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Abstract We present a systematic review of physical-layer identification systems
and provide a summary of current state-of-the-art techniques. We further review the
types of fingerprints that were discussed in prior work and highlight issues that are
still open and need to be addressed in future work.

1 Introduction

Devices are traditionally identified by some unique information that they hold such as
a public identifier or a secret key. Besides bywhat they hold, devices can be identified
by what they are, i.e., by some unique characteristics that they exhibit and that can
be observed. Examples include characteristics related to device components such
operating system, drivers, clocks, radio circuitry, etc. Analyzing these components
for identifiable information is commonly referred to as fingerprinting, since the goal
is to create fingerprints similar to their biometric counterparts [2].

Here, we focus on techniques that allow wireless devices to be identified by
unique characteristics of their analog (radio) circuitry; this type of identification
is also referred to as physical-layer device identification. More precisely, physical-
layer device identification is the process of fingerprinting the analog circuitry of a
device by analyzing the device’s communication at the physical layer for the purpose
of identifying a device or a class of devices. Physical-layer device identification is
possible due to hardware imperfections in the analog circuitry introduced at the man-
ufacturing process. These hardware imperfections appear in the transmitted signals
which makes them measurable. While more precise manufacturing and quality con-

D. Zanetti (B)
Institute of Information Security, ETH Zurich, Zürich, Switzerland
e-mail: zanettid@inf.ethz.ch

S. Capkun
e-mail: capkuns@inf.ethz.ch

B. Danev
e-mail: boris.danev@inf.ethz.ch

© Springer Science+Business Media New York (outside the USA) 2016
C. Wang et al. (eds.), Digital Fingerprinting,
DOI 10.1007/978-1-4939-6601-1_2

5



6 D. Zanetti et al.

trol could minimize such artifacts, it is often impractical due to significantly higher
production costs.1

The use of physical-layer device identification has been suggested for defensive
andoffensive purposes. It has beenproposed for intrusiondetection [4, 15, 45], access
control [3, 48], wormhole detection [33], cloning detection [6, 23], malfunction
detection [49], secure localization [44], rogue access point detection [21], etc. It
has also been discussed as one of the main hurdles in achieving anonymity and
location privacy [29, 30]. Wireless platforms for which physical-layer identification
has been shown to be feasible include HF Radio Frequency IDentification (RFID)
transponders, UHF (CC1000) sensor nodes, analog VHF transmitters, IEEE 802.11
and 802.15.4 (CC2420) transceivers.

Being able to assess, for a given wireless platform, if physical-layer identification
is feasible and under which assumptions, accuracy, and cost is important for the
construction of accurate attackermodels and consequently for the analysis and design
of security solutions in wireless networks. So far, to the best of our knowledge,
physical-layer device identification has not been systematically addressed in terms
of feasibility, design, implementation and evaluation. This lack of systematization
often results in misunderstanding the implications of device identification on the
security of wireless protocols and applications.

The goal of this work is to enable a better understanding of device identification
and its implications by systematizing the existing research on the topic. We review
device identification systems, their design, requirements, and properties, and provide
a summary of the current state-of-the-art techniques. We finally summarize issues
that are still open and need to be addressed for this topic to be fully understood.

2 Physical-Layer Device Identification

In this section we present the main components of a physical-layer device identifi-
cation system and discuss the system properties and requirements.

2.1 General View

Physical-layer device identification involves three entities as shown in Fig. 1: a wire-
less device, a device identification system, and an application system requesting the
identification.

Physical-layer device identification systems aim at identifying (or verifying the
identity of) devices or their affiliation classes based on characteristics of devices that
are observable from their communication at the physical layer. That is, physical-layer
device identification systems acquire, process, store, and compare signals generated

1This work is largely based on [8].
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Fig. 1 Entities involved in the physical-layer identification of wireless devices and their main
components

from devices during communications with the ultimate aim of identifying (or veri-
fying) devices or their affiliation classes.

Such an identification system can be viewed as a pattern recognition system typi-
cally composed of (Fig. 1): an acquisition setup to acquire signals from devices under
identification, also referred to as identification signals, a feature extraction module
to obtain identification-relevant information from the acquired signals, also referred
to as fingerprints, and a fingerprint matcher for comparing fingerprints and notifying
the application system requesting the identification of the comparison results.

Typically, there are two modules in an identification system: one for enrollment
and one for identification. During enrollment, signals are captured from either each
device or each (set of) class-representative device(s) considered by the application
system. Fingerprints obtained from the feature extraction module are then stored in a
database (each fingerprint may be linked with some form of unique ID representing
the associated device or class). During identification, fingerprints obtained from the
devices under identification are compared with reference fingerprints stored during
enrollment. The task of the identification module can be twofold: either recognize
(identify) a device or its affiliation class from amongmany enrolled devices or classes
(1:N comparisons), or verify that a device identity or class matches a claimed identity
or class (1:1 comparison).

The typical operation of an identification module flows as follows: the acquisition
setup (Sect. 2.6) acquires the signals transmitted (Sect. 2.3) from the device under
identification (Sect. 2.2), which may be a response to a specific challenge sent by
the acquisition setup. Then, the feature extraction module (Sect. 2.6) extracts fea-
tures (Sect. 2.4) from the acquired signals and obtains device fingerprints (Sect. 2.5).
Subsequently, the fingerprint matcher (Sect. 2.6) retrieves the reference fingerprints
associated to the device under identification from the fingerprint database and com-
pares them against the obtained fingerprints to determine or verify the identity (or
the class) of the device under identification. The results of the fingerprint matcher
can then be incorporated in the decision making process of the application system
requesting the identification (e.g., to grant or not to grant access to a certain location).

The design specification of an identification system usually includes requirements
for systemaccuracy (allowable error rates), computational speed, exception handling,
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and system cost [2]. We detail those aspects, as well as strategies to improve device
identification performance in Sects. 2.7 and 2.8 respectively.

2.2 Device Under Identification

Physical-layer device identification is based on fingerprinting the analog circuitry of
devices by observing their radio communication. Consequently, any device that uses
radio communication may be subject to physical-layer identification. So far, it has
been shown that a number of devices (or classes of devices) can be identified using
physical-layer identification. These include analogVHF transmitters [18, 42, 43, 45–
47], IEEE 802.11 transceivers [3, 14–16, 25, 40, 48], IEEE 802.15.4 transceivers [5],
Bluetooth transceivers [17], UHF sensor nodes [33], HF RFID [6, 37] and UHF
RFID [31, 51] transponders. All these devices are composed of antennas, analog
frontends, and logic units, but have different levels of complexity, e.g., IEEE 802.11
transceivers (Fig. 2b) are complex whereas RFID transponders are relatively simple
(Fig. 2a).

Althoughwhatmakes a device or a class of devices to be uniquely identified among
other devices or classes of devices is known to be due to imperfections introduced
at the manufacturing phase of the analog circuitry, the actual device’s components
causing those have not been always clearly identified in all systems. For example,
Toonstra and Kinsner [45, 46] based their identification system on the uniqueness of
VHF transmitter’s frequency synthesizers (local oscillators), while Danev et al. [6]
only suggested that the proposed identification system may rely on imperfections
caused by RFID device’s antennas and charge pumps. Identifying the exact com-
ponents may become more difficult when considering relatively-complex devices.
In these cases, it is common to identify in the whole analog circuitry, or in a spe-
cific sub-circuit, the cause of imperfections. For example, Brik et al. [3] identified
IEEE 802.11 transceivers consideringmodulation-related features; the cause of hard-

(a)

(b)

Fig. 2 Block diagrams of two classes of wireless devices. a RFID transponder. b IEEE 802.11
transceiver
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ware artifacts can be then located in the modulator sub-circuit of the transceivers.
Table1 shows a non-exhaustive list of reported identification experiments together
with the considered devices and (possible) causes of imperfections. Knowing the
components that make devices uniquely identifiable may have relevant implications
on both attacks and applications, which makes the investigation on such components
an important open problem and research direction.

2.3 Identification Signals

Considering devices communicating through radio signals, i.e., sending data accord-
ing to some defined specification and protocol, identification at the physical layer
aims at extracting unique characteristics from the transmitted radio signals and to
use those characteristics to distinguish among different devices or classes of devices.
We defined identification signals as the signals that are collected for the purpose of
identification. Signal characteristics are mainly based on observing and extracting
information from the properties of the transmitted signals, like amplitude, frequency,
or phase over a certain period of time. These time-windows can cover different parts
of the transmitted signals. Mainly, we distinguish between data and non-data related
parts. The data parts of signals directly relate to data (e.g., preamble, midamble,
payload) transmission, which leads to considered data-related properties such as
modulation errors [3], preamble (midamble) amplitude, frequency and phase [25,
34], spectral transformations [17, 25]. Non-data-related parts of signals are not asso-
ciated with data transmission. Examples include the turn-on transients [45, 46], near-
transient regions [35, 50], RF burst signals [6]. Figure3 shows an non-exhaustive list
of signal regions that have been used to identify active wireless transceivers (IEEE
802.11, 802.15.4) and passive transponders (ISO 14443 HF RFID).

2.4 Features

Features are characteristics extracted from identification signals. Those can be pre-
defined or inferred. Table1 shows a non-exhaustive list of reported identification
experiments together with the deployed features.

Predefined features relate to well-understood signal characteristics. Those can be
classified as in-specification and out-specification. Specifications are used for qual-
ity control and specify error tolerances. Examples of in-specification characteristics
include modulation errors such as frequency offset, I/Q origin offset, magnitude
and phase errors [3], as well as time-related parameters such as the duration of the
response [32]. Examples of out-specification characteristics include clock skew [21]
and the duration of the turn-on transient [33]. Figure4a, b show a predefined, in-
specification feature used to identify EPC C1G2 RFID tags [52]. The explored fea-
ture relates to the tags’ transmitted data rate (BLF = 1/Tcycle). The EPC C1G2
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Fig. 3 Several signal parts (regions) commonly used for identification. a Turn-on transient of an
IEEE 802.15.4 (CC2420) transceiver. b ISO 14443 HF RFID tag response to an out-of-specification
RF burst signal. c Preamble and data modulated regions in IEEE 802.11 transceivers. Signal parts
can be either analyzed at RF or at baseband (I/Q). d HF/UHF RFID tag response to in-specification
commands

standard [11] allows a maximum tolerance of ±22% around the nominal data rate:
different tags transmit at different data rates.

Differently from predefined features, where the considered characteristics are
known in advance prior to recording of the signals, we say that features are inferred
when they are extracted from signals, e.g., by means of some spectral transforma-
tions such as Fast Fourier Transform (FFT) or Discrete Wavelet Transform (DWT),
without a-priori knowledge of a specific signal characteristic. For example, wavelet
transformations have been applied on signal turn-on transients [17, 18] and different
data-related signal regions [25, 26]. The Fourier transformation has also been used
to extract features from the turn-on transient [5] and other technology-specific device
responses [6]. Figure4c, d show an inferred feature used to identify EPCC1G2RFID
tags [51]. The explored feature relies on the spectral transformation (FFT) of the tag’s
data-related signal region: different tags present different signal spectra.

Both predefined and inferred features can be subject to further statistical analysis
in order to improve their quality. We discuss more in detail such improvements in
Sect. 2.8.
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Fig. 4 Different features used for identification. Predefined feature: a data-modulated region of
EPC C1G2 RFID tags [52] and b the considered predefined feature, i.e., the tags’ data rate (BLF =
1/Tcycle) for different tags, as well as the given nominal data rate and tolerances according to
the EPC C1G2 specifications [11]. Inferred feature: c data-modulated region of EPC C1G2 RFID
tags [51] and d the considered inferred feature, i.e., the signal spectral transformation (FFT), for
different tags

2.5 Device Fingerprints

Fingerprints are sets of features (or combinations of features, Sect. 2.8) that are used
to identify devices. The properties that fingerprints need to present in order to achieve
practical implementations (adapted from [2]) are:

• Universality: every device (in the considered device-space) should have the con-
sidered features.

• Uniqueness: no two devices should have the same fingerprints.
• Permanence: the obtained fingerprints should be invariant over time.
• Collectability: it should be possible to capture the identification signals with exist-
ing (available) equipments.
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When considering physical-layer identification of wireless devices, we further con-
sider:

• Robustness: fingerprints should not be subject, or at least, they should be evalu-
ated with respect to (i) external environmental aspects that directly influence the
signal propagation like radio interferences due to other radio signals, surrounding
materials, signal reflections, absorption, etc., as well as positioning aspects like the
distance and orientation between the devices under identification and the identifi-
cation system, and (ii) device-related aspects like temperature, voltage level, and
power level. Many types of robustness can be acceptable for a practical identifica-
tion system. Generally, obtaining robust features helps in building more reliable
identification systems.

• Data-dependency: fingerprints can be obtained from features extracted from a
specific bit pattern (data-related part of the identification signal) transmitted by
a device under identification (e.g., the claimed ID sent in a packet frame). This
dependency has particularly interesting implications given that fingerprints are
associated to both devices and data transmitted by those devices.

2.6 Physical-Layer Identification System

A physical-layer identification system (Fig. 1) has the tasks to acquire the identifi-
cation signals (acquisition setup), extract features and obtain fingerprints from the
identification signals (feature extraction module), and compare fingerprints (finger-
print matcher). The system may either passively collect identification signals or it
may actively challenge devices under identification to produce the identification sig-
nals.

The acquisition setup is responsible for the acquisition and digitalization of the
identification signals. We refer to a single acquired and digitalized signal as sample.
Depending on the considered features to extract, before digitalizing the identifica-
tion signals, those may be modified, e.g., downconverted. The acquisition process
should neither influence nor degrade (e.g., by adding noise) the signals needed for
the identification, but should preserve and bring into the digital domain the unique
signal characteristics on which the identification relies on. Therefore, high-quality
(and expensive) equipment may be necessary. Typically, high-quality measurement
equipment has been used to capture and digitize signal turn-on transients [17] and
baseband signals [3].

The acquisition setup may also challenge devices under identification to trans-
mit specific identification signals. Under passive identification, the acquisition setup
acquires the identification signals without interacting with the devices under identi-
fication, e.g., identification signals can simply relate to data packets sent by devices
under identification during standard communication with other devices. Differently,
under active identification, the acquisition setup acquires the identification signals
after challenging the devices under identification to transmit them. Besides the
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advantages of obtaining identification signals “on demand”, active identification
may exploit challenges, and consequently replies that contain identification signals,
that are rare, or not present at all, in standard communications. For example, RFID
transponders can be challenged with out-specification signal requests as shown in
[6, 51].

The feature extraction module is responsible for extracting characteristics from
signals that can then be used to distinguish devices or classes of devices. To improve
the accuracy of an identification system, the feature extraction module may combine
several features together (Sect. 2.8). In the case of predefined features, the feature
extraction module implements functions that directly relate an input sample to the
features. For example, when considering features like modulation errors, the feature
extraction module implements a demodulator and several other functions to quantify
these errors. Differently, in the case of inferred features, feature extraction can be a
form of dimensionality reduction, where an input sample of dimension (random vari-
ables) d containing both relevant and redundant (for the identification) information is
reduced to a new sample of dimension m ≤ d containing only relevant information.
For example, dimensionality reduction techniques have not only been used to reduce
the dimensionality [48], but also to find more discriminant subspaces [41]. Reducing
the dimensionality of a sample makes it processable and highlights relevant features
that may be hidden by noisy dimensions.

The fingerprint matcher compares newly extracted device fingerprints with refer-
ence fingerprints enrolled in the fingerprint database. Depending on the application
system, it can provide a yes/no answer if a device fingerprint matches a chosen refer-
ence fingerprint (identity verification) or a list of devices that the device fingerprint
most likely originated from (identification). The matcher is commonly implemented
by some distance measure (e.g., Euclidean and Mahalanobis distances) or a more
complex pattern recognition classifier such as Probabilistic Neural Networks (PNN)
and Support Vector Machines (SVM) [1]. The choice of the matching technique
highly depends on the extracted device fingerprints and the requirements of the
application system (Sect. 3).

2.7 System Performance and Design Issues

The performance evaluation of a physical-layer device identification system is an
important requirement for the system specification. Performance should be investi-
gated in terms of identification accuracy, computational speed, exception handling,
cost, and security [2].

The system accuracy is usually expressed in error rates that cannot be theoretically
established, but only statistically estimated using test databases of device fingerprints.
As physical-layer device identification systems are inherently similar to biometric
identification systems, they can be evaluated using already established accuracy
metrics [2].More precisely, the error rates should include the probability of accepting
an imposter device (False Accept Rate or FAR) and the probability of rejecting a
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genuine device (False Reject Rate or FRR). These error rates are usually expressed
in the Receiver Operating Characteristic (ROC) that shows the FRRs at different
FAR levels. The operating point in ROC, where FAR and FRR are equal, is referred
to as the Equal Error Rate (EER). The EER is a commonly used accuracy metric
because it is a single value metric and also tells that one recognition system is better
than another for the range of FAR/FRR operating points encompassing the EER. For
the accuracy at other operating points, one has to consider the ROC. We note that it
is also common to provide the FRR for certain benchmark operating points such as
FAR of 0.01, 0.1, 1%.

The ROC and EER are the mostly commonly used metrics for the comparison of
identification (verification) systems [13].

We note that physical-layer device identification systems in current state-of-art
works (Sect. 3) were often evaluated as classification systems [1]. In a classification
system, unknown device fingerprints are classified (correctly or incorrectly) to their
respective reference device fingerprints. The error rate is referred to as the classifi-
cation error rate and shows the ratio of the number of incorrectly classified device
fingerprints over all classified fingerprints. The classification error rate does not cap-
ture the acceptance of imposters nor the rejection of genuine devices, and therefore is
typically not an appropriate metric for the evaluation of the accuracy of identification
(verification) systems.

The requirement on computational resources, cost, and exception handling need
to be considered as well. In physical-layer identification techniques the complex-
ity of the extracted fingerprints directly relates to the quality and speed of signal
acquisition and processing; the higher the quality and speed, the higher the cost.
Acquisition setups depend on environmental factors which make exception handling
a critical component (e.g., signals may be difficult to acquire from certain locations;
alternatively, acquired signals may not have the acceptable quality for feature extrac-
tion). Therefore, appropriate procedures need to be devised in order to fulfill given
requirements.

Last but not least, the evaluation of a physical-layer device identification system
must address related security and privacy issues. Can the device fingerprints be forged
and therefore compromise the system? How can one defend against attacks on the
integrity of the system? Related works on these systems have largely neglected these
issues.

2.8 Improving Physical-Layer Identification Systems

Before enrollment and identificationmodules can be deployed, the identification sys-
tem must go through a building phase where design decisions (e.g., features, feature
extraction methods, etc.) are tested and, in case, modified to fulfill the requirements
on the above-mentioned systemproperties: accuracy, computational speed, exception
handling, and costs.
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Although these last three may significantly affect the design decisions, accuracy
is usually the most considered property to test and evaluate an identification system.
Typically, to improve the accuracy of a (physical-layer) identification system (for
wireless devices), i.e., to improve its overall error rates, different strategies can be
deployed: (i) acquire signalswithmultiple acquisition setups, (ii) acquire signals from
multiple transmitters on the same device (e.g., when devices are MIMO2 systems),
(iii) consider several acquisitions of the same signals, (iv) consider different signal
parts (e.g., both transients and data) and different features, and (v) deploy different
approaches for both feature extraction and matching.

So far, neitherMIMOsystems as devices under identification normultiple acquisi-
tion setups have been considered yet. MIMO systems as devices under identification
may offer a wider range of characteristics which the identification process can be
based on. This can lead to more robust fingerprints (by analogy with human finger-
prints, it is like verifying a human identity by scanning two different fingers). Using
multiple acquisition setups may increase the accuracy of the identification, e.g., by
acquiring a signal from different location at the same time may lead to more robust
fingerprints. The impact of MIMO systems and of multiple acquisition setups is still
unexplored.

Considering several acquisitions (samples) of the same signal is the common
approach to obtain more reliable fingerprints [5, 17, 33]. Generally, the acquired
samples are averaged out into one significant sample, which is then used by the
feature extractor module to create fingerprints.

Considering different signal parts, features, and feature extractionmethods is often
referred to as multi-modal biometrics, where different modalities are combined to
increase the identification accuracy and bring more robustness to the identification
process [38]. Several works have already considered combining different modalities.
For example, different signal properties (e.g., frequency, phase) were used in [3, 17],
different signal regions, signal properties and statistics (e.g., skewness, kurtosis)were
explored in [25, 35]. Different modalities extracted from device responses to various
challenge requests were studied in [6]. The use of more modalities have resulted in
significant improvement of the overall device identification accuracy. It should be
noted that the above modalities were mostly combined before the feature match-
ing (classification) procedure. Therefore, the combination of different classification
techniques remains to be explored [20, 24].

In addition to the above-mentioned strategies to improve the accuracy of an identi-
fication system, it is worth to mention feature selection and statistical feature extrac-
tion. Feature selection aims at selecting from a set of features, the sub-set that leads
to the best accuracy [19] (that sub-set will then be used in enrollment and identifi-
cation modules). Statistical feature extraction exploits statistical methods to choose
and/or transform features of objects (in our case, devices) such that the similarities

2MIMO refers to multiple-input and multiple-output. Such wireless systems use multiple antennas
for transmitting and receiving for the purpose of improving communication performance.
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between same objects are preserved, while the differences between different objects
are enhanced [1]. Statistical feature extraction is a powerful technique to improve
the features’ discriminant quality.

3 State of the Art

Identification of radio signals gained interest in the early development of radar sys-
tems during theWorldWar II [22, 28]. In a number of battlefield scenarios it became
critical to distinguish own from enemy radars. This was achieved by visually compar-
ing oscilloscope photos of received signals to previouslymeasured profiles [28]. Such
approaches gradually became impractical due to increasing number of transmitters
and more consistency in the manufacturing process.

In mid and late 90’s a number of research works appeared in the open literature to
detect illegally operated radio VHF FM transmitters [4, 18, 45, 46]. Subsequently,
physical-layer identification techniques were investigated for device cloning detec-
tion [6, 23], defective device detection [49], and access control in wireless personal
and local area networks [3, 15, 16, 21, 33]. A variety of physical properties of the
transmitted signals were researched and related identification systems proposed.

Here we review the most prominent techniques to physical-layer identification
available in the open literature. We structure them in three categories, namely
transient-based, modulation-based, and other approaches based on signal part used
for feature extraction. For each category, we discuss theworks in chronological order.
A concise summary is provided in Table2.

3.1 Transient-Based Approaches

Physical-layer identification techniques that use the turn-on/off transient of a radio
signal are usually referred to as transient-based approaches to physical-layer device
identification. These approaches require accurate transient detection and separation
before feature extraction and matching. The detection and separation of the turn-on
transient depend on the channel noise and device hardware and have been shown to
be critical to these systems [39, 47].

The open literature on transient-based device identification can be traced back to
the early 90s. Toonstra and Kinsner [45, 46] introduced wavelet analysis to charac-
terize the turn-on transients of 7 VHF FM transmitters from 4 different manufac-
turers. Device fingerprints were composed of wavelet spectra extracted from signal
transients captured at the FM discriminator circuit. All extracted fingerprints were
correctly classified bymeans of a genetic algorithm (neural network). Gaussian noise
was added to the original transients in order to simulate typical field conditions. Hip-
penstiel and Payal [18] also explored wavelet analysis by filter banks in order to
characterize the turn-on transients of 4 different VHF FM transmitters. They showed
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that Euclidean distance was an accurate similarity measure to classify extracted
device fingerprints from different manufacturers. Choe et al. [4] presented an auto-
mated device identification system based on wavelet and multi-resolution analysis
of turn-on transient signals and provided an example of transmitter classification of
3 different transmitters.

Ellis and Serinken [10] studied the properties of turn-on transients exhibited by
VHF FM transmitters. They discussed properties of universality, uniqueness, and
consistency in 28 VHF FM device profiles characterized by the amplitude and phase
of the transients. By visual inspection, the authors showed that there were consis-
tent similarities between device profiles within the same manufacturer and model
and device profiles from different models that could not be visually distinguished.
Moreover, some devices did not exhibit stable transient profiles during normal opera-
tion. The authors suggested that further research is needed to quantify environmental
factors (e.g., doppler shift, fading, temperature). Following these recommendations,
Tekbas, Serinken and Ureten [42, 43] tested 10 VHF FM transmitters under ambient
temperature, voltage, and noise level changes. The device fingerprints were com-
posed of transient amplitude and phase features obtained from the signal complex
envelope. A probabilistic neural network (PNN) was used for classifying the finger-
prints. The experimental results showed that the system needed to be trained over a
wide temperature range and the operational supply-voltage levels in order to achieve
low classification error rates of 5%. Classification accuracy of low-SNR transients
could be improved by estimating the SNR and modifying its level in the training
phase [43].

Transient-based approaches were also investigated in modern wireless local and
personal area networks (WLAN/WPAN), primarily for intrusion detection and access
control. Hall et al. [15–17] focused on Bluetooth and IEEE 802.11 transceivers. The
authors captured the transient signals of packet transmissions from close proximity
(10cm) with a spectrum analyzer. They extracted the amplitude, phase, in-phase,
quadrature, power, and DWT coefficients and combined them in device fingerprints.
Classification results on 30 IEEE 802.11 transceivers composed of different models
from 6 different manufacturers [14, 16] showed error rates of 0–14% depending on
the model and manufacturer. The average classification error rate was 8%. The same
technique was also applied to a set of 10 Bluetooth transceivers and showed similar
classification error rates [17]. The authors also introduced dynamic profiles, i.e., each
device fingerprint was updated after some amount of time, in order to compensate
internal temperature effects in the considered devices.

Ureten and Serinken [48] proposed extracting the envelope of the instantaneous
amplitude of IEEE 802.11 transient signals for device classification. The authors
classified signals captured at close proximity from 8 different manufacturers using a
probabilistic neural network. The classification error rates fluctuated between 2–4%
depending on the size of the device fingerprints.

In the above works, signal transients were captured at close proximity to the
fingerprinting antenna, approximately 10–20cm. The classification error rates were
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primarily estimated from a set of different model/manufacturer devices; only a few
devices possibly had identical hardware. Physical-layer identification of same model
and same manufacturer devices was considered by Rasmussen and Capkun [33].
Each device fingerprint contained the transient length, amplitude variance, number
of peaks of the carrier signal, differencebetweennormalizedmeanand thenormalized
maximum value of the transient power, and the first DWT coefficient. Experimental
results on 10 UHF (Mica2/CC1000) sensor devices with identical hardware showed
a classification error rate of 30% from close proximity. A follow-up work [5] showed
that a carefully designed hardware setup with high-end components and statistically
selected features can also accurately identify same model and manufacturer sensor
devices. The authors built device fingerprints with statistically filtered FFT spectra of
transient signals and used Mahalanobis distance as a similarity measure. The system
accuracy was evaluated using identity verification on 50 IEEE 802.15.4 (CC2420)
Tmote Sky sensor devices from the same model and manufacturer. Low equal error
rates (EER) of 0.24% were achieved with signals captured from distances up to
40 m. The authors also concluded that large fixed distances and variable voltage
preserve fingerprint properties, whereas varying distance and antenna polarization
distort them enough to significantly decrease the accuracy (EER = 30%).

3.2 Modulation-Based Approaches

Modulation-based approaches to device identification focus on extracting unique
features from the part of the signal that has been modulated, i.e., the data. Such
features have only recently being proposed for device identification. More precisely,
Brik et al. [3] used five distinctive signal properties of modulated signals, namely
the frequency error, SYNC correlation, I/Q origin offset, and magnitude and phase
errors as features for physical-layer identification. The latter were extracted from
IEEE 802.11b packet frames, previously captured using a high-end vector signal
analyzer. Device fingerprints were built using all five features and classified with k-
NN and SVM classifiers specifically tuned for the purpose. The systemwas tested on
138 identical 802.11bNICs and achieved a classification error rate of 3 and 0.34% for
k-NN and SVM classifiers respectively. The signals were captured at distances from
3 to 15m from the fingerprinting antenna. Preliminary results on varying devices’
locations showed that the extracted fingerprints are stable to location changes.

Modulation-based approaches were also applied to classifying RFID devices.
Danev et al. [6] showed that the modulation of tag responses of different model
ISO 14443 RFID transponders shows distinctive and consistent characteristics when
challenged with various out-specification commands. They tested their proposal on
RFID transponders from 4 different classes.
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3.3 Other Approaches

A number of physical-layer identification techniques have been proposed [6, 21, 40]
that could not be directly related to the aforementioned categories. These approaches
usually targeted a specific wireless technology and/or exploited additional properties
from the signal and logical layer.

Suski et al. [40] proposed using the baseband power spectrumdensity of the packet
preamble to uniquely identify wireless devices. A device fingerprint was created by
measuring the power spectrum density (PSD) of the preamble of an IEEE 802.11a
(OFDM) packet transmission. Subsequently, device fingerprints were matched by
spectral correlation. The authors evaluated the accuracy of their approachon3devices
and achieved an average classification error rate of 20% for packet frames with SNR
greater than 6 dB. Klein et al. [25, 26] further explored IEEE 802.11a (OFDM)
device identification by applying complex wavelet transformations and multiple dis-
criminant analysis (MDA). The classification performance of their technique was
evaluated on 4 same model Cisco wireless transceivers. The experimental results
showed SNR improvement of approx. 8 dB for a classification error rate of 20%.
Varying SNR and burst detection error were also considered.

Various signal characteristics, signal regions and statistics were recently investi-
gated onGSMdevices [34, 35, 50]. The authors used the near-transient andmidamble
regions of GSM-GMSK burst signals to classify devices from 4 different manufac-
turers. They observed that the classification error using the midamble is significantly
higher than using transient regions. Various factors were identified as potential areas
of future work on the identification of GMSK signals. In a follow-up work [35], it
has been shown that near-transient RF fingerprinting is suitable for GSM. Additional
performance analysis was provided for GSM devices from the same manufacturer
in [50]. The analysis revealed that a significant SNR increase (20–25dB)was required
in order to achieve high classification accuracy within same manufacturer devices.

Recently, a number of works investigated physical-layer identification of different
classes of RFID [6, 31, 32, 36, 37, 51]. Periaswamy et al. [31, 32] considered
fingerprinting of UHF RFID tags. In [31], the authors showed that the minimum
power response characteristic can be used to accurately identify large sets of UHF
RFID tags. An identification accuracy of 94.4% (with FAR of 0.1%) and 90.7%
(with FAR of 0.2%) was achieved on two independent sets of 50 tags from two
manufacturers. Timing properties of UHF RFID tags have been explored in two
independent works [32, 51]. The authors showed that the duration of the response
can be used to distinguish same manufacturer and type RFID tags independent of the
environment. This poses a number of privacy concerns for users holding a number of
these tags, e.g., user unauthorized tracking can be achieved by a network of readers
with a high accuracy [51].

In the context ofHFRFID,Danev et al. [6] explored timing,modulation, and spec-
tral features extracted fromdevice responses to purpose-built in- andout-specification
signals. The authors showed that timing and modulation-shape features could only
be used to identify between different manufacturers. On the other hand, spectral fea-
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tures would be the preferred choice for identifying same manufacturer and model
transponders. Experimental results on 50 identical smart cards and a set of elec-
tronic passports showed an EER of 2.43% from close proximity. Similarly, Romero
et al. [36] demonstrated that the magnitude and phase at selected frequencies allow
fingerprinting different models of HF RFID tags. The authors validated their tech-
nique on 4 models, 10 devices per model. Recently, the same authors extended their
technique to enable identification of samemodel andmanufacturer transponders [37].
The above works considered inductive coupled HF RFID tags and the proposed fea-
tures work from close proximity.

Jana and Kasera [21] proposed an identification technique based on clock skews
in order to protect against unauthorized access points (APs) in a wireless local area
network. A device fingerprint is built for each AP by computing its clock skew at
the client station; this technique has been previously shown to be effective in wired
networks [27]. The authors showed that they could distinguish between different APs
and therefore detect an intruder AP with high accuracy. The possibility to compute
the clock skew relies on the fact that the AP association request contains time-stamps
sent in clear.

3.4 Attacking Physical-Layer Device Identification

The large majority of works have focused on exploring feature extraction and match-
ing techniques for physical-layer device identification. Only recently the security of
these techniques started being addressed [5, 7, 9]. In theseworks, attacks on physical-
layer identification systems can be divided into signal replay and feature replay
attacks. In the former, the attacker’s goal is to observe analog identification signals
of a targeted device, capture them in a digital form, and then transmit (replay) these
signals towards the identification system by some appropriate means (e.g., through
purpose-built devices or more generic ones like software-defined radios [12], high-
end signal analyzers, or arbitrary waveform generators). Differently, feature replay
attacks aim at creating, modifying, or composing identification signals that repro-
duce only the features considered by the identification system. Such attacks can be
launched by special devices such as arbitrary waveform generators that produce the
modified or composed signals, by finding a device that exhibits similar features to
the targeted device, or to replicate the entire circuitry of the targeted device or at
least the components responsible for the identification features.

Edman andYener [9] developed impersonation attacks onmodulation-based iden-
tification techniques [3]. They showed that low-cost software-defined radios [12]
could be used to reproduce modulation features (feature replay attacks) and imper-
sonate a target device with a success rate of 50–75%. Independently, Danev et al. [7]
have designed impersonation attacks (both feature and signal replay attacks) on tran-
sient andmodulation-based approaches using both software-defined radios and high-
end arbitrary waveform generators. They showed that modulation-based techniques
are vulnerable to impersonationwith high accuracy, while transient-based techniques
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are likely to be compromised only from the location of the target device. The authors
pointed out that this is mostly due to presence of wireless channel effects in the
considered device fingerprints; therefore the channel needed to be taken into con-
sideration for successful impersonation. In addition, Danev and Capkun [5] showed
that their identification systemmay be vulnerable to hill-climbing attacks if the num-
ber of signals used for building the device fingerprint is not carefully chosen. This
attack consists of repeatedly sending signals to the device identification system with
modifications that gradually improve the similarity score between these signals and a
target genuine signal. They also demonstrated that transient-based approaches could
easily be disabled by jamming the transient part of the signal while still enabling
reliable communication.

3.5 Summary and Conclusion

A detailed look of the state of the art shows a number of observations with respect
to the design, properties, and evaluation of physical-layer identification systems.

A broad spectrum of wireless devices (technologies) have been investigated. The
devices under identification coverVHFFMtransmitters, IEEE802.11network access
cards (NIC) and access points (AP), IEEE 802.15.4 sensor node devices, Bluetooth
mobile phones, and RFID transponders. Identification at the physical layer has been
shown to be feasible for all the considered types of devices.

In terms of feature extraction, most works explored inferred features for device
identification [5, 10, 15, 40, 42, 45, 48]. Few works used predefined features [3,
21, 33] with only one work [3] exploiting predefined in-specification features. Typ-
ically, predefined features would be more controlled by device manufacturers (e.g.,
standard compliance) and are therefore likely to exhibit less discriminative properties
compared to inferred features. The inferred features are howevermore difficult to dis-
cover and study given that purpose-built equipment and tailored analysis techniques
are required. Both transient and data parts of the physical-layer communication were
used for extracting device fingerprints.

The majority of works used standard classifiers such as Neural Network, Nearest
Neighbor, andSupportVectorMachines classifiers [1] to classify (match) fingerprints
from different devices. Classification error rate was used as ametric of accuracy in [3,
10, 15, 33, 40, 42, 45, 48], while identification (verification) accuracy in terms of
FAR, FRR and EER metrics is used in [5, 6]. In Sect. 2.7, we discuss the differences
between those metrics and suggest an appropriate usage.

In terms of system evaluation, earlier works mostly considered heterogeneous
devices from different manufacturers and models, while recent works focused on
the more difficult task of identifying same model and manufacturer devices (see
Table2). In addition to hardware artifacts in the analog circuitry introduced at the
manufacturing process, physical-layer identification of devices that present different
hardware design, implementation, and were subject to a different manufacturing
process may benefit from those differences. Differently, physical-layer identification
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of devices that present the samehardware design, implementation, andmanufacturing
process is exclusively based on hardware variability in the analog circuitry introduced
at the manufacturing process, which makes the physical-layer identification of those
devices a harder task.

Proper investigations on the actual components that make devices uniquely iden-
tifiable have been so far neglected. Although in some (few) works these components
can be easily identified (e.g., Toonstra and Kinsner [45] based their device identifi-
cation on signals generated by the local frequency synthesizer), in most of the other
works only suggestions were provided (e.g., the device antenna and charge pump [6]
or the modulator sub-circuit of the transceiver [3]).

Only few works considered evaluating the robustness of the extracted fingerprints
to environment and in-device effects (see Table2). Although parameters like tem-
perature and voltage (at which the device under identification is powered) were con-
sidered, robustness evaluations mainly focused on determine the impact of distance
and orientation of the device under identification with respect to the identification
system. Obviously, features not (or only minimally) affected by distance and orien-
tation will be easily integrated in real-world applications. Results show that inferred
features based on spectral transformations such as Fast Fourier Transform or Dis-
crete Wavelet Transform are particularly sensitive to distance and orientation [5, 6]
(i.e., the identification accuracy significantly decreases when considering different
distances and orientations), while features less affected by the transmission medium
(i.e., the wireless channel) like clock skews or (some) modulation errors [3] are less
sensitive.

In general, the proposed system evaluations rarely considered acquisition cost
and time, feature extraction overhead and device fingerprint size. For example, some
brief notes on feature extraction overhead and fingerprint size can be found in [5, 6]
and on signal acquisition time in [3], but they are rather an exception in the reviewed
state-of-the-art works.

Security and privacy considerations were largely neglected. Only recently,
researchers considered attacks on selected physical-layer techniques [7, 9], but no
comprehensive security and privacy analysis has been attempted.

4 Future Research Directions

Although physical-layer identification has been increasingly investigated within the
last decade, several questions related to the performance of identification systems,
fingerprint robustness, and applicability of physical-layer identification in real-world
scenarios are still unanswered. In particular, during the presented work, we high-
lighted the following aspects:

• The causes of unique identification.
Identify the components that make devices uniquely identifiable is a difficult
task, but have relevant implications on both applications and attacks. Application
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systems can benefit frommore tailored features and detailed attack analysis, while
attackers can use this information for advanced feature replay attacks.

• Robust fingerprints.
Analyze the robustness of fingerprints with respect to application-related envi-
ronmental and in-device aspects would help in both understanding the limitations
and finding improvements on the considered features. Potential, and currently
not-explored areas of improvement include MIMO systems, multiple acquisition
setups, and multi-modal fingerprints. Deploying multiple acquisition setups may
increase the accuracy of the identification while MIMO systems as devices under
identification may offer a wider range of identification features. Considering dif-
ferent signal parts, features, and feature extraction methods and combining them
to obtain multi-modal fingerprints may increase the identification accuracy and
bring more robustness to the identification process.

• Security and privacy of device identification.
Attacks on both security and privacy of physical-layer identification entities need
to be thoroughly investigated and appropriate countermeasures designed and eval-
uated. Investigation of data-dependent properties in device fingerprints might be
a promising direction to improve the resilience against replay attacks.

5 Conclusion

Physical-layer identification has been investigated on a broad spectrum of wireless
technologies, but primarily as a defensive technique in order to enhance wireless
security against identity-targeted attacks. The feasibility of physical-layer device
identification has been largely neglected in the security analysis of protocols aim-
ing at ensuring device (user) identity and location privacy. Moreover, the proposed
techniques often lack proper performance evaluation and their resilience to attacks
is rarely analyzed.

By systematizing the main concepts of these systems and analyzing the state-of-
the-art approaches in the open literature, we provide a comprehensive overview of
physical-layer identification and highlight the different types and origins of finger-
prints.

Despite the existence of a number ofworks on the subject, understanding physical-
layer identification in terms of feasibility, accuracy, cost, assumptions, and implica-
tions still remains a challenge. Further research is required to address a number of
questions such as: what are the exact causes of identification? What is the impact
of diversity on the identification accuracy? What are the properties of different
physical-layer device fingerprints in terms of robustness and security guarantees?
How much information entropy do fingerprints contain? Understanding the exact
causes of fingerprinting would enable more tailored pattern analysis techniques and
provide insights on how offensive uses could be mitigated. Diversity (e.g., MIMO,
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multi-modal features) can be exploited for improving the accuracy and increasing
the robustness of these systems. Similarly, data-dependent properties could largely
enhance the resilience to replay attacks.
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