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Abstract—Designing automation systems, as in most engineering
endeavors, is primarily an architectural problem, involving hardware
and software components. The objective of this paper is to introduce
the concept of software architecture and styles in designing automation
systems, and to describe an object framework for the development of
global automation systems.
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. INTRODUCTION Fig. 1. Global automation platform.

Globalization is bringing forth a variety of new opportunities that in
afew years will completely revolutionize the vision we have today of an |t addresses two main aspects related to the innovative adoption of
industrial production system and its automation processes. The Intenpgérnet in automation systems, and the logical interconnection of man-
will connect factory automation systems with customers and provid&racturing centers, territorial services, and customers. In this paper, we
to build the so-called Virtual Organization [9]. Still more importantlydocument the architectural models that are enforced by the GAP frame-
the concept of factory automation is spreading throughout the territowyork in the form of Design Pattern [5].
Processes internal and external to the factory are rapidly being linkedrhe most general definition of a pattern is a literary form that de-
to each other (traffic and environment monitoring, mass mobility, angribes a context, a design problem that occurs in that context, and a
waste management). Hence, the definition of “Global Automation Syso|ution to the problem. In object-oriented software engineering, the
tems.” The new emerging and confluent tendencies, “embedding &$lution of a pattern is typically a way of structuring a cluster of ob-
Internet” [4] (i.e., pursuing the interconnection of any kind of physicgkcts and their interactions. The whole set of patterns for a specific ap-
and virtual devices through the Internet) and “ubiquitous computatiorplication domain, together with their structuring principles, becomes
reduce the significance of the computing center as the core of any grhigh-level language, calledmattern languagd?2]. There is an in-
ganization. This inevitable technological evolution naturally poses nawguing relationship between the concept of framework and pattern
requirements and Challenges in design. Itmeans defining new referemUage' In our view, the pattern |anguage generates the framework
architectural models that are sufficiently flexible and powerful to bgat, thereafter, offers the components for the pattern implementations
used at multiple levels of a global automation system, from the intgg).
factory logistics of geographically distributed enterprises, to the coor-The paper is organized as follows. Section Il presents the pattern lan-
dination of production in a factory, down to monitoring and controllinguage that documents the architectural models of the GAP infrastruc-
production shops or coordinating autonomous mobile robots insidgu@e. Section Il describes the software components that derive from
factory. The innovative aspect of our research is the definition of @fe adoption of the pattern language in global automation systems. Sec-
Internet-based software framework, which is made up of a commufibn |V exemplifies a distributed scheduling system. Finally, Section V
cation infrastructure logically structured as an information bus and gfaws the relevant conclusions.
a uniform architecture (Fig. 1).

The framework is sufficiently flexible to be used at multiple levels,
ranging from the monitoring and control system for a single produc- [l. PATTERN LANGUAGE
tion cell [the virtual Supervisory, Control, and Data Acquisition system
(SCADA)], to the integration of the supply chain of a multinational To build software applications for global automation, three main is-
corporation (the virtual factory), up to the construction of a global osues must be addressed: interfacing peripheral devices to the network,
ganization. We call this distributed framework a Global Automationontrolling resources in real time, and scheduling resources at different
Platform (GAP). Conceptually, GAP is similar to the open platformme horizons. While developing automation systems in several do-
in the network operating systems, but it has other contents and scopesins [1], [3] we have identified the following design patterns.

A. Pattern 1: Autonomous Control Modules
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internalize()
Service 4
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execService() % doService()
4 Cutting Z} . i .
- Fig. 3. Peer-to-peer interconnection of control modules.
Deferred Machine
[ workCell |} A& The Server is a specialization of Resource and, at the same time,
encapsulates a collection of resources. This solution is similar to the

Pattern Composite in [5] and allows the recursive interconnection of
control modules.

Example: Automation at the physical process level has been tradi-
tionally represented by SCADA systems, which are built on high-per-
monitoring and control of workstations, the interfactory cooperatiofPfmance fieldbus networks. In a new conception, an Internet-based
and the interaction with the human operators. SCADA has still to l_Je |nvented_. Let us consider the problem of fore-

casting and controlling the traffic flow on a motorway. The motorway

Problem: Control modules should have the capability of: 1) en: > ) ]
capsulating computational resources and the services that manipuff Seduence of one-way adjacent sections, each one holding one toll

them: 2) executing more than a single service concurrently (e_g_stgtion WiFh lateral entrance/exit. The cqntrol problem ponsists in regu-
workeell produces more than one single lot of pieces at the same tin@;fng the inputflow at all entrance gates in order to minimize a measure
3) offering alternative ways to exploit their functionality (e.g., on@' &l transit times by reducing the traffic jams.

client invokes a service synchronously, while another client invokes E2Ch section is anautonomous control module with its own measures

the same service asynchronously); and 4) implementing autonomdiough in-road sensors of traffic speed and flow, and its own control
decision-making capabilities. of the entrance gate flow through semaphores.

Solution: These requirements are satisfied by the model depicted! "€ Overall motorway control system finishes up as a flat intercon-
in Fig. 2 (the boxes with thick borders represent components of tAgction of local control modules that have a cellular structure (each

framework, the other boxes are specializations). The framework offépQdule exchanges information with only its two neighbors) as depicted

four classes to support the model: ervicetheServer theProtocol, in Fig. 3.

and theResourceService objects represent independent sequential ex-Each Server physically resides in place, which corresponds with a

ecution processes. A Service object always belongs to a unique Sefigforway section. It collects traffic data from the sensors, propagates
owner, it embeds the dynamic specification of its activity, it has interni{p OWn traffic forecasts (exchanging this information with its neigh-
data, it maintains a symbolic state value, and broadcasts events withAE): and controls the semaphores at the entrance gate. The Servers

incoming state name every time a state transition occurs. The Serv{ggtantiate Protocol/Service pairs to handle their synchronization.

asin the case of the class Cutting in Fig. 2, has to be redefined for everymPlémentation: The ~ GAP  framework  implements  the

concrete specification that implements the logic of a manufacturing o I_|ent/S_erver communlca'_clons par.adlgm using the Remote Method
eration. Invocation (RMI) mechanism provided by Sun’s Java Development

L|<i It is a standard support to proxy-based code mobility. The
o

Fig. 2. Model of an autonomous control module.

Clients can access a given Service according to several interact ?lFeint receives from the serverRrotocol object that implements the
protocols. The framework offers the abstract clBsstocol that has ) P

to be specialized for every concrete protocol. For example, Protog&eraetlon logic used to access a specific category of services. Once

objects can represent asynchronous, synchronous, or deferred-&y fantiated on t_he client’s side, the P_rotocol_ object c_omm_unlcates
A . ith the server via sockets. The server instantiatesStrwiceobject
chronous (as in Fig. 2) service requests. It can also represent exclusive

(e.g., for writing) or shared (e.g., for reading) access to the serverresqueSt.ed from the C“?m and sets up the communication between the
reSOUrces client-side Protocol object and the server-side Service object.

The separation of services from protocols enhances the flexibility of
the control modules, as they are seamlessly adaptable to a new clieft
requirements. Context: Autonomous control modules offer multiple services that

Serveris the base class of every control module (e.g., the Machinglse internal resources to perform specific tasks concurrently. Some
It encapsulates a collection of Service objects and has to be redefinethigks (e.g., to transport pieces from a store to a machine) require ex-
order to encapsulate specific resources, or other subServers. The Setusive access to shared resources (e.g., the cart in a workcell). The
class offers the methadoService( for protocol negotiation and ser- tasks are usually related by temporal constraints (i.e., precedence). The
vice invocation. When a client calls this method, a new Service is cr@ptimal) allocation of resources to tasks over time is a scheduling
ated and initialized to use the private resources of the server; the cliprablem. In the global automation context, it ranges from relatively
receives an instance of claBsotocol Server also subscribes to stateclassical shop floor scheduling problems, for which many exact and
transition events generated by its services and relays them externhgyristic algorithms exist, to higher level interfactory negotiation prob-
using the Broadcast/Listener mechanism [3]. lems, for which decentralized solutions are still being investigated.

Resourcds a class that offers abstract methods which are used toProblem: Autonomous control modules should have the capability
read and write the state of a resource component in/from a persistehfnanaging the temporal constraints regarding the execution of their
storage and are implemented in every subclass. The Resource clas§&iices, by offering the following functionalities:
fers two methods for event subscription and event notification. 1) specify when a service should be executed;

$attern 2: Resource Allocator
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Protocol Service  [0-0)  Server Problem: Code mobility makes it possible to transfer not only data
oxecServioe( P doserice]) st but also first-class objects, callewbbile objectsover the network. The
mobile code paradigm allows the client to provide the code that oper-
0 ates on the server’s resources. In the GAP platform, we want to extend
f f T the model of the control module so as to support the mobility of its ser-
Allocation Reservation Scheduler Client vices.
Time start Solution: The class diagram depicted in Fig. 5 describes the inter-
?g{z:(s)e() Time end schedule() o —  action between two remote control modules. The Client establishes a
service partnership with the Server by sending to its side a mobile object that
T represents a remote placeholder of the Client’s functionality.

MobileServicas the basic class that implements the mechanisms to
serialize an object’s state before it is dispatched over the network and to
restore its execution when itis received at destination. This class should
2) identify conflicts in resource usage; be extended to implement the behavior of a specific mobile service,
3) allow clients to resolve service request conflicts. and to specify the resources that it will use on the destination side. The
classProxyManagerextendsServerand implements the mechanisms
tends the clasBrotocolwith two additional methods. for creating, transmitting, anot receiving mobile ser\_/ices. It offers the

. i . . methodscreateMobile( )and dispatch( )that can be invoked by the
1) Integer boot< (Service s, T'.”?e b,.Tlmeceeates anew instance ot The methoatreateMobile( )receives the indication regarding
of Reservatlt)n atnd stqres itin a list of the Server class. It returiRich mobile service should be instantiated. When the ProxyManager
thg reservation identifier. . . at the Provider side receives a mobile service, it sets it up to access the
2) Void release (Integer reservationlgmoves a specific reserva- remote resources. The Client interacts with the remote mobile service

Th t'?n from thke ser\(grsllljt. lage . hich is inherited via theMonitoringServiceobject.
e framework provides the clafeservationwhich Is inherite Example: A typical interaction between factories is when a cus-

from the classService(see Fig. 4) that has two basic atiributBart tomer requests raw or semifinished materials from one supplier.

andendrepresent the period of time when the client needs to use the]- e request triggers the supplier's planning system, which attempts

requested service exclusively. The class Reservation can be exten[ge commodate the incoming request and return, as quickly as pos-

with additional attributes to represent, for example, priorities, dea ible, lead times and costs for the required product. In this example,

lines, anct costs associated with deadline extensions. Instances of %Scustomer and the supplier are represented by two remote control
Rtasgrvatlon are execute_d by the Seryer, a?d are setup to commum%aules, each of which implements local Enterprise Resource Plan-
with instances of A"OC‘?‘“O” on the client side. . ning (ERP) functionalities. The customer ERP instantiates a mobile

. T_he trarrtework prowdes_t_he clamh_eduler\_/vmch has to be SP€* service that is in charge of the remote management of the events (e.g.,
cialized to implement specific schedltllng poI|C|es_. Wheneyer_a C“emalays in the order processing) raised at the supplier side. The mobile
books a resource, the S_cheduler revises the aSS|gr_1men’t In time Ofs_Eeﬁ/ice is set up to solve specific problems on the supplier’s side au-
sources to clients. If it finds conflicts among the clients requests,tt_tmomOusly and to report specific events on the customer’s side.

might simply inform the clients, or it might try to find a new assign- Implementation: The IBM Aglet [7] is an example of a framework
ment that resolves the conflicts. The Scheduler communicates with {Hgt supports code mobility to implement mobile objects

Clients through their Allocation objects by raising notification events.
Example: Let us consider two application scenarios for this pattern.
Resource Managef he pattern is applied to the autonomous control

modules that have to schedule manufacturing resources. The visibilityrhe designers of global automation systems adopt the pattern lan-

of each control module is limited to its private resources, which it allguage to build applications that offer specific functionality and coordi-

cates to its clients according to local policies. The Scheduler takes iffgte the activities of the real system. The GAP framework supports the

account the deadline of each request and the cost of extending eg&ftern language as it implements the high-level objects, which repre-

deadline. sent the major abstractions found in the problem domain (the Server,
Process ManageiThe pattern is applied to control modules (we calihe Resource, the Scheduler, etc.).

themProcessorthat do not manage resources, but represent the manHowever, the adoption of the pattern language in an increasing

ufacturing processes (sequences of jobs) that the lots of pieces nifhber of applications makes it possible to develop more concrete

undergo (one service for each lot). The Resource Managers sche@@@ponents within the framework, which provide solutions for the
their activities by asking the Processors to allocate job operations. Tdificult problems.

Processor knows the sequence of operations that should be performafl the following, we document the architectural models of three

Fig. 4. Classes used for resource allocation.

Solution: The framework provides the clagdlocation which ex-

Ill. FRAMEWORK COMPONENTS

on a lot of pieces and accepts reservations accordingly. framework components. They support three levels of separation of
Implementation: For the implementation of specific scheduling a'-concernsl Thdevice Wrappemakes a control appﬁcation indepen_
gorithms, the interested reader can refer to [10]. dent of the technology used to interface real devicesQibienection
Broker makes control services transparent to the availability and
C. Pattern 3: Mobile Services network location of their servers; theacilitator abstracts from the

_Cor_wtext: Traditionally, the development of integrated enterprise a| Aterconnection of distributed resources.
plications has been focused on shared data and local processes (e.g.,
Inventory Management, Planning, Supervision, and Control). With the i
introduction of the Internet, however, some processes become shdtedevice Wrapper
across the organization (e.g., Order/Supply management), and operatembedding the Internet into manufacturing devices such as robots,
mostly using local data [6]. The Internet offers customers and provideéransports, and milling machines poses the problem of event-driven
the possibility of operating directly on the partner’s facilities. communication.

?Jhysical networking of clients and servers, and allows the logical
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[
\ Client ProxyManager t | ProxyManager | contacts Server |
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|
‘ Monitoring | ! Mobile |
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Fig. 5. Model of the Proxy Manager.
Server Resource Broker 0.m 0.n Server
X 0..n "
doService() read() Client register() doService()
write() expire()
ZF 4 query()
0.n 0.n i 0.n 1.1
Event Transport DataPoint 0.n ?0 o 0.n
String name Object data <<Template>> <<Template>> <<Proxy>>
- Q - Protocol Service Server
subscribe() externalize() 1.1
notify() Mission internalize()
Event START
Event ARRIVED Fig. 7. Model of the connection broker.
DataPoint current
DataPoint target
B. Connection Broker
Fig. 6. Classes used to virtualize data and events. Distributed resources are free to appear and disappear on the Internet

and the mapping of requests to services is highly dynamic.
Device Control Modules receive stimuli from a physical device One of the basic problems is finding what service is available from

which responds to them by updating its state and giving feedba(‘:}wmh server. Since it is obviously not feasible to broadcast the infor-

Stimuli and feedback are modeled as events, thus, device Con{p?qtlon that a resource has appeared or disappeared on the Internet, spe-
cific components take on the role of broker.

modules are event-driven systems that wrap the physical device so a& broker is a component that has a well-known name and location

to provide an Internet access point to other networked control modules,, . . .
within a subnetwork and allows new resources to advertise their ser-

Developing object-oriented software for event-driven systeMgces. Control modules can query the broker for the available resources.
presents some particular difficulties. The physical device does notrne AP framework offers th€onnection Broker componerd
have logical variables in the control module’s address space t'%ﬁbcific control module (see Fig. 7) that inherits from Resource
represent its state, such as the control registers (physical variables|gks. The Broker maintains a collectionSgrvicetemplates an@ro-
a programmable logic controller (PLC). In the same way, the logicgdco| templates that servers have registered and clients can query. A
events of the software systems are just communication mechanisgasyice template is an object that has the same interface as a specific

between autonomous control modules. Software objects that subsCEc|ass of Service, but it does not implement the service’s logic. The
to events from a Device Control Module must receive those logicghme is true for Protocol templates.

events, which cor_respgnd to external stimuli from _the physical device.rqor example, the Broker might maintain an instance@gtingser-

This means a bridge is needed between the logical and the exteffg template and of Beferredprotocol template. The Broker main-

variables and events. tains a collection oBerverproxies, one for each control module that
The framework offers the classBataPointandEvent has registered its services. The Broker records the associations between
The clasDataPoint(Fig. 6) maps the peripheral state variables t@rotocol templates, service templates, and server proxies in a table. It

the logical variables of the device control module. This class exten@plements a template-matching algorithm that allows clients to find a

theResourcelass in order to make the state of the physical device p&erver that offers a given service and supports a given protocol. It ex-

sistent. In addition it offers the methoesternalize( andinternalize() Ports three methods.

S0 as to write/read data in/from the device’s registers. 1) Void register (Service s, Protocol pllows clients to register their
The classEventencapsulates a physical stimulus and offers the  services and protocols, which specify usage constraints (e.g., pe-

methodsubscribe( ) so as to allow client objects to receive logical riod of availability).

events in response to physical stimuli, and the methotify( ) to 2) Void expire (Service s, Protocol @)lows clients to withdraw

generate a stimulus to the device in response to a logical event. Event their services.

objects have a reference to the software objects that should raise&) Server query (Service s, Protocol m@turns the proxy of one

the logical events when the physical stimuli occur. Device wrappers  sever that supports a specific service and protocol. This method
improve communication performance by exploiting the code mobility ~ should be redefined if the broker implements specific policies
mechanism. Client modules can dispatch mobile services to the device to select one out of several servers that can provide the same
control module that embeds the client’s control logic. service.
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: Client Facilitator \ 1 Facilitator Server Broker \
‘ \
T
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\ | | [
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\
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| invoke() ‘ [~ invoke()
subscribe() | subscribe() ‘
} sub-network A notify() \ | notify() sub-network B |
]

Fig. 8. The model of the facilitator.

The Broker raises three events (in addition to those raised by the and listen to specific events. A variety of mechanisms can be

registered control modules). implemented to filter access to a subnetwork: at the level of mes-
1) Serviceln A new service has been registered. sage packets, of message criptograpy, of client authentication.
2) ServiceOutAn old service has been cancelled. The Facilitator inherits from th&®esourceclass and implements a
3) ServiceChangedservice properties have changed. Routing Tableo handle the routing of messages internally to its sub-

The Broker can implement global scheduling algorithms to assigi¢twork. The Facilitator implements the mettumhnect( Yhat accepts
resources to the clients and balance the load of each server corifi§|Symbolic name of the remote server as parameter, and creates two

module. Nevertheless, the Broker can become a bottleneck and a dgances of classhannel(a subclass of Service): one within the local
tralized point of failure. Facilitator, whose reference is returned to the invoking Client, and one

within the Facilitator of the remote subnetworks, which is set up to di-

alogue with the remote Server. The client callsitheke( )method of

the local Channel using three parameters, the name of the method to
A global automation system is physically structured (for efficienclje executed by the remote Server, the list of arguments of that method,

and security reasons) in a hierarchy of subnetworks that group contal the list of values of those arguments. Tiveke( )method redirects

modules according to their physical location. Usually, a subnetwogke method invocation to the remote Channel, which asks the remote

interconnects the resources of a physical factory, a department, &jedver to execute it. In a similar way, the Client can interact with the

C. Information Bus Facilitator

production cell. Broker of a remote subnetwork.
In a global automation system, business processes cut across the
physical boundaries of factories and departments. Virtual organizations IV. CASE STUDY

and virtual factories represent logical networks of geographically dis-

tributed resources. The GAP framework supports the concept of Infor-As a final Case Study we consider the design of a distributed sched-

mation Bus as a flat interconnection of control modules that logicaling system resulting from the interconnection of ERPs in a textile

breaks up the physical hierarchy of network and subnetworks. For &Pply chain.

ample, a supply chain builds on an information bus that interconnectd=ach ERP plays two roles. Seen from the outside, it represents a fi-

the ERP modules of geographically distributed factories. nite-capacity resource issuing material procurement orders to the sup-
The GAP framework provides the Facilitator control module (seiers and returning feasible and reliable delivery dates to customers;

Fig. 8) that takes on the role of name server, message router, Hiedn the inside, it manages the production of the enterprise’s Workcells

gateway between subnetworks. over a certain planning horizon.

1) Name ServerEach control module in the global information i
system is represented by a symbolic name that is prefixed with OPject Model
domain names so that the path to the control modules through th& he description of the object model maps the architecture depicted
domains is given. This solution has the advantage of decouplimgFig. 1. It follows the same path of the Pattern language upside down
the identity of control modules from their physical locations. Théecause the higher level control modules enforce more complex pat-
Facilitator is responsible for the mapping of symbolic names terns of interactions.
network addresses. Control modules can query the local Facili-The model of the distributed scheduling system is made up of the
tator to get references (the proxy) to remote control modules. Fotlowing components that are implemented by specializing the GAP
example, the Client ERP can get the reference to the Provid#asses according to the patterns previously described (see Fig. 9 from
ERP. left to right).

2) Router.A local Facilitator does not record the logical and phys- ERP. The Client ERP and Supplier ERP are two subclasses of the
ical addresses of all the control modules in the global informa&fassServer and represent the factories in the supply chain that per-
tion system. Instead, it is able to route queries from the cliefdrm two specific steps of the textile process (e.g., weaving and spin-
control module to the Facilitator that records the network aghing). Clients and Suppliers establish business relationships dynami-
dress of the remote control module. In particular, the Facilitat@ally. When a Client needs raw material for its production, it queries
records the network address of the Broker in its subnetwork. Fitre Brokerfor available Suppliers that meet its time, cost, and quantity
example, the Broker in a workcell might have the following symrequirements. The Client establishes a communication channel with the
bolic name:CustomerFactory.Shop.WorkCell.Broker. Supplier through the Facilitator.

3) GatewayThe Facilitator filters the incoming requests for ser- Mobile Orders The Client and Supplier exchange product orders in
vices and the broadcasting of events generated by the contia form of mobile services (Pattern 3). The Mobile Order resides at the
modules of the subnetwork. This guarantees that control modutgspplier ERP and monitors the completion time of the product orders.
external to the subnetworks can access only specific resourtereports delays to the Client ERP.
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query Broker register query Broker register
I ) Pattern 3 Pattern 2 Pattern 1
—
Client ERP Facilitator Supplier ERP Facilitator WorkCell Facilitator DeviceWrapper
OrderManager Channel OrderManager| Channel JobScheduler Channel Protocol
transfer Mobile Order creates Operation \ SpinningService
LJ l Z} ¢ executes
Macrooper \seq__ui
Fig. 9. Distributed scheduling system in a textile supply chain. ‘
Op i Op; Opin The Device Wrappercomponent interfaces an elemental manufac-
L 2 L 2 turing facility, such as a Machine or a Transport, and is implemented ac-
L . T . T cording to Pattern 1. It receives requests for operations of proper types
L___4 L___4 to be delivered over a certain horizon of time, it knowsEngation of
© = Release Time each type of operation, and evaluates the estimated Completion Time
a= Start Time =ty of each Operation in accordance with its capacity and availability. A
t = Completion Time ?}:S}-l Device Wrapper maintains an ordered list (Sequence) of Operations
1 1

d =Due Date that are sequenced according to the tiS¢art Times

Fig. 10. Relation between operation and macrooperation. .
B. Workcell Scheduling Process

Workcell The Supplier ERP groups product orders in lots of textile The process is actually one of a dynamic scheduling and imple-
patches according to the due date indicated by the Client, and subrfi@nts a strict separation of concerns between resource and operation;
production lots to the local Workcells for manufacture. Each Produhe former (represented by the Device Wrapper) knows its availability
tion Lot is represented by a MacroOperation made up of a chain @&#d is simply the bookkeeper that updates the list of operations with
manufacturing Operations according to the Bill of Material. The ERestimated termination times; the latter (the Operation) takes the ini-
assigns the Macro Operations to the Workcells. Each Workcell belorfigfive, proposing the start time based on its constraints (release time
to a factory subnetwork and communicates with the ERP through a B&d due date), receiving the estimated termination time as a response
cilitator's channel. The Workeell is designed according to Pattern #0m the resource. The actual scheduled Start Time of each operation
where the JobScheduler implements a specific scheduling algoritHgnthe result of two interlaced processes: 1) the interaction between the
In turn, the Workcell assigns the simple operations to the resourceBeration being considered and the other operations assigned to the
Since manufacturing resources are unreliable, that is to say, they 88fe resource and 2) the concatenation of the considered operation
be unavailable for some periods of time, the Workcell queries the loc)d the other operations that make up a MacroOperation. The message
Broker for the available resources that can perform a given operaticigduence chart is as follows.

The Operationis a subclass of thReservatiorclass introduced in 1) The WorkCell initializes an operation to be executed. It proposes
Pattern 2. It represents one step of a manufacturing process. It trans- an approximate (preferred) Start Time presuming a termination
forms an input material, received at a certain time, into an output semifi-  time according the constraints given by Due Date and Release
nite or finite product delivered at another time. An Operation is charac-  Time.
terized by five parameters. 1) TAgpedetermines the association be- 2) The operation is assigned to aresource that adds it to the temporal
tween an Operation and the manufacturing resources that can perform list of scheduled operations according to their Start Time. The

it as a service on demand. 2) TRelease Timéndicates the instant current position in the list depends on the (preferred) Start Time
when the input is available. 3) Tt&tart Timeis the desired instant to of the new operation, while the Completion Time results from
start the operation if a resource is available; otherwise it plays the role  ordering all the other scheduled operations in a list. The insertion
of a priority. 4) TheCompletion Timés the instant when the operation of a new operation in the list determines the reordering of all
will complete its execution estimated by the resource. 5)0e Date the operations and the evaluation of their new Completion Time.

represents the deadline when the operation is to be completed. In addi- These new values are returned to the Workcell.
tion, the Operation has an association with the chain of Operations thaB) Each simple Operation iteratively revises its own preferred Start
make up the final product. Time according to the Completion Time returned from the re-
The MacroOperationis a subclass odDperation and represents the source. It operates by implementing an iterative algorithm that
chain of operations related to the whole manufacturing process. It has takes into account the release time and due date constraints, and
the same parameters as a simple operation and maintains the temporal it resembles a discrete time-control feedback loop that minimizes
dependencies (Fig. 10) between the component operations through earliness and tardiness. It has been shown that the emerging be-
their release time and due date. havior, which results from the unconscious interaction between
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operations on a resource as previously described, has good sta- Miro—Middleware for Mobile Robot Applications
bility and performance properties [11].

4) When the current time approaches the Start Time of an operation, Hans Utz, Stefan Sablatnég, Stefan Enderle, and
the operation is released and its Start Time is fixed. When the Gerhard Kraetzschmar
execution of an operation is completed, it is removed from the

resource’s list. Abstract—Developing software for mobile robot applications is a te-

dious and error-prone task. Modern mobile robot systems are distributed
systems, and their designs exhibit large heterogeneity in terms of hard-
ware, operating systems, communications protocols, and programming
languages. Vendor-provided programming environments have not kept

Object-Oriented Frameworks and Design Patterns have offered E??:\%e with recent developments in software technology. Also, standard-

elements to transfer the idea of architecture from classical civil/induged modules for certain robot functionalities are beginning to emerge.
trial engineering to emerging information engineering. It is interestirfgirthermore, the seamless integration of mobile robot applications into

to analyze how the emergence of the Internet has led to innovation§fierprise information processing systems is mostly an open problem. We
the style of designing automation architectures suggest the construction and use of object-oriented robot middleware to

: make the development of mobile robot applications easier and faster, and
In the era of Computer Integrated Manufacturing (CIM), an automgs foster portability and maintainability of robot software. With Miro, we
tion system was conceived as a strong and rigid hierarchy of contpoésent such a middleware, which meets the aforementioned requirements

layers: facility, shop, cell, workstation, and equipment. According t@"d has been ported to three different mobile platforms with little effort.
the USA-NBS CIM reference model [8], each layer is populated Wi[lMliro also provides generic abstract services like localization or behavior

. engines, which can be applied on different robot platforms with virtuall
a set of control modules (the device controller, the workcell CO””O"E‘r{ogmodiﬁcations. PP P Y

thﬁ.Cﬁll Clontroller, etCI.) Wl(tjh FreCIsed.reSponst:blmles aTd‘ Ir:jp;elrtl(l:)ulflr, Index Terms—CORBA, distributed systems, middleware, mobile robots,
g Igher a.y.e.r control module COPr .In.atest € control r.nlo ules Del@itirobot applications, object orientation, robot control architectures.
it. The flexibility of such systems is limited to the possibility of recon-

figuring the production process offline by reprogramming each control

V. CONCLUSIONS

module. A local area network or a field bus represents the commu- |. INTRODUCTION
nication medium between the factories’ subsystems. The interfactoryDevebping software for mobile robot applications is a tedious
communication is handled via telephone, fax, or email. and error-prone task. Modern mobile robots are usually composed

In the era of Internet, global automation systems are conceivgflheterogeneous hardware components, which are connected using
as flat interconnections of autonomous and decentralized decisififferent networking technologies and communication protocols
making/control modules dominated by the concepts of “heterarchyjith widely differing bandwidths. A large number of different
and “proactivity.” The first means that no hierarchy in decisiomethods for processing sensor information and controlling actua-
making is enforced, the second that each partner takes initiathees, for performing computational vision and cognitive tasks like
in reaching a decision (e.g., planning production) and the globplanning, navigation, and user interaction, must be integrated into a
behavior of the system is an “emerging behavior.” Control modul@éell-engineered piece of software. All these issues contribute to the
have decision-making capabilities and coordinate their activities §j30rmous complexity of the mobile robot software development task.
exchanging data and events according to a peer architectural mod¥idor-provided programming environments have not kept pace with
and common protocols. recent developments in software technology. Mobile robot software

are often custom made, closed systems, which makes it difficult
to integrate them in enterprise information processing frameworks.
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