fig. 6 where
f € Pj is a random function to which both fitness selection
criteria were applied.

As seen in Fig. 6, it is impossible to obtain a network with
exactly three hidden units (which is the absolute minimum here)
when using Fitneds,. The number in circles indicates the order
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in which a generated strip is assigned to hidden units. Solin Mutation

Fig. 6b) a fourth hiddgn unit is needed for the last remaining After crossover, chromosomes are subjected to random muta-
point of value 2. In Fig. 6a)Fitness2y, removes the sefy  iong \ye propose three methodsaordinate-wisemutations
immediately after removing, [unlike in b)] where a proper g qescribed in [24], [41]. They correspond to bitwise mutation
subset ofi; is removed afteso), hence one more unitis neededy pinary chromosomes. Lgtbe aunit vector to be mutated to

to removes,. a childé

A note on the time complexity of the evaluation function. 1) Random Replacementith some probability of muta-
For a given, both fitness functions take|S$| steps to COM- yion each coordinate; (1 < i < n) of a parenty’ may be
pute thewrs, n|S|log|S| steps to sort them and at mdsi| replaced in the following way: -
steps to computé (S, ) or M (S, ). Therefore the evalua-
tion of Fitness(1 or 2), or ary(w) has a time complexity of
O(n|S|log |S]). | |

Also, crossover and mutation operations below t_é)(ez) where randorf+-1, 1] returns a random real number in the in-
steps each and the initialization of the population takggrval [-1, 1] with uniform probability
O(I.m.k. log k™) steps  is the number of chro_mqsomes an 2) Orthogonal ReplacementWith some probability of mu-
all initial chromosomes are evaluated for their fitness). ThL{s

the evaluation offitness(w) is the most expensive operation at|(|)n, e:jaf:htﬁo:r(ljlma@ (1 S_ ¢ < n) of a parenty' may be
in our GA. Letg be the number of generations, then at eachPaced In the fofowing way.

new generationp/2 new chromosomes are evaluated for

their fithesses and hence, our GA has a time complexity of ¢ =14/1 - pi. (13)

O(gpn|S|log|S|) =~ O(gpn?k™log k).

¢; = randonj—1, 1] (12)

3) Neighborhood Replacementith some probability of
C. Crossover mutation, each coordinag (1 < ¢ < n) of a parenty’ may

Crossover is the GAs crucial operation. Pairs of randomBg replaced in the following way:
selected chromosomes are subjected to crossover. For our m
problem representation we propose the following mixed ¢ =pi+ (14)
crossover method for real-coded chromosomes as described k
in [24], [41]. Letp; andp> be twounit vectors to be crossedwherem < k is a random constant. Unlike the two previous
over and let¢; andc; be the result of their crossing. Vectorsmethods of mutation, this method slightly rotates the current
¢1 andc, are obtained using, with equal probability, two of theyyperplanes to a neighboring one.
following three crossovers operations: Just ag....., controls the probability of crossover, the muta-
tion ratep,,... gives the probability for a given coordinate to be

G =p1+p2 (®)  mutated. For a vector to be mutated, one of the three mutation
C; =p1 — P2 (10) operators is selected with probability3.

Here we treat mutation only as a secondary operator with the

role of restoring lost genetic material or generating completely

o if random() < 0.5 (11) new gene_tic material Which may be pro_bz_:\bly_ (near)_ optimal.
%~ | pz, otherwise. Mutation is not a conservative operator, it is highly disruptive.

Therefore we must set,,..+, < 0.1.
Crossover in (9) is simply the addition of two parents and

the child is assured to be their exact middle vector since the

parents are unit vectors. Crossover in (10) is the substraction of

two parents and the child is the vector orthogonal to the sumlin the rth iteration of theA-based synthesis algorithm, GA

of its parents. Crossover in (11) is a uniform crossover of twaill find a chromosome, which generates a subsgf. Subset

parents, that is, at coordinat@ach parent has 50% chances & is the longest strip (or maximum separable subset) found in

be selected as; (1 < j < n). For a more efficient search; the population. The optimization ability of GA makes it possible

andé must not be obtained from the same crossover operat@r.attain a solution as close (in size)|td| as possible, if not

That is, if & is obtained using Formula (9) theh must be equal. The ability of GA to producgd| depends on its many

generated from either Formula (10) or Formula (11); this helgontrol parameters and the complexity of the tasks to learn.

to maintain a certain level of diversity among chromosomes in1) Longest Strip Based NetworlAt every iterationr of

the population. Also, crossover is applied only if a randomiijne A-based synthesis algorithm, GA finds a chromosarhe

generated number in the range zero to one is less than or equathiéich produces the longest stri, = F;---P,4;, where

the crossover probability....s (in large populationp.,.., gives 1 <@ < [S.],0 < j < |S.| — ¢ and strip valuev, = f(;).

the fraction of chromosomes actually crossed). Letw, = v, + 1. Then we create &, k + 1, 2)-perceptron
We must emphasize that each chromosome is a unit vectothidden unitl/,.) whose weight vector ig,., threshold vector is

any moment in the population. Thus the initial random vectots = (W, &, W,Ti4;4+1) and output vector i%,. = (0, ., 0).

are all normalized and the childs are also normalized to uit other words, the perceptron has a transfer function of the

; ; Wy Eiy WrEigjr1), (0, ur, 0 ;
vectors after any crossover or mutation operation. form 91(9117,12 O Oun 0 Ry 40, u,) [that is a

V. CONSTRUCTING THENEURAL NETWORK



220 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001
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9 =j 0<=j<=k-1
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t;=(k+1) l<=i<=r1

g=G+)  O<mi<=r
l<=v;<=k
l<=i<=r
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Fig. 7. Three hidden layers amtH k + 2 units network.

(k + 1)-valued two-threshold function]. THe:, k¥ + 1, 2)-per- function of the formggfj'l‘“J’Tz)’(””0): R — {0, u.} or
ceptron will output the value,. for all pointsz € G,. and will (@2, —71), (0, ur) R 0 that is a(k 4 1)-valued one-
output the value zero for all poinise S, — G,.. ‘tqﬁ“ PR {0 ) (k+1)

In order to achieve a good accuracy on the testing s
that is a good generalization ability of our algorithm whe

approximating a function, we set the threshold vector ove

b - (i — g.l’hw”xi“*l J(; TQb)' Thlus test ?]omts.of vralue_ After defining all unitsUy, . .., U, (wherer is the number
vy = f(;) which are outside but close to the strip—that 3f runs of theA-based synthesis algorithm), the next step is to

tfsi points thai ILe betwee@,,a:i,l and .z ar_u_:i betweer] construct a feedforward multilayer neural network. We propose
W, Ty 41 andd, Ty ;1o—Will be correctly classified by unit "0 oo one topologies

U,., since they are now spanned by. The offsetsr; and

+1,1
reshold function]. Thén, &k + 1, 1)-perceptron will output
e valuew,. for all pointsZ € G,. and will output the value zero
for all points¥ € S,. — G,.. Offsetsr; andr, are determined as

are given by A. Three Hidden Layers and+ & + 2 Units Architecture
(.2 — 1)) The network in Fig. 7 (which shows the case for strip-based
=" 5 ricl method) has three hidden layers and k + 2 neurons. Hidden

layer 1 contains the units (tHg's) obtained by the GA. Each
o unit is connected to the inputs and their parameters (weight,
Ty = ACURARAE 5 Gl (15) threshold, and output vectors) are defined as described above.
So the units in this layer are either &ll, %+ 1, 2)-perceptrons

2) Maximum Separable Subset Based Netwdkkevery it- or (n, k + 1, 1)-perceptrons, depending on the definition4f
erationr of the A-based synthesis algorithm, GA finds a chroand there are such units (Fig. 7 shows the cade= longest
mosomey,. which produces a maximum separable suls§et  strip).
Pi...Pj orG, = Pj, ... P, (i.e., the maximum betweenthe Hidden layer 2 has only one unit which i§a (k+ 1)"* +
leftmost and the rightmost strips), where< j; < j» < |S.| 1, » — 1)-perceptron. Its weight vecta# = ((k + 1)" 1, (k +
and strip valuey,, = f(Z1) or f(Z;,). Letu, = v. + 1. Then 1)7=2 ... (k+1)°),thatisw; = (k+ 1) for1 < i < r;
we create dn, k + 1, 1)-perceptron (hidden unit’,) whose its threshold vector = ((k + 1), (k+1)%, ..., (k+1)""1),
weight vector igi,., threshold vector i§, = (,.#;, 41 +72) if  thatist; = (k4 1)" for 1 < i < r — 1; and its output vector
G, is the leftmost strip, of,. = (1,4, — 1) if G, istheright- &= ((k+1)°, (k+1)%, ..., (k+1)""1), thatiso; = (k4 1)°
most strip, and output vector &. = (u,., 0) or g, = (0, w,.) for0 < ¢ < — 1. Allunits of layer 1 are connected to this unit
depending ortz,.. In other words, the perceptron has a transfemd the connection weight vectoris

and
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0 0 r-1 r-1
t=1(k+1), ..., k(kt1), .., Kk+1) .., kik+1)

0=0,..,k1,0,.,k1,..,0,.,k1

/TN /

Fig. 8. One hidden layer and+ 1 units network.

Hidden layer 3 containg units. Each unit of layer 1 and 2 TABLE |
is connected to every unit in this layer. Each unit is an ordinary NETWORKS COMPLEXITIES

linear threshold element [thus= (0, 1)] and the connection
weight vector from layer 1 to that unit is the same as the co Networks || #Layers | #Nodes | #Thresholds | #Connections
nection weight vector from layer 1 to the unit at layer 2. Th
connection weightv; .41 (1 < ¢ < k) from layer 2 to theth SEPAR™ 2 r+1 (k+1)r (n+1)r
unitin layer 3 is—i. The threshold of units in layer 3 are all se’ gpripa 2 r+1 (k +2)r (n+1)r
to zero.

The output layer has one unitwhich i$ig &, k—1)-percep- CARVE[39] 2 r+k r+k (n+k)r
tron whose threshold vectér= (2, ..., k), thatist; = i + 1 “
for1 < i <k — 1, and output vectod = (0, ..., k — 1), that SECAR 4 |rHE42) -2 | (ntk+r+2k
iS 0; = 7 f0r 0 S 7 S k-1 (OI’ equivalently,Oi = t7 — 1) STRIPM 4 r+k+2 3r+2% -2 (’Il+k+1)1"+2k
The connection weight from a unit in layer 3 to the output un
is one. NDL[16] r+1 r+k r+k 2+ (n+k-$r

B. One Hidden Layer and+ 1 Units Architecture multiclass functions, namely the neural decision list (NDL) net-

The network in Fig. 8 is equivalent to Marchand’s construgvork of [16] and the CARVE network of [39]. In the table,
tion [17] but generalized to multiclass functions. It has onié the number of created hidden units and #Layers does not in-
hidden layer and- + 1 neurons. Hidden layer 1 is same as ilude the input layer. Also, STRIP (respectively, SEPAR) are
Fig. 7 (Fig. 8 shows the case of maximum separable subset)ur networks based on strips (respectively, maximum separable
The output layer has only one unit which is(a k(k + Subsets)and the superscrfdt(or d2) specifies the architecture

1)*=' 4 1, kr)-perceptron. Its weight vectors = OfFigs.7or 8.

(k + DL + 1)"2 ..., (k + 1)°, that is Asseenfrom the table, STRIP CARVE and STRIP* net-

w; = (k+1)"%for1 < i < r; its threshold vector works are all within the same order of complexities with re-
= 1k + 1)° ... k(k + D% 1(k + DY ... k(k + specttor, thatisO(1) number of layersp(r) number of nodes,
DY oo Wk 4+ 1) L k(E 4 1) 1); and output vector thresholds and weight connections. The total number of param-
d=0(0,....,0k—1,0,....0k—1,...,0,...., k — 1). All eters, that is the number of thresholds plus the number of weight
units of layer 1 are connected to this unit and the connecti6@nnections, is an important complexity measure of neural net-
weight vector isi. works because of their hardware cost and also their influence

on generalization performance. With respect to this measure,
the NDL network has the worst overall complexity, tha®i&-)
number of layers and nodes aédr?) number of parameters.
Table | shows the complexity of our constructed networkSARVE network achieves the best overall complexity but is
(given f: R — K) along with other networks that deal withonly slightly better than STRH® network (which hagr — &

C. Networks Complexities
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more parameters but — 1 less nodes). STRI® network is 8 6 4 2 0 2 4 6 8
more complex than CARVE and STRiPnetworks because of
its asymptotic constant.

An important observation from the experiments is that, as
n andk increase in many classes of functions, STRIANd

STRIP* networks have significantly much smaller valuesifor 33320233 3
than CARVE, NDL and SEPAR networks. If GA is used to con-

struct a SEPAR network for a given function, then such SEPAR 111101111
network should be at least smaller than a CARVE network (for

the same function) for reasons explained in the last paragraph of 333202333
Section Il. That is, higher values efin a CARVE network are

due to the less efficient search of CARVE algorithm compared 554202 455

to SEPAR algorithm (using GA), given the same task.
In practical applications the relation between the number of
new hidden unitg and the target function is important. CARVE 8 6 4 20 2 4 6 8
networks have the simplest operation of the basic units among
them, and therefore require more new hidden units than STRJiB_ 9. Mirror-symmetric-table function oPZ.
networks. Thus, we should discuss the overall complexity with
the number of new hidden unitsfor some functions realiza-
tions. SEPAR algorithm already improves CARVE and NDL foprmple function, STRIP algorithm will extract nine strips out of it
above reasons. For most classes of functions, STRIP netw8hé these will have valuds 1, 2, 3, 4, 5, 6, 7, 8 in that order.
implementations are significantly smaller inthan maximum A weightvector that generates the strip of value zero (the longest
separable based network implementations of the same functi§h# initially) is & = (0, 1)—also notice that there are four
such as CARVE, NDL, SEPAR and other networks. The reas8iips of values two (and lengths four) in that direction. After
is that removing a strip generated bysanay create completely removal of the strip of value zero the algorithm must change
a new strip which is the union of two strips that enclosed the réirection, that isii = (1, 0), in order to remove the strip of
moved strip. This can happen only when the removed strip is gue one. The next longest strip is the strip of value two in di-
an end strip. For instance, consider three strips where one FR@ionw = (0, 1); the four short strips of length four are now
value one and the other two have values zero and suppose sgiped together into a single strip of length 16, since strip zero
of value one is between strips of values zero, that is we ha¥ed strips one which were between them are removed.
the sequence 010. Then removing strip 1 creates a new strip 00/Vhat can CARVE, NDL, and SEPAR algorithms do at best?
which may be longer than the strips of values one and zero tb-can be shown that the minimum number of hyperplanes
gether. The longer are the created strips then the smaller willlh@eded to partition a mirror-symmetric-table function is
the number of new added nodes. This situation cannot hapgéf + 2k — 3)/2. For instance, the smallest CARVE network
when maximum separable subset techniques are used. Th&sgociated with our example function contains 48 units in its
why the maximum separable method creates more nodes tfiggt hidden layer. Clearly, the ratio between the sizes of a
the longest strip method. smallest STRIP network and a smallest CARVE network for a
Toillustrate this fact, consider the example functio®gf(i.e., function in this class— 0 ask — +oo. A smallest CARVE,
k = 9andn = 2)in Fig. 9. This function hasmirror-symmetric NDL, or SEPAR network for such functions ©(k) times
table, that is all rows, columns and the two main diagonals dgéger than a corresponding smallest STRIP network.
symmetric about their center; the second half of a row, column orSuppose for some function realization, a maximum separable
diagonal is a mirror relection of the first half. Moreover, at rpw subset-based algorithm, say CARVE, achieves the smallest net-
(1 <y < (k—1/2))thefirsty entriesinthatrow are equal, and awork sizer,,. Suppose, also for the same function realization
columnz (0 < = < (k—1/2))thefirstz+1 entriesinthatcolumn that STRIP achieves its smallest network size For STRIP
are equal. Suchtwo-inputmirror-symmetric-table functioncanlve be fundamentally bettethan CARVE we must have, <
constructed for any odidand the analysis is similar. This class of 1/2)7,,, (this is the case for mirror-symmetric-table functions
functions is very interesting. First, the smallest possible size ftgalizations). Simply put, one STRIP neuron (a two-threshold
a strip based network or a maximum separable subset based peteeptron) is equal in complexity to two CARVE neurons (one-
work that realizes a function in this class can be obtained analytiseshold perceptrons). For functions where the inputs are sep-
cally. Second, like random functions, these functions have smaihted by a number of parallel hyperplanes (such as linear, per-
separations between inputs and, therefore, seem atliffastlt mutably homogeneous, some monotone functions), STRIP is
torealize. Third, as described below, they clearly demonstrate ti@d fundamentally better than CARVE. For these functions, a
power of STRIP compared to CARVE, NDL and SEPAR algosmallest STRIP network has a valug > (1/2)r,,. We will
rithms; the difference in size between a smallest STRIP netwatigcuss more about this fact in Section VI.
and a smallest CARVE network for a given function in this class STRIP networks are fundamentally better than CARVE,
is O(k?). NDL, SEPAR (and other maximum separable subset based)
Clearly, a function in this class has a minimal representatiometworks for many classes of functions other than those cited
of exactlyk units in the first hidden layer of STRIP. In our ex-in the above paragraph. More complex examples than the

7 6 4 2 0 2 4 6 7
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mirror-symmetric-table functions can be made, for some b; = (k+1)""u; — j(k+1)"" +3,_, . (k+1)""u. From
andk, where STRIP selects optimal directions for partitioningur definition of the weight connection vector between layer one
whereas SEPAR, for instance, caniobw such information and layer three it is easy to see that i (k1) ey <
and therefore will most likely do poor job. Preliminary exper¢k + 1)"*. Therefore we obtaih; > 0 for 1 < j < «; and
iments (see Table IV, Section VI) seem to indicate that suéh < 0foru,;4; < j < k. Thatis, exactly; units in layer three
functions (including mirror-symmetric-table functions) arevill output the value 1.
veryhard to realize by CARVE and similar algorithms; indeed, By definition, the output uni which has only unit weights,
they look at least harder than random functions. For exampiell perform the sumec = Ele 1b; = E?;l 1 = wu;. Since
given the function in Fig. 9, if CARVE algorithm removes al < u,; < k and the threshold vector &fis such that,,, = u;+
singlepoint of value six in its first few iterations, then the cor-1, therefore we obtain,,_1 < u; < t,,. From the definition
responding CARVE network will never be minimal. CARVEof the output vector o we have that the output of the neural
algorithm proceeds bgorner (and border) separation and it isnetwork isz = ¢t,,_1 — 1 = u; — 1 = v; — 1 = f(&). Thus
very likely that one of the pointél, 0), (1, 9), (8, 0), (8, 9) the networks has effectively classified inptitcorrectly. This
of value six will be in a singleton class that may be separateccompletes our proof for the network of Fig. 7. The proof for
We can also compare the complexity and latency of a minimiaig. 8 is straightforward and therefore omitted.
STRIP network implementation of an arbitrary multiple-valued
logic function to the complexity and latency of a minimal direct
circuit implementation of the same function. For some func-
tions realizations, STRIP network implementations are some-In this section we present experimental results from the
times better and sometimes worse (in depth or size) than thgpplications of STRIP and SEPAR algorithms to a number of
corresponding direct circuit implementations. The circuit immultiple-valued logic functions, namely: random functions,
plementations can be from any basis of gates, su¢§k@R}or linear functions, monotone functions, permutably homoge-
{AND, OR, NOT}pases for example. See Section VI for a cormeous functions,n-bit parity functions, mirror-symmetric

VI. EXPERIMENTAL RESULTS

parison withn-bit parity circuits. functions and mirror-symmetric-table functions. In analyzing
the performance of STRIP on these functions we looked at two
D. Proof of Correctness important aspects, that is the size of the networks it generates

In this section we prove that both networks, for both definand its generalization ability. We constructed STRIP networks
tions of A, effectively compute any given but arbitrary functiorand compared their performances with constructed SEPAR

ffVCR'— K. networks along with other well-known construction techniques.
Let £ be an input vector applied to the network (we refer to Throughout the experiments, we used the following parame-
both networks and both definitions df). Let# = (w4, ..., u.) ters:1000 generations for GA, 75% crossover rate, and 10% mu-

be the set of output values of the units of layer one whégs tation rate. We also used an elitist strategy in the GA, that is the
applied, that is unit’; outputs the value; < %k on inputz bestindividual of the current generation is always reproduced to
(1 <i<r). Letp < (k+1)""1 be the output of the unit (we the next generation. This elitist strategy helps counter-balance
call it P) of layer two. Let7 = (q1, ..., gx) be the outputs of the disruptive effect of our high mutation rate. On the other hand
layer three, that is unif); has valueg; < 1 (1 < j < k) on we may need this high mutation rate in order to efficiently search
inputZ. Let the value of the output unit (we call#t) bez € K. the infinite space of weight vectors. These parameters were ob-
Clearly, on inputz each unitlU; has either value;; = 0 tained by trial-and-error and seemed optimal.
oru; = v; # 0, wherew; is the maximum amplitude of the For each given class of functions and method of network con-
unit (see Figs. 7 and 8). Recall that ed¢hcorresponds to a struction, we ran our algorithms ten times. All ten runs of the
subset®; found and removed by out-based synthesis algo-algorithms used the same functions (generated randomly) but
rithm during itsith run. The collection of thé&7;’s is a parti- with different random seeds (and different random training sets
tion of K™, that is{J;_, G; = K™ and();_; G, = 0, and for approximation).
therefore the subse®; such that input? € G; corresponds  Table Il shows, respectively, for both objective functions (the
to the first unit in layer one (starting from the left) which outsuperscript€'l and £'2 stand forFitnesd andFitnesg), the
puts a nonzero value on inpit That isz = (0, ..., 0, w; = results of ten runs of each method on randomly generated func-
Uiy Uitd, - - -, Ur), Whereu,; fori+1 < j < ris either zero or tions from each of the four test classes. We display the average
v;. Recall that, according to our definition 6%, v; — 1 is the number of created hidden nodegjn the first layer of the con-
function value of all points ir7;, that is f () = v; — 1. structed networks), with its standard deviation, the minimum
By definition, unit? always outputs the valye= (k+1)"~* value found by the method (the number in parenthesis is the
whenever: is the least index ir{ such thatu; > 0 on input number of times it was found), the smallest running time (in
Z. In the next paragraph we létbe the least such index, i.e.,minutes) over ten runs, and the average generalization accuracy

such thatu; = v; # 0andu; = --- = u;_; = 0. Leta = (with its standard deviation) on the test set over ten runs. One
Sk + 1)ty = 37 _,(k + 1)" "' be the dot product of can see from the table that, in genefétnes2 yields smaller
the weights and inputs (i.e., the outputs of layer 1Jof but less accurate networks theithesd.

Each unit@Q; (1 < j < k) in layer three performs the sum For functions approximations (see colutising 60% of{™)
b; = a— j(k+ 1)" (recall that the weight connection fromwe simply used random portions &f" as training sets. Each
Pto @, is —j and that the output aP is (k + 1)"~*). We have of these training sets were generated using a different random
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TABLE I
RESULTS OF10 RUNS FORk = 4 AND n = 4

Using 100% of K™

Using 60% of K™

#Nodes | Min | Time| #Nodes |Time| Accuracy

Pmuta = 10% and peros = 75%

Rand. | STRIPF? [280+£0.89 | 27 (3) | 33 || 17.6+£0.66 | 16 |25.92% +2.42
STRIPF! |28.9+094 | 27(1) | 20 | 192+075] 16 |28.11%+1.43
SEPARF? | 65.8+1.66 | 62 (1) | 58 | 384+128| 20 |25.53% £3.39
SEPARF! | 663237 | 63 (1) | 58 [ 401212 | 29 |24.95% +3.42

Line. | STRIPF? [ 100+0.00 |10 (10) | 10 [09.7+046| 6 [87.28%+5.98
STRIPF! | 10.0£0.00 |10 (10) | 10 [ 009+030| 7 |87.09%+3.79
SEPART? | 203358 | 13(1) | 19 | 1784256 | 11 |85.24%+6.78
SEPARF! [202+3.60 | 13(1) | 19 | 17.0+283| 11 |83.88% 421

Mono. | STRIPF? |094+0.49 | 9(6) | 7 [080£077| 3 |80.68%+531
STRIPF! 1012070 9(2) | 7 |[083+046| 5 |80.97%+6.41
SEPARF? [ 106+128 | 10(4) | 7 [000+134| 4 |8505%+6.46
SEPARF! [127+1.00 | 11(2) | 7 [108+108| 5 |80.58%+6.22

Perm. | STRIPF? | 3.0£000 | 3(10) | 1 | 31+030 | 1 |96.99%+133
STRIPF! | 314030 | 3(9) | 4 | 3.0+000 | 3 |9816%+215
SEPARF? | 31030 | 3(9) | 1 | 31+030 | 1 |97.09%+246
SEPARF! | 33090 | 3(9) | 5 | 33+090 | 3 |96.99%+176

Prmuta = 0% and peros = 75%

Rand. | STRIPF? [27.9+004 | 26 (1) | 28 || 1784087 | 11 |24.85%+3.17

Line. | STRIPF? [ 100+£0.00 | 10 (10) | 13 [ 09.9+054| 9 |86.12%+3.28

Mono. | STRIPF2 | 09.8£060 | 9(3) | 4 [ 082+£040| 3 |82.82%%+4.64

Perm. | STRIPF? [ 0354050 | 3(5) | 1 |032£040| 1 |94.85%+264

Pmuta = 75% and peros = 0%

Rand. | STRIPF? [27.5+£1.20 | 26 (3) | 36 | 186080 13 |24.95%+3.16

Line. | STRIPF? [100+000 [10(10) | 15 [ 101030 | 12 |87.57%+427

Mono. | STRIPF2 | 098040 | 9(2) | 12 [ o77x064 | 7 |8214%+261

Perm. | STRIPF? | 03.0+000| 3(10) | 1 | 03.0£0.00| 1 [94.76%%246

seed, also no two elements in the sets are equal. The netwgpkce. Under the columdsing 60% of K™, the situation is
obtained with a training set is then tested on the test set, tkamewhat reversed.
is the remainingl0% of K™, and its accuracy on the test set is Random functions are more difficult to learn because of the

computed.

To see if there is any advantage toggt,;o > 00r peros > 0
we did two experiments with STRIP usirkgtnes®, however
with eitherp,,ute = 0% and peros = 75% OF Prouta = 75%
andp...., = 0% (see Table II). Under the columsing 100%
of K™, results in the third part of the table.(,. = 0%) are
in general slightly better than those in the first part of the tablso give a very high generalization accuracy. Other classes of
(peros, Pmuta > 0) Which in turn are in general slightly betterfunctions such as linear, monotone, and other functions lie be-
than those in the second part of the tablg.(;, = 0%). Thus
there is advantage in setting,...., > 0. Clearly, mutation is
the operator that helps GA explore the search space. Crossamlass are partitioned by at most — 1 separating parallel
helps to focus the search on interesting parts of the space, in gperplanes such that no two distinct classes have equal
allel. Mutation probability must be set small in order to avoid salues. Therefore, the minimal number of new hidden units
random walkin space and to bettexploit good parts of the for both STRIP and SEPAR is. k. We have experimented

smaller separation among their inputs. Therefore it is not sur-

prising that they give the highest number of nodes in the tables
and the lowest generalization accuracy. On the other hand, per-
mutably homogeneous functions have larger separation of in-

puts which makes them easier and faster to learn. So they nat-
urally produce smaller networks 6f(k) nodes on average and

tween these two extremes.
1) Permutably Homogeneous FunctionSunctions in this
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with the following permutably homogeneous functions:
f(@) =1, (1/a))z;) +n] mod k, wherea; = 2i+1. We

TABLE Il
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COMPARISON OFNETWORK SIZE FOR RANDOM FUNCTIONS OF P}

randomly generated the four-input four-valued logic functio=

J(@) = |z1/3 4+ 22/5+ 23/7 4+ 24/9 + 4] mod 4 and tested = STRIPF2 | CARVE[39] | Sequential[17] | Upstart(8] | SEPARF?
our algorithms with it. The function has three possible value

1 100
namely0, 1, 2. The three classes are separated by two paral (109 (100 (100) (100) (100)
hyperplanes (classes 1 being in the middle) and the distal 4 | 2.81 £0.39 | 2.40 +0.69 3 3.62 £ 0.61
between two adjacent hyperplanes-i.

The results of STRIP and SEPAR are consistent; they gav 5 | 323042 | 3.73+0.58 43 493050
value of about the minimal solution= 3. Clearly, there isno ¢ | 4561050 | 588067 | 7.28+082 8 6.99 +0.71
benefit of using STRIP for these functions; there is no redu
tion at all and thus the STRIP network is twice more comple 7 | 6.95+0.30 | 9.47£0.74 16 11.14£0.77
thanits corresponding SEPAR network. In ggneral, STRIPisr 1156 + 050 | 1625 < 0.6 | 18.3 +0.69 33 1951 4 1.03
better than SEPAR for functions where the inputs are separa

by nonintersectinchyperplanes with distinct values in distinct

regions. were in realityl 3, 15, 18 for 2500 generations of GA, however,

2) Monotone FunctionsWe experimented with a (random)we obtained the correct results,, 12, 13 when we increased
function of P§ which is monotonic under theatural nonde- the number of generations to 4000. This suggests that our al-
creasing order od(, thatis0 < 1 < ... < k-2 < k—1. gorithms are able to find the minimal value if they are given
For such functions, STRIP and SEPAR produced closed resuiiough time.

This suggests that, as for permutably homogeneous functions,-bit parity functions can be implemented K}OR}-cir-
SEPAR is better than STRIP for these monotone functions singigits of depth one and siz&(n), {XOR}circuits of depth
its achieves smaller network complexity even though STRIP hgglog, n) and sizen, {AND, OR}circuits of depthd and size
smaller values for-. O(2Y/4=1pd=2/d=1y or {AND, OR, NOTJcircuits of depth two

3) Linear Functions: These functions are partitioned by aand size2” 1. For such functions, a STR{P network has size
number of parallel hyperplanes where, many separated distingy2] + 2 and a STRIP* network has sizén/2] + k + 3. As
classes of inputs have equal values and any two adjacent clagsfscan see, STRIP networks are not always better than their
have distinct values. The minimal STRIP network for such fungorresponding direct circuit implementations. The difference
tions will beexactlytwice smaller than the corresponding minin complexity between a STRIP network and a direct circuit
imal SEPAR network, for reasons explained in Section V-Gepends on factors such as the basis set of gates and the fan-in
Therefore, even though the STRIP network is twice smaller §t fan-out of the gates in the circuit.
r, it will have exactly the same complexity as its corresponding 4) Random FunctionsThe experiments clearly show that
SEPAR network for linear functions realizations. Thus STRIBTRIP is fundamentally better than SEPAR and CARVE for
is no better than SEPAR and CARVE for such functions.  random functions realizations. The average and the minimum

The random four-valued linear function generated wagbtained STRIP networks are at least twice smaller than the
f(Z) = (Bz1 + z2 + 3z3 + z4) mod k. Both STRIP and corresponding results for SEPAR networks. As stated already,
SEPAR algorithms, have difficulties realizing this functionSTRIP is able to change (and select good) directions for separa-
First, the minimum- produced by SEPAR, 13, is very far fromtion and to create larger classes, while SEPAR cannot do any of
the average resulg0.3. Second, STRIP should give a resulthese two things. For random functions, the separation between
which is about two times smaller than the minimum obtaineglasses is very small. STRIP caee inside random function to
by SEPAR. The reason for this is that, for linear functions, th#ecide the best directions to choose and, by doing that, it max-
distance between two adjacent separating parallel hyperplaimaizes the size of all classes (they will get bigger and bigger
is very small € 1). Therefore the algorithms are very sensitiventil they can be removed). SEPAR only maximizes the size of
to rotations, that is, small rotations from separating hyperplang® classes that are at the boundaries of the inputs space.
could cause the algorithms to produce large networks. Table 11l contains results reported for the best three construc-

Then-bit parity functions are linear functions and it is well-tive algorithms (so far in literature) that have been applied to
known that a single layer minimal solution exists witlhidden learning random two-valued logic functions. The value in paren-
(n, 2, 1)-perceptrons. We carried out experiments with STRIfPesis at the top of each column is the number of trials over
and SEPAR algorithms fot = 0, ..., 12 using 2500 genera- which the network is averaged. In each trial of STRIP, we gen-
tions of GA to learn such functions. The results obtained weegated a different random function and used 2500 iterations of
consistently[»/2] +1 hidden units for STRIP and+ 1 hidden GA. STRIP produces smaller networks for this classification
units for SEPAR, using both fitness measures respectively. Fask than any other growth method. Significantly, STRIP gives
SEPAR we cannot obtainhidden units like the other maximummuch smaller networks than CARVE asndk increase. Also,
separable-based methods because the last training set (of p@®BAR performs better than Upstartraandk increases.
of same class) is always assigned to a new hidden unit. Thus5) Mirror-Symmetric Functions:We have carried out exper-
for instance, we will obtain exactly two hidden units for the bitments with mirror-symmetric functionsA mirror-symmetric
naryAND function whereas the other methods would obtain orfenction has value one if the second half of an input vector is
hidden unit. For SEPAR, the results obtainedfor 10, 11, 12 a mirror reflection of the first half, that is the input vector is
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TABLE IV

PERFORMANCESCOMPARISONS BETWEENMIRROR-SYMMETRIC-TABLE AND
RANDOM FUNCTIONS OF P2

STRIPF? STRIPF! SEPAR’? SEPARF!
Using 100% of K™
Mirr. 09.0 £0.00 09.8 +0.40 60.2 £1.08 69.0 £ 3.69
Rand. 29.2 £ 1.99 31.8 £1.60 58.8 £2.89 64.7 £ 4.61
Using 60% of K™
Mirr. 09.0 £ 0.00 1.7+ 1.95 31.0+3.13 36.0 +2.49
Rand. 19.1 £1.37 21.6 £1.91 36.1+2.98 36.7£2.90
Accuracies
Mirr. || 65.15% * 12.44 | 57.27% + 09.53 || 18.18% +06.91 | 13.33% = 05.62
Rand. || 09.70% + 04.85 | 16.06% + 06.36 || 10.91% £ 07.20 | 12.42% + 05.33
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STRIP is better than CARVE, NDL and SEPAR for many
classes of functions in which the separations among inputs is
small. Such functions include mirror-symmetric-table func-
tions, random functions and symmetric functions. STRIP and
SEPAR can be used for functions with real-valued inputs,
k-valued inputs, two-valued outputs, bfvalued outputs. We
have also used hill-climbing method and evolution strategy to
search for longest strips or maximum separable subsets, but the
results were significantly worse than those obtained by GA.
More research is needed in order to increase the speed of the
A-based synthesis algorithm.

Currently, we are investigating the generalization properties
of STRIP and SEPAR to many real-world problems. We believe
that our methods generalize better than CARVE since CARVE
always overfits the weights. We avoided this overfitting by trans-
lating the obtained hyperplanes away from their original posi-
tions so to include some test points in the closed space delimited
by these hyperplanes. Also in higher dimension and for many
classes of functions, our STRIP networks are much less com-
plex (in terms of total number of parameters) than CARVE and
others maximum separable based networks, and therefore by

minimal representation of two hidden units. ko= 2, ..., 7

can further improve the generalizability by transforming an ob-

we have always found the optimal number of hidden units fined STRIP network intordial basis functions networnd
STRIP and SEPAR, two, using 1000 generations of GA. Fghply back-propagation to the resulting network. the authors of
n =38, ..., 12we have always found the optimum when usingzg] have done the same thing with CARVE using sigmoidal

3000 generations of GA. Here, as for permutably homogeneqyfits and proved it efficient. In our case, we will use radial basis
functions, STRIP is no better than SEPAR.

6) Mirror-Symmetric-Table (mst) Functionsfable

\%

functions because Gaussian units are continuous version of our
(n, k + 1, 2)-perceptrons.

shows the comparisons of performances between our example
mst function in Fig. 9 and ten random functions. For each

algorithm (STRIP2, STRIF'!, SEPAR™? and SEPAR!), we
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