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Abstract. The continuing growth and decentralization of power net-
works creates immense interoperability and integration challenges for
ICT systems performing control and coordination tasks. On the one
hand, large amounts of data coming from low-level field and automa-
tion systems need to be interpreted, aggregated, and made available to
the business information systems to inform local decisions within power
generation companies and operators; on the other hand, this vertical in-
tegration needs to be complemented by and connected to a horizontal
integration capability which links the internal information and process
models of different players in the market in (soft) real time, to inform
and enable cross-enterprise coordination and optimization.
In this paper, we introduce an integration architecture that supports and
combines vertical as well as horizontal integration, and methods to im-
prove interoperability and increase automation of cross enterprise busi-
ness processes in the energy domain. We support vertical integration by
means of a novel decentral information aggregation and routing platform
to manage large-scale data intensive systems. Horizontal integration is
enabled by a peer-to-peer content (document) repository which is used
to coordinate and integrate local processes in a cross-organizational fash-
ion, thus allowing, e.g., reliable and timely provision of electricity outage
reports and preparation of coordinated action plans. We evaluate impor-
tant properties of these methods and report experimental results.

Key words: Peer-to-Peer, vertical integration, content repository, busi-
ness process management

1 Introduction

Increasing demand for electrical energy has been leading to continuous exten-
sion of power grids world-wide. In Europe, national grids were joined to a syn-
chronously operated AC grid. This union for the co-ordination of transmission
of electricity (UCTE) provides electrical energy for more than 500 million con-
sumers. This network enabled larger and more efficient power plants on the one
hand and a maximum of reliability and availability on the other hand. Recent
developments like de-central generation and de-regulation efforts, however, lead
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to rapid increase of load on electricity infrastructures. In consequence, large-
scale blackouts like in August 2004 in the USA, on the Swiss-Italian border in
2003, and in the Weser-Ems area in Germany in 2006 endanger reliable electric-
ity delivery. The latter left millions of households throughout Europe without
electricity and resulted from lack of communication between transmission system
operators (TSO). Initially a high voltage line was shut down over the Weser-Ems
channel in Germany which caused a cascading effect — thereby overloading other
lines until major parts of the European grid where separated. Efforts taken by
individual TSOs to stabilize the network failed as they had no information on
control actions taken by their colleagues in neighboring transmission areas yield-
ing continuous aggravation until total disruption of service. In later analysis1 the
European commission emphasizes the importance to:

– Accelerate the adoption, in the context of a new Community mechanism and
structure, of essential common binding network security standards;

– Enhance the coordination between transmission system operators to ensure
an effective real-time operation of the European grid; efforts should be made
to have a gradual evolution towards regional system operators; this should
require effective unbundling as discussed in the Commission Strategic Energy
Review;

– Improve investments in the European grid both to ensure its reliability and
the construction of a truly competitive European market.

Already in 1999, the European transmission systems operators organization
(ETSO) was founded to harmonize and develop the European electricity market.
ETSO members include UCTE, the association of TSOs in Ireland (TSOI), the
United Kingdom TSO association (UKTSOA), and the association of the nordic
TSOs (NORDEL). ETSO takes care of cross TSO data exchange and standard-
ization. ETSO also standardizes cross TSO processes like imbalance settlement,
reserve resource planning, and outage transmission.

Illustrated by using the application scenario of electricity outage manage-
ment as described by ETSO, the first contribution of this paper is a conceptual
integration architecture for interoperability and automation of cross enterprise
business processes in the energy domain. The architecture combines a vertical
dimension, which supports the flow of information and coordination between
low-level automation systems and enterprise systems, with a horizontal dimen-
sion, which links the internal information and process models of different players
in the market, and enables cross-enterprise coordination.

The second, more technical contribution of the paper is that it illustrates two
important functional building blocks to support successful integration:

– A decentrally organized information aggregation and routing platform to man-
age large-scale data intensive systems. Providing an interface of declarative
querying and programmable data sources it abstracts from the underlying
physics; also, it can be extended to include assets unknown during design time
as well add new functions for situation based analytics. Simulations show the

1 Cf. http://europa.eu/rapid/pressReleasesAction.do?reference=IP/07/110
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performance of the indexing group which scales well to 100000 peers and be-
yond. From a business perspective, this approach can increase the efficiency
of today’s power networks as well as other industrial applications that rely on
large, globally distributed networks with thousands of nodes.

– A peer-to-peer based content repository to substitute the centralized imple-
mentation of the ETSOVista platform’s back-end system avoids a single point
of failure in critical situations. From a technical point of view, the proposed
system is able to benefit distributed collaboration in outage management pro-
cesses by supporting a publish-subscribe mechanism to enable the rapid no-
tification of critical events to interested parties. The evaluation shows that
the system is robust against document losses and achieves good performance
regarding document access. From a business point of view, the decentralized
solution shows the potential to avoid vendor lock-in situations resulting from
a proprietary market information aggregator.

A word on terminology: For our work, architectures and mechanisms for decen-
tralized resource management, organization and coordination are at the heart of
both multiagent systems and peer-to-peer computing. In this paper, we use the
two terms often interchangeably. For a more detailed and more educated discus-
sion of properties, commonalities, and differences between the two concepts, we
refer to [1].

The paper is structured as follows: Section 2 provides the application back-
ground and describes the electricity outage scenario. In Section 3, the overall
integration architecture is presented, followed by the definition of the techni-
cal building blocks: Information aggregation and routing (Section 4) and the
distributed content repository (Section 5). Experimental results evaluating our
approach are given in Section 6. The paper ends with a discussion of related
work in Section 7 and a summary and outlook in Section 8.

2 Application Scenario

In this section, we present the application context of our work. We indicate the
overall view of vertical and horizontal integration in distributed power networks.
Subsequently, we describe a particular scenario to serve as a use case to illustrate
our research: the distributed management of electricity outages.

2.1 Vertical and Horizontal Integration in Distributed Power
Networks

Figure 1 illustrates the typical roles and relationships in a distributed power
network. Generation companies (GenCos) operate power plants; they can be
located at different levels of the physical energy network, ranging from supergrid
(e.g., large coal power plants or nuclear plants) over high-voltage grid (e.g.,
industrial powerplants) to medium- and low-voltage grids (wind or solar parks
down to private solar installations).
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Fig. 1. Power Network Topology (inspired by [2])

The control center of a GenCo is responsible for coordinating two levels of
activities, which in the sequel we shall call vertical integration and horizontal
integration: firstly, using supervisory control and automation (SCADA) systems
the GenCo operating center remotely controls the equipments located in the
generation stations, with which it is normally connected via a dedicated plant
control network to guarantee real-time control. These activities depend on field
information and events coming from a multitude of sensors, devices, plants, and
substations to be filtered, aggregated, and visualized. The process of gather-
ing, aggregating, routing, and interpreting this information within an enterprise
control system is called vertical integration.

Secondly, the information gathered using vertical integration is used as a
basis for planning, enacting, monitoring, and coordinating both internal and
cross-organizational business processes. Of particular focus for this paper are
business processes involving cross-organizational interaction and coordination
with the partners in the energy network, and, in particular the transmission
system operators (TSOs), and the distribution system operators (DSOs). We call
this type of activities horizontal integration. One example of this is the process of
coordinating activities between a GenCo, TSOs, and DSOs in case of an outage.
Vertical integration is used to determine type and extent of a local outage at
the GenCo. In dealing with a local outage situation, the resulting information
will inform decisions made in the business processes that guide coordination
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between the GenCo and its partners to prevent the effects of the local outage
from spreading and causing malfunction in other parts of the network.

2.2 Use Case: Distributed Outage Management

In general, the propagation of an outage (document) involves the three principal
actors. The first actor is a system operator (TSOs/DSOs) who has a complete
overview of the tie line maintenance and operation and is in a position to provide
a coherent picture of the situation at a given instance in time. The second actor
is some market information aggregator, who may be a commercial entity that
simply specializes in providing electricity market information and who makes the
information available to the public. Such a provider may also make the infor-
mation available to a selected distribution list as an additional service. Finally,
the third actor is an information receiver or interested market participant who
wishes to obtain such information.

The ETSOVista data platform is a service provided by ETSO aiming to facil-
itate access to information for all market participants and stake holders. Founded
in 2006, it supports the publication of all information on current situation of the
electricity market. A state of the art approach is to implement ETSOVista as a
centralized web-based application with interfaces to aggregate and visualize re-
spective data. For example, system operators can use ETSOVista’s standardized
interfaces to provide detailed information concerning their area of responsibility:
in this context, a critical issue of availability is the knowledge of the outages.

In addition, ETSO has standardized an electronic document that system op-
erators may use to transmit information about outages to an market information
aggregator such as ETSOVista. An outage document is issued by a system oper-
ator and refers to information for generation over 100 MW network lines which
have influence on the offered capacity. Outage events can be either planned, i.e.,
planned shutdown of an asset, or unplanned, i.e., the forced shutdown due to fail-
ure or other emergency situations. In the current release, the outage document
is limited to outages of tie lines and network interconnections. Future extension
to other outage object types is intended.

For example, the outage information publication process can be broken down
to three sub-processes, namely (i) outage information creation, (ii) outage infor-
mation modification, and (iii) outage information deletion:

– Outage Information Creation: whenever an outage situation occurs (either
forced or planned) a system operator sends the information to the ETSOVista
platform. The platform validates the conformity of the information received.
If the information is incorrect the platform ignores the transmission and logs
the incident. If the information is correct the platform shall enter it in its
persistent data storage and shall publish it.

– Outage information modification: an outage situation may be modified to indi-
cate its progress or to correct any data that is found to be invalid. Accordingly,
the following possibilities exist:
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– For an outage the following information may be revised: start date, start
time, end date, end time, and affected interconnector.

– For an outage the following information may be added: start time, end date,
end time, and affected interconnector.

– If an affected asset is incorrect or the planned maintenance is canceled prior
to the start time, the outage in question has to be deleted and eventually
new outage information has to be provided.

– Outage information deletion: a given outage may be deleted with an update
that makes use of the Delete attribute. This has the effect of deleting the
outage from the published list.

3 Overall Architecture

In this section, we show the overall view of the used ICT architecture. In addi-
tion, we indicate challenges to achieve vertical and horizontal integration, and
consequently state our technical approach.

3.1 Overall view of the ICT architecture

In this paper, we propose a decentralized architecture to support vertical and
horizontal integration, as well as the coupling between vertical and horizontal ac-
tivities. Figure 2 gives an exemplary view on the IT architecture of a distributed
energy system including one ore multiple GenCos as well as TSO/DSOs. It also
illustrates the two integration dimensions considered in this paper.

Fig. 2. ICT Architecture of a Distributed Energy System
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The uppermost layer is the business systems layer including energy manage-
ment, asset management as well as standard ERP systems. The ICT systems
at this layer are instrumental in (internal and cross-enterprise) business process
enactment; they need to be supported by appropriate business process models.
They receive real-time decision-relevant information from the systems for power
system/network monitoring and operation. These systems again rely on differ-
ent types of supervisory control and data acquisition systems (SCADA), which
collect and aggregate data from local field automation and control systems con-
trolling individual power groups, subnetworks, or substations. At the bottom
end of this information food-chain are numerous electronic devices and sensors
producing large amounts of operation data.

Also note, that horizontal integration will take place in two interrelated ways:
on the one hand, different types of business information systems supporting dif-
ferent business functions within a company (such as, e.g., asset management,
energy management, and other ERP functions) need to be coordinated and in-
tegrated to optimize the overall performance of each individual company. On
the other hand, horizontal integration entails the cross-enterprise coordination
of business processes such as, e.g., dealing with an outage.

3.2 Challenges

Even considered in isolation, vertical integration raises a number of difficult chal-
lenges. Large amounts of data need to be handled, correlated and abstracted,
routed upwards, interpreted and visualized to allow operators to obtain an up-
to-date view of the status and performance of the plants/networks. The sources
producing this data are largely distributed - due to the large data load, central-
ized processing is not feasible. Also, there are interoperability barriers at different
levels. While there are a number of upcoming standards in the energy sector2,
there is still a certain heterogeneity of systems and interfaces, which makes the
vertical information a challenging task. The same can be said for horizontal inte-
gration, where interoperability needs to be provided across business information
systems and business process models of different companies, to enable timely
and coordinated reaction to critical events.

In addition, due to changing regulations, market situations and technology
innovations, the architecture displayed in Figure 2 needs to be open to change.
For example, a regulatory change (e.g., new laws) may require modifications
to be made to the internal or cross-enterprise business processes, which again
may impact lower layers of the architecture. Also, new communication standards
or middleware technologies may provide new, more efficient ways to realize the
different layers of automation and control systems, which may affect the upper
layers of the architecture. Ideally, our distributed energy system should be easily
adapted to these changes at different levels.
2 We refer, e.g., to the IEC 61850 standard series for communication of energy au-

tomation systems, where a common information model is being developed.
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3.3 Technical Approach

To combine the requirements to deal with large amounts of data at different lev-
els, to connect (locally autonomous) technical systems with business processes,
and to provide internal and cross-enterprise interoperability and flexibility in
the face of change, our overall research work combines a number of technology
ingredients covering both design-time and run-time aspects:

– Design-time:
– We provide a multiagent-based architecture to describe roles and capabil-

ities of the parties in the distributed energy system, and to model (and
subsequently enact) cross-enterprise coordination processes.

– We use a model-driven system engineering approach (see, e.g., [3]) to enable
the maintenance of process, service, and information models at different
levels, and the top-down and bottom-up synchronization and adaptation
between different layers based on model transformations.

– Run-time:
– We support vertical integration by an information aggregation and routing

approach based on a structured peer-to-peer framework (see, e.g., [4], [5]),
enabling the decentralized management of ad-hoc queries as well as publish-
subscribe style communication

– We take a document-centric approach to horizontal integration by proposing
a peer-to-peer content repository (see [6]) allowing different parties to pub-
lish, modify, version, and synchronize documents (e.g., outage reports), to
subscribe and search for certain types of documents, and to route relevant
documents to interested parties using content-based rules. This approach
benefits both scalability and reliability, and ensures consistency of concur-
rent operations.

In this paper, we shall focus on the run-time aspects of our approach. In
particular, in Section 4 we present a vertical integration approach based on
a decentralized information aggregation and routing framework. In Section 5,
we complement this approach by describing the architecture and methods of
a peer-to-peer based distributed content repository to enable document-centric
horizontal integration processes.

4 Information Aggregation and Routing

The state of the power grid is recorded by a large number of digital devices dis-
tributed over the entire supply territory. Sensing equipment includes intelligent
electronic devices (IED), smart sensors and meters. In the context of vertical
information integration, i.e., integration of field data with the business processes
of the system operator, the digital devices act as data sources which provide data
in a specified quantity and quality. In correlation with the kind of data source,
the measured value its validity and the sampling interval, high volume measure-
ment streams may occur. To make these streams usable in an operation context



Vertical Integration 9

the raw data needs to be processed to information which is representative of
the current network state. In traditional power grids, there exists a well defined
power flow from few generators down to a large number of consumers. This al-
lows operators to estimate the network state accurately without comprehensive
measurements. In scenarios such as decentralized generation, power flows might
reverse causing unforseen dynamics and failure situations which cannot be fully
predicted by the system operator. Hence, in order to identify critical situations,
timely collection and processing of high resolution data becomes mandatory. In
this situation, in-network approaches are advisable as they limit the load on the
communication infrastructure and yet yield a high quality of service (QoS) and
fine granularity of measurements.

In this section, we introduce a data-centric perspective on multiple sensing
equipment providing a unified access paradigm on distributed measurement data.
Based on the standard query language (SQL), we developed a programming
language to formally express an information interest and appropriate processing
functions. Using declarative queries, measurement streams can be routed through
the network, thereby being processed and aggregated at dynamically determined
processing nodes. In the following, the integration architecture, query language
and query execution subsystem are introduced. A set of examples show the
capabilities of each component.

4.1 Vertical Integration Architecture

The foundation for information aggregation and routing is constituted by the
query execution architecture. The architecture links all nodes of the network
in an application layer overlay thereby providing a global address space for all
assets in the network. The overlay manages the mapping from virtual peer ad-
dresses to physical hardware addresses thereby virtualizing network topologies
and technology. The mapping supports both keywords as well as complex declar-
ative queries. Keyword mappings are realized through a distributed hashtable
(DHT) spanned over all network devices (Figure 3). In order to support com-
plex queries, a subsection of the address space is dedicated to the so called index
cloud. The cloud consists of dedicated index peers which manage device meta
data and a query catalog. Additionally, data sources host a local query engine
which is capable of processing and optimizing queries as described in Section 4.3.
Power grid equipment has lifecycles of often up to 50 or more years hence yield-
ing systems with a large variety of hardware with differing compute resources,
communication standards and protocols.

Traditionally, all field data is transferred to a central service, however, with
the limitations detailed in the above sections. The integration architecture in-
troduced in this paper can achieve higher efficiency by pushing query engines
into the network. This, however, must be either directly supported by the data
sources other integration methods must be deployed. Our architecture supports
three levels of integration: for data sources with sufficient compute resources,
the query engine can be directly hosted by the data source. Data sources which
do not provide the required resources to support a query engine by themselves
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Fig. 3. Vertical Integration Architecture

but have a device in their proximity are integrated by the neighboring query
engine acting a as proxy reading individual measurements from the device, and
processing them in the query context. Finally, data sources which do not support
a common communication standard require an additional hardware component
which acts as gateway to read, process, and forward data in the query context.

Device meta data provides information on device capabilities and attributes
along with a device locator. Hence devices can be addressed based on its de-
scriptions (e.g., ”send a message to a device which can measure frequency”).
The query catalog maintains all globally visible queries currently in execution.
This information is used to optimize query execution and stream routing. Both
concepts in combination enable locating information sources and routing their
output to respective processing sinks (e.g., ”send measurements from devices
that can measure frequency to a device that can archive data”). To formally
specify query and routing information, the following section introduces a query
language especially designed for this purpose.

4.2 Query Language

The query language supports both snapshot queries (single result set) as well
as queries initiating data streams. It allows us to apply filters on streams and
to route streams to different nodes throughout the network. Despite known re-
strictions and flaws of SQL [7], we chose it due to the wide acceptance among
developers and good integration with standard applications, such as JDBC. How-
ever, to meet the high performance requirements, query statements are compiled
to an efficient encoding; as soon as they enter the network only this encoding is
used. This improves execution performance and decreases network traffic. Given
semantic equivalence, different query languages can be supported by adjusting
the compiler. Representing the query, the compilation itself is a sequence of in-
structions, i.e., basic operations the query engine can perform to retrieve the
query result. The query engine analyzes the instructions sequence and creates
an execution plan as described in Section 4.3.

Figure 4 provides an example query. It demonstrates an assignment spec-
ified through the right arrow, a standard SELECT ... WHERE clause and a
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ALARMS@ -> SELECT * FROM MMXU WHERE Hz < 59.001

WINDOW(now, forever, 1s)

REPLICATION=3

RESTRICT TO GenCo

TRACEABILITY=ON

RECEIVER(rcv_node)

Fig. 4. Example of how to retrieve and route information within the platform

set of QoS constraints. In the example the result set is assigned to a variable
named ALARMS. Thereby the @ operator specifies where the variable is hosted.
ALARMS@ means the variable is globally visible and located in the indexing
cloud. ALARMS@node1, on the contrary would allocate a variable at node1. The
WINDOW operator specifies the activation interval of the data stream. The first
two parameters set start and end time while the third parameter specifies the
interval of execution, e.g., every 10 seconds. The window parameter implicity
controls response time and throughput and is one of the key QoS parameters.
In other words it advises the query engine to retrieve and deliver results sets
timely as specified. To achieve this goal the query engine coordinates all in the
query participating data sources and schedules their network and memory re-
source utilization. If this process of allocating resources fails, e.g., because of
resource shortage or other unavailability, the query will not be scheduled. The
REPLICATION parameter controls availability as it specifies the number of
copies the system keeps of the result set. A replication factor of 3, means that
the result set is replicated to three other nodes in the index cloud. Thereby each
replica inherits all other QoS parameters as specified in the query. RESTRICT
TO in one of the parameters to enforce security during query execution. In the
example RESTRICT TO restricts access to the result set and all intermediate
results which may be stored during query execution to the user or group iden-
tified by GenCo. Finally TRACEABILITY adds an additional attribute to the
result set containing information on all data sources that participated in the
query and each operation, i.e., individual execution plans, that were executed
in the process. This enables precise analysis and verifiability of the information
execution process. Finally the RECEIVER parameter specifies an receiver of
the result set. Thus it can be used to route a data stream to one or more re-
ceivers in the network. The parameter does not limit to a single receiver e.g.
RECEIVER(SELECT * FROM NODES WHERE type=’Archive’) would for-
ward the stream to all nodes which are of type ’Archive’.

Besides specification of queries the language supports imperative elements
and basic operators found in many other programming languages. Hence, the
language and its execution architecture make the network programmable en-
abling to define data processing filter functionality like the simple PID controller
in Program 1. Thus, instead of pulling high volume data streams to a single lo-
cation, programs can be defined which process data in-network close to the data
sources. Aggregated key indicators can then be calculated and sent to other
nodes for further processing, stored in archives or visualized at control centers.
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This enables high performance applications such as high resolution monitoring
of the network state. In [8] we introduced a special operator called MONk which
is capable of monitoring a large number of assets including detection of anoma-
lies. Depending on the targeted accuracy and responsiveness of the detection,
the MONk operator causes intensive message exchange between involved as-
sets. However, since communication is peer-to-peer and in-network, the operator
scales well to a high number of network nodes.

FUNCTION PID(Pv, Sp)

Kp -> 100

Ki -> 0.9

Kd -> 1000

Error -> Sp - Pv

@TotalError -> TotalError + Error

Pgain -> Kp * Error

Igain -> Ki * TotalError

Dgain -> Kd * (Error - @Derror)

@Derror -> Dgain

return Pgain + Igain + Dgain

END

Program 1: Basic PID controller

4.3 Query Execution

The process of retrieving information specified through a complex query state-
ment is non trivial in large-scale distributed systems. We apply a five step process
for query execution starting with an analysis of the query statement, followed
by locating respective data sources, building a distributed data structure which
coordinates individual data sources to deliver the requested content, merging
and filtering individual data items and finally generating a result set.

Once injected into the network, queries are compiled to binary form and
loaded in a local query engine. An execution plan (e.g. Figure 5) is generated
and scheduled for processing. The plan lists all actions necessary to deliver the
requested result set. The plan depicted in Figure 5, for example, first checks
locally if the query can be evaluated with local information alone. If so query
execution is complete. Otherwise the query is optimized and rewritten for dis-
tributed execution. Query optimization is a complex procedure where the query
is restructured to reflect the overlay topology, the specified QoS parameters as
well as states of other concurrent queries scheduled in the same query engine.
Afterwards a resolving action is triggered which determines which peer might
provide the requested information and is able to allocate local resources to meet
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to constraints specified in the query. Subsequently, the query as a whole or in
part is assigned to the peer accordingly. Intermediate results due to local compu-
tation or obtained through subquery assignment are stored in the local storage.
The process continues until all requested information is contained in the local
storage. During execution a number of events may cause query processing to
fail. Without violating the QoS constrains the query engine tries to compensate
failures by reissuing actions or assigning new subqueries an alternative sources.
In case the maximum number of retries is reached, a timeout occurred, or the
query is not computable, an exception is raised and the execution ends freeing
all allocated resources.

Process local 
storage

Resolve

Assign subqueryresult set

not found

found

Handle Exception

timeout candidate

non found

found

Fig. 5. Query execution plan

Deallocation is highly complex in cases of failures of complex queries with
large numbers of peers involved since individual assets may be unreachable. To
ensure appropriate deallocation of resources all variables in the query engines
are temporary only. Variables reaching a defined age in a query engine’s memory
are automatically garbage collected. To persistently store results they must be
forwarded to entities providing archiving functionality.

The vertical integration architecture provides a flexible high performance
platform to manage large-scale data intensive systems. Based on peer-to-peer
network virtualization and through providing an interface of declarative query-
ing, it abstracts from the complexity of the heterogeneous and dynamic system.
Since the platform is programable it can be extended to include assets unknown
during design time and implement new functions to introduce new methods of
analytics. Having unified access from high level IT systems down to individual
automation equipment is the first key component to enable fully automated cross
enterprise business processes. In the following sections a horizontal integration
component is introduced which enables the flexible interlinking of individual
business players.
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5 Horizontal Integration Using a P2P-based Content
Repository

The ETSOVista transparency platform’s main objective is to provide to the elec-
tricity market participants all the relevant, valued, and trusted information in
a transparent way. That is, system operators shall use standardized electronic
documents to transmit information about outages to the platform for diffusion to
the market. As amongst the principle criteria of availability is the knowledge of
the outages, we propose to substitute the centralized implementation of the plat-
form’s back-end system by a peer-to-peer based content repository [6] avoiding
a single point of failure. In addition, the approach supports a publish-subscribe
mechanism to enable the rapid notification of critical events to interested parties.

In the following, we present the overall architecture and exemplified methods
of a peer-to-peer based, decentralized content repository to enable document-
centric horizontal integration processes.

5.1 Modular Architecture of a P2P-based Content Repository

A c c e s s  C o n t r o l
t o  C o n t e n t  I t e m s

L o c k i n g  
o f  C o n t e n t  I t e m s
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o f  C o n t e n t  I t e m s

S h a r i n g  
o f  C o n t e n t  I t e m s
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t o  C o n t e n t  I t e m s
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Fig. 6. Functional Components of the Content Repository

The content repository enables the management of both structured and un-
structured content: its repository model defines the meta model to identify and
structure content data on a logical level—from a user’s point of view; it supports
to express functional operations on content data. The concrete implementation
translates these operations into actual corresponding actions affecting its used
(peer-to-peer) storage subsystems. The repository model adopts the Content
Repository API for Java (JCR) [9], which is defined as open standard to im-
prove application interoperability:

– The repository model offers a generic, hierarchical content data model and
several levels of functionality for content services on a logical level: a repository
consists of an unlimited set of named workspaces; each workspace establishes
a single-rooted, virtually hierarchical, n-ary tree-based view of content items.
E.g., a peer-to-peer workspace supports a decentralized document exchange.
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– In addition to the basic repository model, a content repository is constituted
by a set of essential functional building blocks, as illustrated in Figure 6.

– Documents may be accessed using either direct or traversal access. Each out-
age document can be uniquely identified to ease direct access. Consequently,
it is independently addressable from its position within the workspace hierar-
chy. The traversal item access targets on walking through the content tree of a
workspace, step by step, using (relative) paths. To support the verification of
access rights, each document is allocated an unique identification of its sender
and optionally (multiple) receiver identification(s) to restrict read access.

Figure 7 shows the modular content repository approach considering hori-
zontal and vertical system decomposition [6]: on the one hand, the distribution
degree of content repository functionality regarding the persistent storage sup-
port may vary—for example, the storage management for local or distributed
workspaces. On the other hand, different modules, for instance, are responsi-
ble for different management tasks. Each of the architecture’s layers is briefly
introduced and discussed in the following:

The content application layer offers the content repository API. It hides
sub-layers to free users to deal with peculiarities of content storage.

The content repository layer represents the mapping of the logical reposi-
tory model to corresponding system modules; at its core, it implements several
registries and managers. For example, the session subsystem basically uses a
transient item state manager to cope with a content item’s transient state per
session. The workspace subsystem uses several managers to deal with the repos-
itories functional building blocks. It is responsible to create consistent items in
persistent storage. For instance, a query manager is used to support query ac-
cess to content items, a version manager is used to support versioning of content
items, and an observation manager is used to support observations of content
item changes. Such manager use the persistent item state manager to actually
obtain read and write access to a workspace’s content items—that is, to obtain
an actual content item view of persisted data; it represents the connection be-
tween the workspace scope and the used persistent storage back-end subsystem;
a persistent item state manager shall trigger the observation mechanism if in-
terests in corresponding item changes exist—usually, reflected by some access
manager of the persistent storage layer. This shall enable an observation man-
ager to asynchronously subscribe for changes in a workspace. An item access
manager uses a persistent item state manager to enforce its functions, that is,
the support of access control for content items. Accordingly, the item persistent
item state manager needs to obey such enforced restrictions.

The policy layer administrates the scope of different storage policies that
may be used by the content repository layer to actually access the persistent
storage layer. Therefore, it uses policy managers matching corresponding access
managers of the persistent storage layer. As illustration, the usage of a peer-to-
peer policy manager enables the definition of potentially fine-granular policies
at peer-to-peer data level—rather than on item level. Thus, each type of content
or rather content instance may have its own policy; some examples of storage
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Fig. 7. Layered Architecture of the Modular Content Repository Decomposition

policies in peer-to-peer case may include the life of content, that is, if content
shall be stored infinitely or temporarily.

The persistent storage layer defines the subsystem to deal with local or dis-
tributed persistent storage at data level. It is indirectly usable by the persistent
item state manager of the content repository layer by exposing a generic per-
sistent storage access management interface. Using this interface, several access
managers for persistent storage may be used, for example, the peer-to-peer ac-
cess manager. Such peer-to-peer access manager supports a mapping between a
workspace view of content at item level and a raw data view at back-end stor-
age level; thus, it is necessary to use some interpreter to recognize raw data as
content items, that is, to retrieve item semantic from raw data resources.

Figure 8 illustrates the applied naming concept regarding the transforma-
tion process of a repository item (between logical and physical objects): (i) the
content application layer actually deals with item objects existing in transient
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Fig. 8. Transformation Process of a Repository Item

storage. (ii) The content repository layer has a more sophisticated view on items:
the layer knows the internal state of an item as it is responsible to manage core
repository functionality. However, at content repository level, an item and its
represented content forms one logical unit. (iii) An item which shall be persisted
needs to be transformed from its item state to a lower-level item resource object.
Such a transformation process involves the policy layer to specify a policy for
the corresponding access manager at persistent storage level. The item resource
object resulting from this transformation shall reflect all necessary information
to represent and reconstruct its item state. In addition, it contains policy in-
formation. An item resource deals with all the low-level details of actual data
storage—which is transparent to the content repository layer.

As a result, the content repository system is able to support different con-
tent storage policies in a flexible way. For example, such policies may reflect how
content may be actually persisted and accessed. It supports different granularity
level hierarchies to be build by grouping aggregations of objects to represent
larger objects (collections); regarding the granularity level, data objects may
be restructured and build from atomic values on demand. Thus, content data
must adhere to some global uniform semantics to deal with and ease content
integration—specified by storage policies. For example, such concept facilitates
the existence of multiple object copies but may hide their actual physical loca-
tions.

5.2 P2P-based Methods for Persistent Storage Management

As most important feature, the peer-to-peer based content repository supports
methods for fault-tolerant and consistent content management: as, once an out-
age document content is stored to the system, it shall not be lost. This raises
the challenge to coordinate concurrent activity in a dynamic peer-to-peer en-
vironment and to protect the consistency of created artifacts to keep content
up-to-date across geographically distributed locations. For example, in case of
the revision or addition of outage information, the same document identification
is used and a new document version is created. This has the effect of canceling
the previous transmission and replacing it with the new one.

The system uses DhtFlex [10], a distributed algorithm to enable flexible
atomic data operations for replicated data at peer-to-peer persistent storage
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Fig. 9. Major Building Blocks of DhtFlex’s System Environment

level—a method being trimmed for a highly concurrent and fluctuating environ-
ment. As illustrated in Figure 9 [10], DhtFlex is responsible for the complete
data management, including replication handling.

The query model of DhtFlex supports simple DHT put and get operations
for data items that are uniquely identifiable. In addition, techniques are used
to extend a DHT in order to deal with the content management requirements.
DhtFlex supports optimized operations for both immutable as well as mutable
data resources and offers flexible consistency strategies. For example, once a
certain version of an outage report is defined, it remains forever unchanged
within the corresponding version chain.

Therefore, DhtFlex imposes an annotated data resource concept to typify
replicated data. This allows the differentiation between mutable and immutable
data items and thus an efficient processing for both data resource types. Espe-
cially for mutable data resources, DhtFlex provides strong consistency guaran-
tees enabling atomic DHT put and get operations. Therefore, it exploits tech-
niques of Leslie Lamport’s famous Paxos algorithm [11] to coordinate the recast
process of a data resource’s replication group: DhtFlex serializes concurrent put
and get requests over the master of a replication group in order to accelerate
these operations; in addition, it is able to deal with master failures by auto-
mated handovers—ensuring consistency. DhtFlex allows system grows to large
scales and updates to be made from anywhere in the system.

For example, the approach enables to implement a close-to-open model by
retrieving the latest item resource via a get operation once the item should be
locally opened and keep it as a cached copy by the content repository layer until
access is closed. All succeeding requests to an item’s potential child items can be
satisfied using information from the cached copy. If the item should be modified,
the locally cached copy is updated to reflect the changes; hence, put efforts
and corresponding changes are locally buffered by a session before stored to
the network in order to minimize local write latencies. Finally, once item access
is closed, all cached changes are flushed to the peer-to-peer network and tried
to be committed. This scheme works especially well when using versioning, as
immutable item resources that store corresponding contents are never removed
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from the network; hence, links to certain versions of item resources could not be
invalid as they cannot be removed from the system.

The support of observations at shallow operational scope relies on the usage
of special observation resources. Using a subscribe-like feature [6], the basic
eventing-notification mechanism can be implemented, which allows the triggering
of a notification if a suited content resource for a certain path in the virtual tree
of a workspace is stored. This is achieved by placing an observation resource as
subscription at the corresponding peers, which perform matching tests reacting
on the adding, removing, and modifying of affected item resources. The support
of deep operational scope requires such observation resource to be attached to
every item resource of the rooted subtree. As items are always added as the
leaves of such tree, this method enables to pass and apply such deep observation
pattern to the whole subtree.

Partitioning Strategy DhtFlex employs a structured peer-to-peer overlay as
Chord [4] for data resource placement: such overlay protocol can be used to
determine the root of a resource, that is, the Chord peer which possesses the
numerically closest matching identifier in comparison to the resource’s identifier.

However, as a dynamic peer environment is assumed, network conditions can
change over time. As a result, a resource’s corresponding root may vary. Peers
that enter or leave the network demand the used overlay protocol to adjust
responsibilities for affected key ranges; for instance, gaps in the overlay resulting
from crashed or temporarily unavailable peers need to be closed. As DhtFlex
does support crash-recovery, as well as crash-stop failure models, it is able to
exploit positive dynamics of a structured peer-to-peer overlay, where available
peers may take over the key range of failed ones.

Replication Strategy DhtFlex’s partitioning strategy basically maps identi-
fiers to values; thereby, a value may be an arbitrary object or item represented
as data resource, which may be replicated and persistently stored. An object
is retrieved by using the identifier under which it was published. DhtFlex uses
replication in order to ensure high availability and durability of administrated
data resources. Thereby, it supports a flexible degree of replication, that allows
an adjustment per data resource type: if a peer leaves the system, for example,
by crashing, its administrated data resources become unavailable. A replication
mechanism increases data availability by storing data at several peers. But, in
the face of concurrent modifications mutual consistency of replicated data re-
sources may be violated, some replicas may not be up to date. The requirements
of content repository functionality demands for DhtFlex to be able to get the
current valid replica.

A replicated data item is independent of the peer on which it resides and may
be regarded as virtual. This applied virtualization enables DhtFlex to employ
structured overlay routing as partitioning strategy. Thereby, DhtFlex manages
all replication functions; the overlay is accessed only to conduct necessary infor-
mation to construct a replication group. A replication group configuration is a set
of peers that are responsible to administrate a certain replicated data resource.
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The size of such set is defined by the resource’s replication degree. A replication
group of size n consists of one master and n− 1 replicas.

Regarding the replication model, DhtFlex implements a primary-copy repli-
cation pattern [12] per replication group: a replication group’s master is used to
serialize and apply all updates to a mutable data object. In order to benefit the
partitioning strategy, DhtFlex uses the unique identifier of a data resource to
configure the corresponding root in the overlay as master. Accordingly, DhtFlex
targets to fill the replication group set with the available n− 1 peers succeeding
a root in the overlay, the n−1 root successors. Hence, a replication group of size
n shall contain those n− 1 peers that are relevant to become a root for the key
after network conditions change. Regarding fault-tolerance aspects, these n− 1
peers are ideal candidates to place the replicas of a given data object.

The master of a replication group is responsible to ensure the replication
factor for the data resources that fall within its key range. This means, in addition
to their conservation in local storage, the master needs to replicate the resources
to the remaining replicas. This implies, that changes on resources have to be
propagated to all replicas in order to ensure consistency.

Fig. 10. Combination of Replication Strategy and Partitioning Strategy

The replication strategy in combination with the used partitioning strategy
is exemplified in Figure 10. It shows a replication group consisting of one master
peer p3 and two additional replica peers: the master p3 replicates the data object
for identifier (key) x at peer p4 and p5. Hence, p5 stores values that fall into the
ranges (p2, p3], (p3, p4], (p4, p5]. As explained, the employed structured peer-to-
peer overlay allows each peer to determine which peers should be contained in
the replication group for a certain key.

6 Evaluation

The key contributions of this paper are (i) a vertical integration architecture
coupling low-level field automation systems with business information systems
using a decentralized routing and aggregation methods and a declarative query
interface and (ii) a peer-to-peer content (document) repository which can be used
to coordinate and integrate local processes in a cross-organizational fashion,
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allowing, e.g., reliable and timely provision of outage reports. The following
paragraphs evaluate both contributions based on the application scenario in
Section 2.

6.1 Aggregation and Routing

The declarative approach and utilization of peer-to-peer protocols introduces
rather obvious benefits like scalability, resilience, resource virtualization and
adaptiveness to the power network domain. With engineering and maintenance
costs being major matters of expensive, self configuration and adaption to new
devices and topologies yield immediate cost reduction for utilities. Efficient man-
agement of complex networks will become even more important in the near fu-
ture. With the emergence of distributed generation retrieving detailed real time
information on the current network state becomes more and more important as,
for example, reversed power flows can circumvent protection systems and yield
equipment failure. Among the challenges of retrieving a correct network state
is the extraction of information from vast amounts of sensor data. The declar-
ative approach proposed enables the calculation of key performance indicators
in-network, and thus eliminates the need to transfer high volumes of data to a
central point. The example Query 4 presented in Section 4.2 shows nicely how
the complexity of the underlying network is hidden. Queries never use physi-
cal network addresses but virtual identifiers. Keywords get resolved and queries
reevaluated periodically when messages are sent thus the platform adaptively
reorganizes itself in the event of failure or the appearance of better suited nodes.
Processing will still work even if small fractions of nodes are unavailable as is
common in large networks.

Using a centralized meta data index is an efficient and entirely pragmatic ap-
proach but also a potential performance bottleneck. We ran extensive tests and
simulations to optimize the meta data index performance. The testbed consisted
of ten commodity PCs each equipped with relatively low end, Intel Pentium IV
processors and 1GB of RAM. Since the project is in an early state of imple-
mentation, we are not interested in absolute peak transaction rates but rather
how the system adapts to increased node numbers and update rates. As test
data the configuration of up 100000 peers was loaded into the indexing group.
Of each node 20 attributes where indexed. To simulate how the indexing group
performs with increasing node numbers, we ran 10000 queries with numbers of
peers ranging from 100 to 100000.

Figure 11a illustrates the results. Plotted are the transactions per second as
measured directly on the indexing nodes, i.e., not including the time required
for communication and compilation. The rate remains almost constant with a
minimal decrease towards 100000 peers. As stated earlier, indexing nodes are
optimized for read operations as we assume an update rate of below 1% in
regular power networks. In consequence, Figure 11b shows the impact of high
update rates on performance. While for low node numbers performance only
deviates slightly from the read only case, transactions rates are down one third
in the case of 100000 peers and an assumed 5% update rate and down to 19%
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Fig. 11. Queries are resolved through the query catalog of the centralized index. The
catalog maps to nodes that are responsible for the data requested.

for the 15% update rate case. However update rates of 5% or even 15% are not
realistic as it would mean that a utility would lose or replace a large fraction of
its network which in return would dramatically reduce read only transactions.

The average round trip time for a query was about 400ms in the case with
100000 peers. This includes parsing, compiling transferring, processing and re-
ceiving results. However, while it provides a rough idea on processing time, this
figure has little value as it strongly depends on the network topology and may
increase or decrease depending on the communication infrastructure used. Some
power network applications are extremely time critical. A backup protection sys-
tem as discussed in [13], [14], [15], and [16] requires full query execution and data
delivery in about 200ms real time. In such cases, the node executing the protec-
tion logic would subscribe to necessary measurements in advance. Results would
then be delivered to a local cache from which they can be taken for state assess-
ment. In the context of the application scenario of Section 2, these performance
measures are sufficient.

In order to achieve a highly efficient outage report process, network failures
must be detected automatically. The programmability of the vertical architecture
reflects this aspect as new filters and detection algorithms can be implemented
on demand. Since these programs run in-network, their analysis can be based
on high detail measurement data enabling early detection of complex failure
patterns.

6.2 P2P-based Content Repository

The evaluation of the peer-to-peer based content repository highlights two impor-
tant properties considering the decentralized management of different versions
of outage documents: (i) the availability of a certain document version. (ii) The
latency to retrieve a certain version.
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For example, the DhtFlex approach ensures reliability of different data re-
source versions using replication as redundancy scheme: a certain number of
identical copies are stored at different peers. As a data resource’s replication
factor ρ influences its availability, the value of ρ should be set appropriately
depending on the demanded degree of availability. As in worst case, DhtFlex
only requires a single copy of the ρ replicated (immutable) data resources to
be available to progress successfully, the probability Pfail—the failure of a data
resource’s whole replication group—is given by the following equation (we as-
sume that peers fail independently and that all peers have an identical (average)
availability αpeer):

Pfail = P (all ρ replica peers fail) = P (one replica peer fails)ρ = (1−αpeer)ρ

(1)
A resource’s replication factor ρ can be adjusted depending on the desired

availability aim, as stated by the following formula: ρ = log(Pfail)
log(1−αpeer) . Figure 12(a)

depicts the probability Pfail to actually lose an immutable data resource—
depending on different values for αpeer and ρ: one observation is that com-
paratively small values for the size of a replication group suffice to reduce the
probability loosing a certain data resource significantly.

(a) Worst Case Probability a Docu-
ment Version is Lost

(b) Latency of DhtFlex for Im-
mutable Data Resources using Itera-
tive Overlay Routing

Fig. 12. Evaluation of Availability and Performance Properties

The evaluation of performance properties to retrieve a certain outage docu-
ment version uses an experimental setup integrating a King data set [17]. This
approach enables to gain estimations of DhtFlex’s communication costs based
on real measurement data of thousands of Internet hosts. Figure 12(b) indicates
the latency of DhtFlex for operations on immutable data resources, for example,
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outage document versions. All shown latencies represent the average value of
ten measurements per operation; each data resource is allocated to a replication
group of six (different) peers. The results show that a get operation is strongly
affected by the costs to perform peer-to-peer overlay routing, which increase with
the number of peers—the operation itself introduces, however, rather constant
overhead. As the recast operation does not require overlay routing, its latency is
comparatively small. In addition, outage document versions may be arbitrarily
cached at client-site to avoid overlay lookup latencies and thus to reduce the
latency of get operations—this is an important remark as these are supposed as
the most requested kind of operation for such resources.

As a result, the peer-to-peer based content repository is able to ensure high
availability of outage documents and to achieve good performance properties
regarding their data access. This may benefit the adoption of the decentralized
solution in comparison to the state of the art system (see Section 2.2).

7 Related Work

In the context of wide area sensor network Aberer et al. [18] published research
that provides similar concepts to the approach taken in Section 4. Our archi-
tecture, however, was heavily influenced by applicability in current industrial
systems. Our sensor model is determined by IEC 61850 which supports an in-
tegrative approach with current automation equipment. Compiling queries and
programs to binary form allows us to run query engines on low cost embedded
devices as well as desktop PCs.

A good overview of distributed databases is given in [19]. [20] provides an
overview of current research topics on data stream management. In [21], D.
Kucuket et al. introduce a streaming database solution to monitor power quality.
Mariposa [22] introduces an architecture for wide area distributed databases
in perspective of traditional distributed data management systems (DBMS).
The approach includes a micro economic paradigm used for query and storage
optimization. AURORA [23], STREAM [24], Cougar [25] and others discuss
general query processing in sensor networks. AURORA allows users to create
queries in a graphical representation. STREAM and Cougar extend the SQL
with temporal semantics but do not provide the extensions of a programming
language.

A considerable body of research is available on peer-to-peer systems, includ-
ing DHTs [4], [26], and gossip based algorithms [27]. In contrast to peer-to-peer
systems deployed in the Internet, in industrial systems, we find a more comfort-
able environment in some respect: we can expect lower churn rates and less prob-
lems with network address translation. However, we must adapt algorithms orig-
inally designed for media distribution in the Internet to the resource-constrained
environment of industrial systems. Hence, issues such as determinism and real-
time capabilities must be addressed. In previous work [5] [28] [8] we showed
already the potential of peer-to-peer algorithms in industrial domains beyond
content distribution.
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Peer-to-peer systems generally lack capabilities to support content repos-
itories. In addition, most of these systems use a rather monolithic approach
and usually do not target consistency of concurrent operations. Moreover, the
systems commonly do not offer some degree of flexibility regarding certain prop-
erties, as different availability demands. In order to delimit our approach of a
peer-to-peer content repository, we subsequently present selected related work.
It is worth mentioning that to our knowledge, our work is the first peer-to-peer
implementation available, which addresses the powerful features of JSR-170.

For instance, the Cooperative File System (CFS) [29] provides a peer-to-peer
infrastructure for wide-area storage and focuses on guarantees for efficiency,
robustness, load balancing, and scalability. CFS offers a simple file-system inter-
face, which interprets constituent blocks that may be stored at different peers
as files. On bottom, CFS is based on a Chord DHT routing scheme for the
lookup support of data blocks. CFS basically offers a read-only system from a
user’s point of view where consistency is hardly a problem. In contrast to our
approach, only a single user, that is, the publisher, is able to modify its own
data. However, CFS does not support a publish-subscribe mechanism nor our
multi-level naming concept.

OceanStore [30] is designed as an Internet-scale, persistent peer-to-peer data
store for incremental scalability, secure sharing, and long-term durability. Data
objects are identified by global unique IDs and persisted in an underlying DHT.
For an efficient storage, OceanStore splits up data objects into blocks. Multiple
users are supported to work on the same data objects, respecting concurrent
modifications. There exists also the possibility to equip data files with ACLs.
Unlike our work, there are no private storage sections available, nor exists the
possibility to store sensitive data locally publishing only metadata, but allowing
a transparent retrieval. In addition, no advanced features like observations or
type concepts are offered and imposed.

OGSA-DAI [31] is a middleware that enables heterogeneous data resources,
e.g., underlying relational or XML databases, to be queried, updated, trans-
formed, compressed, and delivered via web services within a Grid environment.
Regarding security, OGSA-DAI establishes a role-based model to grant data
access permissions, mapping credentials to corresponding underlying database
roles. In contrast to our work, OGSA-DAI targets on concepts of a more generic
middleware layer, especially integrating client–server solutions. For the horizon-
tal integration, however, we focus on peer-to-peer techniques with the aim of
eliminating central entities in the network. None the less, our repository solu-
tion may be integrated to OGSA-DAI as data storage.

8 Conclusion and Outlook

In this paper we introduced an integration architecture and methods to improve
interoperability and increase automation of cross enterprise business processes.
While the focus of this paper is on the energy domain, we believe that the results
are not restricted to this area of application. The vertical integration approach
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illustrated in this paper constitutes a high performance platform to manage large
scale data intensive systems. Providing an interface of declarative querying and
programmable data sources it abstracts from the underlying physics and can be
extended to include assets unknown during design time as well add new functions
for situation based analytics. Simulations show the performance of the indexing
group which scales well to 100000 peers and beyond. Everything considered, the
architecture increases the efficiency of today’s power networks as well as other
industrial applications that rely on large, globally distributed networks with
thousands of nodes. Considering horizontal integration, the approach of using
a peer-to-peer based content repository to substitute the centralized implemen-
tation of the ETSOVista platform’s back-end system avoids a single point of
failure in critical situations. From a technical point of view, the proposed sys-
tem is able to benefit distributed collaboration in outage management processes
by supporting a publish-subscribe mechanism to enable the rapid notification
of critical events to interested parties. The evaluation shows that the system is
robust against document losses and achieves good performance regarding docu-
ment access. From a business point of view, the decentralized solution shows the
potential to avoid vendor lock-in situations resulting from a proprietary market
information aggregator.

What we have not yet considered in this paper is support of modeling and en-
acting the cross-enterprise business processes which will be required to operate on
top of the document repository. In the future, we shall investigate the suitability
of previous work on model-driven design and enactment of cross-organizational
business processes (see, e.g., [3],[32], [33]). Also, there has been considerable re-
search in agent-supported market mechanisms for efficient resource allocation3,
which can be employed on top of our run-time infrastructure. A further area
of future of work will be to support interoperability and automation of out-
age report publishing at the system operator’s side. This would eliminate the
need to manually commit a report to the market information aggregator. At
the side of an interested market participant, future work may turn towards the
development of techniques to establish a business logic to automatically react to
(critical) outage events.
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