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Abstract

We analyze the security requirements on RFID protocols
to be used in supply chains. We perform a case study on a
recently proposed RFID authentication protocol specifically
designed for supply chains. We discuss several shortcom-
ings in this protocol related to mutual authentication, un-
linkability, and desynchronization and suggest possible im-
provements. We show how the flaws in the protocol can be
used to track products, relate incoming and outgoing prod-
ucts, and extort supply chain partners.

1. Introduction

Radio frequency identification (RFID) systems identify
tags to readers in an open environment, requiring neither
visual nor physical contact for communication. Due to the
low production costs and very small size of the tags, RFID
system deployment is steadily increasing, thereby replacing
traditional identification methods such as bar codes. This is
particularly true in supply chains where RFID tags permit
a much more cost-effective and time-efficient tracing and
management of a product than bar codes.

While RFID systems make management more efficient,
they may also facilitate nefarious activities. Since neither
physical nor visual contact is required to communicate with
RFID tags, it becomes much easier for legitimate and ma-
licious entities alike to interact with the tags. For instance,
the ability to trace a product through a supply chain is vi-
tal for the product’s manager, but detrimental if it can also
be used by a competitor. Therefore, the security of tags,
readers, and any other components of an RFID system is
as important as the cost-effectiveness and time-efficiency.
In this paper, we report on the security of a communication
protocol between a tag and a reader proposed for use in sup-
ply chains [14]. In the following, we refer to this protocol
asLD after the last names of its authors.

The intention to keep RFID tags small and cheap in order

to facilitate large-scale deployment imposes significant lim-
itations on the communication protocol in terms of the num-
ber and type of cryptographic primitives that may be used.
Consequently, there is a wide variety of published proto-
cols aiming at achieving strongly secure, untraceable, and
efficient communication within today’s resource limitations
for RFID tags, a recent collection being [4, 8, 9, 12, 20].
The fact that actually all of the protocols in this collec-
tion have security flaws together with the significant num-
ber of publications containing attacks upon RFID protocols,
most recently [1, 5, 6, 10, 13, 18, 7] shows that the design
of resource-constrained, secure RFID protocols is still not
well-understood.

As observed in [14], protocols for the supply chain set-
ting differ from other RFID protocols in that they need to
support transfer of ownership from one supply chain part-
ner to another. Currently there are relatively few protocols
that handle ownership transfer [16, 17, 19].

In this paper, we show that in the LD protocol the own-
ership transfer mechanism introduces security flaws which
allow an attacker to trace tags through the supply chain, to
break authentication, and to switch tags to and from a non-
operational state. The salient part in the last attack is that
only the attacker can switch a non-operational tag back on
which in the supply chain scenario could be abused for ex-
tortion.

Our paper is structured as follows. In Section 2 we ex-
plain our terminology and adversary model and we discuss
the security requirements for RFID protocols in a supply
chain setting. In Section 3 we describe the LD protocol. In
Section 4 we exhibit a flaw in the key update procedure that
allows for attacks on unlinkability. In Section 5 we show an
attack on authentication and discuss its consequences, and
in Section 6 we conclude with an outlook on future work.

2. Preliminaries

We begin by explaining our terminology and adversary
model and then proceed with the description of security re-



quirements for an RFID system to be used in supply chains.
In this paper,readerrefers to the actual RFID reader as

well as the database communicating with the reader, since
this communication takes place over a secure channel. A
partner refers to the owner and operator of one or more
readers, all of which contain the same cryptographic key
material. Readers of different partners may contain differ-
ing cryptographic key material. Anagentcan be a tag or
a reader, while arole refers to the protocol steps a tag or
reader is expected to carry out. Arun is the execution of a
role by an agent.

We use a standard Dolev-Yao intruder model in which
the adversary controls the network. Since there might be at-
tacks in this model which are not feasible in a real-world
RFID system, we discuss, when necessary, the circum-
stances under which a presented attack becomes feasible.
An RFID supply chain protocol should be considered a
multi-party protocol, since every tag is supposed to succes-
sively interact with a predefined series of readers. Thus the
intruder model should take malicious collaboration of part-
ners into account. This is typically modeled by allowing the
intruder to corrupt readers thus learning the reader’s cryp-
tographic keys. However, the attacks presented in the fol-
lowing sections can be carried out even under assumption
that partners are trusted (and thus their readers incorrupt-
ible). We discuss malicious collaboration of partners in the
concluding section.

We consider the following security properties to be rele-
vant for an RFID protocol in the supply chain setting.

1. Mutual authentication through recent aliveness and
agreement.

• Tag-to-reader authentication allows the partner to
verify that an incoming product is authentic. For
this purpose therecent alivenesssecurity prop-
erty [15] suffices. Recent aliveness captures the
fact that the tag needs to have generated a mes-
sage as a consequence of a reader’s query. More
formally, a protocol guarantees to an agenta in
role A that any corresponding agentb in role B

has been recently alive, if and only if, whenever
a completes a run, there has been an event ofb

during that run.

• Reader-to-tag authentication allows the tag to
verify that it is communicating with an autho-
rized reader. This is important in the present sce-
nario since a tag will need to be updated with
new cryptographic key material which the reader
sends to the tag. It is clear that the integrity of
the key-update message needs to be preserved.
Thus recent aliveness alone is not sufficient for
this purpose. The tag needs a guarantee that the
message containing key update information sent

by the reader is equal to the message received by
the tag. For this, theagreement[15] property is
necessary. Formally, a roleA satisfies the agree-
ment property on a set of data itemsd if, when-
ever an agenta in role A completes a run of the
protocol with an agentb in roleB, thenb (in role
B) has been running the protocol witha in role
A and the two agents agreed on the data values in
d. Furthermore, each such run ofa corresponds
to a unique run ofb.

2. Untraceability and unlinkability

As observed in [14], it is important for a supply chain
partner to prevent outsiders from being able to corre-
late incoming and outgoing products. Thus an adver-
sary should not be able to trace products through the
supply chain, or at the least, he should not be able to
link incoming and outgoing products.

A protocol satisfies theuntraceability property for
tags, if an adversary is not able to recognize a tag he
previously observed or interacted with. Formal defi-
nitions of untraceability have been given in [2, 11, 7].
The weaker notion ofunlinkability requires that an ad-
versary cannot recognize a previously observed tag if
between the two observations the tag has communi-
cated with an authorized reader and updated its cryp-
tographic key material.

The mutual authentication and unlinkability properties
identified above correspond to the security requirements for
the LD protocol stated in [14].

It is worth noting that the LD protocol due to its key-
update procedure is astatefulprotocol. Therefore the possi-
bility of desynchronization attacks needs to be considered.
In a desynchronization attackthe adversary aims to disrupt
the key update leaving the tag and reader in a desynchro-
nized state and rendering future authentication impossible.
It can be argued that the existence of desynchronization at-
tacks implies the need for a desynchronization resistance
property. Currently, there is no formal definition of desyn-
chronization resistance for RFID protocols. In this paper,
we have put extra conditions on the reader-to-tag authenti-
cation property by requiring agreement on sent messages to
ensure some degree of desynchronization resistance. How-
ever, it is easy to see that in general, this extra requirement is
insufficient. For instance, even with an agreement property
the reader still has no guarantee that a tag has successfully
updated its keys.

3. Protocol description

The LD protocol [14] was designed to be a mutual au-
thentication protocol for re-writable RFID tags guarantee-
ing the unlinkability of tags in a supply chain. A supply



c, ki, ki+1
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α = c ⊕ ki

T

nonce r

r

h(r ⊕ α)

a := ki ⊕ ki+1

b := h(a ⊕ c ⊕ ki)

a, b

if b = h(a ⊕ α)
then α := α⊕ a

Figure 1. RFID protocol for supply chains

chain consists of a chain of partners, each of which is rep-
resented by a reader. Every readerRi contains a secretki,
as well as the secret of the next readerki+1. Additionally,
every reader stores the identityc of every tag it may authen-
ticate. Every tagT contains a pseudonymα representing its
current temporary identity. The value ofα is equal toc⊕ki

whereki is the secret of some readerRi currently allowed
to identify and authenticate the tag.

The LD protocol is a challenge-response based protocol.
The readerRi challenges tagT with a noncer. The tag cal-
culates thexor of its current secretα and challenger and
responds with the hash of this value. The reader considers
the tag authentic if it finds a secretc for whichh(c⊕r⊕ki)
is equal to the received response. The reader may then stop
the protocol execution giving it the possibility to authenti-
cate the tag again in a future communication session. Al-
ternatively, the reader may send the updatea = ki ⊕ ki+1,
accompanied byb = h(a ⊕ c ⊕ ki) to the tag. The tag then
verifies thatb = h(a⊕α) and updates its secretα by xoring
it with a. In doing this, ownership of tagT is transferred
from readerRi to readerRi+1. The protocol is depicted as
a message sequence chart in Figure 1.

The message sequence chart shows the role names,
framed, near the top of the chart. Above the role names, the
role’s secret terms are shown. Actions, such as nonce gen-
eration, computation, verification of terms, and assignments
are shown in boxes. Messages to be sent and expected to be
received are specified above arrows connecting the roles. It
is assumed that an agent continues the execution of its run
only if it receives a message conforming to the specifica-
tion.

4. Unlinkability

The LD protocol has not been designed to be untrace-
able, but merely unlinkable. Indeed, the fact that a tag does
not introduce any randomness in its response to a reader’s
query implies that the tag is traceable between key updates.
In the following we show, however, that the protocol does
not provide unlinkability either by exhibiting an attack on
this property. We then discuss the flaw in the security anal-
ysis of LD in [14].

4.1. The attack

To show that the protocol does not satisfy unlinkability,
it suffices to exhibit a scenario in which the adversary rec-
ognizes a previously observed tag after the tag has updated
its secretα.

By eavesdropping on a valid authentication session be-
tween a tag and a reader, the adversary learnsr, h(r⊕α), a
andb. At the end of its execution, the tag updates its secret
α by replacing it withα ⊕ a. The adversary can now chal-
lenge the tag withr′ = r ⊕ a, to which the tag will respond
with h(r′ ⊕ α′). By a simple algebraic property ofxor, the
response is equal to the previously observed one:

h(r′ ⊕ α′) = h(r ⊕ a ⊕ α ⊕ a) = h(r ⊕ α). (1)

In this context, we refer to the property ofxor in equa-
tion (1) as thecancellation property, for obvious reasons.
The attack is depicted in Figure 2.

Even if we assume that an adversary is not able to get
close enough to a tag while it is being updated on a partner’s
premises, unlinkability can be plausibly broken. While
a tag’s sent messages can only be received within short
ranges, the messages sent from reader to tag can be cap-
tured from a long distance. Thus we may assume that an
adversary is able to eavesdrop on the reader’s messages. We
may further assume that the adversary can query incoming
and outgoing products while they are outside the restricted
area of a partner. Thus the following small extension of
the above attack then becomes very plausible in the sup-
ply chain scenario. The attacker generates a noncer and
queries all incoming products with this nonce, observes the
reader’s key-update messagesa, b, and queries all outgoing
tags witha⊕r. It now follows from equation (1) that eaves-
dropping on messages from reader to tag suffices to be able
to match the incoming products’ responses to the outgoing
products’ responses and thus link the products.

We have found the same type of flaw in several other
protocols. The last message from the reader to the tag in
the protocols in [22, 17, 12] contains the actual value with
which the tag should update its key. This message can be
observed and used by the adversary to break unlinkability
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Figure 2. Attack on unlinkability

in a manner similar to the one described above. The attacks
on these protocols are described in [21].

4.2. The flaw in the security proof

In the proof for the unlinkability claim [14, Statement
4.4] it is noted that the adversary may choose the same
noncer = r′ for the challenge before a tag is updated
and after the tag is updated. It is then shown that in this
case the adversary is not able to link the two responses
t = h(r⊕c⊕k) andt′ = h(r⊕c′⊕k′) without knowledge
of the keys. However, settingr = r′ is not the best strategy
for the adversary. Since

h(r ⊕ c ⊕ k) = h(r′ ⊕ c′ ⊕ k′)
⇐ r ⊕ c ⊕ k = r′ ⊕ c′ ⊕ k′

⇐ r′ = r ⊕ k ⊕ k′
∧ c = c′,

settingr′ = r⊕k⊕k′ is a better choice for the adversary.
Note thatk and k′ do not have to be keys of successive
readers. By merely observing the key updates a chain of
readersR, . . . , R′ send to tags, the adversary can always
computek ⊕ · · · ⊕ k′ = k ⊕ k′.

4.3. Recommendation

The flaw in the LD protocol affecting unlinkability is due
to the algebraic property of thexor operator shown in equa-
tion (1).

This flaw can be avoided if concatenation of terms inside
the hash functions is used instead of thexor operator, thus if
the reader sendsh(a, (c⊕ki)) instead ofb = h(a⊕ c⊕ki),

E

α = c ⊕ ki

T

nonce r

r

h(r ⊕ α)

r, h(r ⊕ α)

α := α ⊕ r

Figure 3. Attack on authentication

where the comma denotes concatenation. While this makes
the computation of the hash functions more expensive for
the tag, it is a much safer alternative. Replacing thexor
operator with any other operator with algebraic properties
is dangerous in this setting, since the alternative operator’s
algebraic properties may be used to obtain a relation similar
to equation (1).

Note that this improvement mitigates solely thexor can-
cellation attack on unlinkability. Further improvement are
suggested at the end of the following section.

5. Authentication

As indicated in Section 2, the LD protocol needs to pro-
vide tag-to-reader authentication in order to ensure that only
authentic products are accepted by a partner’s reader and
reader-to-tag authentication in order to guarantee that tags
only update their keys after communicating with a legiti-
mate reader. In this section, we take advantage of thexor
operator to impersonate a reader and thus to break reader-
to-tag authentication.

5.1. The attack

Recall that in the third protocol message the reader sends
a, b to the tag, wherea = ki ⊕ ki+1 andb = h(a ⊕ α). We
observe that the tag cannot verify the value ofa, sinceki

andki+1 are not known to the tag. The tag only verifies that
the value ofb is indeed equal toh(a ⊕ α) and then updates
its secretα by xoring it with a.

Therefore, an adversary that is able to produce a valid
combination ofa and b can successfully impersonate a
reader. To this end, the adversary challenges the tag with
r to obtainh(r⊕α) and then sendsa = r andb = h(r⊕α)
to the tag. The tag acceptsa andb, becauseb = h(a⊕α) =
h(r ⊕ α), thus authentication is broken. The attack is de-
picted in Figure 3.

Note that in order to mount this attack, the adversary



does not even need to have observed a communication be-
tween a tag and legitimate reader.

5.2. Consequences

When the adversary impersonates a reader with the at-
tack presented above, the tag updates its secretα to α ⊕ r.
This results indesynchronizationof the tag’s state and the
supply chain partner’s database, sinceα is equal toc⊕r⊕ki

instead ofc ⊕ kj for some j. The adversary canre-
synchronizethe tag with the database by repeating the attack
with the same value forr so that the tag’s secret becomes
α ⊕ r ⊕ r = α, that is, equal to the original value.

Note that only the attacker may re-synchronize the
tag with the database, since the noncer was chosen by
him. Thus, the attacker canextort supply chain partners
by desynchronizing tags, virtually holding the products
hostage, and re-synchronizing them when his demands are
met.

Desynchronization attacks can also be used to trace tags.
Since desynchronized tags will lead to problems at a supply
chain partner’s location the attacker is able to trace the tags
through space and time.

5.3. The flaw in the security proof

The flaw in the LD protocol affecting reader-to-tag au-
thentication and leading to desynchronization and traceabil-
ity of tags is that the last message contains information
whose integrity the tag cannot verify but which is used to
update the tag’s secret.

In the proof of statement 4.1 in [14], it is argued that in
the LD protocol the correct third messagea, h(a ⊕ c ⊕ ki)
can only be computed with knowledge of the tag’s serial
numberc and the reader’s keyki. Since the adversary does
not knowki, the conclusion is that he cannot produce a mes-
sage which will be accepted by the tag. This reasoning does
not take into account the test the tag performs in order to
authenticate a reader. The tag does not verify whether the
reader can computeh(a ⊕ c ⊕ ki), but merely whether the
messagea, b satisfies the equationb = h(a⊕α). As shown
in the attack, it is easy to produce such a message.

5.4. Recommendation

In order to break reader-to-tag authentication in LD, the
adversary takes advantage ofxor’s cancellation property,
shown in equation (1), and the fact that the tag cannot verify
the integrity of the last message.

We have already advised against the use ofxor in Sec-
tion 4.3. Furthermore, to authenticate a reader, the tag must
challenge the reader in the second message with a nonce the
tag created. There are several standard mechanisms for this

purpose. In the last message of the protocol, the reader must
place this nonce together with all terms whose integrity
needs to be protected inside a hash function only an autho-
rized reader can create. The format of the last message is
thenm,h(n,m, k), wherem contains the terms whose in-
tegrity needs to be protected,n is the tag’s nonce, andk is a
common secret. Such a construction proves to the tag that a
legitimate reader was recently alive and that it recently cre-
ated the integrity-protected parts in the last message. This
is, in principle, achievable with hash functions.

6. Conclusion

We have analyzed the security of an RFID protocol
aimed at supply chain structures. We have identified flaws
in the protocol caused by the use of thexor operator and
lack of message integrity verification. We have shown how
these flaws can lead to attacks on authentication, untrace-
ability, unlinkability, and synchronization of cryptographic
key material. We have described the consequences these at-
tacks can have for supply chain partners and we have given
recommendations for improvements of the protocol. We
do not suggest, however, that merely applying the proposed
improvements will suffice to obtain a secure protocol. The
design and verification of such a protocol are beyond the
scope of this paper and will be considered in future work.

More generally, we believe that the attacks exhibited in
this paper highlight three interesting areas with open prob-
lems affecting the security of RFID protocols.

1. Operators with algebraic properties

The resource constraints imposed on RFID tags have
enticed protocol designers to take advantage of oper-
ators with algebraic properties due to their simplicity
and efficiency. As the attacks in this paper indicate, the
introduction of even the simplest operator,xor, into a
security protocol can lead to serious security problems.

It is therefore important to understand how to use op-
erators with algebraic properties safely and how to ver-
ify the security of protocols employing such operators.
Research into the latter question has been ongoing for
several years under the question of how to incorpo-
rate new cryptographic primitives into existing formal
models for verification of security protocols. It has
been shown [3] that the inclusion of thexor operator
into a Dolev–Yao-style formal model is not straight-
forward due to soundness problems with respect to its
cryptographic realization.

2. Definition and verification of new security properties

Formal definitions of unlinkability and untraceability
have only relatively recently been formulated and there



is still much room for improvement in the verification
of these properties.

Furthermore, the introduction of stateful RFID proto-
cols and the immediate proliferation of desynchroniza-
tion attacks, such as the one shown in Section 5.2, indi-
cate a strong need for a formal definition and methods
for the verification of desynchronization resistance.

3. Adversary model

The adversary model for supply chains presented in
Section 2 and also proposed in [14] requires that the
RFID protocol has to be secure even under the assump-
tion that partners collude in order to attack each other.
As noted in [14] the protocol considered in this pa-
per does not meet this requirement for the following
reasons. Since the knowledge of one keyki allows
the successive computation of all keys in the chain, it
is possible for one partner to attack all other partners.
For a merely curious partner, knowing the keys of other
partners allows for the linking of incoming and outgo-
ing products at those partner’s premises. More mali-
cious partners can even change product codes, intro-
duce new codes, and place the blame for faulty prod-
ucts on any other partner by using the other partner’s
key.

The possibility of such insider attacks poses a severe
security risk, since it implies that the negligence or ma-
licious intent of a single partner leads to security prob-
lems in the entire supply chain. As a consequence, a
potentially challenging open problem is the design and
verification of a practical light-weight RFID protocol
for supply chains secure under malicious collusion of
partners.
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ity of RFID protocols. InInformation Security Theory and
Practices. Smart Devices, Convergence and Next Genera-
tion Networks, volume 5019 ofLecture Notes in Computer
Science, pages 1–15, Seville, Spain, 2008. Springer.

[8] R. Di Pietro and R. Molva. Information confinement, pri-
vacy, and security in RFID systems. InESORICS, pages
187–202, 2007.

[9] J. Ha, S.-J. Moon, J. M. G. Nieto, and C. Boyd. Low-cost
and strong-security RFID authentication protocol. InEUC
Workshops, pages 795–807, 2007.

[10] J. Ha, S.-J. Moon, J. M. G. Nieto, and C. Boyd. Security
analysis and enhancement of one-way hash based low-cost
authentication protocol (OHLCAP). InPAKDD Workshops,
pages 574–583, 2007.

[11] A. Juels and S. A. Weis. Defining strong privacy for RFID.
In PerCom Workshops, pages 342–347, 2007.

[12] I. J. Kim, E. Y. Choi, and D. H. Lee. Secure mobile RFID
system against privacy and security problems. InSecPerU
2007, 2007.

[13] T. Li and G. Wang. Security analysis of two ultra-
lightweight RFID authentication protocols. InIFIP SEC
2007, Sandton, Gauteng, South Africa, May 2007. IFIP.

[14] Y. Li and X. Ding. Protecting RFID communications in sup-
ply chains. InASIACCS, pages 234–241, 2007.

[15] G. Lowe. A hierarchy of authentication specifications. In
CSFW, pages 31–44, 1997.

[16] D. Molnar, A. Soppera, and D. Wagner. A scalable, dele-
gatable pseudonym protocol enabling ownership transfer of
RFID tags. InSelected Areas in Cryptography, pages 276–
290, 2005.

[17] K. Osaka, T. Takagi, K. Yamazaki, and O. Takahashi. An
efficient and secure RFID security method with ownership
transfer. InCIS, pages 778–787, 2006.

[18] P. Peris-Lopez, J. C. Hernandez-Castro, J. Estevez-Tapiador,
and A. Ribagorda. Cryptanalysis of a novel authentication
protocol conforming to EPC-C1G2 standard., 2007.

[19] J. Saito, K. Imamoto, and K. Sakurai. Reassignment scheme
of an RFID tag’s key for owner transfer. InEUC Workshops,
pages 1303–1312, 2005.

[20] B. Song and C. J. Mitchell. RFID authentication protocol
for low-cost tags. InWISEC, pages 140–147, 2008.

[21] T. van Deursen and S. Radomirović. RFID proto-
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