
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 4, AUGUST 2002 487

Short Papers___

Architectural Models for Global Automation Systems

Davide Brugali and Giuseppe Menga

Abstract—Designing automation systems, as in most engineering
endeavors, is primarily an architectural problem, involving hardware
and software components. The objective of this paper is to introduce
the concept of software architecture and styles in designing automation
systems, and to describe an object framework for the development of
global automation systems.

Index Terms—Control architectures, design patterns, distributed
systems, factory automation.

I. INTRODUCTION

Globalization is bringing forth a variety of new opportunities that in
a few years will completely revolutionize the vision we have today of an
industrial production system and its automation processes. The Internet
will connect factory automation systems with customers and providers
to build the so-called Virtual Organization [9]. Still more importantly,
the concept of factory automation is spreading throughout the territory.
Processes internal and external to the factory are rapidly being linked
to each other (traffic and environment monitoring, mass mobility, and
waste management). Hence, the definition of “Global Automation Sys-
tems.” The new emerging and confluent tendencies, “embedding the
Internet” [4] (i.e., pursuing the interconnection of any kind of physical
and virtual devices through the Internet) and “ubiquitous computation,”
reduce the significance of the computing center as the core of any or-
ganization. This inevitable technological evolution naturally poses new
requirements and challenges in design. It means defining new reference
architectural models that are sufficiently flexible and powerful to be
used at multiple levels of a global automation system, from the inter-
factory logistics of geographically distributed enterprises, to the coor-
dination of production in a factory, down to monitoring and controlling
production shops or coordinating autonomous mobile robots inside a
factory. The innovative aspect of our research is the definition of an
Internet-based software framework, which is made up of a communi-
cation infrastructure logically structured as an information bus and of
a uniform architecture (Fig. 1).

The framework is sufficiently flexible to be used at multiple levels,
ranging from the monitoring and control system for a single produc-
tion cell [the virtual Supervisory, Control, and Data Acquisition system
(SCADA)], to the integration of the supply chain of a multinational
corporation (the virtual factory), up to the construction of a global or-
ganization. We call this distributed framework a Global Automation
Platform (GAP). Conceptually, GAP is similar to the open platforms
in the network operating systems, but it has other contents and scopes.

Manuscript received December 1, 2001. This paper was recommended
for publication by Associate Editor Y. Narahari and Editor N. Viswanadham
upon evaluation of the reviewers’ comments. This work was supported by the
Hewlett-Packard Internet Philanthropic Initiative–Next Generation Internet,
1999.

D. Brugali is with the School of Engineering, University of Bergamo, 5-24044
Dalmine, Italy (e-mail: brugali@unibg.it).

G. Menga is with the Department of Automatic Control, Politecnico di Torino,
24-10129 Torino, Italy (e-mail: menga@polito.it).

Digital Object Identifier 10.1109/TRA.2002.802939

Fig. 1. Global automation platform.

It addresses two main aspects related to the innovative adoption of
Internet in automation systems, and the logical interconnection of man-
ufacturing centers, territorial services, and customers. In this paper, we
document the architectural models that are enforced by the GAP frame-
work in the form of Design Pattern [5].

The most general definition of a pattern is a literary form that de-
scribes a context, a design problem that occurs in that context, and a
solution to the problem. In object-oriented software engineering, the
solution of a pattern is typically a way of structuring a cluster of ob-
jects and their interactions. The whole set of patterns for a specific ap-
plication domain, together with their structuring principles, becomes
a high-level language, called apattern language[2]. There is an in-
triguing relationship between the concept of framework and pattern
language. In our view, the pattern language generates the framework
that, thereafter, offers the components for the pattern implementations
[3].

The paper is organized as follows. Section II presents the pattern lan-
guage that documents the architectural models of the GAP infrastruc-
ture. Section III describes the software components that derive from
the adoption of the pattern language in global automation systems. Sec-
tion IV exemplifies a distributed scheduling system. Finally, Section V
draws the relevant conclusions.

II. PATTERN LANGUAGE

To build software applications for global automation, three main is-
sues must be addressed: interfacing peripheral devices to the network,
controlling resources in real time, and scheduling resources at different
time horizons. While developing automation systems in several do-
mains [1], [3] we have identified the following design patterns.

A. Pattern 1: Autonomous Control Modules

Context: Internet is ubiquitous, and potentially every distributed
computing device could be connected into a truly worldwide network
linking the physical world of sensors and actuators and the virtual world
of information utilities and services [12]. In reality, embedding the In-
ternet into the huge variety of real devices and applications calls for a
technology which allows distributed resources to be flexibly combined,
and their activities coordinated. GAP provides a uniform representation
of the software control modules that manage the physical devices, the

1042-296X/02$17.00 © 2002 IEEE

488 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 4, AUGUST 2002

Fig. 2. Model of an autonomous control module.

monitoring and control of workstations, the interfactory cooperation,
and the interaction with the human operators.

Problem: Control modules should have the capability of: 1) en-
capsulating computational resources and the services that manipulate
them; 2) executing more than a single service concurrently (e.g., a
workcell produces more than one single lot of pieces at the same time);
3) offering alternative ways to exploit their functionality (e.g., one
client invokes a service synchronously, while another client invokes
the same service asynchronously); and 4) implementing autonomous
decision-making capabilities.

Solution: These requirements are satisfied by the model depicted
in Fig. 2 (the boxes with thick borders represent components of the
framework, the other boxes are specializations). The framework offers
four classes to support the model: theService, theServer, theProtocol,
and theResource. Service objects represent independent sequential ex-
ecution processes. A Service object always belongs to a unique Server
owner, it embeds the dynamic specification of its activity, it has internal
data, it maintains a symbolic state value, and broadcasts events with the
incoming state name every time a state transition occurs. The Service,
as in the case of the class Cutting in Fig. 2, has to be redefined for every
concrete specification that implements the logic of a manufacturing op-
eration.

Clients can access a given Service according to several interaction
protocols. The framework offers the abstract classProtocol that has
to be specialized for every concrete protocol. For example, Protocol
objects can represent asynchronous, synchronous, or deferred-syn-
chronous (as in Fig. 2) service requests. It can also represent exclusive
(e.g., for writing) or shared (e.g., for reading) access to the server’s
resources.

The separation of services from protocols enhances the flexibility of
the control modules, as they are seamlessly adaptable to a new client’s
requirements.

Serveris the base class of every control module (e.g., the Machine).
It encapsulates a collection of Service objects and has to be redefined in
order to encapsulate specific resources, or other subServers. The Server
class offers the methoddoService()for protocol negotiation and ser-
vice invocation. When a client calls this method, a new Service is cre-
ated and initialized to use the private resources of the server; the client
receives an instance of classProtocol. Server also subscribes to state
transition events generated by its services and relays them externally
using the Broadcast/Listener mechanism [3].

Resourceis a class that offers abstract methods which are used to
read and write the state of a resource component in/from a persistent
storage and are implemented in every subclass. The Resource class of-
fers two methods for event subscription and event notification.

Fig. 3. Peer-to-peer interconnection of control modules.

The Server is a specialization of Resource and, at the same time,
encapsulates a collection of resources. This solution is similar to the
Pattern Composite in [5] and allows the recursive interconnection of
control modules.

Example: Automation at the physical process level has been tradi-
tionally represented by SCADA systems, which are built on high-per-
formance fieldbus networks. In a new conception, an Internet-based
SCADA has still to be invented. Let us consider the problem of fore-
casting and controlling the traffic flow on a motorway. The motorway
is a sequence of one-way adjacent sections, each one holding one toll
station with lateral entrance/exit. The control problem consists in regu-
lating the input flow at all entrance gates in order to minimize a measure
of all transit times by reducing the traffic jams.

Each section is an autonomous control module with its own measures
through in-road sensors of traffic speed and flow, and its own control
of the entrance gate flow through semaphores.

The overall motorway control system finishes up as a flat intercon-
nection of local control modules that have a cellular structure (each
module exchanges information with only its two neighbors) as depicted
in Fig. 3.

Each Server physically resides in place, which corresponds with a
motorway section. It collects traffic data from the sensors, propagates
its own traffic forecasts (exchanging this information with its neigh-
bors), and controls the semaphores at the entrance gate. The Servers
instantiate Protocol/Service pairs to handle their synchronization.

Implementation: The GAP framework implements the
Client/Server communications paradigm using the Remote Method
Invocation (RMI) mechanism provided by Sun’s Java Development
Kit. It is a standard support to proxy-based code mobility. The
client receives from the server aProtocol object that implements the
interaction logic used to access a specific category of services. Once
instantiated on the client’s side, the Protocol object communicates
with the server via sockets. The server instantiates theServiceobject
requested from the client and sets up the communication between the
client-side Protocol object and the server-side Service object.

B. Pattern 2: Resource Allocator

Context: Autonomous control modules offer multiple services that
use internal resources to perform specific tasks concurrently. Some
tasks (e.g., to transport pieces from a store to a machine) require ex-
clusive access to shared resources (e.g., the cart in a workcell). The
tasks are usually related by temporal constraints (i.e., precedence). The
(optimal) allocation of resources to tasks over time is a scheduling
problem. In the global automation context, it ranges from relatively
classical shop floor scheduling problems, for which many exact and
heuristic algorithms exist, to higher level interfactory negotiation prob-
lems, for which decentralized solutions are still being investigated.

Problem: Autonomous control modules should have the capability
of managing the temporal constraints regarding the execution of their
services, by offering the following functionalities:

1) specify when a service should be executed;

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 4, AUGUST 2002 489

Fig. 4. Classes used for resource allocation.

2) identify conflicts in resource usage;
3) allow clients to resolve service request conflicts.

Solution: The framework provides the classAllocation, which ex-
tends the classProtocolwith two additional methods.

1) Integer book (Service s, Time b, Time e)creates a new instance
of Reservation and stores it in a list of the Server class. It returns
the reservation identifier.

2) Void release (Integer reservationID)removes a specific reserva-
tion from the server’s list.

The framework provides the classReservation, which is inherited
from the classService(see Fig. 4) that has two basic attributes.Start
andendrepresent the period of time when the client needs to use the
requested service exclusively. The class Reservation can be extended
with additional attributes to represent, for example, priorities, dead-
lines, and costs associated with deadline extensions. Instances of class
Reservation are executed by the Server, and are set up to communicate
with instances of Allocation on the client side.

The framework provides the classScheduler, which has to be spe-
cialized to implement specific scheduling policies. Whenever a client
books a resource, the Scheduler revises the assignment in time of re-
sources to clients. If it finds conflicts among the clients’ requests, it
might simply inform the clients, or it might try to find a new assign-
ment that resolves the conflicts. The Scheduler communicates with the
Clients through their Allocation objects by raising notification events.

Example: Let us consider two application scenarios for this pattern.
Resource Manager. The pattern is applied to the autonomous control

modules that have to schedule manufacturing resources. The visibility
of each control module is limited to its private resources, which it allo-
cates to its clients according to local policies. The Scheduler takes into
account the deadline of each request and the cost of extending each
deadline.

Process Manager. The pattern is applied to control modules (we call
themProcessors) that do not manage resources, but represent the man-
ufacturing processes (sequences of jobs) that the lots of pieces must
undergo (one service for each lot). The Resource Managers schedule
their activities by asking the Processors to allocate job operations. The
Processor knows the sequence of operations that should be performed
on a lot of pieces and accepts reservations accordingly.

Implementation: For the implementation of specific scheduling al-
gorithms, the interested reader can refer to [10].

C. Pattern 3: Mobile Services

Context: Traditionally, the development of integrated enterprise ap-
plications has been focused on shared data and local processes (e.g.,
Inventory Management, Planning, Supervision, and Control). With the
introduction of the Internet, however, some processes become shared
across the organization (e.g., Order/Supply management), and operate
mostly using local data [6]. The Internet offers customers and providers
the possibility of operating directly on the partner’s facilities.

Problem: Code mobility makes it possible to transfer not only data
but also first-class objects, calledmobile objects, over the network. The
mobile code paradigm allows the client to provide the code that oper-
ates on the server’s resources. In the GAP platform, we want to extend
the model of the control module so as to support the mobility of its ser-
vices.

Solution: The class diagram depicted in Fig. 5 describes the inter-
action between two remote control modules. The Client establishes a
partnership with the Server by sending to its side a mobile object that
represents a remote placeholder of the Client’s functionality.

MobileServiceis the basic class that implements the mechanisms to
serialize an object’s state before it is dispatched over the network and to
restore its execution when it is received at destination. This class should
be extended to implement the behavior of a specific mobile service,
and to specify the resources that it will use on the destination side. The
classProxyManagerextendsServerand implements the mechanisms
for creating, transmitting, and receiving mobile services. It offers the
methodscreateMobile()anddispatch()that can be invoked by the
Client. The methodcreateMobile()receives the indication regarding
which mobile service should be instantiated. When the ProxyManager
at the Provider side receives a mobile service, it sets it up to access the
remote resources. The Client interacts with the remote mobile service
via theMonitoringServiceobject.

Example: A typical interaction between factories is when a cus-
tomer requests raw or semifinished materials from one supplier.

The request triggers the supplier’s planning system, which attempts
to accommodate the incoming request and return, as quickly as pos-
sible, lead times and costs for the required product. In this example,
the customer and the supplier are represented by two remote control
modules, each of which implements local Enterprise Resource Plan-
ning (ERP) functionalities. The customer ERP instantiates a mobile
service that is in charge of the remote management of the events (e.g.,
delays in the order processing) raised at the supplier side. The mobile
service is set up to solve specific problems on the supplier’s side au-
tonomously and to report specific events on the customer’s side.

Implementation: The IBM Aglet [7] is an example of a framework
that supports code mobility to implement mobile objects.

III. FRAMEWORK COMPONENTS

The designers of global automation systems adopt the pattern lan-
guage to build applications that offer specific functionality and coordi-
nate the activities of the real system. The GAP framework supports the
pattern language as it implements the high-level objects, which repre-
sent the major abstractions found in the problem domain (the Server,
the Resource, the Scheduler, etc.).

However, the adoption of the pattern language in an increasing
number of applications makes it possible to develop more concrete
components within the framework, which provide solutions for the
difficult problems.

In the following, we document the architectural models of three
framework components. They support three levels of separation of
concerns. TheDevice Wrappermakes a control application indepen-
dent of the technology used to interface real devices; theConnection
Broker makes control services transparent to the availability and
network location of their servers; theFacilitator abstracts from the
physical networking of clients and servers, and allows the logical
interconnection of distributed resources.

A. Device Wrapper

Embedding the Internet into manufacturing devices such as robots,
transports, and milling machines poses the problem of event-driven
communication.

490 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 4, AUGUST 2002

Fig. 5. Model of the Proxy Manager.

Fig. 6. Classes used to virtualize data and events.

Device Control Modules receive stimuli from a physical device,
which responds to them by updating its state and giving feedback.
Stimuli and feedback are modeled as events, thus, device control
modules are event-driven systems that wrap the physical device so as
to provide an Internet access point to other networked control modules.

Developing object-oriented software for event-driven systems
presents some particular difficulties. The physical device does not
have logical variables in the control module’s address space that
represent its state, such as the control registers (physical variables) of
a programmable logic controller (PLC). In the same way, the logical
events of the software systems are just communication mechanisms
between autonomous control modules. Software objects that subscribe
to events from a Device Control Module must receive those logical
events, which correspond to external stimuli from the physical device.
This means a bridge is needed between the logical and the external
variables and events.

The framework offers the classesDataPointandEvent.

The classDataPoint(Fig. 6) maps the peripheral state variables to
the logical variables of the device control module. This class extends
theResourceclass in order to make the state of the physical device per-
sistent. In addition it offers the methodsexternalize()andinternalize()
so as to write/read data in/from the device’s registers.

The classEvent encapsulates a physical stimulus and offers the
methodsubscribe(), so as to allow client objects to receive logical
events in response to physical stimuli, and the methodnotify() to
generate a stimulus to the device in response to a logical event. Event
objects have a reference to the software objects that should raise
the logical events when the physical stimuli occur. Device wrappers
improve communication performance by exploiting the code mobility
mechanism. Client modules can dispatch mobile services to the device
control module that embeds the client’s control logic.

Fig. 7. Model of the connection broker.

B. Connection Broker

Distributed resources are free to appear and disappear on the Internet
and the mapping of requests to services is highly dynamic.

One of the basic problems is finding what service is available from
which server. Since it is obviously not feasible to broadcast the infor-
mation that a resource has appeared or disappeared on the Internet, spe-
cific components take on the role of broker.

A broker is a component that has a well-known name and location
within a subnetwork and allows new resources to advertise their ser-
vices. Control modules can query the broker for the available resources.

The GAP framework offers theConnection Broker component, a
specific control module (see Fig. 7) that inherits from theResource
class. The Broker maintains a collection ofServicetemplates andPro-
tocol templates that servers have registered and clients can query. A
Service template is an object that has the same interface as a specific
subclass of Service, but it does not implement the service’s logic. The
same is true for Protocol templates.

For example, the Broker might maintain an instance of aCuttingser-
vice template and of aDeferredprotocol template. The Broker main-
tains a collection ofServerproxies, one for each control module that
has registered its services. The Broker records the associations between
protocol templates, service templates, and server proxies in a table. It
implements a template-matching algorithm that allows clients to find a
server that offers a given service and supports a given protocol. It ex-
ports three methods.

1) Void register (Service s, Protocol p)allows clients to register their
services and protocols, which specify usage constraints (e.g., pe-
riod of availability).

2) Void expire (Service s, Protocol p)allows clients to withdraw
their services.

3) Server query (Service s, Protocol p)returns the proxy of one
sever that supports a specific service and protocol. This method
should be redefined if the broker implements specific policies
to select one out of several servers that can provide the same
service.

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 4, AUGUST 2002 491

Fig. 8. The model of the facilitator.

The Broker raises three events (in addition to those raised by the
registered control modules).

1) ServiceIn: A new service has been registered.
2) ServiceOut: An old service has been cancelled.
3) ServiceChanged: Service properties have changed.

The Broker can implement global scheduling algorithms to assign
resources to the clients and balance the load of each server control
module. Nevertheless, the Broker can become a bottleneck and a cen-
tralized point of failure.

C. Information Bus Facilitator

A global automation system is physically structured (for efficiency
and security reasons) in a hierarchy of subnetworks that group control
modules according to their physical location. Usually, a subnetwork
interconnects the resources of a physical factory, a department, or a
production cell.

In a global automation system, business processes cut across the
physical boundaries of factories and departments. Virtual organizations
and virtual factories represent logical networks of geographically dis-
tributed resources. The GAP framework supports the concept of Infor-
mation Bus as a flat interconnection of control modules that logically
breaks up the physical hierarchy of network and subnetworks. For ex-
ample, a supply chain builds on an information bus that interconnects
the ERP modules of geographically distributed factories.

The GAP framework provides the Facilitator control module (see
Fig. 8) that takes on the role of name server, message router, and
gateway between subnetworks.

1) Name Server. Each control module in the global information
system is represented by a symbolic name that is prefixed with
domain names so that the path to the control modules through the
domains is given. This solution has the advantage of decoupling
the identity of control modules from their physical locations. The
Facilitator is responsible for the mapping of symbolic names to
network addresses. Control modules can query the local Facili-
tator to get references (the proxy) to remote control modules. For
example, the Client ERP can get the reference to the Provider
ERP.

2) Router.A local Facilitator does not record the logical and phys-
ical addresses of all the control modules in the global informa-
tion system. Instead, it is able to route queries from the client
control module to the Facilitator that records the network ad-
dress of the remote control module. In particular, the Facilitator
records the network address of the Broker in its subnetwork. For
example, the Broker in a workcell might have the following sym-
bolic name:CustomerFactory.Shop.WorkCell.Broker.

3) GatewayThe Facilitator filters the incoming requests for ser-
vices and the broadcasting of events generated by the control
modules of the subnetwork. This guarantees that control modules
external to the subnetworks can access only specific resources

and listen to specific events. A variety of mechanisms can be
implemented to filter access to a subnetwork: at the level of mes-
sage packets, of message criptograpy, of client authentication.

The Facilitator inherits from theResourceclass and implements a
Routing Tableto handle the routing of messages internally to its sub-
network. The Facilitator implements the methodconnect()that accepts
the symbolic name of the remote server as parameter, and creates two
instances of classChannel(a subclass of Service): one within the local
Facilitator, whose reference is returned to the invoking Client, and one
within the Facilitator of the remote subnetworks, which is set up to di-
alogue with the remote Server. The client calls theinvoke()method of
the local Channel using three parameters, the name of the method to
be executed by the remote Server, the list of arguments of that method,
and the list of values of those arguments. Theinvoke()method redirects
the method invocation to the remote Channel, which asks the remote
server to execute it. In a similar way, the Client can interact with the
Broker of a remote subnetwork.

IV. CASE STUDY

As a final Case Study we consider the design of a distributed sched-
uling system resulting from the interconnection of ERPs in a textile
supply chain.

Each ERP plays two roles. Seen from the outside, it represents a fi-
nite-capacity resource issuing material procurement orders to the sup-
pliers and returning feasible and reliable delivery dates to customers;
from the inside, it manages the production of the enterprise’s Workcells
over a certain planning horizon.

A. Object Model

The description of the object model maps the architecture depicted
in Fig. 1. It follows the same path of the Pattern language upside down
because the higher level control modules enforce more complex pat-
terns of interactions.

The model of the distributed scheduling system is made up of the
following components that are implemented by specializing the GAP
classes according to the patterns previously described (see Fig. 9 from
left to right).

ERP. The Client ERP and Supplier ERP are two subclasses of the
classServer, and represent the factories in the supply chain that per-
form two specific steps of the textile process (e.g., weaving and spin-
ning). Clients and Suppliers establish business relationships dynami-
cally. When a Client needs raw material for its production, it queries
theBrokerfor available Suppliers that meet its time, cost, and quantity
requirements. The Client establishes a communication channel with the
Supplier through the Facilitator.

Mobile Orders. The Client and Supplier exchange product orders in
the form of mobile services (Pattern 3). The Mobile Order resides at the
Supplier ERP and monitors the completion time of the product orders.
It reports delays to the Client ERP.

492 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 4, AUGUST 2002

Fig. 9. Distributed scheduling system in a textile supply chain.

Fig. 10. Relation between operation and macrooperation.

Workcell. The Supplier ERP groups product orders in lots of textile
patches according to the due date indicated by the Client, and submits
production lots to the local Workcells for manufacture. Each Produc-
tion Lot is represented by a MacroOperation made up of a chain of
manufacturing Operations according to the Bill of Material. The ERP
assigns the Macro Operations to the Workcells. Each Workcell belongs
to a factory subnetwork and communicates with the ERP through a Fa-
cilitator’s channel. The Workcell is designed according to Pattern 2,
where the JobScheduler implements a specific scheduling algorithm.
In turn, the Workcell assigns the simple operations to the resources.
Since manufacturing resources are unreliable, that is to say, they can
be unavailable for some periods of time, the Workcell queries the local
Broker for the available resources that can perform a given operation.

TheOperationis a subclass of theReservationclass introduced in
Pattern 2. It represents one step of a manufacturing process. It trans-
forms an input material, received at a certain time, into an output semifi-
nite or finite product delivered at another time. An Operation is charac-
terized by five parameters. 1) TheTypedetermines the association be-
tween an Operation and the manufacturing resources that can perform
it as a service on demand. 2) TheRelease Timeindicates the instant
when the input is available. 3) TheStart Timeis the desired instant to
start the operation if a resource is available; otherwise it plays the role
of a priority. 4) TheCompletion Timeis the instant when the operation
will complete its execution estimated by the resource. 5) TheDue Date
represents the deadline when the operation is to be completed. In addi-
tion, the Operation has an association with the chain of Operations that
make up the final product.

TheMacroOperationis a subclass ofOperation, and represents the
chain of operations related to the whole manufacturing process. It has
the same parameters as a simple operation and maintains the temporal
dependencies (Fig. 10) between the component operations through
their release time and due date.

The Device Wrappercomponent interfaces an elemental manufac-
turing facility, such as a Machine or a Transport, and is implemented ac-
cording to Pattern 1. It receives requests for operations of proper types
to be delivered over a certain horizon of time, it knows theDurationof
each type of operation, and evaluates the estimated Completion Time
of each Operation in accordance with its capacity and availability. A
Device Wrapper maintains an ordered list (Sequence) of Operations
that are sequenced according to the theirStart Times.

B. Workcell Scheduling Process

The process is actually one of a dynamic scheduling and imple-
ments a strict separation of concerns between resource and operation;
the former (represented by the Device Wrapper) knows its availability
and is simply the bookkeeper that updates the list of operations with
estimated termination times; the latter (the Operation) takes the ini-
tiative, proposing the start time based on its constraints (release time
and due date), receiving the estimated termination time as a response
from the resource. The actual scheduled Start Time of each operation
is the result of two interlaced processes: 1) the interaction between the
operation being considered and the other operations assigned to the
same resource and 2) the concatenation of the considered operation
and the other operations that make up a MacroOperation. The message
sequence chart is as follows.

1) The WorkCell initializes an operation to be executed. It proposes
an approximate (preferred) Start Time presuming a termination
time according the constraints given by Due Date and Release
Time.

2) The operation is assigned to a resource that adds it to the temporal
list of scheduled operations according to their Start Time. The
current position in the list depends on the (preferred) Start Time
of the new operation, while the Completion Time results from
ordering all the other scheduled operations in a list. The insertion
of a new operation in the list determines the reordering of all
the operations and the evaluation of their new Completion Time.
These new values are returned to the Workcell.

3) Each simple Operation iteratively revises its own preferred Start
Time according to the Completion Time returned from the re-
source. It operates by implementing an iterative algorithm that
takes into account the release time and due date constraints, and
it resembles a discrete time-control feedback loop that minimizes
earliness and tardiness. It has been shown that the emerging be-
havior, which results from the unconscious interaction between

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 4, AUGUST 2002 493

operations on a resource as previously described, has good sta-
bility and performance properties [11].

4) When the current time approaches the Start Time of an operation,
the operation is released and its Start Time is fixed. When the
execution of an operation is completed, it is removed from the
resource’s list.

V. CONCLUSIONS

Object-Oriented Frameworks and Design Patterns have offered the
elements to transfer the idea of architecture from classical civil/indus-
trial engineering to emerging information engineering. It is interesting
to analyze how the emergence of the Internet has led to innovations in
the style of designing automation architectures.

In the era of Computer Integrated Manufacturing (CIM), an automa-
tion system was conceived as a strong and rigid hierarchy of control
layers: facility, shop, cell, workstation, and equipment. According to
the USA-NBS CIM reference model [8], each layer is populated with
a set of control modules (the device controller, the workcell controller,
the cell controller, etc.) with precise responsibilities and, in particular,
a higher layer control module coordinates the control modules below
it. The flexibility of such systems is limited to the possibility of recon-
figuring the production process offline by reprogramming each control
module. A local area network or a field bus represents the commu-
nication medium between the factories’ subsystems. The interfactory
communication is handled via telephone, fax, or email.

In the era of Internet, global automation systems are conceived
as flat interconnections of autonomous and decentralized decision
making/control modules dominated by the concepts of “heterarchy”
and “proactivity.” The first means that no hierarchy in decision
making is enforced, the second that each partner takes initiative
in reaching a decision (e.g., planning production) and the global
behavior of the system is an “emerging behavior.” Control modules
have decision-making capabilities and coordinate their activities by
exchanging data and events according to a peer architectural model
and common protocols.

REFERENCES

[1] A. Aarsten, D. Brugali, and G. Menga, “Designing concurrent and dis-
tributed control systems,”Commun. ACM, vol. 39, no. 10, pp. 50–58,
1996.

[2] C. Alexander, A Pattern Language: Towns Building, Construc-
tions. London, U.K.: Oxford Univ. Press, 1977.

[3] D. Brugali, G. Menga, and A. Aarsten, “The framework life span,”
Commun. ACM, vol. 40, no. 10, pp. 65–68, 1997.

[4] D. E. Estrinet al., “Embedding internet,”Commun. ACM, vol. 43, no.
5, 2000.

[5] E. Gamma, R. Helm, R. Johnson, and J. Villisides,Design Patterns:
Elements of Reusable Object Oriented Software. Reading, MA: Ad-
dison-Wesley, 1994.

[6] W. Hasselbring, “Information system integration,”Commun. ACM, vol.
43, no. 6, pp. 32–36, June 2000.

[7] D. B. Lange and M. Oshima,Programming and Deploying Mobile
Agents with Java and Aglets. Reading, MA: Addison-Wesley, 1998.

[8] C. McLeanet al., “A computer architecture for small-batch manufac-
turing,” IEEE Spectrum, vol. 20, no. 5, pp. 59–64, 1983.

[9] A. Mowshowitz, “Virtual organization,”Commun. ACM, vol. 40, no. 9,
pp. 30–37, 1997.

[10] M. Pinedo,Scheduling: Theory, Algorithms and Systems. Englewood
Cliffs, NJ: Prentice-Hall, 1995.

[11] V. V. Prabhu and N. A. Duffie, “Nonlinear dynamics in distributed ar-
rival time control of heterarchical manufacturing systems,”IEEE Trans.
Contr. Syst. Technol., vol. 7, pp. 45–50, June 1999.

[12] D. Tennenhouse, “Proactive computing,”Commun. ACM, vol. 43, no. 5,
pp. 43–50, May 2000.

Miro—Middleware for Mobile Robot Applications

Hans Utz, Stefan Sablatnög, Stefan Enderle, and
Gerhard Kraetzschmar

Abstract—Developing software for mobile robot applications is a te-
dious and error-prone task. Modern mobile robot systems are distributed
systems, and their designs exhibit large heterogeneity in terms of hard-
ware, operating systems, communications protocols, and programming
languages. Vendor-provided programming environments have not kept
pace with recent developments in software technology. Also, standard-
ized modules for certain robot functionalities are beginning to emerge.
Furthermore, the seamless integration of mobile robot applications into
enterprise information processing systems is mostly an open problem. We
suggest the construction and use of object-oriented robot middleware to
make the development of mobile robot applications easier and faster, and
to foster portability and maintainability of robot software. With Miro, we
present such a middleware, which meets the aforementioned requirements
and has been ported to three different mobile platforms with little effort.
Miro also provides generic abstract services like localization or behavior
engines, which can be applied on different robot platforms with virtually
no modifications.

Index Terms—CORBA, distributed systems, middleware, mobile robots,
multirobot applications, object orientation, robot control architectures.

I. INTRODUCTION

Developing software for mobile robot applications is a tedious
and error-prone task. Modern mobile robots are usually composed
of heterogeneous hardware components, which are connected using
different networking technologies and communication protocols
with widely differing bandwidths. A large number of different
methods for processing sensor information and controlling actua-
tors, for performing computational vision and cognitive tasks like
planning, navigation, and user interaction, must be integrated into a
well-engineered piece of software. All these issues contribute to the
enormous complexity of the mobile robot software development task.
Vendor-provided programming environments have not kept pace with
recent developments in software technology. Mobile robot software
are often custom made, closed systems, which makes it difficult
to integrate them in enterprise information processing frameworks.
Furthermore, standardized modules for certain robot functionalities
are beginning to emerge.

We suggest the construction and use of object-oriented robot mid-
dleware to make the development of mobile robot applications easier
and faster and to foster portability and maintainability of robot soft-
ware. High-quality robot software and an improved software develop-
ment process will be key factors in enhancing both the research state
of the art as well as the likelihood of deploying working applications
in industrial and consumer markets.

With Miro, we present such a middleware, which meets the afore-
mentioned requirements and has been been ported to three different
mobile platforms with little effort. Miro also provides generic abstract

Manuscript received December 11, 2001. This paper was recommended for
publication by Associate Editor G. Menga and Editor N. Viswanadham upon
evaluation of the reviewers’ comments. This paper was presented at Telematics
Applications and Automation in Robotics (IFAC), Weingarten, Germany, 2001,
and at the RoboCup Symposium, Seattle, WA, 2001.

H. Utz and G. Kraetzschmar are with the University of Ulm, Neuroinfor-
matics, 89069 Ulm, Germany (e-mail: hutz@neuro.informatik.uni-ulm.de;
gkk@neuro.informatik.uni-ulm.de).

S. Sablatnög is with Temic Sprachverarbeitung GmbH, 89077 Ulm, Germany
(e-mail: ssablatn@neuro.informatik.uni-ulm.de).

S. Enderle is with Advanced InfoData Systems GmbH, 89077 Ulm, Germany
(e-mail: steve@neuro.informatik.uni-ulm.de).

Digital Object Identifier 10.1109/TRA.2002.802930

1042-296X/02$17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

