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STRIP—A Strip-Based Neural-Network Growth
Algorithm for Learning Multiple-Valued Functions

Alioune Ngom, Ivan Stojmenovic´, and Veljko Milutinović, Senior Member, IEEE

Abstract—We consider the problem of synthesizing mul-
tiple-valued logic functions by neural networks. A genetic
algorithm (GA) which finds the longest strip in is
described. A strip contains points located between two parallel
hyperplanes. Repeated application of GA partitions the space
into certain number of strips, each of them corresponding to a
hidden unit. We construct two neural networks based on these
hidden units and show that they correctly compute the given but
arbitrary multiple-valued function. Preliminary experimental
results are presented and discussed.

Index Terms—Constructive algorithm, genetic algorithm, mul-
tiple-threshold perceptron, multiple-valued logic, neural network,
partitioning.

I. INTRODUCTION

T HIS research paper proposes to synthesize multiple-valued
logic functions byminimalmultilayer feedforward neural

networks. There are various measures that can be used in con-
structing multiple-valued neural networks. The most important
measures are depth (number of layers) and size (number of
processing units). The depth is related to the speed of com-
puting a function whereas size decides the hardware cost. In
this paper, we use a novel model of neuron, the multiple-valued
multiple-threshold perceptron [24], [41], as basic processing
element (i.e., node) of the network and attempt to implement
multiple-valued logic functions by minimal number of such
units. Then we study ways to compose such elements into small
constant-depth networks.

The architecture of a neural network includes its topological
structure, i.e., connectivity, and the transfer function of each
node in the network. Architecture design is crucial in the suc-
cessful application of neural networks because the architecture
has significant impact on a network’s information processing
capabilities. Given a learning task, a neural network with only
a few connections and nodes may not be able to perform the
task at all due to its limited capability, while a network with a
large number of nodes and connections may overfit noise in the
training data and fail to have good generalization ability (also
learning is slow).
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I. Stojmenovićis with the Department of Computer Science, School of Infor-
mation Technology and Engineering, University of Ottawa, Ottawa, ON K1N
6N5 Canada (e-mail: ivan@site.uottawa.ca).
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Let with . A -valued logic
function maps the Cartesian product into . Denote by

the set of all such functions . Thus consists
of multiple-valued logic functions. The set is called the
set of -ary operations on in universal algebras and the set
of -ary functions of -valued logic in multiple-valued logic
algebras. The set defined by is the set of
all -valued logic functions. For instance, is the set of all
two-valued logic functions.

A. Multiple-Valued Logic Neural Networks

A discrete neuronis a processing unit whose transfer function
outputs a discrete value. An example of such transfer function is
the linear threshold function. Let be the set of real numbers. A
discrete -input multiple-valued neuronhas a discrete transfer
function and realizes a function ofvariables ranging in a set

with values in , that is computes a function
. For we refer to the processing unit as amultiple-

valued logic neuronsince it simulates a multiple-valued logic
function . Our model of multiple-valued logic
neuron is the -input -valued -threshold perceptrondefined
below.

In the theory of multiple-valued logic functions there is an
important class of functions calledmultiple-valued multiple-
threshold functions[1]. Such functions are used in the design of
classes of multiple-valued logic circuits calledprogrammable
logic arrays[30]. A -valued -threshold functionof one vari-
able is defined as

if
if for
if

(1)

where
output vector;

threshold vector with
;

number of threshold values.
A -input -valued -threshold perceptron [23], [40], [24],

[41], abbreviated as -perceptron, computes aweighted
-input -valued -threshold function given by

(2)

where
input vector;
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weight vector;

dot product of and .
The perceptron’stransfer functionis a -valued -threshold
function . It is well known that any -input

-valued logic function can be transformed into a-valued
-threshold function, for some. A -perceptron is

homogeneousif and is the identity permutation
of , it is permutably homogeneousif and is any
permutation of elements out of . Functions computed
by single such neurons are calledpermutably homogeneous
functions.

A -perceptron partitions the inputs into
disjoint classes using parallel hyperplanes,
where and (we
assume and ). Each hyperplane equation
denoted by ( ) is of the form

(3)

A -perceptron can be decomposed into a
two-hidden-layer network composed ofinput nodes, that is,
one linear combiner in the first hidden layer, -per-
ceptrons (usual linear threshold units) in the second hidden
layer and one linear combiner in the output layer [1]. The
transfer function of the -perceptron is ex-
pressed as the linear summation oflinear threshold functions

, that is

and
if
if

(4)

where is the weight associated with and
. Fig. 1 shows example of such decomposition. Fig. 2

shows the depth-two network corresponding to equation (4).
Multiple-valued logic neural networks, in our definition, are

thus neural networks composed of -perceptrons as pro-
cessing units. It should be noted that the units are not neces-
sarily the same. For example, one layer of the network may
contain -perceptrons while another layer may contain

-perceptrons.
Analog computers are inherently inaccurate due to imperfec-

tions in fabrication and fluctuations in operating temperatures.
The classical solution to this problem uses extra hardware to
enforce discrete behavior. However, the brain appears to com-
pute reliably well with inaccurate components without neces-
sarily resorting to discrete techniques. Thecontinuous neural
networkis a computational model based upon certain observed
features of the brain. Experimental evidence has shown contin-
uous neural network to be extremely fault-tolerant; in particular,
their performance does not appear to be significantly impaired
when precision is limited. It has been shown by Obradovic´ [26]
that analog neurons of limited precision are essentially mul-
tiple-valued logic neurons. The first model of multiple-valued
logic neuron (and neural network) was introduced by Chan [4]

Fig. 1. Decomposition of a)g (~w~x) into b)s linear threshold functions.

and since then various other models have been described (see
for instance, [22], [26], [36]).

B. Problem Statement

The problem we address in this paper is that of learning
multiple-valued logic functions using minimal neural networks
composed of -perceptrons. Multilayer feedforward
neural networks are in principle able to learn any arbitrary map-
ping, provided that enough hidden units are present [19]. For
these networks, learning algorithms such as backpropagation
[29] have been found to be computationally prohibitive. Also,
the topology of the networks must be fixed before learning.

Until now, architecture design has been very much a human
expert’s job. It depends heavily on the expert experience and a
tedious trial-and-error process. There is no systematic way to
design a near optimal architecture for a given task automati-
cally. Research on destructive and constructive algorithms rep-
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Fig. 2. Two-hidden-layers network forg (~w~x).

resents an effort toward the automatic design of architectures
[38]. Design of the optimal architecture for a neural network
can be formulated as a search problem in the architecture space
where each point represents an architecture. Given some perfor-
mance criteria about architectures, the performance level of all
architectures forms a discrete surface in the space. The optimal
architecture design is equivalent to finding the highest point on
this surface.

A way to improve the performance of a neural network is to
match its topology to a specific task (i.e., a set of input–output
pairs) as closely as possible. However, the problem of deciding
whether or not a given task can be performed by a given architec-
ture is known to beNP-complete [13]. Also, it has been shown
in [3] that the problem of finding the absolute minimal archi-
tecture for a given task isNP-hard. A third problem known to
beNP-complete [34] and which also concerns us here is the fol-
lowing. Given two subsets such that ,
determine subsets and such that is
of maximum cardinality, and for some and ,

for all and for all .
This problem is a generalized version of themaximum cardi-
nality problem(that is, find a linearly separable subset of max-
imum cardinality). When applied to multiple-valued logic, these
three problems are alsoNP-complete since they are known to
beNP-complete in the synthesis of two-valued logic functions,
which are special case of multiple-valued logic functions.

Our approach to the problem’s solution is discussed in
Section III. The learning method is based on thegeneral
principle of partitioning algorithmsdiscussed in Section II. A
partitioning algorithm seeks to construct a minimal network
by partitioning the input space into classes that are as large
as possible. Each class of partition is then assigned to a new
hidden unit. The connections and weights of the new units are
determined appropriately in such a way that the constructed
network will always give the correct answer for any input.
Distinct partitioning algorithms differ in the way the input
space is partitioned. Also network topologies obtained from
different partitioning algorithms may differ in the way new
hidden units are connected.

C. Background and Motivations

Chan [4] described three-valued logic networks called
neural logic networkswhich combine the strengths of neural
networks and expert systems. Such networks are used to
represent a set of nonrecursive propositional rules, and to infer
the truth values of the unknown propositions by applying the
common backpropagation training method. Tang [35] proposed
a multiple-valued logic network with functional completeness
properties and learning capabilities. The multiple-valued logic
network consists of layered arithmetic piecewise linear units.
Since the arithmetic operations of the network are basically
wired sums and piecewise linear operations, their implementa-
tion should be rather simple and straightforward. In Wang [37],
neural networks composed of a novel model of multiple-valued
logic neuron suitable for representing arbitrary multiple-valued
logic expressions are described. Obradovic´ [25] described
algorithms for learning multiple-valued logic functions on
either a single homogeneous -perceptron or a
depth-two network composed of -perceptrons in the
hidden layer and one homogeneous -perceptron
in the output layer. Ngom [24], [41] introduced learning
algorithms for permutably homogeneous -perceptrons
and proved them to be more powerful than the algorithms
mentioned in [25]. These are but a few mentioned methods for
learning multiple-valued logic functions; the reader can refer
to [22] for a survey on multiple-valued logic neural networks.
The minimal size of a neural network for learning a given but
arbitrary multiple-valued logic function has not been studied
in literature. That is, the network is fixed in advance before
learning and its size does not change during and after learning.
As stated in Section I-B, such networks may not be powerful
enough for learning or may overfit the training data. In partic-
ular, there is no evidence of any function for which the size of
the learning network is significantly smaller than the size of its
sum-of-products or other standard gates implementations.

Techniques are known in literature for learning multiclass
functions (multiple-valued logic functions are special cases of
multiclass functions). The most powerful one is theerror-cor-
recting output codes(or ECOC) approach which is a robust
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method for solving multiclass learning problems. Dieterich
[5] has shown thatECOC learning provides a general purpose
method for improving the performance of inductive learning
programs on multiclass problems. Other simpler and less
powerful methods use backpropagation (or any appropriate
learning algorithm such as madaline or radial basis function,
etc.) networks with multiple output units assigned to distinct
classes. All these approaches use fixed-architecture networks
for learning arbitrary multiclass functions and thus a given
network may not be the optimal one for such functions.

II. K NOWN PARTITIONING METHODS

In Marchand [17], given a function , the cube
is partitioned into regions by hyperplanes in such a way thatis
constant in each region containing input vectors. The halfspaces
defined by these hyperplanes correspond to threshold units in
the hidden layer. The construction of the halfspaces implies that
one can add an output unit in such a way that the resulting neural
network indeed computes. The hyperplanes are determined
sequentially. First, an hyperplane is found such thatis con-
stant on one of its sides. The points in the corresponding halfs-
pace are removed and they continue with the remaining points
in a similar manner, until the set of remaining points becomes
empty. Thus each halfspace is used to cut off a set of points with
identical function values from the remaining set of points. Let
the halfspaces constructed by their algorithm be
and define to be zero (or one) if is zero (or one) on the
region cut off by for . Then adding an output
unit with threshold zero and weight for the edge leaving
the hidden unit corresponding to , they get a neural network
that computes . They assume that linear threshold units pro-
duce an output zero or one. In a restricted version of their ap-
proach calledregular partitioning, Ruján [28], the hyperplanes
do not intersect. This description gives the general principle of
partitioning algorithms. Particular implementations depend on
the way the next hyperplane is selected and the way new hidden
units are connected (in term of network weights and topology).
Experiments indicate that partitioning algorithms are successful
in the sense that they efficiently construct (near) minimal neural
networks [14], [16], [17], [28].

Another way to view this process, without any reference
to neural networks, is to consider a sequence of halfspaces

. For each halfspace we specify the value
of for those points in that are not contained in any of the
previoushalfspaces. Thus, for every input vector
it holds that , where is thesmallestindex such that

. It is assumed that contains , thus is always
defined. This model is called alinear decision list[16], [27].

More formally, Rivest [27] defines a linear decision list
in the following way. A linear test over the variable

is of the form ,
where are the weights and is
a threshold. A linear decision list over is a sequence

where is a linear test and is
zero or one for . It is assumed that , the last
linear test is true for all input vectors. The length of is
. The two-valued function computed by assigns to

every the value , where is the first linear test in the
list that is satisfied by . Every two-valued function
can be computed by some linear decision list. For instance, a
disjunctive normal form with terms can be represented by a
linear decision list of length .

Many heuristics such as Fahlman’scascade correlation
algorithm [6], Frean’supstart algorithm[8], Sethi’s entropy
nets[32], Sirat’s neural trees[33], Mezard’stiling algorithm
[18], Barkema’s patch algorithm [2], Frattale-Mascioli’s
oil-spot algorithm[7], Young’s carve algorithm[39], regular
partitioning [28], and other partitionning algorithms [9], [11],
[16], [17], [20], [21], are proposed as approaches for building
networks which are (near) minimal for a given arbitrary task.
These heuristics are known asconstructiveor growth algo-
rithms since they all construct a network starting from a fixed
small number of units.

Partitioning techniques such as cascade correlation [6],
upstart algorithm [8] and entropy nets [32] apply only for
functions with Boolean-valued outputs. Moreover, most of
the growth algoritms described in literature (see, for instance,
[2], [7], [11], [17], [18], [20], [28]) are only applicable to
problems with Boolean-valued inputs. Very few constructive
methods deal with multiclass problems (-valued functions
are multiclass functions). For instance, the carve algorithm
[39] and Marchand’s neural decision list [16] apply both to
functions .

The techniques in [16], [39] seek to identify the largest subset
of input vectors of same class that is separable from vectors of
other classes. The hyperplane determined by the maximum sep-
arable subset is then assigned to a newly created -per-
ceptron. A drawback of Marchand’s NDL (neural decision list)
[16] is that, since it employs linear programming to determine
whether specific subsets of the input vectors are linearly sep-
arable, the number of possible subsets of points that could be
considered for linear separability is exponential in the size of
the inputs set. In order to circumvent this problem, [16] worked
only with a specific class of functions calledhalfspace intersec-
tions. Young’s CARVE [39], which is an extension of Marchand
[17] to multiclass functions with real-valued inputs, avoids the
issue of testing for linear separability of subsets of points by di-
rectly searching for hyperplanes that separate sets of points of
one class only. Let be a set of points of classand (the hull
set for ) be the set of all points in the training set except those
in , . Clearly, points outside the convex hull formed by

are all of the same classand thus, only points outside the
convex hull can actually be separated by a hyperplane boundary
from the hull set. So to find the maximum separable subset,
CARVE considers only hyperplanes that touch the boundary
[that is, -dimensional faces or vertices] of the convex hull.
The hyperplane with the largest set of points in its open halfs-
pace outside the convex hull is the maximum separable subset.
The algorithm is a simple hill-climbing technique that searches
for a (near) optimal hyperplane by partially traversing (or cov-
ering) the convex hull (i.e., the boundary of the hull set) starting
from a randomly selected convex hull vertex and a hyperplane
that passes through that vertex. This is repeated a fixed number
of times and each time, the initial hyperplane is randomly
rotated a fixed number of times around the boundary of the
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hull set. The set of points encountered during each rotation is de-
termined; these are potential solutions. The main difficulty with
CARVE is that the likelihood to find the maximum separable
subset depends on the parametersand . For larger values
of the product , the more likely is one to obtain a (near)
optimal hyperplane since large section of the hull set boundary
will be traversed (it should be noted that the number of facets
and vertices of the convex hull may be exponential in the di-
mension of the input space). The optimal values forand
depend on the actual problem and the user must find such values
by trial and error. In the end, the size of the network obtained
by CARVE depends on and .

In this paper we introduce a method of partitioning a set
using genetic algorithm [10] to grow a multiple-valued logic

neural network for learning a function. In our own approach,
the maximum separable subset is treated as a special case of the
longest strip (as will be discussed later). We introduce

-perceptrons which will freely reduce the network size for
given arbitrary -valued functions.

Both CARVE and NDL use local search to search for good so-
lutions. They extensively search some parts of the space (around
faces of a convex hull as in CARVE, or, around neighborhood
of separating hyperplanes as in NDL), while leaving some other
parts of the search space untouched. On the other hand, GA (in
our implementation) performs a global search; it treats all parts
of the space equally, due to its implicit parallelism.

III. L ONGESTSTRIP-BASED GROWTH ALGORITHM

In this paper, we describe a novel neural-network growth al-
gorithm based on the search for the longest strip rather than
the maximum separable subset. Our technique can be applied to
various kinds of functions. That is, it is capable of handling 1)
real-valued and -valued inputs ( ) and 2) two-class prob-
lems as well as multiclass problems. In particular, we apply our
growth algorithm to the synthesis of multiple-valued logic func-
tions, that is functions of the form .

A strip is a set of points between two parallel hyperplanes
which have the same value. Thelongest stripis the strip with the
maximum possible cardinality. Amaximum separable subsetis
a set of points having equal values with the maximum possible
cardinality that can be separated from all other points by exactly
one hyperplane. Examples of longest strip and maximum sepa-
rable subset are shown, respectively, in Fig. 3 and 4.

We describe a search method for finding the longest strip as
well as the maximum separable subset of a currently given set
of training examples, namely genetic algorithm (GA). The max-
imum separable subset problem is a special case of the longest
strip problem. Indeed, they both share the same problem rep-
resentation used by GA, but differ only by their respective ob-
jective functions and constructed network architectures. In the
next paragraph we briefly describe our main growth algorithm
which constructs a network by removal of points in a predefined
objective subset . is either the longest strip or the max-
imum separable subset in. Our main objective is, using GA,
to obtain a subset such that is as close as possible
to if not equal to (of course we have ). Our
maximum separable subset problem approach is an extension of

Fig. 3. Example of longest strip fork = 4 andn = 2.

Fig. 4. Example of maximum separable subset fork = 4 andn = 2.

the sequential learning algorithm described in [17] to multiclass
functions . The growth algorithm of [17] is based
on the perceptron learning algorithm (more specifically, on the
pocketalgorithm) and its performance was hampered by the fact
that the pocket algorithm does not converge in the case where
the points are not linearly separable. In our own approach, how-
ever, we use an evolutionary approach to find optimal subsets.

In our particular implementation of partitioning algorithm
(see Fig. 5), GA is used to obtain subsequent halfspaces delim-
ited by either one or two hyperplanes (depending on the prede-
fined objective subset ). To each halfspace we assign a hidden
unit that correctly classifies all elements of it. Let the objective
subset be the longest strip in the given training set. Our growth
algorithm begins with an empty first hidden layer into which
new -perceptrons are inserted one after another
until no more insertion is possible. A -perceptron
implements two parallel hyperplanes in the input domain and
the aim is to find two parallel hyperplanes that define a strip
such that is as close as possible to . The strip is then
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Fig. 5. A-based synthesis algorithm.

removed from the training set. The next -percep-
tron to be added to the network aims to separate another (near)
longest strip , but now only from the reduced training set. Once
a (near) longest strip for this unit is found, the unit is added
to the layer and the strip is removed from the training set. The
construction of the first hidden layer continues with each sub-
sequent unit separating a strip from the remaining training ex-
amples. The first hidden layer is complete when only points of
one class remain in the training set. Once the first hidden layer
is complete, the remaining weights, layers and units of the net-
works are determined to complete the network construction (the
details of the network architecture are described in Section V).

Our principal objective in this paper is to synthesize any arbi-
trary -valued logic function by a neural network constructed by
our growth algorithms when (portion of) the function is given.
We obtain networks that either exactly or approximately imple-
ment -valued logic functions.

IV. DETERMINING LONGESTSTRIPS BYGENETIC ALGORITHM

We use an evolutionary method to find the set of partitioning
hyperplanes. Holland [12] first proposed GAs in the early 1970s
as computer program to mimic the evolutionary processes in
nature. Genetic algorithms manipulate a population of poten-
tial solutions to an optimization (or search) problem. Specifi-
cally, they operate on encoded representations of the solutions,
equivalent to the genetic material of individuals in nature, and
not directly on the solutions themselves. Holland’s genetic al-
gorithm encodes the solutions as binarychromosome(strings
of bits). As in nature,selectionprovides the necessary driving
mechanism for better solutions to survive. Each solution is as-
sociated with afitness valuethat reflects how good or bad it is,
compared with other solutions in the population. The higher the
fitness value of an individual, the higher its chances of survival
and reproduction and the larger its representation in the subse-
quent generations. Recombination of genetic material in genetic

algorithms is simulated through acrossovermechanism that ex-
changes portions between two chromosomes. Another opera-
tion, mutation, causes sporadic and random alterations of the
chromosomes. Mutation too has a direct analogy from nature
and plays the role of regenerating lost genetic material and thus
reopening the search.

A. Problem Representation

Fundamental to the GA structure is the encoding mechanism
for representing the problem’s variables. For the problem of de-
termining , the search space is thepower setof the training set
(i.e., the set of all subsets of ). Each element of the search
space is a potential solution and must be represented in such a
way that meaningful and suitable genetic operators can be de-
signed for (and applied to) it.

More formally, our population consists of chromosomes
which encode the potential solutions of the problem. A po-
tential solution is a subset and the best solution
is one whose size is closest to . Given a weight vector

we can find the strip (or separable
subset) of maximum cardinality that is associated with(see
Section IV-B). For instance, the strip shown in Fig. 3 can be
obtained given the vector and the function’s table
(moreover in this example, the obtained strip is the absolute so-
lution). Given a training set, then searching for a subset whose
size is as close to as possible is equivalent to searching the
weight vectors space (that is ) for a vector that generates
such subset. In our problem representation, a chromosome
will be a weight vector (as in [31]) since such vector
clearly encodes (i.e., represents) a potential solution to the
problem. Each chromosome will uniquely determine a partition
of into classes with parallel hyperplanes (for
some ) and the best chromosome is the one that maximizes
the number of points between a pair of parallel hyperplanes. To
determine how good is a solution the GA needs an objective
function to evaluate each chromosome.

We initialize the population with random real-coded chro-
mosomes whose coordinates are random real num-
bers taken from the interval [ ]. Each initial chromosome
is then normalized to a unit vector. Another method we used for
the initialization of the population is to set (for

) for each vector , where is a random number in
the interval . Initial population should consist of
random unit hyperplanes. Starting from the initial population,
we apply genetic operators such as selection, crossover, and mu-
tation to create the next generation of chromosomes. This gener-
ational cycle is repeated until a predefined maximum number of
generations is reached. Subsetwill be the best solution gen-
erated so far in the population.

Our main objective here is, for a given function, to obtain
a chromosome which generates such that . Once
such is found we create a hidden unit to be inserted in the
neural network. We then eliminate all pointsin and apply
again the genetic algorithm on the remaining points. The algo-
rithm terminates as soon as there are no points left. The created
hidden units will then be collected to construct a feedforward
network. The parameters (weight, threshold, and output vectors)
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Fig. 6. Behaviors of a) Fitness2 and b) Fitness1 on somef 2 P .

of the hidden units and the topology of the network will be dis-
cussed later.

B. Fitness Function

The objective function, the function to optimize, provides the
mechanism for evaluating each chromosome.

Let be the set of remaining points. Initially,
. To compute the longest strip generated by, we calcu-

late for every the value and construct a sorted list
of records of the form . The list is sorted using
as primary key and as secondary key. Let these records
be sorted as follows: , or more precisely,

, , where . A

strip in is a sequence such that

1) ;
2) and ;

with and . The length of the strip
is and is the value of the strip. For example, in
Fig. 3 we have and

which gives the longest strip
generated by .

Given a set of points and a function over , let
and ( ) be, respec-

tively, the leftmost and rightmost strips generated by, with
strip values and . We denote by the length of the
longest strip generated byand denote by the length
of the maximum between the leftmost and rightmost strips, on
set and function . To evaluate how good is we propose the
following fitness function with respect to the definition of.

• longest strip

Fitness (5)

• maximum separable subset

Fitness (6)

Let , that is the set of points
of value . An alternative objective is to select a strip of value
, i.e., , which maximizes , where denotes

the length of . That is, as in [17], [39], the selection crite-
rion chooses the strip that constitutes the largest proportion of
a class of points that can be separated. We denote by
the length of the largest strip proportion of valueand denote by

and the lengths of the leftmost and right-
most strips, respectively, on setand function . Our alternative
fitness function with respect to is

• largest strip proportion

Fitness (7)

• largest separable proportion

Fitness (8)

where the maximum is over for every class presents in the
training set. As it was stated in [39], choosing the largest propor-
tion rather than the largest set do have some advantage for some
functions . For if the number of points of a class

is small and a strip constituting the whole class is

found, it may be that a longer strip with a smaller propor-
tion can be found. However, it is preferable
to select because this removes the entire set from
and brings the neural-network construction closer to the hidden
layer termination criteria of having only points of one class re-
maining in the training set. This is illustrated in Fig. 6 where

is a random function to which both fitness selection
criteria were applied.

As seen in Fig. 6, it is impossible to obtain a network with
exactly three hidden units (which is the absolute minimum here)
when using Fitness . The number in circles indicates the order
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in which a generated strip is assigned to hidden units. So in
Fig. 6b) a fourth hidden unit is needed for the last remaining
point of value 2. In Fig. 6a), removes the set
immediately after removing [unlike in b)] where a proper
subset of is removed after ), hence one more unit is needed
to remove .

A note on the time complexity of the evaluation function.
For a given , both fitness functions take steps to com-
pute the s, steps to sort them and at most
steps to compute or . Therefore the evalua-
tion of or or has a time complexity of

.
Also, crossover and mutation operations below take

steps each and the initialization of the population takes
steps ( is the number of chromosomes and

all initial chromosomes are evaluated for their fitness). Thus
the evaluation of is the most expensive operation
in our GA. Let be the number of generations, then at each
new generation new chromosomes are evaluated for
their fitnesses and hence, our GA has a time complexity of

.

C. Crossover

Crossover is the GAs crucial operation. Pairs of randomly
selected chromosomes are subjected to crossover. For our
problem representation we propose the following mixed
crossover method for real-coded chromosomes as described
in [24], [41]. Let and be twounit vectors to be crossed
over and let and be the result of their crossing. Vectors

and are obtained using, with equal probability, two of the
following three crossovers operations:

(9)

(10)

if random
otherwise. (11)

Crossover in (9) is simply the addition of two parents and
the child is assured to be their exact middle vector since the
parents are unit vectors. Crossover in (10) is the substraction of
two parents and the child is the vector orthogonal to the sum
of its parents. Crossover in (11) is a uniform crossover of two
parents, that is, at coordinateeach parent has 50% chances to
be selected as ( ). For a more efficient search,
and must not be obtained from the same crossover operator.
That is, if is obtained using Formula (9) then must be
generated from either Formula (10) or Formula (11); this helps
to maintain a certain level of diversity among chromosomes in
the population. Also, crossover is applied only if a randomly
generated number in the range zero to one is less than or equal to
the crossover probability (in large population, gives
the fraction of chromosomes actually crossed).

We must emphasize that each chromosome is a unit vector at
any moment in the population. Thus the initial random vectors
are all normalized and the childs are also normalized to unit
vectors after any crossover or mutation operation.

D. Mutation

After crossover, chromosomes are subjected to random muta-
tions. We propose three methods ofcoordinate-wisemutations
as described in [24], [41]. They correspond to bitwise mutation
for binary chromosomes. Letbe aunit vector to be mutated to
a child .

1) Random Replacement:With some probability of muta-
tion, each coordinate of a parent may be
replaced in the following way:

random (12)

where random returns a random real number in the in-
terval [ 1, 1] with uniform probability.

2) Orthogonal Replacement:With some probability of mu-
tation, each coordinate of a parent may be
replaced in the following way:

(13)

3) Neighborhood Replacement:With some probability of
mutation, each coordinate of a parent may
be replaced in the following way:

(14)

where is a random constant. Unlike the two previous
methods of mutation, this method slightly rotates the current
hyperplane to a neighboring one.

Just as controls the probability of crossover, the muta-
tion rate gives the probability for a given coordinate to be
mutated. For a vector to be mutated, one of the three mutation
operators is selected with probability .

Here we treat mutation only as a secondary operator with the
role of restoring lost genetic material or generating completely
new genetic material which may be probably (near) optimal.
Mutation is not a conservative operator, it is highly disruptive.
Therefore we must set .

V. CONSTRUCTING THENEURAL NETWORK

In the th iteration of the -based synthesis algorithm, GA
will find a chromosome which generates a subset. Subset

is the longest strip (or maximum separable subset) found in
the population. The optimization ability of GA makes it possible
to attain a solution as close (in size) to as possible, if not
equal. The ability of GA to produce depends on its many
control parameters and the complexity of the tasks to learn.

1) Longest Strip Based Network:At every iteration of
the -based synthesis algorithm, GA finds a chromosome
which produces the longest strip , where

, and strip value .
Let . Then we create a -perceptron
(hidden unit ) whose weight vector is , threshold vector is

and output vector is .
In other words, the perceptron has a transfer function of the
form [that is a
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Fig. 7. Three hidden layers andr + k + 2 units network.

-valued two-threshold function]. The -per-
ceptron will output the value for all points and will
output the value zero for all points .

In order to achieve a good accuracy on the testing set,
that is a good generalization ability of our algorithm when
approximating a function, we set the threshold vector to

. Thus test points of value
which are outside but close to the strip—that is

test points that lie between and and between
and —will be correctly classified by unit

, since they are now spanned by. The offsets and
are given by

and

(15)

2) Maximum Separable Subset Based Network:At every it-
eration of the -based synthesis algorithm, GA finds a chro-
mosome which produces a maximum separable subset

or (i.e., the maximum between the
leftmost and the rightmost strips), where
and strip value or . Let . Then
we create a -perceptron (hidden unit ) whose
weight vector is , threshold vector is if

is the leftmost strip, or if is the right-
most strip, and output vector is or
depending on . In other words, the perceptron has a transfer

function of the form or

[that is a -valued one-
threshold function]. The -perceptron will output
the value for all points and will output the value zero
for all points . Offsets and are determined as
above.

After defining all units (where is the number
of runs of the -based synthesis algorithm), the next step is to
construct a feedforward multilayer neural network. We propose
two network topologies.

A. Three Hidden Layers and Units Architecture

The network in Fig. 7 (which shows the case for strip-based
method) has three hidden layers and neurons. Hidden
layer 1 contains the units (the ’s) obtained by the GA. Each
unit is connected to the inputs and their parameters (weight,
threshold, and output vectors) are defined as described above.
So the units in this layer are either all -perceptrons
or -perceptrons, depending on the definition of,
and there are such units (Fig. 7 shows the case longest
strip).

Hidden layer 2 has only one unit which is a
-perceptron. Its weight vector

, that is for ;
its threshold vector ,
that is for ; and its output vector

, that is
for . All units of layer 1 are connected to this unit
and the connection weight vector is.
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Fig. 8. One hidden layer andr + 1 units network.

Hidden layer 3 contains units. Each unit of layer 1 and 2
is connected to every unit in this layer. Each unit is an ordinary
linear threshold element [thus ] and the connection
weight vector from layer 1 to that unit is the same as the con-
nection weight vector from layer 1 to the unit at layer 2. The
connection weight ( ) from layer 2 to the th
unit in layer 3 is . The threshold of units in layer 3 are all set
to zero.

The output layer has one unit which is a -percep-
tron whose threshold vector , that is
for , and output vector , that
is for (or equivalently, ).
The connection weight from a unit in layer 3 to the output unit
is one.

B. One Hidden Layer and Units Architecture

The network in Fig. 8 is equivalent to Marchand’s construc-
tion [17] but generalized to multiclass functions. It has one
hidden layer and neurons. Hidden layer 1 is same as in
Fig. 7 (Fig. 8 shows the case of maximum separable subsets).

The output layer has only one unit which is a
-perceptron. Its weight vector

, that is
for ; its threshold vector

; and output vector
. All

units of layer 1 are connected to this unit and the connection
weight vector is .

C. Networks Complexities

Table I shows the complexity of our constructed networks
(given ) along with other networks that deal with

TABLE I
NETWORKSCOMPLEXITIES

multiclass functions, namely the neural decision list (NDL) net-
work of [16] and the CARVE network of [39]. In the table,
is the number of created hidden units and #Layers does not in-
clude the input layer. Also, STRIP (respectively, SEPAR) are
our networks based on strips (respectively, maximum separable
subsets) and the superscript(or ) specifies the architecture
of Figs. 7 or 8.

As seen from the table, STRIP, CARVE and STRIP net-
works are all within the same order of complexities with re-
spect to , that is number of layers, number of nodes,
thresholds and weight connections. The total number of param-
eters, that is the number of thresholds plus the number of weight
connections, is an important complexity measure of neural net-
works because of their hardware cost and also their influence
on generalization performance. With respect to this measure,
the NDL network has the worst overall complexity, that is
number of layers and nodes and number of parameters.
CARVE network achieves the best overall complexity but is
only slightly better than STRIP network (which has
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more parameters but less nodes). STRIP network is
more complex than CARVE and STRIPnetworks because of
its asymptotic constant.

An important observation from the experiments is that, as
and increase in many classes of functions, STRIPand

STRIP networks have significantly much smaller values for
than CARVE, NDL and SEPAR networks. If GA is used to con-
struct a SEPAR network for a given function, then such SEPAR
network should be at least smaller than a CARVE network (for
the same function) for reasons explained in the last paragraph of
Section II. That is, higher values ofin a CARVE network are
due to the less efficient search of CARVE algorithm compared
to SEPAR algorithm (using GA), given the same task.

In practical applications the relation between the number of
new hidden units and the target function is important. CARVE
networks have the simplest operation of the basic units among
them, and therefore require more new hidden units than STRIP
networks. Thus, we should discuss the overall complexity with
the number of new hidden unitsfor some functions realiza-
tions. SEPAR algorithm already improves CARVE and NDL for
above reasons. For most classes of functions, STRIP network
implementations are significantly smaller inthan maximum
separable based network implementations of the same functions
such as CARVE, NDL, SEPAR and other networks. The reason
is that removing a strip generated by amay create completely
a new strip which is the union of two strips that enclosed the re-
moved strip. This can happen only when the removed strip is not
an end strip. For instance, consider three strips where one has
value one and the other two have values zero and suppose strip
of value one is between strips of values zero, that is we have
the sequence 010. Then removing strip 1 creates a new strip 00,
which may be longer than the strips of values one and zero to-
gether. The longer are the created strips then the smaller will be
the number of new added nodes. This situation cannot happen
when maximum separable subset techniques are used. That is
why the maximum separable method creates more nodes than
the longest strip method.

To illustrate this fact, consider theexample functionof(i.e.,
and ) in Fig. 9. This function has amirror-symmetric

table, that is all rows, columns and the two main diagonals are
symmetric about their center; the second half of a row, column or
diagonal is a mirror relection of the first half. Moreover, at row
( ) the first entries in that rowareequal, andat
column ( ) thefirst entriesinthatcolumn
areequal.Suchtwo-inputmirror-symmetric-tablefunctioncanbe
constructed for any oddand the analysis is similar. This class of
functions is very interesting. First, the smallest possible size for
a strip based network or a maximum separable subset based net-
work that realizes a function in this class can be obtained analyti-
cally. Second, like random functions, these functions have small
separations between inputs and, therefore, seem at leastdifficult
to realize.Third,asdescribedbelow, they clearly demonstrate the
power of STRIP compared to CARVE, NDL and SEPAR algo-
rithms; the difference in size between a smallest STRIP network
and a smallest CARVE network for a given function in this class
is .

Clearly, a function in this class has a minimal representation
of exactly units in the first hidden layer of STRIP. In our ex-

Fig. 9. Mirror-symmetric-table function ofP .

ample function, STRIP algorithm will extract nine strips out of it
and these will have values in that order.
A weight vector that generates the strip of value zero (the longest
strip initially) is —also notice that there are four
strips of values two (and lengths four) in that direction. After
removal of the strip of value zero the algorithm must change
direction, that is , in order to remove the strip of
value one. The next longest strip is the strip of value two in di-
rection ; the four short strips of length four are now
joined together into a single strip of length 16, since strip zero
and strips one which were between them are removed.

What can CARVE, NDL, and SEPAR algorithms do at best?
It can be shown that the minimum number of hyperplanes
needed to partition a mirror-symmetric-table function is

. For instance, the smallest CARVE network
associated with our example function contains 48 units in its
first hidden layer. Clearly, the ratio between the sizes of a
smallest STRIP network and a smallest CARVE network for a
function in this class as . A smallest CARVE,
NDL, or SEPAR network for such functions is times
larger than a corresponding smallest STRIP network.

Suppose for some function realization, a maximum separable
subset-based algorithm, say CARVE, achieves the smallest net-
work size . Suppose, also for the same function realization
that STRIP achieves its smallest network size. For STRIP
to be fundamentally betterthan CARVE we must have

(this is the case for mirror-symmetric-table functions
realizations). Simply put, one STRIP neuron (a two-threshold
perceptron) is equal in complexity to two CARVE neurons (one-
threshold perceptrons). For functions where the inputs are sep-
arated by a number of parallel hyperplanes (such as linear, per-
mutably homogeneous, some monotone functions), STRIP is
not fundamentally better than CARVE. For these functions, a
smallest STRIP network has a value . We will
discuss more about this fact in Section VI.

STRIP networks are fundamentally better than CARVE,
NDL, SEPAR (and other maximum separable subset based)
networks for many classes of functions other than those cited
in the above paragraph. More complex examples than the
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mirror-symmetric-table functions can be made, for some
and , where STRIP selects optimal directions for partitioning
whereas SEPAR, for instance, cannotknow such information
and therefore will most likely do poor job. Preliminary exper-
iments (see Table IV, Section VI) seem to indicate that such
functions (including mirror-symmetric-table functions) are
veryhard to realize by CARVE and similar algorithms; indeed,
they look at least harder than random functions. For example,
given the function in Fig. 9, if CARVE algorithm removes a
singlepoint of value six in its first few iterations, then the cor-
responding CARVE network will never be minimal. CARVE
algorithm proceeds bycorner (and border) separation and it is
very likely that one of the points
of value six will be in a singleton class that may be separated.

We can also compare the complexity and latency of a minimal
STRIP network implementation of an arbitrary multiple-valued
logic function to the complexity and latency of a minimal direct
circuit implementation of the same function. For some func-
tions realizations, STRIP network implementations are some-
times better and sometimes worse (in depth or size) than their
corresponding direct circuit implementations. The circuit im-
plementations can be from any basis of gates, such as{XOR}or
{AND, OR, NOT}bases for example. See Section VI for a com-
parison with -bit parity circuits.

D. Proof of Correctness

In this section we prove that both networks, for both defini-
tions of , effectively compute any given but arbitrary function

.
Let be an input vector applied to the network (we refer to

both networks and both definitions of). Let
be the set of output values of the units of layer one whenis
applied, that is unit outputs the value on input
( ). Let be the output of the unit (we
call it ) of layer two. Let be the outputs of
layer three, that is unit has value ( ) on
input . Let the value of the output unit (we call it) be .

Clearly, on input each unit has either value
or , where is the maximum amplitude of the
unit (see Figs. 7 and 8). Recall that eachcorresponds to a
subset found and removed by our -based synthesis algo-
rithm during its th run. The collection of the ’s is a parti-
tion of , that is and , and
therefore the subset such that input corresponds
to the first unit in layer one (starting from the left) which out-
puts a nonzero value on input. That is

, where for is either zero or
. Recall that, according to our definition of , is the

function value of all points in , that is .
By definition, unit always outputs the value

whenever is the least index in such that on input
. In the next paragraph we letbe the least such index, i.e.,

such that and . Let
be the dot product of

the weights and inputs (i.e., the outputs of layer 1) of.
Each unit ( ) in layer three performs the sum

(recall that the weight connection from
to is and that the output of is ). We have

. From
our definition of the weight connection vector between layer one
and layer three it is easy to see that

. Therefore we obtain for and
for . That is, exactly units in layer three

will output the value 1.
By definition, the output unit which has only unit weights,

will perform the sum . Since
and the threshold vector of is such that

, therefore we obtain . From the definition
of the output vector of we have that the output of the neural
network is . Thus
the networks has effectively classified inputcorrectly. This
completes our proof for the network of Fig. 7. The proof for
Fig. 8 is straightforward and therefore omitted.

VI. EXPERIMENTAL RESULTS

In this section we present experimental results from the
applications of STRIP and SEPAR algorithms to a number of
multiple-valued logic functions, namely: random functions,
linear functions, monotone functions, permutably homoge-
neous functions, -bit parity functions, mirror-symmetric
functions and mirror-symmetric-table functions. In analyzing
the performance of STRIP on these functions we looked at two
important aspects, that is the size of the networks it generates
and its generalization ability. We constructed STRIP networks
and compared their performances with constructed SEPAR
networks along with other well-known construction techniques.

Throughout the experiments, we used the following parame-
ters: 1000 generations for GA, 75% crossover rate, and 10% mu-
tation rate. We also used an elitist strategy in the GA, that is the
best individual of the current generation is always reproduced to
the next generation. This elitist strategy helps counter-balance
the disruptive effect of our high mutation rate. On the other hand
we may need this high mutation rate in order to efficiently search
the infinite space of weight vectors. These parameters were ob-
tained by trial-and-error and seemed optimal.

For each given class of functions and method of network con-
struction, we ran our algorithms ten times. All ten runs of the
algorithms used the same functions (generated randomly) but
with different random seeds (and different random training sets
for approximation).

Table II shows, respectively, for both objective functions (the
superscripts and stand forFitness1 andFitness2), the
results of ten runs of each method on randomly generated func-
tions from each of the four test classes. We display the average
number of created hidden nodes,(in the first layer of the con-
structed networks), with its standard deviation, the minimum
value found by the method (the number in parenthesis is the
number of times it was found), the smallest running time (in
minutes) over ten runs, and the average generalization accuracy
(with its standard deviation) on the test set over ten runs. One
can see from the table that, in general,Fitness2 yields smaller
but less accurate networks thanFitness1.

For functions approximations (see columnUsing 60% of )
we simply used random portions of as training sets. Each
of these training sets were generated using a different random
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TABLE II
RESULTS OF10 RUNS FORk = 4 AND n = 4

seed, also no two elements in the sets are equal. The network
obtained with a training set is then tested on the test set, that
is the remaining40% of , and its accuracy on the test set is
computed.

To see if there is any advantage to set or
we did two experiments with STRIP usingFitness2, however
with either and or
and (see Table II). Under the columnUsing 100%
of , results in the third part of the table ( ) are
in general slightly better than those in the first part of the table
( ) which in turn are in general slightly better
than those in the second part of the table ( ). Thus
there is advantage in setting . Clearly, mutation is
the operator that helps GA explore the search space. Crossover
helps to focus the search on interesting parts of the space, in par-
allel. Mutation probability must be set small in order to avoid a
random walkin space and to betterexploit good parts of the

space. Under the columnUsing 60% of , the situation is
somewhat reversed.

Random functions are more difficult to learn because of the
smaller separation among their inputs. Therefore it is not sur-
prising that they give the highest number of nodes in the tables
and the lowest generalization accuracy. On the other hand, per-
mutably homogeneous functions have larger separation of in-
puts which makes them easier and faster to learn. So they nat-
urally produce smaller networks of nodes on average and
also give a very high generalization accuracy. Other classes of
functions such as linear, monotone, and other functions lie be-
tween these two extremes.

1) Permutably Homogeneous Functions:Functions in this
class are partitioned by at most separating parallel
hyperplanes such that no two distinct classes have equal
values. Therefore, the minimal number of new hidden units
for both STRIP and SEPAR is . We have experimented
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with the following permutably homogeneous functions:
, where . We

randomly generated the four-input four-valued logic function
and tested

our algorithms with it. The function has three possible values,
namely . The three classes are separated by two parallel
hyperplanes (classes 1 being in the middle) and the distance
between two adjacent hyperplanes is .

The results of STRIP and SEPAR are consistent: they gave a
value of about the minimal solution . Clearly, there is no
benefit of using STRIP for these functions; there is no reduc-
tion at all and thus the STRIP network is twice more complex
than its corresponding SEPAR network. In general, STRIP is not
better than SEPAR for functions where the inputs are separated
by nonintersectinghyperplanes with distinct values in distinct
regions.

2) Monotone Functions:We experimented with a (random)
function of which is monotonic under thenatural nonde-
creasing order on , that is .
For such functions, STRIP and SEPAR produced closed results.
This suggests that, as for permutably homogeneous functions,
SEPAR is better than STRIP for these monotone functions since
its achieves smaller network complexity even though STRIP has
smaller values for .

3) Linear Functions: These functions are partitioned by a
number of parallel hyperplanes where, many separated distinct
classes of inputs have equal values and any two adjacent classes
have distinct values. The minimal STRIP network for such func-
tions will beexactlytwice smaller than the corresponding min-
imal SEPAR network, for reasons explained in Section V-C.
Therefore, even though the STRIP network is twice smaller in
, it will have exactly the same complexity as its corresponding

SEPAR network for linear functions realizations. Thus STRIP
is no better than SEPAR and CARVE for such functions.

The random four-valued linear function generated was
. Both STRIP and

SEPAR algorithms, have difficulties realizing this function.
First, the minimum produced by SEPAR, 13, is very far from
the average result, . Second, STRIP should give a result
which is about two times smaller than the minimum obtained
by SEPAR. The reason for this is that, for linear functions, the
distance between two adjacent separating parallel hyperplanes
is very small ( ). Therefore the algorithms are very sensitive
to rotations, that is, small rotations from separating hyperplanes
could cause the algorithms to produce large networks.

The -bit parity functions are linear functions and it is well-
known that a single layer minimal solution exists withhidden

-perceptrons. We carried out experiments with STRIP
and SEPAR algorithms for using 2500 genera-
tions of GA to learn such functions. The results obtained were
consistently hidden units for STRIP and hidden
units for SEPAR, using both fitness measures respectively. For
SEPAR we cannot obtainhidden units like the other maximum
separable-based methods because the last training set (of points
of same class) is always assigned to a new hidden unit. Thus,
for instance, we will obtain exactly two hidden units for the bi-
naryANDfunction whereas the other methods would obtain one
hidden unit. For SEPAR, the results obtained for

TABLE III
COMPARISON OFNETWORK SIZE FORRANDOM FUNCTIONS OFP

were in reality for 2500 generations of GA, however,
we obtained the correct results, when we increased
the number of generations to 4000. This suggests that our al-
gorithms are able to find the minimal value if they are given
enough time.

-bit parity functions can be implemented by{XOR}-cir-
cuits of depth one and size , {XOR}-circuits of depth

and size , {AND, OR}-circuits of depth and size
or {AND, OR, NOT}-circuits of depth two

and size . For such functions, a STRIPnetwork has size
and a STRIP network has size . As

one can see, STRIP networks are not always better than their
corresponding direct circuit implementations. The difference
in complexity between a STRIP network and a direct circuit
depends on factors such as the basis set of gates and the fan-in
or fan-out of the gates in the circuit.

4) Random Functions:The experiments clearly show that
STRIP is fundamentally better than SEPAR and CARVE for
random functions realizations. The average and the minimum
obtained STRIP networks are at least twice smaller than the
corresponding results for SEPAR networks. As stated already,
STRIP is able to change (and select good) directions for separa-
tion and to create larger classes, while SEPAR cannot do any of
these two things. For random functions, the separation between
classes is very small. STRIP cansee insidea random function to
decide the best directions to choose and, by doing that, it max-
imizes the size of all classes (they will get bigger and bigger
until they can be removed). SEPAR only maximizes the size of
the classes that are at the boundaries of the inputs space.

Table III contains results reported for the best three construc-
tive algorithms (so far in literature) that have been applied to
learning random two-valued logic functions. The value in paren-
thesis at the top of each column is the number of trials over
which the network is averaged. In each trial of STRIP, we gen-
erated a different random function and used 2500 iterations of
GA. STRIP produces smaller networks for this classification
task than any other growth method. Significantly, STRIP gives
much smaller networks than CARVE asand increase. Also,
SEPAR performs better than Upstart asand increases.

5) Mirror-Symmetric Functions:We have carried out exper-
iments withmirror-symmetric functions. A mirror-symmetric
function has value one if the second half of an input vector is
a mirror reflection of the first half, that is the input vector is
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TABLE IV
PERFORMANCESCOMPARISONS BETWEENMIRROR-SYMMETRIC-TABLE AND

RANDOM FUNCTIONS OFP

symmetric about its center. This function is known to have a
minimal representation of two hidden units. For
we have always found the optimal number of hidden units in
STRIP and SEPAR, two, using 1000 generations of GA. For

we have always found the optimum when using
3000 generations of GA. Here, as for permutably homogeneous
functions, STRIP is no better than SEPAR.

6) Mirror-Symmetric-Table (mst) Functions:Table IV
shows the comparisons of performances between our example
mst function in Fig. 9 and ten random functions. For each
algorithm (STRIP , STRIP , SEPAR and SEPAR ), we
did ten runs on our mst function and averaged the results. Also
each algorithm was applied on ten distinct random functions
(different from the random functions used for the other three
algorithms) and the results were then averaged. STRIPis
a clear winner (except its performance in generalization for
random functions); it produced the minimal size for mst. The
table also shows that the single mst function is harder to realize
by SEPAR than random functions (see the last two entries of
the first two rows): the average result of SEPAR for mst is very
far from the absolute minimum, 48, and is significantly larger
than the averaged result of ten random functions. For reasons
explained in Section IV-B,Fitness2 helps to remove the classes
faster thanFitness1, and therefore, it yields better results in the
table for both algorithms (except on generalization of random
functions).

VII. CONCLUSION

In this paper we have discussed a particular implemen-
tation of partitioning algorithm to construct (near) minimal
multiple-valued neural networks for computing given but
arbitrary multiple-valued functions. We used genetic algorithm
to find a (near) minimal set of hidden units that partitions the
space . Our main contribution is indeed the design
of a growth algorithm for synthesizing multiple-valued logic
functions by neural networks.

STRIP is better than CARVE, NDL and SEPAR for many
classes of functions in which the separations among inputs is
small. Such functions include mirror-symmetric-table func-
tions, random functions and symmetric functions. STRIP and
SEPAR can be used for functions with real-valued inputs,

-valued inputs, two-valued outputs, or-valued outputs. We
have also used hill-climbing method and evolution strategy to
search for longest strips or maximum separable subsets, but the
results were significantly worse than those obtained by GA.
More research is needed in order to increase the speed of the

-based synthesis algorithm.
Currently, we are investigating the generalization properties

of STRIP and SEPAR to many real-world problems. We believe
that our methods generalize better than CARVE since CARVE
always overfits the weights. We avoided this overfitting by trans-
lating the obtained hyperplanes away from their original posi-
tions so to include some test points in the closed space delimited
by these hyperplanes. Also in higher dimension and for many
classes of functions, our STRIP networks are much less com-
plex (in terms of total number of parameters) than CARVE and
others maximum separable based networks, and therefore by
theOccam razor principleSTRIP would generalize better. We
can further improve the generalizability by transforming an ob-
tained STRIP network into aradial basis functions networkand
apply back-propagation to the resulting network. the authors of
[39] have done the same thing with CARVE using sigmoidal
units and proved it efficient. In our case, we will use radial basis
functions because Gaussian units are continuous version of our

-perceptrons.
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