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Abstract. Collaborative Web services QoS prediction has become an
important tool for the generation of accurate personalized QoS. While a
number of achievements have been attained on the study of improving
the accuracy of collaborative QoS prediction, little work has been done
for protecting user privacy in this process. In this paper, we propose
a privacy-preserving collaborative QoS prediction framework which can
protect the private data of users while retaining the ability of generating
accurate QoS prediction. We introduce differential privacy, a rigorous
and provable privacy preserving technique, into the preprocess of QoS
data prediction. We implement the proposed approach based on a general
approach named Laplace mechanism and conduct extensive experiments
to study its performance on a real world dataset. The experiments eval-
uate the privacy-accuracy trade-off on different settings and show that
under some constraint, our proposed approach can achieve a better per-
formance than baselines.

Keywords: collaborative QoS prediction; privacy-preserving; differen-
tial privacy; data distribution

1 Introduction

Quality of service (QoS) has been widely used for describing nonfunctional char-
acteristics of web services. QoS-based Web services selection, composition and
recommendation [1, 9, 10] have been discussed extensively in the recent litera-
ture. A common assumption of these proposed approaches is that accurate QoS
values of Web Services are always available. It is, however, still an open problem
to obtain accurate QoS values. On one hand, the QoS values advertised by ser-
vice providers or third-party communities are not accurate to service users, as
they are susceptible to the uncertain Internet environment and user context. On
the other hand, it is impractical for service users to directly evaluate the QoS
of all available services due to the constraints of time, cost and other resources.
As an effective solution to this problem, personalized collaborative web services
QoS prediction [24, 22] which draw from personalized recommendation [18, 17]

? Corresponding author



2 S. Liu et. al.

has received much attention recently. The basic idea is that similar users tend
to observe similar QoS for the same service, so it is possible to predict the QoS
value of the service observed by a user based on the QoS values of the service
observed by the similar users to this particular user. By this kind of computa-
tion, different users are typically given different QoS prediction values even for
the same service and the final prediction values in fact depends on their specific
context. Based on these provided QoS values, a variety of techniques have been
employed to improve the quality especially accuracy of prediction [21, 19].

Though many achievements have been attainted on the study of improving
the accuracy of collaborative QoS prediction, little work has been done for pro-
tecting user privacy in this process. In fact, the observed QoS values could be
sensitive information, so users may not be willing to share them with others.
For example, the observed response time reported by a user typically depend-
s on her location [19], which means that the user’s location could be deduced
from the QoS information she provided. Consequently, an interesting but chal-
lenging question is whether or not a recommender system can make accurately
personalized QoS prediction for users while protecting their privacy.

Homomorphic encryption [8] which allows computations to be carried out
on ciphertext is a straightforward way to achieve privacy. However, all these
operations require not only a large computation cost [7, 11], but also sustained
communication between parties [3]. Not even to mention the difficulty to apply
some complicated computations into the encrypted domain. Hence, it is infeasible
to deal with our problem by the usage of Homomorphic encryption.

Another technique, randomized perturbation which is proposed by Polat et
al. [15], claimed that accurate recommendation could still be obtained while
randomness from a specific distribution are added to the original data to prevent
information leakage. The same idea is introduced in a recent work [28] which is
also achieved by adding random in a certain range to the original data. However,
the range α of randomness was chosen by experience and does not have provable
privacy guarantees. What’s worse, it is recognized that with the application
of the clustering on the perturbed data, adversaries can accurately infer users’
private data with accuracy up to 70% [23].

Though the privacy protection of randomized perturbation is insecure, it
inspires us to design a lightweight and provable perturbation. Specifically, we
develop our privacy preserving QoS prediction for users with the integration of
a strong and provable privacy model, differential privacy, which is the state-of-
art technique for privacy preserving data publishing. Differential privacy [6] has
drawn much research attention literally, as it aims at providing effective means to
minimize the noise added to the original data with respect to a specific privacy.

Despite the prosperity of differential privacy, applications of QoS prediction
is rather limited. To the best of our knowledge, [13, 12] are two differential
privacy based privacy preserving recommendation systems which are the most
related works to our problem. Machanavajjhala et al. [12] studied the privacy
preserving of personalized social recommendation which is solely based on user’s
social graph. With differential privacy, sensitive links in the social graph can be
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preserved effectively which means that attackers cannot deduce the existence of
a single link in the graph by passively observing a recommendation result. But,
it is also found that good recommendations were achievable only under weak
privacy parameters, or only for a small fraction of users. McSheery and Mironov
[13] applied differential privacy to collaborative filtering, a general solution for
recommendation systems. They split the recommendation algorithms into two
parts; they are the learning phase which can be performed with differential
privacy guarantees, and individual recommendation phase in which the learned
results are used for individual prediction. Different from the work done by [13,
12], we focus on the privacy guarantees of data publishing instead of knowledge
learning and we explore additional approaches beyond those being investigated
in [13], like latent factor models.

To sum up, the main contribution of this work is to formulate a differential
privacy based privacy preserving collaborative Web Services QoS prediction. The
task is non-trivial and our approach has the following advantage:

– For the approach we consider, privacy-preserving algorithms can be param-
eterized to essentially match the prediction to their non-private analogues.

– By integrating the privacy guarantees into an application, we can provide
user with unfettered access to the raw data.

– Experiments on the real world dataset show that prediction accuracy on our
disguised data is very close to that on users’ private data.

This paper is organized as follows: Section 2 introduces some techniques
used to building our privacy-preserving solution. Section 3 presents the system
architecture of our privacy-preserving QoS prediction framework and the detail
of our approach. Experimental results of proposed framework are presented in
Section 4. Finally, Section 5 concludes the paper.

2 Differential Privacy

It’s necessary to distinguish between differential privacy and traditional cryp-
tosystems. Differential privacy gives a rigorous and quantitative definition on
privacy leakage under a very strict attack model, and has it proved. Based on
the idea of differential privacy, user can get privacy protection at utmost with
ensuring the availability of data. The biggest advantage of this method is: al-
though based on data distortion, the noise needed for perturbation is indepen-
dent of data size. We can achieve high level of privacy protection by adding a
very small amount of noise [20]. Despite many privacy preserving methods, like
k-anonymity and l-diversity, have been proposed, differential privacy is still rec-
ognized as the most rigorous and robust privacy preserving model because of its
solid mathematical foundation.

2.1 Security Definition Under Differential Privacy

There are two hypothesizes of differential privacy. On one hand, the output of any
computation such as SUM, should not be affected by any operation like inserting
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or deleting a record. On the other hand, it gives a rigorous and quantitative
definition on the privacy leakage under a very strict attack model: an attacker
cannot distinguish a record with a probability more than ε even she has the
knowledge of the entire dataset except the target one. The formal definition is
as follows.

Definition 1 (ε-Differential Privacy [5]). A randomized function K gives
ε-differential privacy if for all data sets D1 and D2 differing on at most one
element, and all S ⊆ Range(K),

Pr[K(D1 ∈ S)]

Pr[K(D2 ∈ S)]
≤ exp(ε) (1)

D is a database of rows, D1 is a subset of D2 and the larger data set D2

contains exactly one additional row. The probability space Pr[.] in each case is
over the coin flips of K. The privacy parameter ε > 0 is public, and a smaller ε
yields a stronger privacy guarantee.

Since differential privacy is defined under probabilistic, any method to achieve
this is necessarily random. Some of these, like the Laplace mechanism [6], rely
on adding controlled noise. Others, like the exponential mechanism [14] and
posterior sampling [4], sample from a problem-dependent distribution instead.
We will elaborate the construction in the following part.

2.2 Laplace Mechanism via Global Sensitivity

Apart from the definition of differential privacy, Dwork [6] also claimed that
differential privacy can be achieved by adding random noise with distribution
like Laplace. A random variable has a Laplace(µ, b) distribution if its probability
density function is:

f(x|µ, b) =
1

2b
exp(−|x− µ|

b
) (2)

µ and b are the location parameter and scale parameter, respectively. For the
sake of simplicity, we set µ = 0, so the distribution can be regarded as the
symmetric exponential distribution with the standard deviation of

√
2b.

To add noise with Laplace distribution, b is set to ∆f/ε and the generation
of noise is referred as:

laplace(∆f/ε) (3)

here, ∆f is global sensitivity, the definition is given next. ε is privacy parameter
which used to leverage the privacy. As we can see from the equation, the added
noise is proportional to ∆f , and is inversely proportional to ε.

Definition 2 (Global Sensitivity [5]). For f : D → Rd, the Lk-sensitivity of
f is

∆f = maxD1,D2
||f(D1)− f(D2)||k (4)

for all D1, D2 differing in at most one element and || · ||k denotes the Lk-norm.
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3 Privacy Preserving Collaborative Web Service
Prediction

3.1 System Model

As we have discussed in introduction, [23] has testified that randomized pertur-
bation is not safe as it can be inferred by the technique of clustering, but the
system model proposed by [28] is mature and suitable for many scenarios, so we
adopt and adapt this model here. Specifically, each user disguises her observed
QoS values of the services she has invoked and collected locally, and then sends
to the server, the owner of all disguised QoS values. It’s safe to upload QoS
values since the server cannot derive any sensitive information about individual
with disguised data. However, the data disguising scheme should still be able to
allow the server to conduct collaborative filtering (either neighborhood-based or
model-based) from the disguised data. Based on the predicted QoS values, the
server can run a variety of applications such as QoS-based selection, composition
and recommendation.

USER1 USER2 USERn

- - - - - - -

Data Disguising

SERVER

QoS Database

QoS Prediction

(e.g. UIPCC, MF)

Web Service
(e.g. selection, composition, 

top-k recommendation)

Disguised Data

Original Data

Fig. 1. Privacy Preserving Collaborative QoS Prediction

Data disguising is the key component of privacy preserving collaborative
web service QoS prediction. The basic idea of data disguising is to perturb the
raw data with randomness in such properties: a) randomness should be able
to guarantee no sensitive information (such as each individual user’s QoS value
) can be deduced from perturbed data; b) though information of individual is
limited, the aggregate information of these users can still be evaluated with
decent accuracy when the number of users is significantly large. Such property
is useful for computations that are based on aggregate information. For those
computation, we can still generate meaningful outcome without knowing the
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exact values of individual data items because the needed aggregate information
can be estimated from the perturbed data.

Another focus of our method is the trade-off between accuracy and privacy.
The more the number of randomness, the bigger the gap between disguised
data and original data, which presents a higher level of privacy. Oppositely, the
less the randomness number, the more obvious the data characteristics. For the
computation based on context, this means a more accurate outcome. It has been
an open problem to deal with the trade-off between the accuracy and privacy.
In this paper, the privacy is parameterized by ε and given by each user. By
taking advantages of differential privacy, the randomness number added in the
observed QoS values is the least which preserves a decent accuracy with respect
to a specific privacy.

3.2 Privacy Preserving Collaborative Web Service QoS Prediction

Collaborative filtering (CF) is a mature technique adopted by most modern rec-
ommender systems. In this section, we adopt two representative CF approaches:
Neighborhood-based Collaborative Filtering and Model-based Collaborative Fil-
tering. We will show how to integrate differential privacy into two representative
CF approaches for Web services QoS prediction. More details about these two
methods can be found in [24] and [16].

Differential Privacy Based Data Disguising We begin with the data dis-
guising. We use rui to denote a QoS value collected by user u for web service
i, ru for the entire vector of QoS values evaluated by user u, and similarly, Iui
and Iu denote the binary elements and vectors indicating the presence of QoS
values respectively. cu = |Iu| is the number of QoS values evaluated by user u. In
our exposition, differential privacy is the key technique used for data disguising.
Laplace mechanism [6] obtains ε-differential privacy by adding noise of Laplace
distribution.

Definition 3 (Laplace Mechanism [5]). Given a function g: D → Rd, the
following computation maintains ε-differential privacy:

X = g(x) + Laplace(∆f/ε) (5)

We distinguish between disguised data and original data with upper case
and lower case, respectively. ε is privacy parameter used to leverage the privacy
and smaller ε provides a stronger privacy guarantee. ∆f is global sensitivity, the
definition is given forehead. here, we compute ∆f with L1-norm:

∆f = maxD1,D2 ||g(D1)− g(D2)||1 (6)

For simpleness, ε-differential privacy of each user u is achieved by the follow-
ing equation:

Rui = rui + Laplace(∆f/ε) (7)
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where, ∆f is defined as the maximum difference between QoS values, which is:

∆f = max(rui − ruj) (8)

After disguising, all user sends disguised QoS values Ru to server, sensitive
information about original data rui is preserved by randomness. However, the
aggregate information of users can still be estimated. Thus, QoS prediction can
be performed with direct access to Rui independently.

Collaborative Web Service QoS Prediction Next, we will show how to
extend the two representative collaborative filtering approaches to perform our
differential privacy based QoS prediction based on disguised data.

1) Neighbourhood-based Collaborative Filtering
Here,we divide all process into three parts: z-score normalization, data dis-

guising and QoS prediction.
Step 1: to eliminate the difference between user data and facilitate better

accuracy, the user needs to perform z-score normalization on the observed QoS
data. Z-score normalization is performed on the QoS value with the following
equation:

qui = (rui − ru)/ωu (9)

where ru is the mean and ωu is the standard deviation of QoS vector ru. After
the normalization, QoS data have a zero mean and unit variance.

Step 2: user perform disguising on the normalized QoS value by:

Qui = qui + Laplace(∆f/ε) (10)

where, ε, the privacy parameter, is set by user u. ∆f is defined according to the
distribution of QoS value, which is: ∆f = max(rui − ruj). After disguising, the
user sends their own disguised values Qu to server, sensitive information about
original data qui is preserved by randomness. Nevertheless, the aggregate infor-
mation of users can still be estimated. Thus, QoS prediction can be performed
with direct access to Qui.

During the process of QoS prediction, two types of similarity are calculated
in order to improve prediction accuracy: user similarity and service similarity.
In particular, the similarity between two users u and v are calculated based on
the services they have commonly invoked using the following equations:

Sim(u, v) =

∑
si∈S(ru,i − r̄u)(rv,i − r̄v)√∑

si∈S(ru,i − r̄u)2
∑

si∈S(rv,i − r̄v)2
, (11)

where S = Su

⋂
Sv is the set of services that user u and user v have commonly

invoked, ru,i is the QoS value of service i observed by user u, r̄u is the average
QoS value of all services observed by user u.

However, due to the disguising of QoS values, at server side we only have the
disguised QoS value Qui, rather than true value qui. Therefore, we consider to
employ Qui to approximately compute the similarity value as follows.
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According to the z-normalization, ωu =
√∑

si∈S(ru,i − r̄u)2/cu, and by sub-

stituting this formula into computation, the similarity can be calculated as

Sim(u, v) =

∑
si∈S(ru,i − r̄u)(rv,i − r̄v)

ωuωv
√
cucv

, (12)

also, we observe that during the z-normalization, qui = (rui − ru)/ωu. Then, it
is easy to get that

Sim(u, v) =

∑
si∈S qu,iqv,i√

cucv
, (13)

Next, we will prove that though with data disguising, the scalar product
property between two vectors remains the same. To make it clear, we denote the
two vectors as a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) respectively. After
disguising, the two vectors are A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn).
We have

AB =
∑n

i=1
AiBi

=
∑n

i=1
(ai + Laplace(∆fa/εa))(bi + Laplace(∆fb/εb))

=
∑n

i=1
(aibi + Laplace(∆fa/εa)Laplace(∆fb/εb))

+
∑n

i=1
(aiLaplace(∆fb/εb) + biLaplace(∆fa/εa))

because ai and Laplace(∆fb/εb) are independent vectors and Laplace(∆fb/εb)
is symmetric exponential distribution with µ = 0, we have

∑
aiLaplace(∆fb/εb) ≈

0. Likewise, we have∑
biLaplace(∆fa/εa) ≈ 0and

∑
Laplace(∆fa/εa)Laplace(∆fb/εb) ≈ 0. (14)

Hence, we derive the following equation:

AB ≈
∑

aibi = ab. (15)

Furthermore, we can get

Sim(u, v) ≈
∑

si∈S Qu,iQv,i√
cucv

. (16)

Note that that Sim(u, v) is ranging from [-1, 1], and a larger value indicates
that two users (or services) are more similar [24].

Based on the above similarity values, the QoS value of service i observed
by user u can be predicted directly. We make use of the similar users to user u
through the following equation:

q,u,i = Q̄u +
∑

v∈User

Sim(u, v)(qv,i − q̄v)∑
v∈User Sim(u, v)

, (17)
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Like the user based QoS prediction, the item based QoS prediction can be
computed the same, or as proved in [24], these two ways can be combined to-
gether to improve the accuracy of QoS prediction. Due to the limit of space, we
omit the description of these approaches here.

2) Model-based Collaborative Filtering

Matrix factorization (MF) [25] is a typical solution of model based collabo-
rative filtering which improves the accuracy of prediction effectively by studying
latent factor models.

Suppose that the observed QoS values of n users and m services are in a
sparse matrix denoted by Qn∗m where each element qij reflects a QoS value
of user i for service j. With the input of Qn∗m, MF aims to factorize the user-
services matrix Qn∗m into two latent matrices of a lower dimension d: user-factor
matrix Un∗d and service-factor matrix Vm∗d. Then, vacant elements in Qn∗m can
be approximated as the product of U and V , i.e., unknown QoS value q′ij is

evaluated by q′ij = Ui · V T
j .

MF is often transformed into an optimization problem, and the local optimal
solution is obtained by iteration. The objective function (or loss function) of MF
is defined as:

minU,V

∑
qij∈Q

[(qij − UiV
T
j )2 + λ(||Ui||2 + ||Vj ||2)] (18)

The first part is the squared difference between the existing QoS matrix and
the predicted one, but only for elements that have evaluated by users. The latter
part is the regularization term, added to deal with overfitting induced by the
sparsity of input. By dealing with this optimization, we get user-factor matrix
Un∗d and service-factor matrix Vm∗d eventually.

Alternative least squares (ALS) and stochastic gradient descent (SGD) are
two commonly used methods for solving this optimization problem. We take
SGD as our solution since ALS is more difficult which requires the computation
of inverse matrix. Iterative equations of SGD are as follows:

Ui ← Ui + γ((qij − UiV
T
j )Vj − λ′Ui) (19)

Vj ← Vj + γ((qij − UiV
T
j )Ui − λ′Vj) (20)

γ is the learning rate, λ′ is the regularization coefficient. The selection of both
parameters affects the result significantly. When the value of γ is big, it results in
divergence and the results cannot get into convergence. To get a convergence, we
set γ to a small value, 0.001 by experience, though it requires a longer training
time. And λ′ is set to 0.01 which is also selected by experience.

In the first iteration, U and V are set randomly. But a better selection can
help to accelerate the computation effectively. Hence, we initialise U and V near
the average of all QoS value that have been observed. The iteration will terminate
when the objective function value is less than a certain threshold.
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4 Experiments

In this section, we conduct three series of experiments on a real data set to
evaluate our privacy-preserving QoS prediction framework.

4.1 Experimental Setup

We first note that a real Web services QoS dataset is introduced in [27, 26], which
includes QoS values of 5,825 real-world Web services observed by 339 users. This
dataset is quite useful when studying the accuracy of QoS prediction. According
to the dataset, we focus on two representative QoS attributes: response time (RT)
and throughout (TP). Table 1 describes the statistics of the dataset, AVE and
STD is the average and standard deviation of data respectively, density means
the ratio of observed data to all data. More details of the dataset can be found
in [27, 26]. During the presentation of our experiment, we set the performance
of RT in the left and TP in the right.

We use cross validation to train and evaluate the QoS prediction. The dataset
here is collected motivated and complete, but in practice, for limited time and
resource, a user usually invokes only a handful of services, and the density of
data is under 10% generally. To simulate such sparsity in our experiment, we
randomly remove entries from the full dataset and only keep a small density of
historical QoS values as our training set. And the removed data is treated as
testing set for accuracy evaluation.

Then, we perform algorithms of QoS prediction on training set and evaluate
the prediction on testing set. Four algorithms are implemented and evaluated
here. UIPCC which is proposed in [24] is a representative implementation of
neighbourhood-based collaborative filtering and MF introduced in [25] is an
implementation of model-based collaborative filtering. LUIPCC and LMF are
two methods intergrading with differential privacy which is achieved by Laplace
mechanism.

To quantize the accuracy of QoS prediction, we employ Root Mean Square
Error (RMSE) as the metric which has been widely used in related work (e.g.,
[2, 13] ):

RMSE =

√∑
R(qui − q′ui)2
|R|

(21)

R consists of all value needed to be predicted in training set and |R| is the
number of set R. q′ui is the predicted value of set R and qui is the corresponding
value in testing set. Generally, a smaller RMSE indicates a better prediction.

Table 1. Statistic of Datasets

QoS #USER #SERVICE AVE STD DENSITY

RT(sec) 339 5825 0.90 1.973 94.8%
TP(kpbs) 339 5825 47.56 110.797 92.7%
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Noted that, the default setting of parameters follows Table 2. We choose
parameters of UIPCC and MF by experiences of [24] and [25]. Generally, ε is set
to 0.5 by default which can preserve sufficient privacy.

Table 2. Parameter Setting

UIPCC k=20 λ =0.1 -

MF d=20 γ =0.001 λ′ =0.01

Laplace ε = 0.5 - -

4.2 Privacy vs Accuracy

Fig 2 is the comparison corresponding to RT and TP between our differential
privacy based QoS prediction and original approaches under varying privacy. By
introducing differential privacy into QoS prediction, users can achieve privacy.
But for users who adopt our approaches, they do need to consider the trade-
off between privacy and accuracy. On one hand, a user can attain high level
privacy by adding more Laplace noises which definitely decreases the utility of
data. On the other extremal hand, a user can get a 100% accuracy without
adding any Laplace noises. To study the performance of changing accuracy, we
perform algorithms of QoS prediction on testing set and evaluate the prediction
on testing set. The privacy parameter, ε, changes from 0.5 to 4 stepped by 0.5.
We can observe that both LUIPCC and LMF decrease in RMSE when ε gets
larger. A larger ε means a looser privacy constraints and the utility of data is
less limited, thus user can get a better accuracy. It is also noticeable that when
ε gets larger, e.g., larger than 2.0 in Fig 2, our privacy-preserving approaches,
both LUIPCC and LMF, can acquire almost the same or even more accuracy
than UIPCC. Especially, when ε is as large as 4, the prediction accuracy of
LMF is much better than the baseline UIPCC. Additionally, we find that MF
outperforms UIPCC. This suggests the superior effectiveness of model-based
approaches in capturing the latent structure of the QoS data, which conforms
to the results reported in [25].

Another fact which requires our attention is that though a recent work [28]
claims a better performance than both original original algorithms, UIPCC and
MF, the randomness added to prevent the information leakage is not large e-
nough, adversaries can accurately infer users’ privacy data with the application
of the clustering [23].

To sum up, our differential privacy based algorithms can provide a privacy
preserving QoS prediction with a parameterized privacy. And the results show
that recommendation on our disguised user data is very close to that on user’s
private data under a loose constraint.
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Fig. 2. Privacy vs Accuracy

4.3 Influence of data size

To evaluate the influence of data size, we design the experiments by changing
the number of services and users respectively. In Fig 3, the number of users is set
to 339 and the number of service is varying from 1000 to 5000 with a step 1000,
where the service is selected randomly from the original dataset. And the other
parameters of the experiment are set as table 2. We do the same experiment
setting in Fig 4 which contains 5825 services.

It is straightforward that both the number of services and the number of
users have a positive influence on the accuracy of algorithms which means that
the more the data is given, the better the prediction can be. In other words,
with more data, we can provide a better accuracy.

Another finding is that though the accuracy differs significantly between
different data size, the trend of original algorithms and our differential privacy
based algorithms are the same, such as the trend of UIPCC and LUIPCC or the
trend of MF and LMF. It infers an dramatically advantage of differential privacy
that the noise needed for data disguising is independent of data size, so users
can achieve a high level of privacy protection by adding a very small amount of
noise.

4.4 Influence of density

In addition to data size, density denoted as θ is also a subject to the performance
of algorithms. Fig 5 presents the results of the accuracy comparison under d-
ifferent density. Though the influence of density on original algorithms is not
obvious, it does have an significant influence of our differential based algorithm-
s. The dataset with a higher density performs better. This result implies that
the density is also a crucial factor for determining the performance of our differ-
ential privacy based approaches. More importantly, we can observe that when
the number of services gets larger, the gap between traditional approaches and
our differential privacy based approaches gets smaller. More precisely, in Fig 5,
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Fig. 4. Influence of Users

when the density is set to 5, the gap between LUIPCC and UIPCC is 5. How-
ever, when the density increased to 30, the gap between LUIPCC and UIPCC
decreases to 1. So, users are suggested to use the dataset with a higher density
to preserves a closer prediction to original results.

5 Conclusion

To the best of our knowledge, this is the first piece of work that introduces dif-
ferential privacy into a collaborative web services QoS prediction framework. D-
ifferential privacy gives a rigorous and quantitative definition on privacy leakage
under very strict constraints. Based on the idea of differential privacy, users can
get privacy protection at utmost with ensuring the availability of data. Empiri-
cal results show that our framework provides a secure and accurate collaborative
Web services QoS prediction.
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