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Abstract.

In this paper we present a dynamic assignment language which extends the dynamic predi-

cate logic of Groenendijk & Stokhof [1991: 39{100] with � assignment and with generalized

quanti�ers. The use of this dynamic assignment language for natural language analysis,

along the lines of o.c. and [Barwise, 1987: 1{29], is demonstrated by examples. We show

that our representation language permits us to treat a wide variety of `donkey sentences':

conditionals with a donkey pronoun in their consequent and quanti�ed sentences with

donkey pronouns anywhere in the scope of the quanti�er. It is also demonstrated that our

account does not su�er from the so-called proportion problem.

Discussions about the correctness or incorrectness of proposals for dynamic interpre-

tation of language have been hampered in the past by the di�culty of seeing through

the rami�cations of the dynamic semantic clauses (phrased in terms of input-output be-

haviour) in non-trivial cases. To remedy this, we supplement the dynamic semantics of

our representation language with an axiom system in the style of Hoare. While the rep-

resentation languages of Barwise and Groenendijk & Stokhof were not axiomatized, the

rules we propose form a deduction system for the dynamic assignment language which is

proved correct and complete with respect to the semantics.

Finally, we de�ne the static meaning of a program � of the dynamic assignment lan-

guage as the weakest condition ' such that � terminates successfully on all states satis-

fying ', and we show that our calculus gives a straightforward method for �nding static

meanings of the programs of the representation language.

Key words: semantics of natural language, dynamic interpretation, Hoare logic, knowl-

edge representation languages.

1. Introduction

Our starting point is a dynamic perspective on natural language as proposed

in [Barwise, 1987: 1{29] and [Groenendijk & Stokhof, 1991: 39{100]. We

propose to supplement the purely semantic treatment that was given in

those papers with a syntactic account, using the tools of Hoare logic.

The key notions to be introduced and discussed in this paper are brie
y

summarized in the following table. Hopefully the table does provide some

guidance through the pages that follow.



2 Jan van Eijck & Fer-Jan de Vries

� syntax of dynamic assignment language x3

[[�]]

M

interpretation of program � w.r.t. model M x4

[[Qx(�

1

; �

2

)]]

M

interpretation of quanti�ed programs x5,6

M j= ' [A] valuation A satis�es formula ' in model M x7

K j= h'i � h i existential correctness assertion valid in class K x7

K j= f'g � f g universal correctness assertion valid in class K x7

K ` h'i � h i existential correctness assertion derivable for K x7

K ` f'g � f g universal correctness assertion derivable for K x7

If K ` F then K j= F soundness of the Hoare calculus x8

If K j= F then K ` F completeness of the Hoare calculus x9

2. The Dynamic Perspective on Natural Language

For a quick review of the virtues of a dynamic perspective on natural lan-

guage interpretation, consider mini discourse (1), where the hearer is asked

to take two di�erent individuals in mind.

A man walked in. He sat down. Another man walked in. (1)

Suppose we intend the reading where he is anaphorically linked to the earlier

inde�nite and another is anaphorically constrained (to borrow a term from

Barwise, o.c.) by that same inde�nite. We follow Barwise in using superscript

indices for antecedents and subscripts for anaphors, to indicate the intention.

A man

1

walked in. He

1

sat down. Another

1

man

2

walked in. (2)

What intuitively happens when discourse (2) is processed can be described

as follows. First one (i.e., the processor) is invited to focus on an arbitrary

man. Then one is asked to consider a choice of man where that man walked

in. Furthermore one is asked to focus on a choice of man where that man

sat down as well. Next one is assumed to keep this choice of man in mind,

and again to pick a reference to an arbitrary man, but in such a way that

that man is di�erent from the �rst man. Finally one is to consider a second

choice of man where that second man walked in.

This account sounds like a piece of imperative programming, which sug-

gests that its meaning can be given in terms of a translation into a pro-

gramming language. Here is such a translation (tense is ignored), in a lan-

guage which has the same expressive power as the dynamic predicate logic

of Groenendijk & Stokhof [1991: 39{100], but which reveals its imperative

programming nature a bit more clearly.

�v

1

: man v

1

; walk-in v

1

; sit-down v

1

; (3)

�v

2

: (v

2

6= v

1

; man v

2

); walk-in v

2

:
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The programming language employed in (3) has two kinds of basic state-

ments: assignments and tests. �x : � is a command to assign an arbitrary

individual to x that ful�ls requirement �. R(t

1

� � � t

n

) is a test which suc-

ceeds on a given input variable state if the values of the terms t

1

through t

n

ful�l the condition speci�ed by the relation symbol R, and fails otherwise.

Sequences of statements are formed with the sequencing operator ;. The as-

signments are non-deterministic, which means that semantically a program

is not a function from states to states, but a relation between states (or

equivalently, a function from states to sets of states). Test statements nar-

row down the set of output states. A test relates an input state that satis�es

it to itself, and an input state that does not satisfy it to nothing at all.

We will �x the meaning for this assign-and-test mini-language by giving

a (dynamic) semantics for it. Next, we specify a set of Hoare style rules for

it, by way of axiom system. The advantage of doing both of these things

is that the Hoare style rules provide a link to notions of static semantics,

thus allowing us to take snapshots of truth conditions at various stages in

the discourse processing, so to speak. Stated otherwise, the Hoare style rules

allow us to consider projections from dynamic logic to static logic, in the

sense of [Van Benthem, 1990].

3. Dynamic Assignment Logic: Syntax and Informal Semantics

This section is meant as an introduction to dynamic predicate logic in its

undisguised form as an imperative programming language. The ingredients

to be introduced here are atomic tests, sequential program composition,

inde�nite and de�nite assignments, program implication and program nega-

tion. Later on we will add generalized quanti�ers. We call the language we

are about to present DAL (Dynamic Assignment Logic).

In natural language, one does not engage in explicitly bookkeeping with

regard to the `slots' used for keeping track of individuals mentioned in dis-

course. One just keeps them in mind, and does not confuse them, that is all.

To make sure that in DAL the slots do not get confused, one might stipulate

that new assignments to variables which are already `active' are forbidden.

We will not impose this constraint on the general framework, but we will

de�ne a sublanguage of DAL programs where the constraint is imposed.

We �rst de�ne the set of programs of DAL and the set av of assignment

variables of a DAL program. For simplicity's sake we take the terms of DAL

to be a set of individual variables V (one might want to add constants and

deictic parameters to this, but we will not do so here).

Given a set of terms and a set of relation symbols, the set of DAL pro-

grams is the smallest set such that the following hold.

1. ? is a program.

2. If t

1

; t

2

are terms, then t

1

= t

2

is a program.
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3. IfR is an n-place relation symbol and t

1

; : : : ; t

n

are terms, thenR(t

1

� � � t

n

)

is a program.

4. If �

1

and �

2

are programs then (�

1

; �

2

) is a program.

5. If �

1

and �

2

are programs then (�

1

) �

2

) is a program.

6. If � is a program, then :� is a program.

7. If � is a program and x is a variable, then �x : � is a program.

8. If � is a program and x is a variable, then �x : � is a program.

Here is the de�nition of the set av(�) of assignment variables of a program

�.

1. av(?) = ;.

2. av(t

1

= t

2

) = ;.

3. av(R(t

1

� � � t

n

)) = ;.

4. av((�

1

; �

2

)) = av(�

1

) [ av(�

2

).

5. av((�

1

) �

2

)) = ;.

6. av(:�) = ;.

7. av(�x : �) = fxg [ av(�).

8. av(�x : �) = fxg [ av(�).

Next we de�ne the sublanguage of DAL programs (call it DAL

0

), where

no new values get assigned to `active' variables. Here we need simultaneous

recursion on � and av(�). It is the smallest set such that the following hold.

1. ? is a program with av(?) = ;.

2. If t

1

; t

2

are terms, then t

1

= t

2

is a program with av(t

1

= t

2

) = ;.

3. IfR is an n-place relation symbol and t

1

; : : : ; t

n

are terms, thenR(t

1

� � � t

n

)

is a program with av(R(t

1

� � � t

n

)) = ;.

4. If �

1

and �

2

are programs with av(�

1

) \ av(�

2

) = ; then (�

1

; �

2

) is a

program with av((�

1

; �

2

)) = av(�

1

) [ av(�

2

).

5. If �

1

and �

2

are programs with av(�

1

) \ av(�

2

) = ; then (�

1

) �

2

) is

a program with av((�

1

) �

2

)) = ;.

6. If � is a program, then :� is a program with av(:�) = ;.

7. If � is a program and x is a variable with x =2 av(�) then �x : � is a

program with av(�x : �) = fxg [ av(�).

8. If � is a program and x is a variable with x =2 av(�) then �x : � is a

program with av(�x : �) = fxg [ av(�).

We will follow the usual predicate logical convention of omitting outermost

parentheses for readability. Also, it will become evident from the semantic

clause for sequential composition that the ; operator is associative. There-

fore, we will often take the liberty to write �

1

; �

2

; �

3

instead of (�

1

; �

2

); �

3

or �

1

; (�

2

; �

3

). Also, t

1

6= t

2

will be used to abbreviate :t

1

= t

2

(cf. example

(3)). Finally, we use > as an abbreviation for :?.

The restrictions on assignment variables will for example rule out (4) as

a program of DAL

0

(though not of DAL).

�v

1

: man v

1

; �v

1

: boy v

1

: (4)
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The remainder of this section is devoted to an informal account of the

semantics of atomic test predicates, implication, negation and union of DAL

programs, and � and � assignment. Section 4 will give the formal semantics.

Semantically, what we are interested in is states, functions from the set of

DAL variables to individuals in a model. Semantically, DAL programs act as

state transformers: a DAL program takes an input state and either indicates

success by producing an output state or it indicates failure by not producing

anything at all. Equivalently, we can view the meaning of a program as a

function mapping any input state to the set of all possible outputs the

program can produce for that input. A program which is a test will on input

A either produce output set fAg (in case the test succeeds) or output set ;

(in case the test fails). Programs which may produce non-singleton sets are

non-deterministic; for some inputs there is more than one possible output

state. Examples of non-deterministic programs are � assignment programs;

the program �x : � has, on input A, the set of all states which may di�er

from A in the fact that they have another x value, namely some value that

satis�es �.

The program ? expresses a test which always fails; it is meant to express

the same as if true then fail else skip �. In other words: for every input

state A, ? will produce output state ;. As was mentioned above, we use > as

an abbreviation for :?. The program > is a test which always succeeds; in

other words, it is meant to express the same as the ALGOL style statement

if true then skip else fail �. In other words, for every input state A, >

will produce output set fAg. Atomic predicates like t

1

= t

2

or R(t

1

� � � t

n

)

are meant to express tests which may fail; in ALGOL style notation: if

R(t

1

� � � t

n

) then skip else fail �. Again in terms of input output behaviour:

If R(t

1

� � � t

n

) evaluates to true in state A, the predicate will have output set

fAg, otherwise the output set will be ;.

Programs of the form (�

1

) �

2

) are intended to treat the interplay of

natural language implication and descriptions, as in the following examples.

If a girl

1

has a boyfriend

2

, she

1

teases him

2

. (5)

If a man

1

admires the king

2

, he

1

cheers him

2

. (6)

Example (5) has the following DAL translation.

(�v

1

: girl v

1

; �v

2

: boyfriend v

2

; has(v

1

; v

2

))) teases(v

1

; v

2

): (7)

To get the semantics right, one has to assume that (7) is true if and only if

every output state for the antecedent (8) will be an appropriate input state

for the consequent (9)lave/everyslave

�v

1

: girl v

1

; �v

2

: boyfriend v

2

; has(v

1

; v

2

): (8)

teases(v

1

; v

2

): (9)
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Negation should allow one to treat examples like the following, where the

negation has scope over an inde�nite.

The manager

1

does not use a PC

2

. (10)

This example can be translated into DAL as follows:

�v

1

: (manager v

1

); :(�v

2

: pc v

2

; use(v

1

; v

2

)): (11)

To get the semantics right, a negated program should act as a test: :� should

accept (without change) all variable states which cannot serve as input for

�, and reject all others. In fact, it will turn out that :� is de�nable in terms

of ) and ?, as � ) ?.

De�nite descriptions can act as anaphors and antecedents at the same

time. Discourse (12) provides an example.

A customer

1

entered. The woman

2

1

sat down. She

2

smiled. (12)

The indices indicate that the woman has a customer as its antecedent, while

at the same time acting itself as antecedent for she in the next sentence (and

constraining the gender of the pronoun). A DAL translation of (12) is given

in (13).

�v

1

: customer v

1

; enter v

1

; (13)

�v

2

: (v

2

= v

1

; woman v

2

); sit-down v

2

; smile v

2

:

The � assignment in (13) is dependent on the � assignment to variable v

1

.

With reference to a particular assignment for v

1

, the description is unique.

Note that the � assignment to v

2

does indirectly act as a test on the previous �

assignment to v

1

: this test will weed out � assignments that are inappropriate

in the light of the subsequent discourse.

De�nite descriptions can also be dependent on each other. Consider the

string of characters in (14).

a

^

A^b C: (14)

Suppose just for an instant that (14) is a state of a�airs one is talking about.

The state of a�airs involves characters and hat symbols (hats for short).

With reference to (14), it does make sense to talk about the character with

the hat, although (14) neither has a unique character nor a unique hat. We

can, for instance, truthfully assert (15) about (14).

The character with the hat is a capital. (15)

The translation into DAL is straightforward:

�v

1

: (character v

1

; �v

2

: (hat v

2

; with(v

1

; v

2

))); capital v

1

: (16)



DYNAMIC INTERPRETATION AND HOARE DEDUCTION 7

Intuitively, the �rst � assignment `tries out' individual characters C until it

�nds the unique C with the property that a unique hat H for C can be

found.

The semantic picture sketched above is still in need of an extra touch.

Nothing we have said so far makes clear how the dynamic treatment of

de�nite descriptions is meant to deal with their uniqueness presuppositions.

This topic will not be dealt with in this paper (but see [Van Eijck, 1991]).

4. Semantics: Formal De�nitions

Assume a model M = hU; Ii, with U a universe of individuals and I an

interpretation function for the �rst order relation symbols of the language.

We consider the set S of all functions A : V ! U . This is the set of states

for M.

A state A for M = hU; Ii determines a valuation V

A

for the terms of the

language as follows: if t 2 V then V

A

(t) = A(t) (as we take all our terms to

be variables, this is all there is to the de�nition of V

A

). If A is a state for

M, x a variable and d an element of the universe or M, then A[x := d] is

the state for M which is just like A except for the possible di�erence that

x is mapped to d.

We de�ne a function [[�]]

M

: S ! PS by recursion. A;B; C are used as

metavariables over states. The function [[�]]

M

depends on the model M,

but for convenience we will often write [[�]] rather than [[�]]

M

. The function

should be read as: on input state A, � may produce any of the outputs in

output state set [[�]](A).

1. [[?]](A) = ;:

2. [[R(t

1

� � � t

n

)]](A) =

�

fAg if hV

A

(t

1

); : : : ;V

A

(t

n

)i 2 I(R)

; otherwise.

3. [[t

1

= t

2

]](A) =

�

fAg if V

A

(t

1

) = V

A

(t

2

)

; otherwise.

4. [[(�

1

; �

2

)]](A) =

S

f[[�

2

]](B) j B 2 [[�

1

]](A)g:

5. [[(�

1

) �

2

)]](A) =

�

fAg if B 2 [[�

1

]](A) implies [[�

2

]](B) 6= ;

; otherwise.

6. [[:�]](A) =

�

fAg if [[�]](A) = ;

; otherwise.

7. [[�x : �]](A) =

S

f[[�]](A[x := d]) j d 2 Ug:

8. [[�x : �]](A) =

8

<

:

[[�]](A[x := d]) for the unique d 2 U

for which [[�]](A[x := d]) 6= ; if such d exists

; otherwise.

Truth is de�ned in terms of input-output behaviour: � is true relative to

model M if there are states A;B for M such that B 2 [[�]]

M

(A). Two

programs �

1

; �

2

are equivalent if for every model M and every state A for

M, [[�

1

]]

M

(A) = [[�

2

]]

M

(A).
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Dynamic consequence is de�ned as follows: �

1

j= �

2

if for every model

M and for all states A;B for M: if B 2 [[�

1

]]

M

(A) then there is a state

C with C 2 [[�

2

]]

M

(B). This choice has a straightforward motivation. The

consequence relation mirrors the behaviour of ) at meta level, so we get

the following equivalence for free.

�

1

j= �

2

i� j= �

1

) �

2

. (17)

The various other possible consequence relations for dynamic logic will not

concern us in this paper.

The statement �x : � performs a non-deterministic action, for it sanctions

any assignment to x of an individual satisfying �. The statement acts as a

test at the same time: in case there are no individuals satisfying � the set of

output states for any given input state will be empty. In fact, the meaning

of �x : � can be thought of as a random assignment followed by a test, for

�x : � is equivalent to �x : >; �, or in more standard notation, x := ?; �.

It follows immediately from this explanation plus the dynamic meaning of

sequential composition that �x : (�

1

); �

2

is equivalent with �x : (�

1

; �

2

).

The interpretation conditions for � assignment make clear how the unique-

ness condition is handled dynamically. The statement �x : � consists of a

test followed by a deterministic action in case the test succeeds: �rst it is

checked whether there is a unique �; if so, this individual is assigned to

x; otherwise the program fails (in other words, the set of output states is

empty). Thus we see that the two programs �x : (�

1

); �

2

and �x : (�

1

; �

2

)

are not equivalent. The program �x : (�

1

; �

2

) succeeds if there is a unique

object d satisfying �

1

; �

2

, while the requirement for �x : (�

1

); �

2

is stronger:

there has to be a unique individual d satisfying �

1

, and d must also satisfy

�

2

.

The clause for dynamic implication should take care of the proper treat-

ment of the description his wife in example (18).

If the president is married then his wife will be cross with him. (18)

To indicate the reading where the possessive pronoun his is anaphorically

linked to the president, we again use indices. The intended reading of (18)

is indicated by the following indexing.

If the president

1

is married then (19)

[his

1

wife]

2

will be cross with him

1

.

A suitable translation is the following:

(�v

1

: president v

1

; married v

1

)) (20)

(�v

2

: wife-of (v

2

; v

1

); cross-with(v

2

; v

1

)):
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Assuming that the president has unique reference, we can say the following.

Either the subprogram for The president is married will not complete suc-

cessfully, and then program (20) succeeds, or there will be a unique referent

for � assignment in the subprogram for the consequent, and the subprogram

for his wife will be cross with him will succeed, provided that the unique

referent for v

2

satis�es cross-with(v

2

; v

1

).

5. Adding Quanti�ers

Adding quanti�ers to DAL is relatively straightforward. For convenience,

we restrict attention to binary quanti�ers. Let Q

1

; Q

2

; : : : be a list of binary

quanti�er symbols. Assume that the interpretation functions of the models

M = hD;Ii are extended with suitable interpretations for these. That is to

say, for every Q

i

, I(Q

i

) is a binary quanti�er relation on P(D), i.e. a relation

satisfying the constraints of extension, isomorphy and conservativity (see for

example [Westerst�ahl, 1989: 1{131]).

A quanti�er relation R is conservative (or: lives on its �rst argument) if

R(A;B) i� R(A;A \ B). A quanti�er relation satis�es extension if adding

or deleting individuals from the part of the universe which is outside the

extension of the arguments does not a�ect the relation, i.e., if the relation

satis�es R

E

(A;B) i� R

E

0

(A;B), for all E;E

0

with E;E

0

� A [B.

Because of our reliance on conservativity, the analysis provided in this

section does not work without further ado for a quanti�er like only, as in

Only men are chauvinists. This problem will be addressed in Section 6.

First we extend the syntax of DAL. The set of DAL programs is the smallest

set satisfying the following clauses.

1. { 8. As above, in the de�nition of DAL.

9. If �

1

and �

2

are programs and Q is a quanti�er, then Qx(�

1

; �

2

) is a

program.

For the time being we do not take external dynamic e�ects of quanti�ers

into account, i.e. we take our quanti�ers to be only internally dynamic. This

transpires in the de�nition of the set of assignment variables of a quanti�ed

program.

1. { 8. As above.

9. av(Qx(�

1

; �

2

)) = ;.

As for the extended version of DAL

0

, the set of DAL

0

programs is the

smallest set satisfying the following clauses.

1. { 8. As above, in the de�nition of DAL

0

.

9. If �

1

and �

2

are programs with x =2 av(�

1

), x =2 av(�

2

) and av(�

1

) \

av(�

2

) = ;, and Q is a quanti�er, then Qx(�

1

; �

2

) is a program with

av(Qx(�

1

; �

2

)) = ;.

Here is the intended semantics.

1. { 8. As above.
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9. [[Qx(�

1

; �

2

)]](A) =

8

>

>

>

>

>

<

>

>

>

>

>

:

fAg if

hfd 2 U j [[�

1

]](A[x := d]) 6= ;g;

fd 2 U j [[�

1

; �

2

]](A[x := d]) 6= ;gi

2 I(Q)

; otherwise.

The semantic clause makes clear that quanti�ers, as de�ned here, do not

have an external dynamic e�ect. Externally, they acts as tests: in case the

test succeeds the set of output states has the input state as its only member.

The internal dynamic e�ect of a quanti�er does interact with the external

dynamic e�ects of de�nites and inde�nites, however.

To see how the semantics of quanti�cation works in the simplest possible

case, let us walk through example program (21).

Qx(Sx; Tx): (21)

According to the semantic clause, on input state A this program gives fAg

i� the sets (22) and (23) are in the relation I(Q).

fd 2 U j [[Sx]](A[x := d]) 6= ;g: (22)

fd 2 U j [[Sx; Tx]](A[x := d]) 6= ;g: (23)

According to the semantic clause for atomic tests and the de�nition of the

valuation function for terms, the set (22) can be rewritten as (24).

fd 2 U j d 2 I(S)g: (24)

In the same way, and using the semantic clause for ; , the set (23) can be

rewritten as (25).

fd 2 U j x 2 I(S) and x 2 I(T )g: (25)

Because the Q is assumed to denote a conservative quanti�er with �rst

argument as given by (24), (25) can be replaced by (26).

fd 2 U j x 2 I(T )g: (26)

Thus we �nd that (21) is true i� the sets given in (24) and (26) are in the

relation denoted by the quanti�er. This is the expected result.

Dynamic e�ects will start to play a rôle if one or both of the argument

programs of a quanti�ed program has an external dynamic e�ect. The tradi-

tional `donkey' examples such as (27) are cases in point (see [Geach, 1962]).

Every girl

1

who has a boyfriend

2

teases him

2

. (27)

Example (27) has the following DAL translation.

Q

8

v

1

(Gv

1

; �v

2

: Bv

2

; Hv

1

v

2

; T v

1

v

2

): (28)
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Here Q

8

denotes the generalized universal quanti�er, i.e. the relation of

inclusion. Establishing the meaning of examples like (27) by direct reasoning

about the operational semantics is awkward, so we will guide the reader

through the thicket once more.

According to the semantic clause for quanti�er programs, on input state

A this program gives fAg i� the sets (29) and (30) are in the inclusion

relation.

fd 2 U j [[Gv

1

; �v

2

: Bv

2

; Hv

1

v

2

]](A[v

1

:= d]) 6= ;g: (29)

fd 2 U j [[Gv

1

; �v

2

: Bv

2

; Hv

1

v

2

; Tv

1

v

2

]](A[v

1

:= d]) 6= ;g: (30)

First we reduce (29). Applying the semantic clauses for ; and � assignment

and for atomic tests makes clear that (29) describes the same set as (31).

fd 2 U j there is a d

0

2 U such that (31)

d 2 I(G); d

0

2 I(B); hd; d

0

i 2 I(H)g:

Similarly, application of the semantic clauses for ;, for � assignment and for

atomic tests makes clear that (30) describes the same set as (32).

fd 2 U j there is a d

0

2 U such that (32)

d 2 I(G); d

0

2 I(B); hd; d

0

i 2 I(H); hd; d

0

i 2 I(T )g:

Paraphrasing this, we see that the semantic clause for quanti�ed programs

entails that translation (28) of (27) is true i� the set of girls who have a

boyfriend is included in the set of girls who have a boyfriend and tease that

boyfriend. Note that this may still be true if some of the girls have several

boyfriends and tease only one of them. This shows that the reading we get

for (27) is weaker than the one we got for (5). Of course, as soon as we impose

the meaning postulate that every girl who has a boyfriend has precisely one

boyfriend, the two translations become equivalent again.

The reader might wonder why example (27) gets a weaker interpretation

than expected. The answer is that there turns out to be some latitude as

to the exact way of internal dynamic binding of assignment variables from

the antecedent program of the quanti�er in its consequent program. These

issues will be dealt with in the next section.

Readers who �nd the reasoning about dynamic clauses that is necessary

to grasp the meaning of examples like (27) awkward have our full sympathy.

Bear with us, and the axiom system to be presented in Section 7 will alleviate

your problem.

Because we have used conservativity, the above story does not work for

the quanti�er relation interpreting only. Only P Q is true i� the set of non-

Ps is included in the set of non-Qs, or equivalently, if the set of Qs is included

in the set of Ps. Because only is not conservative, (33) does not mean the
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same as (34).

Only girls

1

who tease a boyfriend

2

lose him

2

. (33)

Only girls

1

who tease a boyfriend

2

tease a (34)

boyfriend and lose him

2

.

Rather, (33) means something like (35).

Only girls

1

who tease a boyfriend

2

lose their boyfriend

2

. (35)

This suggests that in this case the pronoun is a pronoun of laziness rather

than a genuine donkey pronoun. But pronouns in the context of non-conservative

quanti�ers pose di�cult problems, as is also borne out by the following ex-

ample.

Only girls

1

who have a boyfriend

2

bring him

2

to the party. (36)

On its most salient reading, (36) is true as a matter of course, because it

can be paraphrased as (37).

No girls

1

who don't have a boyfriend

2

will bring him

2

(37)

to the party.

Interestingly, the paraphrase (37) poses a di�culty for our framework too.

The problem is that the variable for a boyfriend

2

is screened o� by the

negation operator, so that it is not available anymore at the level where him

2

looks for an antecedent. To deal with (37) one would again need externally

dynamic negation. We leave the problem of non-conservative quanti�ers that

are internally dynamic with the remark that it merits further investigation.

The following example, closely related to (27), gives rise to the so-called

proportion problem in traditional discourse representation theory (see [Kamp,

1981: 277{322] for the basics of discourse representation theory, [Kamp &

Reyle, 1990] for an up-to-date formulation, and [Heim, 1990: 137{177] for

details on the proportion problem).

Most girls

1

who have a boyfriend

2

tease him

2

. (38)

The proportion problem may arise in connection with (38) in case there are

girls who are naughty enough to have a large number of boyfriends and to

tease them all. Accounts which give rise to the proportion problem would

handle (38) as a case of quanti�cation over girl-boyfriend pairs. To see how

the present proposal fares, consider the translation of (38) in DAL.

most v

1

((girl v

1

; �v

2

: boyfriend v

2

; have (v

1

; v

2

)); tease (v

1

; v

2

)): (39)
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This is true in state A if there are states B;C such that the sets given in

(40) and (41) are in the most-relation.

fd 2 U j B 2 [[girl v

1

; �v

2

: boyfriend v

2

; have (v

1

; v

2

)]] (40)

(A[v

1

:= d])g

fd 2 U j B 2 [[girl v

1

; �v

2

: boyfriend v

2

; have (v

1

; v

2

); (41)

tease (v

1

; v

2

)]](A[v

1

:= d])g

The set given by (40) is the set of all girls who have a boyfriend, while the

set given by (41) is the set of all girls who have a boyfriend and tease him.

The quanti�cation is over girls, as it should be, and not over girl{boyfriend

pairs, as in the accounts which give rise to the proportion problem. In other

words, this spells out a reading that does not su�er from the proportion

problem. Again this is not the only possible reading; an alternative reading

will be discussed in the next section.

To show that the treatment of quanti�cation proposed here is di�erent

from the treatment proposed by Groenendijk & Stokhof [1991: 39{100], it

is enough to show that their approach su�ers from the proportion problem.

One of the examples they discuss (o.c., p.81) is, essentially, (42), in the

reading which can be paraphrased as (43).

If a girl

1

has a boyfriend

2

she usually teases him

2

. (42)

In most cases in which a girl

1

has a boyfriend

2

she teases him

2

. (43)

To treat this example, Groenendijk and Stokhof reconstruct Lewis' adverb

of quanti�cation approach in dynamic predicate logic, by reading the quan-

ti�er as a relation between sets of states. Dynamic implication, ), would

then correspond to !

8

, to be interpreted as: for all output states A of the

antecedent, applying the consequent to A will produce an output. Similarly,

the examples with usually or in most cases are analyzed with !

M

, to be

interpreted as: for most output states A of the antecedent, applying the

consequent to A will produce an output. To see that this account does give

rise to the proportion problem, observe that output states of the antecedent

a girl has a boyfriend where Mary has John as a boyfriend and where the

same Mary has Fred as a boyfriend will have to count as di�erent states. The

example sentences may have a reading where these should indeed count as

di�erent, but the point is that quanti�cation over states makes it impossible

to express readings where they should count as the same, as in the reading of

(42) which is equivalent to the most salient reading of (38). For such cases,

quanti�cation over states does simply lead to incorrect results.

Our approach di�ers from the approach of Groenendijk & Stokhof pre-

cisely in that quanti�cation is always over individuals and never over states.

Our reconstruction of (43) would be as follows. Because the quanti�cation

is over cases or occasions, we have to add an occasion parameter to the
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predicates used for translating verb phrases, so have(x,y,o) and tease(x,y,o)

for x has y at occasion o and x teases y at occasion o, respectively. The DAL

translation of (43) now becomes:

most o

1

(�v

1

(girl v

1

; �v

2

: boyfriend v

2

; have (v

1

; v

2

; o

1

)); (44)

tease (v

1

; v

2

; o

1

)):

To make this true, on our account, the set of occasions at which a girl has

a boyfriend and the set of occasions at which a girl has a boyfriend which

she teases must be in the most relation.

Of course, on our account there is still a fair amount of latitude as to how

(42), (43) and (45) are interpreted.

If a girl has several boyfriends, she usually teases them. (45)

But the latitude resides where it belongs, for a margin of uncertainty remains

as long as it is unclear what counts as an occasion, and it disappears as soon

as this is resolved. As soon as we have a model where occasions are fully

individuated, our quanti�cational analysis gives the right meanings. The

discussion summarised in [Heim, 1990: 137{177] of the meanings of `donkey'

examples with usually should therefore in our view be re-interpreted as a

discussion of factors that might be involved in the individuation of occasions.

6. Weak and Strong Readings of Quanti�ers

The semantic clause for quanti�er programs Qx(�

1

; �

2

) in the previous sec-

tion takes care of the dynamic binding of the assignment variables of the

antecedent program �

1

in the consequent program �

2

by comparing the set

of objects for which �

1

succeeds with the set of objects for which �

1

; �

2

succeeds. Prima facie, there is no compelling reason to use sequential com-

position of �

1

and �

2

to achieve the desired internal binding e�ect. Another

obvious possibility is the choice �

1

) �

2

. We will now explore this alterna-

tive. Let us call the quanti�er reading presented in the previous section the

weak reading of the quanti�er. The semantic clause where ) is substituted

for ; gives the strong reading of the quanti�er. Thus, the clauses for weak

and strong readings of quanti�ers (which we will distinguish as Q

w

and Q

s

)

run like this:

Weak readings of quanti�ers

[[Q

w

x(�

1

; �

2

)]](A) =

8

>

>

>

>

>

<

>

>

>

>

>

:

fAg if

hfd 2 U j [[�

1

]](A[x := d]) 6= ;g;

fd 2 U j [[�

1

; �

2

]](A[x := d]) 6= ;gi

2 I(Q)

; otherwise.



DYNAMIC INTERPRETATION AND HOARE DEDUCTION 15

Strong readings of quanti�ers

[[Q

s

x(�

1

; �

2

)]](A) =

8

>

>

>

>

>

<

>

>

>

>

>

:

fAg if

hfd 2 U j [[�

1

]](A[x := d]) 6= ;g;

fd 2 U j [[�

1

) �

2

]](A[x := d]) 6= ;gi

2 I(Q)

; otherwise.

It is easy to show that as long as the antecedent program �

1

does not

have an external dynamic e�ect, there is nothing to choose between the weak

and the strong reading of a quanti�er. The following proposition refers to

conservativity and extension; See Section 5 for the de�nitions.

PROPOSITION 6.1. If Q is a quanti�er satisfying extension and conser-

vativity and av(�

1

) = ;, then Q

w

x(�

1

; �

2

) and Q

s

x(�

1

; �

2

) are equivalent.

Proof.If av(�

1

) = ;, this means that �

1

is a test. Thus, instead of (46) we

can write (47).

fd 2 U j [[�

1

; �

2

]](A[x := d]) 6= ;g: (46)

fd 2 U j [[�

1

]](A[x := d]) 6= ; and [[�

2

]](A[x := d]) 6= ;g: (47)

Let S

1

be the set fd 2 U j [[�

1

]](A[x := d]) 6= ;g, and S

2

the set fd 2 U j

[[�

2

]](A[x := d]) 6= ;g. Then the set given by (47) is the set S

1

\ S

2

. Thus,

the quanti�er program Q

w

x(�

1

; �

2

) holds i� the sets S

1

and S

1

\ S

2

are in

the relation I(Q). Because of the conservativity of Q, this is the case i� S

1

and S

2

are in the I(Q) relation.

Similarly, if av(�

1

) = ;, then instead of (48) we can write (49).

fd 2 U j [[�

1

) �

2

]](A[x := d]) 6= ;g: (48)

fd 2 U j [[�

1

]](A[x := d]) = ; or [[�

2

]](A[x := d]) 6= ;g: (49)

Thus, the set given by (49), with respect to some universe U , is the set

(U � S

1

) [ S

2

. Because Q satis�es extension, we may take U to be any set

including the set S

1

[ S

2

. In particular, if we take U to be S

1

[ S

2

, the set

(U � S

1

) [ S

2

reduces to S

2

. Thus, again, the quanti�er program succeeds

i� S

1

and S

2

are in the I(Q) relation.

It is clear from the proof of proposition 6.1 that the strong reading of quan-

ti�ers will get us the right results for non-conservative quanti�ers provided

they satisfy extension and provided their �rst argument is a test. It turns out

that we can handle examples likeOnly men are chauvinists after all; because

only does satisfy extension, the recipe is simply to rely on the strong reading

of the quanti�er only. Note, however, that non-conservative quanti�ers with

restriction clauses with a dynamic e�ect are still beyond our scope.
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In Section 5 it transpired that the weak readings of universally quanti�ed

donkey sentences were not equivalent to the if then versions of these donkey

sentences. The availability of strong readings for quanti�ers has remedied

this situation, as the following proposition shows.

PROPOSITION 6.2. For any programs �

1

; �

2

with av(�

1

) \ av(�

2

) = ;:

if x is a variable such that x =2 av(�

1

) [ av(�

2

), then (�x : �

1

) ) �

2

is

equivalent with Q

s

8

x(�

1

; �

2

).

Proof.Take an arbitrary modelM and an arbitrary state A for that model,

and just check the semantic clauses: [[(�x : �

1

) ) �

2

]]

M

(A) = fAg i� for

all B 2 [[(�x : �

1

)]]

M

(A) it holds that [[�

2

]]

M

(B) 6= ;. By the semantic

clause for � assignment this is the case i� for all B with the property that

for some d 2 U

M

it is the case that B 2 [[�

1

]]

M

(A[x := d]), it holds that

[[�

2

]]

M

(B) 6= ;. By quanti�er logic, this is equivalent to: for all d 2 U

M

and

for all B, if B 2 [[�

1

]]

M

(A[x := d]), then [[�

2

]]

M

(B) 6= ;.

The semantic clause for strong readings of quanti�ers says that [[Q

s

8

x(�

1

; �

2

)]]

M

(A) =

fAg i� all d 2 U

M

such that [[�

1

]]

M

(A[x := d]) 6= ; have the property that

[[�

1

) �

2

]]

M

(A[x := d]) 6= ;. By the semantic clause for ), this condition is

equivalent to: for all d 2 U

M

such that [[�

1

]]

M

(A[x := d]) 6= ; it is the case

that all B 2 [[�

1

]]

M

(A[x := d]) have the property that [[�

2

]]

M

(B) 6= ;. Equiv-

alently: for all d 2 U

M

and for all C it holds that if C 2 [[�

1

]]

M

(A[x := d])

then is the case that all B 2 [[�

1

]]

M

(A[x := d]) have the property that

[[�

2

]]

M

(B) 6= ;. By quanti�er logic, this in turn is equivalent to: for all

d 2 U

M

and for all B, if B 2 [[�

1

]]

M

(A[x := d]) then [[�

2

]]

M

(B) 6= ;.

Since (�x : �

1

) ) �

2

and Q

s

8

x(�

1

; �

2

) are both tests, and since we have

shown that these tests succeed in precisely the same circumstances, we have

established the claim that the programs are equivalent.

A question one might want to ask now is whether a similar result holds for

Q

w

9

x(�

1

; �

2

) and �x : �

1

; �

2

. The answer is of course no, for the simple reason

that Q

w

9

x(�

1

; �

2

) is a test while �x : �

1

; �

2

is not. But there is something

more to the question than this. For quanti�ers like every and most, it is not

di�cult to invent pairs of example sentences where the �rst member of the

pair has to be paraphrased as a weakly read existential quanti�er and the

second member as a strongly read one (see below for some standard examples

from the literature of such pairs for the quanti�ers every and most). It

seems to us that it is much harder to �nd examples of such pairs for the

case of some. It is not even completely clear to us if the distinction between

Q

w

9

x(�

1

; �

2

) and Q

s

9

x(�

1

; �

2

) makes intuitive sense. This observation might

be interpreted as evidence for the case that determiners like some and a

are quite special after all, in that they are to be treated in terms of active

assignment variables rather than generalized quanti�ers. We will not pursue
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this issue any further here, as it would lead us into the realm of externally

dynamic quanti�cation and thus beyond the scope of this paper.

There is extensive discussion in the literature (see e.g. [Chierchia, 1991:

37{78] and the references cited therein) of the distinction between weak and

strong readings of quanti�ed `donkey' sentences with quanti�ers like every

and most. Sentences like (50), (52) and (54) are given in the literature as

cases where the weak reading is appropriate, while sentences like (51), (53)

and (55) seem to require the strong reading.

If a man has a dime, he puts it in the parking meter. (50)

If a man owned a slave, he also owned its o�spring. (51)

Every man who has a dime will put it in the parking meter. (52)

Every man who owned a slave also owned its o�spring. (53)

Most men who have a dime will put it in the parking meter. (54)

Most men who owned a slave also owned its o�spring. (55)

For the examples (52), (53), (54) and (55) we get the required contrast

from the distinction between the two interpretation rules for quanti�ers.

For examples (50) and (51), an analysis in terms of occasions is needed

to get the required contrast. As long as we stick to the treatment of if then

clauses in terms of), we only get the strong readings. But of course, a more

subtle analysis of (50) and (51) will treat the if then construction in terms

of universal quanti�cation over cases, along the lines sketched in Section 5.

The analysis of (50) and (51) now becomes (56) and (57), respectively.

Q

w

8

o

1

(�v

1

: man v

1

; �v

2

: dime v

2

; have (v

1

; v

2

; o

1

)); (56)

put-in-parking-meter (v

1

; v

2

; o

1

)):

Q

s

8

o

1

(�v

1

: man v

1

; �v

2

: slave v

2

; owned (v

1

; v

2

; o

1

)); (57)

�v

3

: o�spring-of (v

3

; v

2

); owned (v

1

; v

3

; o

1

)):

We can paraphrase the semantic condition imposed by (56) as follows: every

occasion where there is a man with a dime is an occasion where there is a

man with a dime who puts a dime in the parking meter. This is intuitively

acceptable. The paraphrase for (57) becomes: every occasion where there is

a man with a slave that he owns is an occasion where it holds for every man

and every slave owned by that man at that occasion, that the man owns the

o�spring of that slave. This also seems intuitively acceptable. If the reader

is not convinced that these are indeed the correct paraphrases of the weak

and strong quanti�er readings for these examples, the sections that follow

will provide an easy means to verify these claims.

Other examples from the folk-lore are also quite easy to handle. Consider

examples (58), (59) and (60).

If a man

1

shares a place with another

1

man

2

, (58)
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he

1

shares the housework with him

2

.

Most customers

1

who buy a spark plug

2

buy three other

2

spark (59)

plugs with it

2

(unless they own a 2CV).

If a customer

1

buys a spark plug

2

, he

1

usually buys three other

2

(60)

spark plugs with it

2

(unless he owns a 2CV).

In the case of (58) we get the right results if we analyse the if then phrase

in terms of weak or strong universal quanti�cation over occasions (some

re
ection will show that for this example the weak and strong readings are

equivalent). The example was invented to argue against a so-called E-type

analysis of the pronouns he

1

and him

2

(see [Heim, 1990: 137{177]), but in the

present perspective there is nothing problematic about such symmetric cases

at all. On the analysis we propose, sentence (58) is true i� every occasion

in which there are two distinct men sharing a place is an occasion in which

there are two distinct men sharing a place and also sharing the housework.

Equivalently, sentence (58) is true i� every occasion in which there are two

distinct men sharing a place is an occasion in which every pair of distinct

men sharing a place is such that they also share the housework.

The equivalence of strong and weak readings also holds for example (59).

Under the weak reading, example (59) says that the majority of customers

(excluding 2CV owners) that buy a spark plug are customers that buy a

spark plug plus three other spark plugs. Under the strong reading, example

(59) says that the majority of customers (excluding 2CV owners) that buy a

spark plug are customers that for every spark plug that they buy, buy three

other ones. It is not di�cult to see that in this case as well, the weak and

strong readings are equivalent. The same holds for the case of (60), although

here we have to analyze in terms of quanti�cation over occasions.

7. An Axiom System for Dynamic Interpretation

Discussions about the correctness or incorrectness of proposals for dynamic

interpretation of language have been hampered in the past by the di�-

culty of seeing through the rami�cations of the dynamic semantic clauses in

non-trivial cases. To remedy this, we supplement the semantics of our rep-

resentation language with an axiom system in the style of Hoare (see [Apt,

1981: 431{483] for an overview of this approach). The axioms and proof rules

we propose form a deduction system allowing us to prove statements about

DAL programs; in Section 8, this calculus is proved sound and in Section 9

it is proved complete with respect to the semantics.

Our deductive system for dynamic logic is a hybrid calculus, with state-

ments characterizing variable states, plus two kinds of correctness state-

ments, which we call universal and existential correctness statements. Thus,

the system has three kinds of statements: (i) formulae of a language of �rst
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order predicate logic with the same sets of variables and predicate letters

as the DAL language under consideration, and extended with the same set

of generalized quanti�ers (call this assertion language L), (ii) triples of the

form f'g � f g, where '; are L-formulae, and � is a DAL-program, and

(iii) triples of the form h'i � h i, where again ';  are L-formulae, and �

is a DAL-program.

The statements of the form ' are used for making assertions about vari-

able states A for L with respect to models M for L. Because the DAL

language and the assertion language L have the same set of variables, vari-

able states for the DAL language are variable states for L. The relation

M j= ' [A], for state A veri�es ' in M, is de�ned in the standard way.

If ' is a formula of the assertion language L, then fv(') is the set of free

variables of ', and if ' is an L formula and x; y are variables then [y=x]' is

the result of the substitution of y for all free occurrences of x in '.

The statements of the form f'g � f g are universal correctness state-

ments. In the terminology of Hoare's logic, they express partial correctness.

The statement f'g � f g expresses that all variable states A (for an arbi-

trary model M) that satisfy ' have the property that if some variable state

B is an output state of � for input state A, then B satis�es  .

The statements of the form h'i � h i are existential correctness state-

ments. In terms of Hoare's logic, they represent the bits one has to add to

partial correctness statements to ensure total correctness. The statement

h'i � h i expresses that for all input variable states A (for an arbitrary

model M) that satis�es ' there is some variable state B satisfying  in the

set of output states of �.

Because our intuitions about static meaning seem to be much better

developed than our intuitions about dynamic meaning, we can, for a large

class of natural language sentences, check whether the intuitive meaning

of a sentence S corresponds to the meaning of its DAL translation � in the

following precise sense. Does the intuitive meaning of S precisely describe the

set of states for which � terminates successfully? In terms of Hoare's logic,

we can describe this set of states by the weakest existential precondition of

� with respect to >. What we are looking for is the weakest ' for which

the statement h'i � h>i is still true. The ' we are looking for has to satisfy

the additional condition that it does not contain free occurrences of the

assignment variables of � (the members of av(�)); ' gives the static meaning

of the program �.

It may seem that our intention to use the calculus to get from dynamic

to static meaning will allow us to get by with just existential correctness

statements. To see that this is not so, note that such statements do not

allow us to express failure of a program for a given set of input states. The

statement h'i � h?i does not express failure of � on input states satisfying

'. Rather, it expresses the fact that for all inputs satisfying ' the program
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� is guaranteed to produce an output satisfying ?, a statement which is

absurd for all non-contradictory '. Failure of a DAL program � on the set

of inputs speci�ed by', is readily expressed in terms of universal correctness,

namely by f'g � f?g. It is clear that in order to treat negation of programs

and dynamic implication between programs, both universal and existential

correctness statements are needed in the calculus.

The meanings of f'g � f g and h'i � h i are formally speci�ed in terms

of the dynamic interpretation function [[�]]

M

that was given above plus a

satisfaction relation M j= ' [A], to be read as: variable state A for V

satis�es ' in M. This notion is de�ned in the standard way. The notion of

K-validity for correctness statements is de�ned as follows.

K-validity of Correctness Statements

If F has the form ', where ' is a formula of the assertion language, then

K j= F if M j= F [A] for all models M 2 K and all states A for M.

If F has the form f'g � f g, then K j= F if the following holds. For all

models M 2 K, for all states A for M, if M j= ' [A] then for all states

B 2 [[�]]

M

(A) it is the case that M j=  [B].

If F has the form h'i � h i, then K j= F if the following holds. For all

models M 2 K, for all states A for M, if M j= ' [A] then there is at least

one state B 2 [[�]]

M

(A) with M j=  [B].

The atomic predicates of DAL act as tests. The following test axioms account

for their behaviour.

Test Axioms

f>g ? f?g:

h?i ? h?i.

fR(t

1

� � � t

n

)! 'g R(t

1

� � � t

n

) f'g.

hR(t

1

� � � t

n

) ^ 'i R(t

1

� � � t

n

) h'i.

ft

1

= t

2

! 'g t

1

= t

2

f'g.

ht

1

= t

2

^ 'i t

1

= t

2

h'i.

The axioms for the program ? express that ? always fails. The atomic

predicates and the identities each have two axioms. In both cases the �rst

(the axiom for universal correctness) gives the preconditions under which,

if the program succeeds, all output states will satisfy '. The second (the

axiom for existential correctness) gives the preconditions which guarantee

successful termination, with the postconditions guaranteed by the test.

For purposes of reasoning with the system one needs an oracle rule for the

class K of models that one is interested in (for natural language applications
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such a class will generally be given by specifying a set of meaning postulates

that all members of K should satisfy).

K Oracle Rule

Every assertion valid in K is an axiom.

The well-known consequence rule holds for universal and existential correct-

ness.

Consequence Rules

'!  f g � f�g �! �

f'g � f�g:

'!  h i � h�i �! �

h'i � h�i:

Next, one needs to specify the meanings of complex programs in the ax-

iomatic framework.

Rules of Composition

f'g �

1

f g f g �

2

f�g

f'g (�

1

; �

2

) f�g:

h'i �

1

h i h i �

2

h�i

h'i (�

1

; �

2

) h�i:

Rules of Negation

f'g � f?g

h' ^  i :� h i:

h'i � h>i

f' _  g :� f g:

Rules of Implication

f'g �

1

f g h i �

2

h>i:

h' ^ �i (�

1

) �

2

) h�i:

h'i �

1

h i f g �

2

f?g:

f' _ �g (�

1

) �

2

) f�g:
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Rules of � Assignment

f'g � f g

f8x'g �x : � f g.

h'i � h i

h9x'i �x : � h i.

Rules of � Assignment

h'i � h i f:'g � f?g h i � h�i

h9x(8y([y=x]'$ x = y) ^  )i �x : � h�i.

h'i � h>i f:'g � f?g f g � f�g

f8x(8y([y=x]'$ y = x)!  )g �x : � f�g.

Note that in the static description logic the � and � operators from the

dynamic assignment logic are contextually eliminated.

Rules of Quanti�cation: Weak Readings

h'i �

1

h>i f:'g �

1

f?g h i �

1

; �

2

h>i f: g �

1

; �

2

f?g

hQx(';  ) ^ �i Q

w

x(�

1

; �

2

) h�i:

f:'g �

1

f?g h'i �

1

h>i f: g �

1

; �

2

f?g h i �

1

; �

2

h>i

fQx(';  )! �g Q

w

x(�

1

; �

2

) f�g:

Rules of Quanti�cation: Strong Readings

h'i �

1

h>i f:'g �

1

f?g h i �

1

) �

2

h>i f: g �

1

) �

2

f?g

hQx(';  ) ^ �i Q

s

x(�

1

; �

2

) h�i:

f:'g �

1

f?g h'i �

1

h>i f: g �

1

) �

2

f?g h i �

1

) �

2

h>i

fQx(';  )! �g Q

s

x(�

1

; �

2

) f�g:

In case we know the quanti�er to be #MON, "MON, MON# or MON",

then in the rules of quanti�cation the �rst, second, third or fourth premiss,

respectively, can be omitted.

Recall that a quanti�er Q is #MON (downward monotone in its �rst argu-

ment) if Q is interpreted as a relation R between sets with the property that

R(S

1

; S

2

) and S

0

1

� S

1

imply R(S

0

1

; S

2

). A quanti�er Q is "MON (upward

monotone in its �rst argument) if Q is interpreted as a relation R between

sets with the property that R(S

1

; S

2

) and S

1

� S

0

1

imply R(S

0

1

; S

2

). Simi-

larly, MON# or MON" are used for monotonicity in the second argument.

The binary universal quanti�er Q

8

, for example, is #MON and MON", while

the binary existential quanti�er Q

9

is "MON and MON".
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Incidentally, the rules of quanti�cation demonstrate that the snapshot

language for static meaning (the assertion language) has to have essentially

the same expressive power as the language for dynamic meaning (the DAL

language), for we need a static counterpart for every dynamic generalized

quanti�er.

The above axioms and rules engender a notion of K-derivation, as follows.

A K-derivation is a �nite sequence of correctness formulae F

1

; : : : ; F

n

such

that for every i, 1 � i � n, F

i

is a test axiom or a an axiom according

to the K oracle rule, or F

i

is the conclusion of an instance of one of the

inference rules while the premisses of that rule occur among F

1

; : : : ; F

i�1

.

A K-derivation F

1

; : : : ; F

n

is said to be a K-derivation of F

n

. F is called

K-derivable in the proof system if there is a K-derivation of F . Notation:

K ` F . In the next section, the soundness of this proof system relative to K

will be proved.

8. Soundness of the Calculus

An inference from premisses F

1

; : : : ; F

n

to conclusion F is called K-valid if

K validity of the premisses implies K validity of the conclusion. We will now

show that the proof system given in the previous section is correct relative

to K, i.e. for every correctness statement F :

K ` F implies K j= F:

To prove this, we �rst show that the axioms are K-valid, and next that

the inference rules preserve K-validity. The soundness result then follows by

induction on the length of derivations.

Test Axioms

The soundness of the test axioms for ? is clear from the de�nition of K

validity. For the universal axiom for R(t

1

� � � t

n

) the reasoning is as follows.

Assume a model and a state M; A such that (61).

M j= R(t

1

� � � t

n

)! ' [A]: (61)

There are two possibilities. If M j= :R(t

1

� � � t

n

) [A], then, by the seman-

tic clause for R(t

1

� � � t

n

), the output state set will be empty, so trivially

every member of this set will satisfy '. If M j= R(t

1

� � � t

n

) [A] then, by

(61), M j= ' [A]. In this case, by the semantic clause for R(t

1

� � � t

n

),

[[R(t

1

� � � t

n

)]]

M

(A) = fAg, so again every member of the output set does

satisfy '.

For the existential axiom for R(t

1

� � � t

n

), assume (62).

M j= ' ^R(t

1

� � � t

n

) [A]: (62)
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It follows immediately from the semantic clause for R(t

1

� � � t

n

) that (63).

[[R(t

1

� � � t

n

)]]

M

(A) = fAg: (63)

So there is a member of the output set which does satisfy '. The reasoning

for the universal and existential test axioms for t

1

= t

2

is similar.

K Oracle Rule

The axioms generated by the K oracle rule are valid by de�nition.

Consequence Rules

The soundness proof of the �rst consequence rule is standard (and trivial).

We prove the soundness of the second consequence rule. Assume (64), (65)

and (66).

K j= '!  : (64)

K j= h i � h�i: (65)

K j= �! �: (66)

We have to show K j= h'i � h�i. Take a model M2 K and a state A for M

such that (67).

M j= ' [A]: (67)

From (64) and (67) it follows that (68).

M j=  [A]: (68)

From (68) and (65) it follows that there is a state B 2 [[�]]

M

(A) with M j=

� [B]. From this and (66) it follows that there is a state B 2 [[�]]

M

(A) with

M j= � [B].

Rules of Composition

For the �rst rule of composition, assume (69) and (70).

M j= f'g �

1

f g [A]: (69)

M j= f g �

2

f�g [A]: (70)

What we have to show is M j= f'g �

1

; �

2

f�g [A], so we assume M j=

' [A]. Suppose some state C 2 [[�

1

; �

2

]]

M

(A). Then there is some state

B 2 [[�

1

]]

M

(A) such that C 2 [[�

2

]]

M

(B). It follows from (69) and (70) that

M j= �[C].
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For the second rule of composition, assume (71) and (72).

M j= h'i �

1

h i [A]: (71)

M j= h i �

2

h�i [A]: (72)

What we have to show isM j= h'i �

1

; �

2

h�i [A], so we assumeM j= ' [A].

From (71) it follows that there is some state B 2 [[�

1

]]

M

(A) withM j=  [B].

From (72) it follows that there is some state C 2 [[�

2

]]

M

(B) withM j= �[C],

which is what we had to prove.

Rules of Negation

If we consider :� as an abbreviation for � ) ?, we can derive the rules of

negation as follows. Assume (73).

f'g � f?g: (73)

One of the test axioms for ? gives us (74).

h?i ? h>i: (74)

Application of the �rst rule of implication to (73) and (74) gives (75).

h' ^  i � ) ? h i: (75)

This takes care of the �rst rule of negation. For the second rule, assume

(76).

h'i � h>i: (76)

One of the test axioms for ? gives (77).

f>g ? f?g: (77)

Applying the second rule of implication to (76) and (77) gives (78).

f:'!  g � )? f g: (78)

This takes care of the second rule of negation.

Rules of Implication

For the �rst rule of implication, assume (79), (80) and (81).

M j= ' ^ � [A]: (79)

M j= f'g �

1

f g [A]: (80)

M j= h i �

2

h>i [A]: (81)
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We have to show (82).

M j= h' ^ �i �

1

) �

2

h�i [A]: (82)

To show (82), we have to establish the fact that there is some state B 2

[[�

1

) �

2

]]

M

(A) with M j= � [B]. In view of (79), we are done if we can

show that [[�

1

) �

2

]]

M

(A) = fAg. For this it su�ces, by the de�nition of

the semantics for �

1

) �

2

, to show that for all B 2 [[�

1

]]

M

(A) it holds that

[[�

2

]]

M

(B) 6= ;. But this follows immediately from (80) and (81).

For the second rule of implication, assume (83), (84) and (85).

M j= ' _ � [A]: (83)

M j= h'i �

1

h i [A]: (84)

M j= f g �

2

f?g [A]: (85)

We have to show (86).

M j= f' _ �g �

1

) �

2

f�g [A]: (86)

Because [[�

1

) �

2

]] is a test, we are done if we can show that if [[�

1

)

�

2

]]

M

6= ;, then M j= � [A]. This is the case i� either [[�

1

) �

2

]]

M

= ; or

M j= � [A]. In view of the semantic clause for ) this is the case if either

there is some state B 2 [[�

1

]]

M

(A) with [[�

2

]]

M

(B) = ;, orM j= � [A]. From

(83) it follows that either M j= ' [A] or M j= � [A]. In the second case we

are done. In the �rst case, it follows from (84) and (85) that there is indeed

a state B 2 [[�

1

]]

M

(A) with [[�

2

]]

M

(B) 6= ;, which is what was to be shown.

Rules of � Assignment

For the �rst rule of � assignment, assume (87) and (88).

K j= f'g � f g: (87)

M j= 8x' [A]: (88)

We have to show (89).

M j= f8x'g �x : � f g [A]: (89)

Assume that state B 2 [[�x : �]]

M

(A). Then B 2 [[�]]

M

(A[x := d]) for some

d 2 U . It follows from (88) that M j= '[A[x := d]], so we derive from (87)

that M j=  [B].

For the second rule of � assignment, assume (90) and (91).

K j= h'i � h i: (90)

M j= 9x' [A]: (91)
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We have to show (92).

M j= h9x'i �x : � h i [A]: (92)

From (91) it follows that there is some d 2 U with M j= ' [A[x := d]],

while from (90) it follows that there is some state B 2 [[�]]

M

(A[x := d])

with M j=  [B]. By the semantic clause for � assignment it follows, then,

that B 2 [[�x : �]]

M

(A).

Rules of � Assignment

For the �rst rule of � assignment, assume (93), (94) and (95).

K j= h'i � h>i: (93)

K j= f:'g � f?g: (94)

K j= h i � h�i: (95)

Suppose (96).

M j= 9x(8y([y=x]'$ y = x) ^  ) [A]: (96)

We have to show that there is some B 2 [[�x : �]]

M

(A) with M j= � [B].

From (96) it follows that there is a d 2 U such that (97), (98) and (99).

M j= ' [A[x := d]]: (97)

For all d

0

2 U , if d

0

6= d, then M j= :' [A[x := d

0

]]: (98)

M j=  [A[x := d]]: (99)

Because of (93) and (97), [[�]]

M

(A[x := d]) 6= ; and moreover, because of

(95) and (99), there is a B 2 [[�]]

M

(A[x := d]) with M j= � [B]. Because of

(94) and (98), [[�]]

M

(A[x := d

0

]) = ; for all d

0

6= d. Thus, by the semantic

clause for � assignment, [[�x : �]]

M

(A) 6= ; and moreover B 2 [[�x : �]]

M

(A).

For the second rule of � assignment, again assume (93) and (94), and fur-

thermore, assume (100).

K j= f g � f�g: (100)

Suppose (101).

M j= 8x(8y([y=x]'$ y = x)!  ) [A]: (101)

We have to show (102).

For all B 2 [[�x : �]]

M

(A) it holds that M j= � [B]. (102)

From (101) it follows that if there is a d such that (97) and (98) then it

will hold that (99). Now assume there is no d satisfying (97) and (98).
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Then it follows from (93), (94) and the semantic clause for � assignment

that [[�x : �]](A) = ;, so trivially (102). If, on the other hand, there is a d

satisfying (97) and (98), then (99) will hold. From this and (100) we can

derive (103).

For all B 2 [[�]](A[x := d]), M j= � [B] (103)

Now recall that d is the unique object satisfying [[�]](A[x := d]) 6= ;. Thus,

B 2 [[�]](A[x := d]) i� B 2 [[�x : �]](A[x := d]), and we can derive from this

and (103) that (102).

Rules of Quanti�cation

We only treat the rules for weak readings, as the treatment of the rules

for strong readings is completely similar. For the �rst rule of quanti�cation,

assume (104), (105), (106), and (107).

K j= h'i �

1

h>i: (104)

K j= f:'g �

1

f?g: (105)

K j= h i �

1

; �

2

h>i: (106)

K j= f: g �

1

; �

2

f?g: (107)

Suppose (108).

M j= Qx(';  ) ^ � [A]: (108)

We have to establish (109).

M j= hQx(';  )i Q

w

x(�

1

; �

2

) h�i [A]: (109)

We are done if we can show that [[Q

w

x(�

1

; �

2

)]]

M

= fAg. From (108) it

follows that the sets fd 2 U j M j= ' [A[x := d]]g (call this set S

1

) and

fd 2 U j M j=  [A[x := d]]g (call this set S

2

) are in the relation I(Q)

(where I is the interpretation function of M). Suppose M j= ' [A[x := d]].

Then it follows from (104) that [[�

1

]]

M

(A[x := d]) 6= ;. Thus we have (110).

S

1

� fd j [[�

1

]]

M

(A[x := d]) 6= ;g: (110)

Suppose conversely that [[�

1

]]

M

(A[x := d]) 6= ;. Then it follows from (105)

that M 6j= :' [A[x := d]], and therefore that M j= ' [A[x := d]]. Thus we

have (111).

fd j [[�

1

]]

M

(A[x := d]) 6= ;g � S

1

: (111)

Similarly, we get from (106) that (112). and from (107) that (113).

S

2

� fd j [[�

1

; �

2

]]

M

(A[x := d]) 6= ;g: (112)

fd j [[�

1

; �

2

]]

M

(A[x := d]) 6= ;g � S

2

: (113)
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From (110) and (111) we have (114), and from (112) and (113) we have

(115).

S

1

= fd j [[�

1

]]

M

(A[x := d]) 6= ;g: (114)

S

2

= fd j [[�

1

; �

2

]]

M

(A[x := d]) 6= ;g: (115)

It follows from (114), (115) and the semantic clause for quanti�er programs

that [[Q

w

x(�

1

; �

2

)]]

M

= fAg.

Now suppose Q is #MON. Then, with S

1

; S

2

as above, S

0

1

� S

1

implies

hS

0

1

; S

2

i 2 I(Q). Thus, (111) and (115) are now enough to conclude that

[[Q

w

x(�

1

; �

2

)]]

M

= fAg, and we do not need the �rst premiss. For the cases

where Q is "MON, MON# or MON" the reasoning is similar.

For the second rule of quanti�cation, again assume (104), (105), (106),

and (107), but now suppose (116).

M j= Qx(';  )! � [A]: (116)

We can express (116) equivalently as (117).

M j= :Qx(';  ) _ � [A]: (117)

It follows from (117) that either the sets S

1

, S

2

, de�ned as above, are not in

relation I(Q) orM j= � [A]. By the same reasoning as above, the sets S

1

; S

2

are in the relation I(Q) i� program Q

w

x(�

1

; �

2

) accepts state A. Thus, by

the semantic clause for quanti�er programs, either [[Q

w

x(�

1

; �

2

)]]

M

(A) = ;

or M j= � [A]. This is what we had to show.

Again suppose Q is #MON. Then it follows from hS

1

; S

2

i 62 I(Q) and S

1

�

S

0

1

that hS

0

1

; S

2

i 62 I(Q). Thus we only need (110) to clinch the argument,

and the premiss (105) is super
uous. Similarly for the other cases.

We have now proved the following theorem.

THEOREM 8.1 (Soundness). If K ` F then K j= F .

9. Completeness of the Calculus

Suppose we establish K ` h'i �

1

) �

2

h>i for some ' with K j= '. Then it

follows by the soundness of the calculus that K j= h'i �

1

) �

2

h>i, and by

the K validity of ' that for all B in [[�

1

]]

M

(A) it holds that [[�

2

]]

M

(B) 6= ;,

for all M 2 K and all states A for M. In other words, the proof system can

be considered as an axiomatisation of the notion of dynamic consequence,

relative to classes of models K. To see that the proof system is powerful

enough we also have to establish its completeness relative to K. For this

we need the concepts of the weakest universal precondition and the weakest

existential precondition of a DAL program and a formula of the assertion

language.
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The weakest universal precondition of a DAL program � and an L formula

 is the L formula ' for which the following holds: M j= ' [A] i� for all

B 2 [[�]]

M

(A), it holds that M j=  [B] (for arbitrary M). The weakest

existential precondition of a DAL program � and an L formula  is the

L formula ' for which the following holds: M j= ' [A] i� there is a B 2

[[�]]

M

(A) with M j=  [B] (for arbitrary M).

Note that it follows immediately from these de�nitions that the weakest

universal precondition of a program � and an L formula  equals the nega-

tion of the weakest existential precondition of � and : . This is because

for all B 2 [[�]]

M

(A) it holds that M j=  [B] is equivalent to: there is no

B 2 [[�]]

M

(A) for whichM j= : [B]. This equivalence means that either of

the two notions would su�ce for what follows. For practical purposes, how-

ever, it is convenient to use both weakest universal and weakest existential

preconditions, so we will de�ne functions for both.

It is not obvious at �rst sight that the weakest universal and existential

precondition of a DAL program and an L formula always exist (as formulas

of L), so we have to show that this is indeed the case. We will inductively

de�ne functions wup(�;  ) and wep(�; ) of which we will then show that

they express the weakest universal precondition, respectively the weakest

existential precondition of � and  .

wup(?;  ) = >.

wep(?; ) = ?.

wup(R(t

1

� � � t

n

);  ) = R(t

1

� � � t

n

)!  .

wep(R(t

1

� � � t

n

);  ) = R(t

1

� � � t

n

) ^  .

wup(t

1

= t

2

);  ) = t

1

= t

2

!  .

wep(t

1

= t

2

);  ) = t

1

= t

2

^  .

wup(�

1

; �

2

;  ) = wup(�

1

;wup(�

2

;  )).

wep(�

1

; �

2

;  ) = wep(�

1

;wep(�

2

;  )).

wup(:�; ) = wep(�;>) _  .

wep(:�;  ) = wup(�;?) ^  .

wup(�

1

) �

2

;  ) = wep(�

1

;wup(�

2

;?)) _  .

wep(�

1

) �

2

;  ) = wup(�

1

;wep(�

2

;>)) ^  .

wup(�x : �; ) = 8xwup(�; ).

wep(�x : �;  ) = 9xwep(�; ).

wup(�x : �;  ) = 8x(8y([y=x]wep(�;>)$ y = x)! wup(�; )).

wep(�x : �; ) = 9x(8y([y=x]wep(�;>)$ y = x) ^wep(�; )).

wup(Q

w

x(�

1

; �

2

);  ) = Qx(wep(�

1

;>);wep(�

1

;wep(�

2

;>)))!  .

wep(Q

w

x(�

1

; �

2

);  ) = Qx(wep(�

1

;>);wep(�

1

;wep(�

2

;>))) ^  .

wup(Q

s

x(�

1

; �

2

);  ) = Qx(wep(�

1

;>);wup(�

1

;wep(�

2

;>)))!  .

wep(Q

s

x(�

1

; �

2

);  ) = Qx(wep(�

1

;>);wup(�

1

;wep(�

2

;>))) ^  .

To show that these functions indeed give the weakest universal and exis-

tential preconditions of a program and a formula, a case by case check is

necessary. The cases of atomic programs are checked directly, and induction
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is used to check the cases of complex programs.

Atomic Test Programs

We only treat the case of R(t

1

� � � t

n

), the cases of? and t

1

= t

2

being similar.

A state A for modelM satis�es the weakest existential precondition of a test

R(t

1

� � � t

n

) and a formula  by de�nition of weakest existential precondition

i� there is a state B with B 2 [[R(t

1

� � � t

n

)]]

M

(A) and M j=  [B]. By the

semantic clause for atomic tests, this is the case i�M j= R(t

1

� � � t

n

) [A] and

M j=  [A]. This in turn is the case i� M j= R(t

1

� � � t

n

) ^  [A]. Thus, the

weakest existential precondition of R(t

1

� � � t

n

) and  is R(t

1

� � � t

n

) ^  .

A state A for model M satis�es the weakest universal precondition of

a test R(t

1

� � � t

n

) and a formula  by de�nition of weakest universal pre-

condition i� for every state B with B 2 [[R(t

1

� � � t

n

)]]

M

(A) it holds that

M j=  [B]. By the semantic clause for atomic tests, this is the case i� it

holds that if M j= R(t

1

� � � t

n

) [A] then M j=  [A]. This in turn is the case

i� M j= R(t

1

� � � t

n

) !  [A]. Thus, the weakest universal precondition of

R(t

1

� � � t

n

) and  is R(t

1

� � � t

n

)!  .

Composition

Left to the reader.

Negation

A state A for model M satis�es the weakest existential precondition of a

program :� and a formula  by de�nition of weakest existential precondition

i� there is a state B with B 2 [[:�]]

M

(A) and M j=  [B]. By the semantic

clause for negation this is the case i� [[�]]

M

(A) = ; and M j=  [A]. By the

induction hypothesis this is the case i� M j= wup(�;?) ^  [A]. Thus, the

weakest existential precondition of :� and  is wup(�;?) ^  .

A state A for model M satis�es the weakest universal precondition of a

program :� and a formula  by de�nition of weakest universal precondition

i� for all states B with B 2 [[:�]]

M

(A) it holds that M j=  [B]. By the

semantic clause for negation this is the case i� it holds that either [[�]]

M

(A) =

; orM j=  [A]. By the induction hypothesis this is the case i� eitherM j=

wep(�;>) [A] or M j=  [A]. This is the case i� M j= wep(�;>) _  [A].

Thus, the weakest universal precondition of :� and  is wep(�;>) _  .

Implication

A state A for model M satis�es the weakest existential precondition of

a program �

1

) �

2

and a formula  by de�nition of weakest existential

precondition i� there is a state B with B 2 [[�

1

) �

2

]]

M

(A) andM j=  [B].
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By the semantic clause for implication this is the case i� for all B with

B 2 [[�

1

]]

M

(A) it holds that [[�

2

]]

M

(B) 6= ;, and M j=  [A]. By the

induction hypothesis this is the case i� M j= wup(�

1

;wep(�

2

;>)) [A] and

M j=  [A]. This is the case i�M j=wup(�

1

;wep(�

2

;>))^ [A]. Thus, the

weakest existential precondition of �

1

) �

2

and  is wup(�

1

;wep(�

2

;>))^

 .

A state A for model M satis�es the weakest universal precondition of

a program �

1

) �

2

and a formula  by de�nition of weakest universal

precondition i� for all states B with B 2 [[�

1

) �

2

]]

M

(A) it holds that

M j=  [B]. By the semantic clause for implication this is the case i�

either there is some state B with B 2 [[�

1

]]

M

(A) and [[�

2

]]

M

(B) = ;,

or M j=  [A]. By the induction hypothesis this is the case i� either

M j= wep(�

1

;wup(�

2

;?)) [A] or M j=  [A]. This is the case i� M j=

wep(�

1

;wup(�

2

;?)) _  [A]. Thus, the weakest universal precondition of

�

1

) �

2

and  is wep(�

1

;wup(�

2

;?)) _  .

� Assignment

Left to the reader.

� Assignment

A state A for modelM satis�es the weakest existential precondition of a pro-

gram �x : � and a formula  by de�nition of weakest existential precondition

i� there is a state B with B 2 [[�x : �]]

M

(A) andM j=  [B]. By the seman-

tic clause for � assignment, this is the case i� there is a unique d for which

[[�]]

M

(A[x := d]) 6= ;, and moreover for this particular d there is a state B

with B 2 [[�]]

M

(A[x := d]) and M j=  [B]. By the induction hypothesis

this is the case i� for some x, both M j= 8y([y=x]wep(�;>) $ y = x) [A]

and M j= wep(�;  ) [A]. This is the case i� (118).

M j= 9x(8y([y=x]wep(�;>)$ y = x) ^wep(�;  )) [A]: (118)

Thus, the weakest existential precondition of �x : � and  is (119).

9x(8y([y=x]wep(�;>)$ y = x) ^wep(�; )): (119)

A state A for model M satis�es the weakest universal precondition of a

program �x : � and a formula  by de�nition of weakest universal precon-

dition i� for all states B with B 2 [[�x : �]]

M

(A) it holds that M j=  [B].

By the semantic clause for � assignment, this is the case i� it holds that

if there is a unique d with [[�]]

M

(A[x := d]) 6= ;, then any state B with

B 2 [[�]]

M

(A[x := d]) will have M j=  [B]. By the induction hypothesis

this is the case i� for any x, M j= 8y([y=x]wep(�;>)$ y = x) [A] implies

M j= wup(�;  ). This is the case i� M j= 8x(8y([y=x]wep(�;>) $ y =
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x) ! wup(�; )) [A]. Thus, the weakest universal precondition of �x : �

and  is (120).

8x(8y([y=x]wep(�;>)$ y = x)! wup(�;  )): (120)

Quanti�cation

We only give the reasoning for the weakest existential precondition of weak

readings. A state A for model M satis�es the weakest existential precon-

dition of a program Q

w

x(�

1

; �

2

) and a formula  by de�nition of weakest

existential precondition i� there is a state B with B 2 [[Q

w

x(�

1

; �

2

)]]

M

(A)

and M j=  [B]. By the semantic clause for quanti�cation, this is the case

i� the sets given by (121) and (122) are in the relation I(Q) and moreover

M j=  [A].

fd j [[�

1

]]

M

(A[x := d]) 6= ;g (121)

fd j [[�

1

; �

2

]]

M

(A[x := d]) 6= ;g (122)

By the induction hypothesis and the semantic rule for ; , this is the case

i� the sets given by (123) and (124) are in relation I(Q), and moreover

M j=  [A].

fd j M j=wep(�

1

;>) [A]g (123)

fd j M j=wep(�

1

;wep(�

2

;>)) [A]g (124)

By the semantic properties of Q, this in turn is the case i� (125).

M j= Qx(wep(�

1

;>);wep(�

1

;wep(�

2

;>))) ^  : (125)

Thus, the weakest existential precondition of Q

w

x(�

1

; �

2

) and  isQx(wep(�

1

;>);wep(�

1

;wep(�

2

;>)))^

 .

This completes the proof that the de�nitions of wep and wup are indeed

adequate, in other words we have established the following.

LEMMA 9.1 (wep/wup adequacy). For allM 2 K, all states A forM,

all  2 L, and all � 2 DAL:

M j= wup(�;  ) [A] i� it holds for all B 2 [[�]]

M

(A) that M j=  [B]:

M j= wep(�; ) [A] i� there is a B 2 [[�]]

M

(A) with M j=  [B]:

Next, we show that for all � 2 DAL and for all  2 L we have that K `

hwep(�;  )i � h i and K ` fwup(�;  )g � f g. Again, we proceed by way

of an induction argument.
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Atomic Test Programs

We only prove the result for the case of R(t

1

� � � t

n

), the other atomic cases

being similar. Assume K j= hwep(R(t

1

� � � t

n

);  )i R(t

1

� � � t

n

) h i. By the

de�nition of wep this is equivalent to K j= hR(t

1

� � � t

n

)^ i R(t

1

� � � t

n

) h i.

By the existential test axiom, (126).

K ` hR(t

1

� � � t

n

) ^  i R(t

1

� � � t

n

) h i: (126)

For the universal case, assume (127).

K j= fwup(R(t

1

� � � t

n

);  )g R(t

1

� � � t

n

) f g: (127)

By the de�nition of wup, (127) is equivalent to (128).

K j= fR(t

1

� � � t

n

)!  g R(t

1

� � � t

n

) f g:: (128)

By one of the test axioms, (129).

K ` fR(t

1

� � � t

n

)!  g R(t

1

� � � t

n

) f g: (129)

Composition

Assume K j= hwep(�

1

; �

2

;  )i �

1

; �

2

h i. By the de�nition of wep, this is

equivalent to K j= hwep(�

1

;wep(�

2

;  ))i �

1

; �

2

h i. By the wep adequacy

lemma, (130) and (131).

K j= hwep(�

1

;wep(�

2

;  ))i �

1

hwep(�

2

;  )i: (130)

K j= hwep(�

2

;  )i �

2

h i: (131)

By the induction hypothesis, (130) and (131) yield (132) and (133).

K ` hwep(�

1

;wep(�

2

;  ))i �

1

hwep(�

2

;  )i: (132)

K ` hwep(�

2

;  )i �

2

h i: (133)

Applying the existential composition rule to (132) and (133) gives (134).

K ` hwep(�

1

;wep(�

2

;  ))i �

1

; �

2

h i: (134)

The reasoning for universal assertions about weakest universal preconditions

of programs of the form �

1

; �

2

is similar.

Negation

Assume K j= hwep(:�;  )i :� h i. By the de�nition of wep, this is equiv-

alent to K j= hwup(�;?)^  i :� h i. By the wup adequacy lemma, (135)

K j= fwup(�;?)g � f?g: (135)
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By the induction hypothesis, (135) yields (136).

K ` fwup(�;?)g � f?g: (136)

An application of one of the negation rules to (136) gives (137).

K ` hwup(�;?) ^  i :� h i: (137)

The reasoning for universal assertions about weakest universal preconditions

for programs of the form :� is similar.

Implication

Assume K j= hwep(�

1

) �

2

;  )i �

1

) �

2

h i. By the de�nition of wep,

this is equivalent to K j= h(wup(�;wep(�

2

;>)) ^  )i �

1

) �

2

h i. By the

wup and wep adequacy lemma, (138) and (139).

K j= fwup(�

1

;wep(�

2

;>))g �

1

fwep(�

2

;>)g: (138)

K j= hwep(�

2

;>)i �

2

h>i: (139)

By the induction hypothesis, (138) yields (140) and (139) yields (141).

K ` fwup(�

1

;wep(�

2

;>))g �

1

fwep(�

2

;>)g: (140)

K ` hwep(�

2

;>)i �

2

h>i: (141)

Now apply the �rst rule of implication to (140), (141):

K ` fwup(�

1

;wep(�

2

;>))g �

1

) �

2

f g: (142)

The reasoning for universal assertions about weakest universal preconditions

for programs of the form �

1

) �

2

is similar.

� Assignment

Assume K j= hwep(�x : �;  )i �x : � h i. By the de�nition of wep this is

equivalent to K j= h9xwep(�; )i �x : � h i. By the wep adequacy lemma,

(143).

K j= hwep(�; )i � h i: (143)

By the induction hypothesis, (143) yields (144).

K ` hwep(�;  )i � h i: (144)

An application of the existential � assignment rule to (144) gives (145).

K ` h9xwep(�;  )i �x : � h i: (145)

The reasoning for universal assertions about weakest universal preconditions

for programs of the form �x : � is similar.
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� Assignment and Quanti�cation

Left to the reader.

We have now established the following lemma.

LEMMA 9.2 (wep/wup derivability). For all � 2 DAL and for all  2

L,

K ` hwep(�;  )i � h i and K ` fwup(�;  )g � f g:

The rest of the proof of the completeness result is very easy. We want to

show that K j= F implies K ` F . In case F equals ' for some ' 2 L, K j= '

implies K ` ' by the K oracle rule. For the case where F equals h'i � h i

the reasoning is as follows. Assume (146).

K j= h'i � h i: (146)

By the wep adequacy lemma it follows from (146) that (147).

K j= '! wep(�;  ): (147)

From this, by the K oracle rule, (148).

K ` '! wep(�; ): (148)

From the wep/wup derivability lemma we have (149).

K ` hwep(�;  )i � h i: (149)

From (148) and (149) by an application of the existential consequence rule,

(150).

K ` h'i � h i: (150)

By similar reasoning we derive from (151) that (152).

K j= f'g � f g: (151)

K ` f'g � f g: (152)

This completes the proof of the �nal result of this section.

THEOREM 9.3 (Completeness). If K j= F then K ` F .
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10. Use of the Calculus

The discussion of weakest preconditions in Section 9 will have made clear

that the rules of the calculus are given in a format particularly suited to

the calculation of weakest universal and existential preconditions. To �nd

the weakest existential precondition of a program � and a formula  , pro-

ceed as follows. Start with the conclusion h?i � h>i, and apply the rules of

the calculus working backwards, thus decomposing �. This will eventually

produce a formula ' to �ll the ? slot. Thus, as explained in Section 7, the

calculus allows us to calculate the static meanings of (the DAL translations

of) natural language example sentences. As a �rst example, we calculate the

static meaning of the conditional donkey sentence given in (5), with DAL

translation (7), which is repeated here for convenience.

(�x : Gx; �y : By; Hxy)) Txy: (153)

We want to �nd the weakest precondition ' such that (154).

h'i (�x : Gx; �y : By; Hxy)) Txy h>i: (154)

According to the existential rule for implication, the formula ' we are looking

for is the weakest formula for which we can �nd a  satisfying the following:

�

�

�

f'g �x : Gx; �y : By; Hxy f g

�

�

�

h i Txy h>i

h'i (�x : Gx; �y : By; Hxy) ) Txy h>i:

To �nd ' in terms of  , look for a � satisfying the following:

�

�

�

f'g �x : Gx; �y : By f�g

�

�

�

f�g Hxy f g

f'g �x : Gx; �y : By f g:

Now we can compute ' in terms of �, as follows:

fGx! 8y(By ! �)g Gx f8y(By ! �)g

f8x(Gx! 8y(By ! �))g �x : Gxf8y(By ! �)g

fBy ! �g By f�g

f8y(By ! �)g �y : By f�g

f8x(Gx! 8y(By ! �))g �x : Gx; �y : By f�g:

To �nd � in terms of  , apply the universal axiom for atomic tests (155).

fHxy !  g Hxy f g: (155)

Finally, to �nd  , we apply the existential axiom for atomic tests (156).

hTxyi Txy h>i: (156)
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Combining these results we �nd the end result of the whole computation

(157).

8x(Gx! 8y(By ! (Hxy ! Txy))): (157)

From the fact that the procedure calculates the weakest precondition under

which (153) can succeed it follows that (157) is the static meaning of this

program.

Next we show that) can be de�ned in terms of ; and :, by deriving two

rules for :(�

1

; :�

2

) which are identical to the rules for dynamic implication.

To derive the �rst rule of implication, assume (158) and (159).

f'g �

1

f g: (158)

h i �

2

h>i: (159)

Using the two negation rules and the universal rule of sequential composi-

tion, we get the following derivation.

f'g �

1

f g

h i �

2

h>i

f g :�

2

f?g

f'g �

1

; :�

2

f?g

h' ^ �i :(�

1

; :�

2

) h�i:

This gives the following derived rule:

f'g �

1

f g h i �

2

h>i

h' ^ �i :(�

1

; :�

2

) h�i:

For the second rule of implication, start with (160) and (161).

h'i �

1

h i: (160)

f g �

2

f?g: (161)

Applying the two rules of negation and the existential rule of sequential

composition now gives the following derivation.

h'i �

1

h i

f g �

2

f?g

h i :�

2

h>i

h'i �

1

; :�

2

h>i

f' _ �g :(�

1

; :�

2

) f�g:

This gives the following derived rule:

h'i �

1

h i f g �

2

f?g

f' _ �g :(�

1

; :�

2

) f�g:
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Next, we derive the static meaning of (38) (under its weak reading), the

translation of which is repeated here for convenience.

most

w

v

1

(Gv

1

; �v

2

: Bv

2

; Hv

1

v

2

; Tv

1

v

2

): (162)

We want to �nd the weakest precondition ' for which (163).

h'i most

w

v

1

(Gv

1

; �v

2

: Bv

2

; Hv

1

v

2

; Tv

1

v

2

) h>i: (163)

By the �rst quanti�er rule, we know that ' equals most

w

v

1

( ; �), where

 and � are given by (164), (165), (166), and (167).

h i Gv

1

; �v

2

: Bv

2

; Hv

1

v

2

h>i: (164)

f: g Gv

1

; �v

2

: Bv

2

; Hv

1

v

2

f?g: (165)

h�i Gv

1

; �v

2

: Bv

2

; Hv

1

v

2

; Tv

1

v

2

h>i (166)

f:�g Gv

1

; �v

2

: Bv

2

; Hv

1

v

2

; Tv

1

v

2

f?g: (167)

Note that (165) and (167) are only there to guarantee that  and � are

weakest existential preconditions of the given programs with respect to >.

The quanti�er rule says that the rule in this case would still hold if we omit

(167) (by virtue of the fact thatmost is MON"), but of course then there is

no guarantee anymore that most v

1

( ;�) expresses the weakest existential

precondition of (162) with respect to >. However, if we take care not to

use the consequence rules we calculate weakest preconditions anyway, so

then we can omit (165) and (167) and still arrive at the weakest existential

precondition of (162) with respect to >.

To calculate the value of  , according to the existential rule of sequential

composition we have to �nd a  

0

satisfying the following:

�

�

�

h i Gv

1

; �v

2

: Bv

2

h 

0

i

�

�

�

h 

0

i Hv

1

v

2

h>i

h i Gv

1

; �v

2

: Bv

2

; Hv

1

v

2

h>i:

The following derivation gives us the value for  in terms of  

0

.

hGv

1

^ 9v

2

(Bv

2

^  

0

)i Gv

1

h9v

2

(Bv

2

^  

0

)i

hBv

2

^  

0

i Bv

2

h 

0

i

h9v

2

(Bv

2

^  

0

)i �v

2

: Bv

2

h 

0

i

hGv

1

^ 9v

2

(Bv

2

^  

0

)i Gv

1

; �v

2

: Bv

2

h 

0

i:

The existential axiom for atomic tests yields that  

0

has the value Hv

1

v

2

,

so the outcome of the whole computation of  is given in (168).

Gv

1

^ 9v

2

(Bv

2

^Hv

1

v

2

): (168)

A similar derivation gives the value for �:

Gv

1

^ 9v

2

(Bv

2

^Hv

1

v

2

^ Tv

1

v

2

)): (169)
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Thus, we arrive at the following static meaning for (162):

most v

1

(Gv

1

^ 9v

2

(Bv

2

^Hv

1

v

2

); (170)

Gv

1

^ 9v

2

(Bv

2

^Hv

1

v

2

^ Tv

1

v

2

)):

One �nal remark on the fact that our calculus is geared to �nding precon-

ditions, given a program and an output condition. We hope to have demon-

strated the usefulness of this in the above examples. However, one might also

be interested in calculating postconditions (which of course is possible with

the calculus). It is straightforward to check the following. For a program �

which is a test, calculating the weakest existential precondition of � with re-

spect to > is equivalent to calculating the strongest universal postcondition

of � with respect to >. For programs which are not tests, this equivalence

breaks down, but in such cases there is a di�erent reason for being interested

in postconditions. The strongest universal postcondition with respect to >

of a program � which is not a test will have free occurrences of precisely

those variables that are available for external dynamic binding in programs

�

0

following �.

11. Dynamic Logic and (Non) Monotonicity

It is possible to characterize the di�erence between the languages DAL and

DAL

0

in terms of the axioms of our calculus, by adding the following rule

to the calculus to make it applicable to DAL

0

programs.

Monotonicity Rule

f'g �

1

f g

f'g �

1

; �

2

f g, provided fv(') = ;.

This rule can be proved sound by induction on the complexity of �

2

. In the

basic case �

2

has the form of a basic test, let us say �

2

equals R(t

1

� � � t

n

).

Then certainly one can safely conclude from f'g �

1

f g to f'g �

1

; R(t

1

� � � t

n

) f g,

because of the fact that R(t

1

� � � t

n

) is a test and the fact that the conclusion

is a conditional statement.

In the induction step, all DAL

0

constructs which form test programs pose

no di�culty, again because of the fact that the conclusion of the Monotonic-

ity Rule is a conditional statement. Thus, the only programming constructs

that could cause trouble are sequential composition and � and � assignment.

Assume that �

2

has the form �

0

; �

00

. Then we can use the induction

hypothesis to conclude from f'g �

1

f g to f'g �

1

; �

0

f g, and use the

induction hypothesis again to conclude from this to f'g �

1

; �

0

; �

00

f g.

Assume that �

2

has the form �x : �

0

. Also assume f'g �

1

f g, with

fv(') = ;. We have to show that one can safely conclude f'g �

1

; �x : �

0

f g.

First observe that the induction hypothesis gives us: from f'g �

1

f g one
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can conclude f'g �

1

; �

0

f g. Thus, there is some � with f'g �

1

f�g and

f�g �

0

f g. Moreover, since fv(') = ;, we may assume fv(�) � av(�

1

) (use

a simple induction argument). Now it follows from the fact that program

�

1

; �x : �

0

is a DAL

0

program that x =2 fv(�). Thus, 9x� is equivalent

to �, as the quanti�cation over x is vacuous. Thus we can conclude from

f'g �

1

f�g to f'g �

1

f9x�g. From f�g �

0

f g, derive with the universal

rule for � assignment that f9x�g �

0

f g. Then the universal composition

rule allows us to conclude that f'g �

1

; �x�

0

f g. The reasoning for the case

of � assignment is similar. This completes the proof of the soundness of the

Monotonicity Rule for DAL

0

programs.

We can use the monotonicity rule to infer from (171) that (172).

h'i �

1

) �

2

h>i: (171)

h'i (�

1

; �

0

1

)) �

2

h>i: (172)

Conditions: the precondition formula ' should not have any free variables,

and the programs in (171) and (172) should be DAL

0

programs.

SinceM j= �

1

) �

2

[A] i� it holds that ifM j= �

1

[A] thenM j= �

2

[A],

this shows that dynamic consequence for DAL

0

programs is monotonic (pro-

vided no program variable is used without previous assignment). It should

be noted that all DAL translations of natural language examples in this pa-

per are indeed DAL

0

programs where no program variables are used without

previous assignment.

12. Conclusion

In this paper we have demonstrated the potential of the use of tools from pro-

gramming language semantics for the semantics of natural language. While

� and � assignment can in principle be decomposed in random assignment

with subsequent testing, we have two reasons for preferring the treatment we

gave. In the �rst place, extending the treatment of de�nite descriptions with

an account of their presuppositions (which is an obvious next move in the

framework we have presented) would make a decomposition of � assignment

impossible or at least very impractical. Secondly, and more importantly, �

and � assignments are to be preferred over a decomposition in terms of

random assignment plus subsequent testing because the introduction of an

individual by a de�nite or an inde�nite noun phrase gets an exact counter-

part in the dynamic translation language. In other words, the real merit of

� and � assignments is that they allow faithfulness to linguistic form.

Instead of the universal and existential Hoare-style correctness state-

ments that we employed we might have used the toolkit of dynamic logic (cf.

[Harel, 1984: 497{604]). Replacing f'g � f g by '! [�] and h'i � h i by

' ! h�i is all there is to such a change. Still, we prefer our notation, for

several reasons. In the �rst place, it is less cluttered than the dynamic logic
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notation. Next, the full expressive power of dynamic logic is not needed for

our purposes, so it seems wiser to choose a tool that �ts the requirements

more precisely. Finally, the static f'g and h'i statements can be used as

comments to annotate DAL programs, thus providing proof outlines for de-

riving the static meanings of programs.

A set-up where quanti�ers, negations, and implications act as tests, and

where descriptions are virtually the only externally dynamic elements, will

be very strict about which anaphoric links are possible. The framework as

it has been set up above does correctly predict that the anaphoric links

suggested by the indices in (173) are out.

No boy

1

owned a car

2

.

�

He

1

washed it

2

. (173)

The reason for this is our assumption that quanti�ers act externally as tests.

The binary quanti�er that translates no acts externally as a test, so after

the processing of the �rst sentence of discourse (173) we are back with the

initial state, and the two pronouns in the second sentence will not get proper

referents. It is well-known, however, that relaxations are necessary to deal

with the external dynamic e�ects of symmetric quanti�ers and with various

cases of so-called subordination (see for example [Roberts, 1989: 683{712]

and [Heim, 1990: 137{177]). Our next self-imposed task is to extend and

modify the framework to deal with such cases.
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