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Traditionally permanent acoustic sensors leak detection techniques have been proven to be very effective in water distribution
pipes. However, these methods need long distance deployment and proper position of sensors and cannot be implemented on
underground pipelines. An inline-inspection acoustic device is developed which consists of acoustic sensors.The device will travel
by the flow of water through the pipes which record all noise events and detect small leaks. However, it records all the noise events
regarding background noises, but the time domain noisy acoustic signal cannot manifest complete features such as the leak flow
rate which does not distinguish the leak signal and environmental disturbance. This paper presents an algorithm structure with
the modularity of wavelet and neural network, which combines the capability of wavelet transform analyzing leakage signals and
classification capability of artificial neural networks.This study validates that the time domain is not evident to the complete features
regarding noisy leak signals and significance of selection of mother wavelet to extract the noise event features in water distribution
pipes. The simulation consequences have shown that an appropriate mother wavelet has been selected and localized to extract the
features of the signal with leak noise and background noise, and by neural network implementation, the method improves the
classification performance of extracted features.

1. Introduction

Not only is leakage from distribution pipes a wastage of
water resources, but also it includes environmental resources
and social and economic losses and can potentially allow
harmful contaminates into the water. Because of leakages and
pipe failures, a significant amount of water is lost during
supply to customers [1]. All over the world, more than 32
billion m3 of potable water is lost, which is greater than
35% of total water supplied [2]. Water supply is an energy-
intensive industry, which utilizes 2-3% of the global energy
[3]. Therefore, leakage in water distribution networks is also
the waste of a significant amount of energy.There are various
types of water pipes materials and leaking effects in water
distribution systems; therefore, currently, leak detection and
localization are a challenging task for water distribution
companies.

Acoustic leak detection techniques have been proven to
be very effective for finding leaks inwater pipelines. However,
traditional acoustic techniques are fixed and focused on
longitudinal deployment and spacing between sensors on the
pipeline. In fixed sensors on metal pipes, sensor-to-sensor
spacing can possibly be between 200m and 500m, which
due to low-frequency vibration signals in plastic pipesmay be
up to 100m, as the shorter the sensor spacing, the better the
leak detection and localization [4]. Because these techniques
utilize permanent monitoring sensors based on acoustics,
operational change is not possible [5]. The deployment
cost is high, and it is very challenging to find small leaks
regardless of their location on the pipeline. Ground surface
listening devices work almost directly over the leak site,
but these methods are not practically suitable, especially
for long transmission pipelines and underground pipelines
[6].
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Figure 1: (a) In-line acoustic device. (b) Schematic diagram of in-line leakage inspection.

Hence, these traditional acoustic methods are costly and
are unable to identify small leaks in the line, and undetected
small leaks may cause a very high maintenance cost and have
the possibility of developing severe failures. Nevertheless, to
overcome these boundaries, an in-line acoustic inspection
device is designed, known as free-swimming device [7], as
shown in Figure 1(a). The free-swimming device has a spher-
ical shape and smaller size than the diameter of the water
distribution pipeline, and due to the sensitivity of acoustic
leak detection, it is capable of 100% coverage of in-line
inspection. It consists of acoustic sensors and is pushed by
the flow of water in the pipeline; the device records all noise
events as it moves with the flow in the pipeline as demon-
strated in Figure 1(b). Pig traps can be used to insert and
remove the device; its size and shape allow it to go through
obstacles, otherwise rendering a pipeline unpiggable [7].

Li et al. debated the variety of hardware- and software-
based leak detection approaches and hypothetically proposed
that hardware-based and software-based methods together
can be efficient for water leakage detection analysis [8].
In-line acoustic device investigation is demonstrated by
combining the hardware and software applications (wavelet
transform). The aim of this research is to propose a cost-
effective in-line acoustic leakage inspection methodology
with the strength of wavelet transform and neural network.
This study also demonstrates the time domain unable to
interpret the complete information of a noisy signal in water-
filled pipes.The appropriate mother wavelet is used to extract
features of in-line inspected leakage signals (background
noise and the leak characteristics) and the artificial neural
network improves the classification performance of extracted
features consequently.

2. In-Line Acoustic Signal
Processing and Significance of Wavelet
Transform in Water-Filled Pipes

Acoustic leakage signals in water distribution pipelines are
influenced by many factors, such as background noise, pres-
sure [9], and size of leak [10], so it is of significant advantage
to extract features from the signal. However, very few studies
have inspected the features of acoustic signal emission using
wavelet transform. Mostly, these researchers have focused
on permanent acoustic sensors techniques outside the water
pipeline [11, 12]. Perhaps no study has focused on the
in-line acoustic leakage signal features. The time domain was

unable to interpret the noisy leakage signal characteristics in
water pipes. However, there are various techniques available
to distinguish among these features within the signal, such
as Shannon transform, Fourier transform, and short-time
Fourier transform (STFT). Although Shannon transform
provides good time resolution but no frequency information,
Fourier transform cannot localize time and STFT, where the
trade-off between time and frequency resolution is defined
by the length of the integration of the window. The wavelet
transformprovides excellent time and frequency localization.
Nevertheless, the most important issue is the selection of a
mother wavelet; there is no universal method available which
can demonstrate the selection of the best mother wavelet
from this perspective. It depends upon both the motive of
the study and the features of the signal to be analyzed [13].
This section introduces the wavelet transform and describes
the importance of selection of the mother wavelet in water
distribution pipes. The real-time signal processing results
methodology is comprised of the following three main steps:

(1) Frequency Analysis. Fast Fourier transform is used to
identify the leakage signatures of in-line inspected
acoustic signals.

(2) Tuning Wavelet Transform. The appropriate mother
wavelet is selected by visual analysis of shape and co-
relating coefficients of real-time acoustic signals.

(3) Acoustic Signal Features Extraction. Identification of
leakage and background noise is carried out with the
selected appropriate mother wavelet.

2.1. Wavelet Transform. Awavelet is a small oscillating wave-
form of a limited interval, which begins at an amplitude
of zero and then increases and then decreases back to zero
value, and is usually used to overcome the time and frequency
localization limitations of Shannon, Fourier, and STFT [14].
The wavelet transform employs an inner product comparable
to Fourier transform and evaluates the signal’s correlation
to a mother wavelet. The signal is analyzed to a stretched
or compressed version of mother wavelet and the level at
which this occurs is referred to as scaling; hence, wavelet
transform shifts to a function of scale and position. The
wavelet transform of a signal 𝑓(𝑡) is defined with regard to
cross-correlation 𝜓(𝑎,𝑏) [11].

WT𝑥 (𝑎, 𝑏) ≜ ∫𝑓 (𝑡) 𝜓(𝑎,𝑏) (𝑡) 𝑑𝑡, (1)
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Figure 2: Scalogram of the wavelet transform of 𝑓(𝑡) applying (a) “Gaussian 8” and (b) “Shannon 1-2.”

where the mother wavelet function, 𝜓(𝑎,𝑏), is defined as

𝜓(𝑎,𝑏)𝑡 = 1
√𝑎𝜓(𝑡 − 𝑏

𝑎 ) 𝑎 > 0, −∞, < 𝑏 < ∞. (2)

In (2), the different scales at time 𝑡 correspond to the mother
wavelet function 𝜓(𝑎,𝑏), where 𝑎 and 𝑏 are dilation and
translation parameters, respectively. It is noticeable that the
variations in 𝑡 produce a significant change in 𝜓(𝑎,𝑏). Thus,
through decreasing and increasing the 𝑎 value, a change
also occurs in 𝜓(𝑎,𝑏), resulting in the mother wavelet dilation
(stretching or compression), whenever more dilated and
contracted wavelets are related to higher and lower fre-
quencies (upper and lower wavelet scales), respectively [15].
Equations (1) and (2) describe where the wavelet transform
efficiently distinguishes the signal’s frequency bands, and
aforementioned methods have no such capability which can
trade off within time and frequency resolution like STFT.

2.2. The Importance of Selection of Mother Wavelet in Water
Distribution Pipes. There are an enormous number ofmother
wavelets available, all with different properties of localization
and scales. The choice of the suitable mother wavelet plays
a significant role in generating valuable information as each
mother wavelet produces different results [16]. Some studies
investigated and proved that wavelet transform is applied
efficiently to extract the features of signals. But still, limited
studies have examined the notion that leak wavelet transform
extracts features of the leak signals in plastic water distribu-
tion pipes, but still there is no conventional method which
recommends how to choose the appropriate mother wavelet
in this perspective. “Daubechies”mother wavelet is presented
for denoising leak signals in water distribution pipes [17] but
the aim of selecting the mother wavelet is not explored. The
selection of an appropriate mother wavelet based on leakage
signal and ambient noise could be very effective for real-time
leak detection systems [11]. The proper selection of a mother
wavelet varies for every signal [18], and a particular mother
wavelet can be applicable to a specific problem [15], which
is predictable to provide different localization of signals.
“Daubechies” mother wavelets are more suitable for systems
with a high level of vibration damping. In conditions with

average damping, the “Morlet,” “Splin,” and “Jaffard” mother
wavelets are appropriate for systems.

In in-line water distribution pipelines, acoustic signals
are noisy and are encompassed with different frequencies;
therefore, the time domain cannot manifest the complete
information about the leakage signal and to some extent
features completely hidden inside the acoustic signal. This
part of study incredibly validates that the time domain is not
evident to the complete features regarding the noisy signal
and also emphasizes the importance of selection of suitable
mother wavelet.

Example 1. Suppose the signal𝑓(𝑡) comprises the sum of two
frequencies: 𝐹1 = 15Hz (normal frequency) and 𝐹2 = 60Hz
(leak frequency), which is corrupted by normally distributed
white noise.The signal has 1 kHz sampling rate and a duration
of 1000 milliseconds (ms). The comprised signal includes
three events: 𝐹1 = 15Hz lies in the intervals [0 300]ms and
[700 1000]ms and the third event 𝐹2 = 50Hz lies in the
interval [300 700]ms as shown in Figure 2; that is,

𝑓 (𝑡) = cos (2𝜋𝑡𝐹1) ((𝑡 < 0.3) + (𝑡 > 0.7))
+ cos (2𝜋𝑡𝐹2) (𝑡 > 0.3) (𝑡 < 0.7) . (3)

In this example, two experiments are carried out: one with
closely related suitable mother wavelet and the other when
themother wavelet is not suitably chosen. First, the “Gaussian
8” mother wavelet was selected, which coincides with the
events in the noisy signal.The visual scalogram [19] exhibited
how events vary inside the signal, although the time domain
signal 𝑓(𝑡) is not apparent about the diversification of events
for the interval of [300 700]ms as shown in Figure 2(a).
It is observed that the scalogram of “Gaussian 8” wavelet
transform has localized all events, 𝐹1 = 15Hz, for the period
of [0 300]ms, and𝐹2 = 60Hz, for the time of [300 700]ms,
and the wavelet transform also reveals the higher frequency
components of the signal that lies at 10 < 𝑎 < 40.

Furthermore, in the result of the inappropriate selection
of mother wavelet, the wavelet transform reveals little or
no resemblance to noisy signal events. The scalogram of
“Shannon 1-2” demonstrates that the events are not identified
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and localized due to poor choice of mother wavelet as
shown in Figure 2(b). This analysis has confirmed that the
time domain could not explain the hidden events inside the
noisy signal such as in water distribution pipes. The proper
selection of mother wavelet can be employed to extract the
composed features from the in-line acoustic signal.

3. In-Line Leakage Signal Features
Classification Based on Neural Network

Neural network theory and technology advancements have
changed the traditional way of thinking and opened new
ways to solve complex problems in various applications. The
significance of wavelet transform is to identify the leakage
features incorporated or hidden inside the noisy time domain
acoustic signal. The neural network classification improves
the performance of defined features, and it may be used to
estimate the size of the leak. In this section, the backpropaga-
tion neural network (BPNN) model is introduced for the in-
line acoustic leak detection system. However, BPNN model
performs adequately for leakage signal classification, but due
to the sluggish reduction of mean square error (MSE), it
influences the learning time and classification performance
of acoustic signal features. Hence, to overcome the issue
of stagnation performance and convergence time, the MSE
function is replaced by cross-entropy (CE) error function.

The results of the optimized BPNN model are given in
Section 4. The leakage signal classification methodology is
comprised of the following two main steps consequently:

(1) BPNN Model Optimization and Tuning. Network
model is optimized to minimize the classification
error, and convergence time and parameters are tuned
to improve the classification performance.

(2) Acoustic Signal Features Classification. The optimized
BPNN model is applied to suitable mother wavelet
identified features to classify the normal data samples
(without leakage) and leakage samples.

3.1. Neural Network. Neural network model that is one of the
branches of artificial intelligence is also known as artificial
neural network [20]. It is a type of computational model
that mimics various aspects of the human brain, for instance,
distributed parallel processing, intelligent information pro-
cessing, ability of learning, and highly tolerating incorrect
information. It can achieve the goal of information processing
by adjusting its input elements. Neurons are the fundamental
elements dealingwith the information. Figure 3 illustrates the
basic neuron model.

A neuron consists of three primary elements.

(i) Synapsis. It is also named the link chain between the
neurons; each synapse typically holds a weight or
strength. Particularly, the input signal 𝑥𝑗 of the
synapse 𝑗which connects to the neuronal 𝑘multiplies
the synaptic weight𝑤𝑘𝑗. In𝑤𝑘𝑗, 𝑘 is the query neurons
and 𝑗 is the neuron weights of synaptic input end.The
neuron synaptic weights can be positive or negative,
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Figure 3: Basic nonlinear model of a neuron.

and the synapses of the brain and its value in a range
are not the same.

(ii) Adder. It is used for the summation of synaptic
weighted input signals and can be observed as a linear
combination.

(iii) Activation Function. It is also defined as suppres-
sion 𝜑(∙) function and used to restrict the output
amplitude of the neurons. Neuron output in a closed
interval should be [0, 1] or in other ranges [−1, +1].

3.2. Backpropagation Neural Network Based Classification.
One of the most dynamic research and application fields of
artificial neural networks (ANN) is classification. In super-
vised learning, training the neural network is a complex task.
ANN has a significant drawback with an increasing number
of features and classified sets to obtain the most suitable
class of training, learning, and transfer function for datasets
classification. ANN classification methodology is analyzed in
different applications for various groups of datasets and accu-
racy of different combinations of features and their effects.
Medical image analysis [21] multidimensional datasets are
an example of practical problems of significantly using this
dataset for classification.

The dataset can be split into training and testing sets, and
the training process does not utilize the testing dataset.These
datasets produce results and are used for testing. The dataset
is usually considered for training 60% to 80% and for testing
20% to 40%. The evaluation of accuracy is attained through
testing contrary to these datasets. Backpropagation learning
algorithm [22] is used in multilayer perceptron (MLP) net-
work as shown in Figure 4. However, a variety of backprop-
agation algorithms are available, which can be employed for
network training [23]. The scaled conjugate gradient (SCG)
[24] algorithm is adopted to minimize the mean squared
error (MSE) among the actual error rate and network output.
However, to avoid the time-consuming line search technique
per learning iteration as in other conjugate functions, step size
scaling method is used in the trainscg function. Therefore,
the algorithm performs faster than another second-order
algorithm. More iterations are required for convergence in
trainscg than other algorithms, but due to no line search,
in each iteration, it significantly reduces the number of
computations [25]. After several training cycles, the error
minimization process is called epoch. The specified level
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of accuracy is achieved through each cycle of the network.
The efficiency of the network is evaluated with the following
parameters:

(i) Convergence rate
(ii) Number of epochs used for network convergence
(iii) Mean squared error (MSE)

The BPNN model sufficiently performs leakage signal clas-
sification, despite the fact that the sluggish reduction of
error may affect the performance of ANN through the
different stages of the learning process [26]. It is observed
that MSE function influences the learning time and classifi-
cation performance in the result of gradual error reduction.
Practically, in the result of big acoustic data, the model can
lead to a significant number of errors and poor classification
outcomes.

Therefore, to achieve high classification performance and
accelerate the learning process, the BPNNmodel needs to be
optimized.

3.3. Optimization of BPNN Model for Leakage Signal Classifi-
cation. The goal of optimization is to overcome the issues of
sluggish reduction of mean squared error (MSE), stagnation
performance, and slow convergence rate of the network.
However, all training patterns with MSE function are pre-
sented by the following equation:

𝐸𝑚 = 1
𝑛 +
𝑁

∑
𝑘=1

(𝑡𝑘 − 𝑦𝑘)2 . (4)

In (4), 𝑛 represents total training samples and 𝑁 signifies
the sum of all training input samples. Consequently, 𝑡𝑘 is the
target value and 𝑦𝑘 is the output network value indexed by 𝑘
of the in-line acoustic signal, respectively.

As presented in Figure 4, the error minimization is also
realized through the updates of weights of all training pat-
terns in BPNN. In practice, this approach improves network
performance; however, ultimate results’ convergence became
very slow. Therefore, to achieve high performance and fast
outcomes of the scaled conjugate gradient backpropagation

algorithm, the sluggish minimizing squares of errors method
is replaced with the cross-entropy error function.

𝐸𝑐 = 1
𝑛
𝑁

∑
𝑘=1

[𝑡𝑘 ln𝑦𝑘 + (1 − 𝑡𝑘) ln (1 − 𝑦𝑘)] . (5)

It is tested that the cross-entropy error function 𝐸𝑐 as
demarcated in (5) improves the performance but could not
fix the problem of sluggish learning in the network. In order
tominimize the error and to accelerate the learning process of
backpropagation SCG algorithm, each weight 𝑤𝑗𝑘 is updated
by partial derivative of 𝐸𝑐 with respect to weights as given as
follows:

𝑦𝑘 = 1
1 + 𝑒−𝑠𝑘 , (6)

where the sigmoid logistic function 𝑠𝑘 with respect to 𝑤𝑗𝑘 is
defined as

𝑠𝑘 =
𝑁

∑
𝑗=1

𝑥𝑗𝑤𝑗𝑘. (7)

In (6) and (7), the expression represents the sigmoid acti-
vation function [27, 28] and 𝑠𝑘 is employed to the sum of
weighted inputs from neurons, where 𝑥𝑗 describes the acti-
vation of the hidden layer of 𝑗 node. In each layer of neurons,
the backpropagation algorithm applies the chain rule. The
algorithm is employed to calculate the training error by using
the cross-entropy error function; the partial derivative of 𝐸𝑐
regarding 𝑤𝑗𝑘 is given as

𝜕𝐸𝑐
𝜕𝑤𝑗𝑘 = 𝜕𝐸𝑐

𝜕𝑦𝑘
𝜕𝑦𝑘
𝜕𝑠𝑘

𝜕𝑠𝑘
𝜕𝑤𝑗𝑘 , (8)

𝜕𝐸𝑐
𝜕𝑤𝑗𝑘 = (𝑦𝑘 − 𝑡𝑘) 𝑥𝑗, (9)

𝜕𝐸𝑐
𝜕𝑤𝑗𝑘 = 1

𝑛
𝑁

∑
𝑘=1

(𝑦𝑘 − 𝑡𝑘) . (10)

In (9) and (10), the difference between the target value and
actual value is directly proportional to the error signal origi-
nating back from every output; the network tends to achieve
excellent performance and shorter convergence period.

Feedforward artificial neural networks with SCG back-
propagation algorithm have been adopted in MATLAB,
which lies in conjugate gradient algorithm’s class. The BPNN
model is optimized [29] to achieve the goal of high classifi-
cation performance of acoustic signal features through the
minimization of error and fast convergence rate.The network
model is optimized, and parameters are adjusted.

As given in Table 1, the parameters have been chosen after
extensive testing, the lowest error producing parameters are
adopted, and heuristically the target CE error is determined
as 0.001.

4. Experimental Methodology

A state-of-the-art laboratory is developed to perform con-
trolled experiments through launching the in-line acoustic
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Figure 5: FFT analysis of a recorded in-line inspected acoustic signal. (a) Acoustic signal frequency band. (b) Leakage signal frequency band.
(c) Background noise frequency band.

Table 1: Optimized BPNNmodel parameters.

ANN model, in-line acoustic leakage signal
Learning rate (𝛼) 0.5
Hidden units 10
Error function (𝐸𝑐) Derivative of cross-entropy

device in the test rig. The test rig consists of 30m length
U-PVC (plasticized polyvinyl chloride) material pipeline
of 200mm internal diameter. The pipe rig contains three
similar sized (10m) sections which are organized in a parallel
fashion in a “U” shape. The test pipeline can be extended
simply by adding more pipe sections. The device launching
can be complex; therefore, the particular vertical three-
way structure is designed to propel the device in the water
pipeline. Besides, to circulate the water between the tank and
the pipeline, the pump is installed with a pipe rig. Initially,
20mm leak size was simulatedmanually at a distance of 10m.
In order to adjust the leak size, 4×4-inch rectangular flatmetal
plates are designedwith different hole sizeswhich can be fixed
at leak points to manage the leak size. Subsequently, leak size
of 8mm is regulated in the pipeline.

After extensive tests of sensors, the acoustic sensor is
chosen based on high underwater sensitivity results. The
acoustic data is digitized and transmitted to the programmed

microcontroller (STM32F103) through a 12-bit analog-to-
digital converter (ADC) and eventually stored on an SD
card. A high speed (10MB/sec) “Class 10” 32GB SD card is
installed to store and access the data fast. The comprehensive
circuitry has been activated and tested with lithium battery
(2000mAh) which can keep the device alive for about 24
hours. The in-line acoustic device’s spherical shape and
relatively smaller size (100mm) than the pipe bore diameter
support it to roll on smoothly in thewater distribution system
regardless of pipeline material properties.

A controlled experiment is conducted by launching the
device in the test rig through an appropriate three-way
structure. The recorded data is transferred to the computer
via an RS-232 cable and evaluated using MATLAB. Under-
water testing of the device regarding memory and battery
life has led to the conclusion that the device can analyze
approximately a 16–18 km long water transmission line.

5. Results and Discussions

5.1. Frequency Analysis and Selection of Mother Wavelet of
In-Line Inspected Acoustic Signal

5.1.1. Frequency Analysis. Fast Fourier transform (FFT) of
the recorded in-line inspected signal is shown in Figure 5,
and the analysis of frequency components of leak signal and
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Figure 6: Leakage signal and background analysis using “Morlet”
transform.

background noise, shown in Figures 5(b) and 5(c), exhibited
the notion that the signal frequency components lie in the
range of 100–370Hz, which demonstrates the presence of a
leak signature as revealed in Figure 5(a). Many studies have
investigated the notion that leak signals are found in the lower
frequency bands as in [30]. Usually, lower frequency bands
carry the largest amplitude of the leakage signal. However, in
the longitudinal deployment of fixed sensors, the background
noise frequency records due to the resonance of pipe may
range up to 20Hz. But as a result of the in-line inspection, the
vibration noise was not reported.Therefore, by differentiating
the shape of leak signal with ambient noise (background
noise), the background noise is createdwhich lies in the range
of 475Hz to 625Hz.

5.1.2. Identification of Leak Signal and Background Noise
in Wavelet Transform. The wavelet transform is utilized to
identify the leak among the in-line inspected acoustic signals.
Initially, different mother wavelets are used to examine the
acoustic signal, till the appropriatemother wavelet reveals the
shape of the signal and extracts the features regarding leak
signal and background noise. The “Morlet” mother wavelet
has led to the recognition of the leak and background noise
at proper scales. Figure 6 illustrates that, as a result of high
localization of Morlet mother wavelet, the strong energy
traces appear at scales, which demonstrates the leak presence.
Even background noise marks are not evident in the energy
scalogram; however, the potential of Morlet mother wavelet
localization has manifested that feature. It is also observed
that, during the in-line inspection of pipes, the acoustic
sensor records changes in the acoustic energy at a particular
location while it is passing through the noise event (such as
leak) position.

5.1.3. Choice of the Suitable Mother Wavelet. The wavelet
transform has identified the leak signal and background
noise at the appropriate scales. The proper mother wavelet
was chosen through the analysis of various mother wavelet
transforms. The number of mother wavelets exhibited com-
parable wave shapes with the leak signal as shown in Figure 7.
Different mother wavelets have presented various features
and shapes at time and scale during visual inspection of

wavelet transform; this diversity incredibly demonstrates the
importance of selection of an appropriate mother wavelet.
In this part of the research, it is enormously important
to extract the features of the in-line inspected signal, and
adequate mother wavelet is selected in the context of leak
and background noise. As shown in Figure 7, the number
of the mother wavelets identified the leak signal precisely
which appeared at higher scales of the scalogram such as
(a) “Daubechies 10,” (b) “Haar,” (c) “Symlet 10,” and (f)
“Biorthogonal 3.9,” but thesewavelets could not recognize the
background noise.

However, (d) “Shannon 1.0–0.5” and (e) “Biorthogonal
3.1” mother wavelets exhibited traces of leak signal and back-
groundnoise, but the shape does notmatch the original signal
and marks are not clear at energy scalograms. It is observed
that while the order of “Biorthogonal 3.1” is increased, the
leak signal that appears clearly at scales and background
noise traces has completely vanished as shown in (e) and (f).
Moreover, the (g) “Morlet” and (h) “Gaussian” (8) mother
wavelets strongly localized leak signal and background noise
features of in-line inspected signal. Even though bothmother
wavelets provide proper localization, (g) “Morlet” has mani-
fested the higher frequency components of leak signal at up
to 65 < 𝑎 < 449 scales, in contrast to (h) “Gaussian 8”
frequency components that are approximately at 65 < 𝑎 <
365 scales. Consequently, (g) “Morlet” has presented excellent
localization output. It is extremely difficult to choose a
mother wavelet through only matching the shape of the leak
signal; as mentioned before, the number of mother wavelets
visually resembles the contour of the leak signal. Hence, leak
signal and background noise coefficients correlated with the
various mother wavelets.

As a result of analysis of different mother wavelets, the
“Morlet” mother wavelet has presented the maximum cor-
relation regarding leak signal and background noise at the
energy scalogram. Therefore, the “Morlet” coefficients have
been selected for further investigation.

5.2. Leak Signal Classification Based on Optimized BPNN.
The significance of extraction of features is incredibly mean-
ingful, which demonstrates the components pattern or the
number of inputs that interpret the best pattern. It is also
observed that selection of an appropriate mother wavelet led
to results accuracy. The “Morlet” wavelet coefficients have
shown compact results of leak signal and background noise,
which represent the acoustic signal energy pattern in time
and frequency.The background noise components have been
eliminated fromwavelet coefficients. In numerical results, in-
line acoustic data corresponded to the normal data samples
(without a leak) and leak data samples, respectively. Leak data
samples and normal data samples were classified sequential-
ly.

The dataset comprises 55000 samples; training samples
are taken as 70% of the dataset and the remaining 30% are
samples left for testing. The training process utilized a total
number of 38498 samples and the remaining 16498 samples
are devised for testing.

Optimal performance is obtained through the error min-
imization; MSE function 𝐸𝑚 is replaced with cross-entropy
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Figure 7:The wavelet transform analysis of an in-line inspected signal with various mother wavelets: (a) Daubechies 10, (b) Haar, (c) Symlet
10, (d) Shannon 1.0–0.5, (e) Biorthogonal 3.1, (f) Biorthogonal 3.9, (g) Morlet, and (h) Gaussian 8.

error 𝐸𝑐 function as mentioned earlier in (4) and (5),
respectively. The sluggishness of the network model is im-
proved by derivation of the cross-entropy error function
𝜕𝐸𝑐/𝜕𝑤𝑗𝑘 regarding weights 𝑤𝑗𝑘. So far, the best parameters
have been selected for accuracy as mentioned before in
Table 1.

The BPNNmodel has attained the best validation perfor-
mance with CE error of 0.00091 at 34 epochs and sequentially
validation performance with MSE 0.12579 at 44 epochs. The
results of the best validation performance have confirmed
that the derivative of CE error function can accelerate the
convergence rate, improve the classification performance,
and enhance the generalization of BPNN.

Table 2 shows the classification results of wavelet iden-
tified features of acoustic in-line inspected signal. In the
classification analysis, the normal samples (without leakage)
and leakage samples are classified. The number of training
samples of classes represents the learning samples of the
acoustic signal at which the network model is trained. The
numbers of testing samples are used to estimate the accuracy
of the network.Themisclassified samples refer to the number
of classified samples of the acoustic signal that mainly do not
relate to this signal. The obtained results of BPNN classifi-
cation model have proven that the normal samples (without
leakage) and the leakage samples are entirely separated with
high accuracy.
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Table 2: Classification results with cross-entropy error function.

Data type Without leak samples Leak samples
Total samples 55000
Training samples 36034 2464
Testing samples 15395 1103
Correctly classified samples 51431 3567
Misclassified 1
Validation performance 0.00091

6. Conclusions and Future Works

The experiment results validate that the in-line acoustic
leakage signals in water-filled pipes are noisy and comprised
of different frequencies, and time domain cannot manifest
the complete features. The appropriate mother wavelet can
be used for localization of in-line inspected acoustic signals
and features extraction of leakage signal in water distribution
pipes. The visually inspected results diversity of various
mother wavelets incredibly demonstrates the importance of
a suitable mother wavelet. While examining different mother
wavelets, the “Morlet” mother wavelet robustly localized the
leak signal and background noise features of the comprised
acoustic signal. The “Morlet” mother wavelet exhibited the
maximum correlation about leakage signal and background
noise; hence, the coefficients are selected for classification.
BPNN model is used for extracted features classification.
However, to overcome the problem of sluggish reduction of
error and stagnation period of learning, the BPNN model
is optimized by replacing MSE function with a partial
derivative of CE error function and network parameters are
tuned to improve the classification performance. The BPNN
model was trained, validated, and tested with the extracted
features from “Morlet” mother wavelet transform.The results
showed that using wavelet and neural network can lead to
a high accuracy of in-line leakage signal identification and
classification.

The in-line acoustic device can be cost-efficient tech-
nology for early leak detection and condition assessment of
underground long transmission water pipelines to reduce
the potable water and socioeconomic losses. Future work
is proposed to inspect the in-line multileakages (different
sizes of leaks) and extract encompassed features of the noisy
acoustic signal. As the in-line acoustic device is passing
beside the leakage position, consequently it can be used for
estimation of leak size in water distribution pipelines.
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