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ABSTRACT: 
 
In the absence of external reference position information (e.g. surveyed targets or Global Navigation Satellite Systems) Simultaneous 
Localization and Mapping (SLAM) has proven to be an effective method for indoor navigation. The positioning drift can be reduced 
with regular loop-closures and global relaxation as the backend, thus achieving a good balance between exploration and exploitation. 
Although vision-based systems like laser scanners are typically deployed for SLAM, these sensors are heavy, energy inefficient, and 
expensive, making them unattractive for wearables or smartphone applications. However, the concept of SLAM can be extended to 
non-optical systems such as magnetometers. Instead of matching features such as walls and furniture using some variation of the 
Iterative Closest Point algorithm, the local magnetic field can be matched to provide loop-closure and global trajectory updates in a 
Gaussian Process (GP) SLAM framework. With a MEMS-based inertial measurement unit providing a continuous trajectory, and the 
matching of locally distinct magnetic field maps, experimental results in this paper show that a drift-free navigation solution in an 
indoor environment with millimetre-level accuracy can be achieved. The GP-SLAM approach presented can be formulated as a 
maximum a posteriori estimation problem and it can naturally perform loop-detection, feature-to-feature distance minimization, 
global trajectory optimization, and magnetic field map estimation simultaneously. Spatially continuous features (i.e. smooth 
magnetic field signatures) are used instead of discrete feature correspondences (e.g. point-to-point) as in conventional vision-based 
SLAM. These position updates from the ambient magnetic field also provide enough information for calibrating the accelerometer 
bias and gyroscope bias in-use. The only restriction for this method is the need for magnetic disturbances (which is typically not an 
issue for indoor environments); however, no assumptions are required for the general motion of the sensor (e.g. static periods). 
 

1. INTRODUCTION 

With the VR/AR market predicted to be worth $108 billion by 
2021 (Digi-Capital, 2017) one important technical challenge is 
indoor position and orientation tracking. AR in a shopping mall, 
classroom, or a volume too large for cost effective deployment 
of cameras can benefit from passive position tracking. 
Furthermore, head-tracking for AR/VR in harsh environments 
or confined spaces (e.g. aircraft cockpit) where it is difficult to 
maintain a camera or the field of view is too restricted, requires 
alternate sensors. MEMS inertial measurement units (IMUs) are 
getting smaller, cheaper, and more ubiquitous. For example, 
they are found in most smartphones, drones, and wearables 
these days. Although they can provide position information, 
their use is usually limited to orientation tracking. The reason is 
that small inertial errors can result in large positional errors due 
to the integration process. Another way of viewing this is that 
position updates are very informative for improving the inertial 
solution. Most commonly, such position information is 
provided via external sensors such as GNSS, UWB, cameras, 
sonar, and lasers. RF-based systems that provide absolute 
position updates typically require additional infrastructure that 
may not be available indoors. Optical systems that can provide 
relative position updates are more flexible but require direct 
line-of-sight, which means the sensor cannot be placed inside 
pockets or bags. Relative position updates from magnetometers 
provide a viable solution to all the above problems. 
 
Magnetic signals have been used for indoor positioning by 
fingerprinting techniques (Zhang et al., 2016) (requires a pre-
surveying phase) and SLAM techniques (does not require a pre-
surveying phase) (Ferris et al., 2007). In SLAM, the pose is 

often estimated using a particle filter and the magnetic map is 
modelled separately (Vallivaara et al., 2011). The method 
presented in this paper combines the pose estimation with the 
magnetic map modelling in the Gaussian Process Regression 
(GPR) framework. Compared to popular LiDAR-based SLAM 
workflows it has a higher computation load, but has the 
advantage that many of the key steps are integrated into a single 
least-squares adjustment to allow tuning parameters to adapt to 
the dataset automatically. For example, most of the manually 
tuned parameters, such as neighbourhood size for surface 
modelling, are trained by the data.  
 

2. MATHEMATICAL MODEL 

2.1 Inertial Data 

Most modern day IMUs perform strap-down integration at a 
high frequency (e.g. kilohertz) and then report odometry 
information as change in rotation (dq) and change in velocity 
(dv) at a lower, user-desired rate. Given the initial conditions, 
the orientation (q), velocity (v), and position (p) of an IMU can 
be computed efficiently using Equation 1. To compensate for 
the biases in the accelerometers (ba) and gyroscopes (bω), a 
random walk model is adopted (Equation 2). Note: T is the 
strap-down integration period, g is the gravity vector, R is the 
rotation matrix, and the superscripts L and S represent the local 
frame and sensor frame, respectively. 
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2.2 Magnetic Data 

A map of the ambient magnetic field strength can be easily 
constructed using spatial interpolation techniques (e.g. linear or 
bi-cubic interpolation) when the trajectory of the sensor is 
known (e.g. measured by a camera-based position tracking 
system (Solin et al., 2015)). However, such absolute position 
information is typically expensive or difficult to obtain. It is 
more common to have relative position information in indoor 
navigation. 
 
Assuming a calibrated tri-axial magnetometer that is time 
synchronized with the IMU is available, the relationship 
between the observed magnetic field vector in sensor frame 
(sym) and the magnetic field in the mapping frame (Lm) can be 
expressed using Equation 3, where x represents the location at 
which the magnetic field was sampled and the measurement 
noise εm is assumed to follow a Gaussian distribution. It is 
worth mentioning that any small inertial errors may accumulate 
over time, resulting in significant drifts in the navigation 
solution. 
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Typically in machine learning textbooks the GPR solution is 
derived following the Bayesian inference principles (Rasmussen 
and Williams, 2006). Beginning with Bayes’ rule (Equation 4), 
the marginal likelihood is integrated over the unknown 
parameters. The best estimate of the unknowns is then 
determined by maximizing Equation 5.  
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Although the computational complexity of this is O(n3) and the 
memory requirement is O(n2); this is an efficient GPR 
formulation when the objective is to predict the magnetic field 
strength at a new location given all the training magnetic 
measurements at known locations. In the case of a tightly-
coupled IMU and magnetometer SLAM solution, it is more 
beneficial to follow the frequentist’s interpretation, where the 
probability of the prior multiplied by the likelihood is 
maximized (Equation 6); this is the maximum a posteriori 
estimate of the trajectory and the magnetic field map. Note: r is 
the residuals, Cl is the covariance matrix of the measurements, 
and the unknowns are                                            
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The ambient magnetic fields are assumed to be realizations of a 
Gaussian random process prior with a given covariance matrix 
(i.e. kernel) K, where K is typically chosen to be the squared 
exponential kernel (Equation 7). This enforces simple 
smoothness in the local magnetic field.  
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Even though this is a valid assumption, recent research has 
shown that for magnetic fields the three directional components 
are actually correlated. Based on Maxwell’s equation the 
magnetic field can be split into the B field and the H field; the B 
field needs to be divergence-free (no sinks) and the H field 
needs to be curl-free (no swirls) (Wahlström et al., 2013). The 
curl-free and divergence-free kernels are given in Equation 8. 
Instead of treating the x, y, and z magnetic fields as three 
independent smooth surfaces, their physical correlation is 
included to provide a more accurate model of the local magnetic 
map, which translates into a more accurate trajectory estimate. 
 

 

 

(8) 

 
 

3. RESULTS AND ANALYSIS 

3.1 Simulated Datasets 

In GP-SLAM the hyper-parameters characterize the ambient 
magnetic field and are estimated using the data rather than 
being tuned manually. It can be valuable to understand the 
impacts of different magnetic fields on the SLAM solution 
through simulation to better understand the requirements for the 
proposed methodology. In all simulations below, the sensor is 
assumed to be exhibiting translational motion only, in a plane 
where the magnetic field is measured every 25cm, the odometry 
noise is set to be 0.5mm (0.2% of the distance travelled) with a 
bias of 5.0mm in both X and Y directions, σf is 0.1, and l is 
10cm, unless otherwise stated. 
 
3.1.1 Effects of varying σf: This parameter describes the 
amplitude of the magnetic signal. For instance, σf is expected to 
be small when the magnetic field is homogeneous (e.g. 
outdoors) and large when near ferromagnetic materials (e.g. 
computers and motors). σf can also be interpreted as the noise of 
the Gaussian Process constraint: the higher the value, the lower 
the weight of the spatial correlation in the least-squares 
adjustment, and vice versa.  
 
Four different cases of σf are shown below where GP-SLAM is 
performed with the hyper-parameters being fixed to their true 
value. From Figure 1 and Table 1 it can be observed that the 
variation of the ambient field must be sufficiently large relative 
to the sensor noise, but beyond a certain threshold, having more 
magnetic disturbances does not improve the accuracy of the 
SLAM solution. 
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Figure 1: Estimated trajectory using GP-SLAM with different 
true σf. (Top Left) σf = 0.001, (Top Right) σf = 0.100, (Bottom 
Left) σf = 1.000, and (Bottom Right) σf = 10.00. The cyan dash 
line shows the odometry only solution, the blue solid line 
indicates the GP-SLAM solution, and the red triangles are the 
ground truth. 
 
 RMSE [m] Max Error [m] 

Before SLAM 0.066 0.112 
After SLAM, σf = 0.001 0.189 0.318 
After SLAM, σf = 0.100 0.003 0.005 
After SLAM, σf = 1.000 0.004 0.006 
After SLAM, σf = 10.00 0.003 0.005 

Table 1: Error in estimated trajectory for various σf 
 
3.1.2 Effects of a wrong σf: The quality of the estimated 
hyper-parameters has a direct impact on the overall GP-SLAM 
solution. In this simulation, the true σf is 0.1, but the σf in the 
GP-SLAM is fixed to four different values as shown below. It 
appears from the results that it is better to overestimate σf  rather 
than underestimating; this is likely because it is better to be 
conservative and place less weight on the magnetic field 
position updates rather than “over-trusting” the magnetic field. 
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Figure 2: Estimated trajectory using GP-SLAM with the wrong 
σf. (Top Left) σf = 0.001, (Top Right) σf = 0.010, (Bottom Left) σf 
= 1.000, and (Bottom Right) σf = 10.00. The cyan dash line 
shows the odometry only solution, the blue solid line indicates 
the GP-SLAM solution, and the red triangles are the ground 
truth. 
  
 RMSE [m] Max Error [m] 

Before SLAM 0.066 0.112 
After SLAM, σf = 0.001 0.206 0.346 
After SLAM, σf = 0.010 0.103 0.174 
After SLAM, σf = 1.000 0.004 0.006 
After SLAM, σf = 10.00 0.004 0.006 
Table 2: Error in estimated trajectory when using the wrong σf 

 
 

3.1.3 Effects of varying l: This length parameter determines 
the radius at which the magnetic field samples should be 
spatially correlated. A large l would indicate that even far points 
would have an impact on the query point. A small l usually 
occurs when the local magnetic field is varying rapidly; 
therefore, only nearby points are useful at predicting the 
magnetic field signal at the target location. 
 
Two different cases are simulated where the l parameter is fixed 
to the true values of 0.1m and 0.4m (Figure 3 and Table 3). 
Smaller l means a smaller convergence region for GP-SLAM 
but it can yield more accurate results than a larger l. 
Furthermore, a better initial trajectory is needed to ensure 
convergence to the global minimum. A larger l can represent a 
homogeneous magnetic field; therefore the accuracy of the GP-
SLAM solution is compromised due to the lack of uniqueness 
in the magnetic signature. 
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Figure 3: Estimated trajectory using GP-SLAM with different 
true l. (Left) l = 0.1m, and (Right) l = 0.4m. The cyan dash line 
shows the odometry only solution, the blue solid line indicates 
the GP-SLAM solution, and the red triangles are the ground 
truth. 
 
 RMSE [m] Max Error [m] 

Before SLAM 0.066 0.112 
After SLAM, l = 0.1m 0.003 0.005 
After SLAM, l = 0.4m 0.012 0.021 

Table 3: Error in estimated trajectory for various l 
 
3.1.4 Effects of a wrong l: Estimating the wrong length 
parameter is comparable to setting the wrong neighbourhood 
search size. In this case the magnetic field was simulated using l 
= 0.1m. In each trial, l is fixed to a different (wrong) value and 
its effects on the global SLAM solution are reported in Figure 4 
and Table 4. 
 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

 
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

 
Figure 4: Estimated trajectory using GP-SLAM with the wrong l. 
(Top Left) l = 0.005m, (Top Right) l = 0.050m, (Bottom Left) l = 
0.150m, and (Bottom Right) l = 0.400m. The cyan dash line 
shows the odometry only solution, the blue solid line indicates 



 

the GP-SLAM solution, and the red triangles are the ground 
truth. 
 

 RMSE [m] Max Error [m] 
Before SLAM 0.066 0.112 

After SLAM, l = 0.005m 0.003 0.004 
After SLAM, l = 0.050m 0.003 0.005 
After SLAM, l = 0.150m 0.004 0.006 
After SLAM, l = 0.400m 0.127 0.214 
Table 4: Error in estimated trajectory when using the wrong l 

 
Small errors in l do not have a significant impact on the SLAM 
solution. While GP-SLAM does not appear to be hypersensitive 
to the neighbourhood radius, it is better to underestimate l than 
to overestimate; this is likely because it is better to ignore 
valuable information from nearby points rather than to allow 
spatially uncorrelated measurements from a larger 
neighbourhood to influence the query point. 
 
3.1.5 Effects of varying odometry noise: Like most target-
less optical SLAM solutions, GP-SLAM is sensitive to the 
initial pose. When the initial trajectory is significantly different 
from the true trajectory, GP-SLAM tends to converge to a local 
minimum because it uses a nonlinear least-squares formulation. 
Unlike frame-based optical SLAM methods though, each 
magnetometer reading represents the measurement of a single 
point, which is insufficient to estimate the 3D position and 3D 
orientation. Hence, it relies heavily on the odometry 
information to link temporally close measurements. As shown 
in Table 5, a smaller odometry noise means a larger 
convergence region (i.e. larger biases in the odometer can be 
handled). Although a small odometry noise is always beneficial, 
beyond a certain threshold, more precise odometry does not 
seem to improve the solution significantly. 
 

 RMSE 
[m] 

Max Error 
[m] 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

 
Odometry noise = 0.5mm 

Before 
SLAM 0.191 0.328 

After 
SLAM 0.012 0.021 
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Odometry noise = 2.5mm 

Before 
SLAM 0.196 0.334 

After 
SLAM 0.012 0.024 
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Odometry noise = 5.0mm 

Before 
SLAM 0.201 0.338 

After 
SLAM 0.154 0.222 

Table 5: Errors in estimated trajectory when varying the 
odometry noise. The bias in X and Y are set to 15mm and l is 
0.4m. 
 
3.2 Real Datasets 

In the following experiments, a MEMS-based IMU from Xsens 
Technologies, the MTi-300 Attitude and Heading Reference 
System was used. 
 
3.2.1 Indoor Environments:  
 
Experiment 1 
In the first test, the IMU was placed on a typical office desk 
with computer and smartphone within its vicinity. It was then 
moved along a rectangular trajectory four times with complete 
overlap between each loop. Even from looking at the magnitude 
of the magnetic measurements it is possible to see the 
similarities between the four loops (Figure 5). In this trivial 
example, it is possible to perform loop-closure detection using 
auto-correlation since the variation in the magnetic field is as 
high as 1.67 a.u. (Jung and Myung, 2015). 
 

 
Figure 5: Magnitude of the measured magnetic signal when 
looping the same path four times. 
 
To obtain a sensible initial trajectory, a weak zero position 
update was applied to constrain the IMU position to be within a 
one metre radius sphere. The IMU trajectory before and after 
GP-SLAM is shown in Figure 6. Both the horizontal and 
vertical accuracies were improved from the centimetre-level to 
millimetre-level after 1800 iterations. The high number of 
iterations is an undesirable trait of GP-SLAM as the Lagrangian 
cost reduction is quite slow after every iteration (Figure 7). 
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Figure 6: Estimated trajectory from repeating a rectangular path 
four times in a heterogeneous magnetic environment. 
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Figure 7: The optimization cost function at every iteration 

 
Experiment 2 
In the second experiment, the IMU was moved around in a 
spiral pattern similar to the simulated trajectory. This test 
highlights one of the strengths of GP-SLAM, which is the 
unnecessity for perfect overlap between each pass of the same 
area. Unlike the first experiment, by studying the magnetic 
signal alone it is difficult to perform loop-closure detection 
(Figure 8). A threshold for the auto-correlation will need to be 
set and the possibility of revisiting the same position in a 
different direction will need to be handled in the logic (Jung 
and Myung, 2015). The estimated trajectory before and after 
using the magnetic field to perform GP-SLAM is provided in 
Figure 9. The adjustment took 797 iterations to converge and 
the RMSE of the trajectory is reduced from the centimetre-level 
to millimetre-level. One of the main factors that contributed to 
the difference in trajectory is the recovered accelerometer and 
gyroscope biases (Table 6). 
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Figure 8: The measured magnetic signal when moving the IMU 
in a spiral pattern under a heterogeneous magnetic field. 
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Figure 9: The reconstructed spiral trajectory. (Left) before GP-
SLAM in blue and (Right) after GP-SLAM in orange. 
 
 

 Before GP-SLAM After GP-SLAM 
 Gyr Bias 

[deg] 
Acc Bias 

[m/s2] 
Gyr Bias 

[deg] 
Acc Bias 

[m/s2] 
X 0.0135 -0.0030 -0.0509 0.1043 
Y 0.0959 0.0020 0.0023 0.0709 
Z -0.0247 0.0255 0.1326 0.0255 

Table 6: The recovered gyroscope and accelerometer biases in 
the adjustment 
 
Experiment 3 
The third experiment was performed on a special aluminum 
table that is free of ferromagnetic materials. In addition, no 
magnetic objects were placed within one metre of the table. The 
IMU was moved in a square pattern multiple times. When 
studying the magnitude of the magnetic measurements the field 
appears to be fairly homogeneous. However, when examining 
the signal in detail, a range of 0.07 a.u. between the maximum 
and minimum magnetic reading can be perceived. Such low 
magnetic disturbance poses a challenging situation for GP-
SLAM. In all other test cases, it did not matter if the squared 
exponential kernel or curl-free and divergence-free kernels were 
applied, the differences in the trajectories were insignificant. 
However, in a near-homogeneous field, a more noticeable 
impact of the chosen kernel can be perceived. Figure 10 shows 
the GP-SLAM solution using the two different kernels. In this 
scenario neither kernel was able to reconstruct a perfect square-
shaped trajectory. The squared exponential kernel resulted in a 
higher maximum error but preserved the orthogonality of all 
edges, while the curl-free and divergence-free kernel closed all 
the loops properly but deformed the overall geometry of the 
trajectory into an arbitrary quadrilateral. The latter solution 
might be preferred if it is to be combined with other optical 
SLAM solutions, because it is more consistent internally (i.e. all 
loops were properly detected). 
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Figure 10: The recovered square trajectory under a near 
homogeneous magnetic field using GP-SLAM. (Left) Using the 
squared exponential kernel and (Right) curl-free and divergence-
free kernel. 
 
 
Experiment 4 
The final indoor experiment took place on a typical wooden 
office desk. The MTi-300 was treated like a pen, as it was 
moved along the surface writing the word “Xsens”. After GP-
SLAM the handwritten characters became legible even though 
no active beacons were introduced. 
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Figure 11: Recovered complex handwriting pattern using the 
ambient magnetic field. (Top) before performing GP-SLAM 
and (Bottom) after GP-SLAM. 
 
3.2.2 Outdoor Environments:  
In a real homogeneous magnetic field environment, GP-SLAM 
has a favourable property of not making the initial solution any 
worse. To demonstrate this, the aluminium table was moved 
outdoors into an open field where the IMU was moved along a 
rectangular track several times. In this case, the l of the hyper-
parameter approaches a large number rapidly, σf approaches 
zero, and the adjustment converges. Mathematically it can be 
seen from Equation 7 that as l approaches infinity all the 
covariances approach σf (which is zero), effectively disabling all 
spatial correlations automatically. In conventional loop-closures 
in SLAM, a wrong association can have a devastating effect on 
the entire solution due to the strong assumption being made in 
the global relaxation step. In GP-SLAM, the assumption being 
made is much weaker and therefore has a smaller impact on the 
solution when the assumptions are violated; i.e. it is more 
robust. 
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Figure 12: Estimated rectangular trajectory pattern in a 
homogeneous magnetic field environment 
 
 

4. CONCLUSION AND FUTURE WORK 

This paper addresses the problem of indoor navigation by 
exploiting magnetic disturbances in a GP-SLAM framework 

with a tightly-coupled MEMS IMU. The orientation, velocity, 
position, sensor biases, hyper-parameters, and magnetic field 
map were all estimated simultaneously while performing 
continuous loop-detection and loop-closure in a batch least-
squares adjustment. Through different experiments it was 
shown that magnetic field SLAM in a GPR framework can 
improve the overall trajectory without making the solution 
significantly worse. Although it has no effect on the overall 
trajectory when applied in typical outdoor environments, it can 
be argued that satellite signals are available outdoors and the 
magnetometer can be used for heading updates instead. 
 
Future work will focus on improving the efficiency of GP-
SLAM through sparse kernel approximations in order to scale it 
to larger problems. The current solution assumes the magnetic 
field is not changing; to make it applicable to more consumer 
applications (e.g. wearable technologies) the static magnetic 
map assumption will be lifted. 
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