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ABSTRACT

Nuclear medicine imaging systems rely on photon detection as the
basis of image formation. One of the major sources of error in the-
se imaging systems is Poisson noise. In this paper, we develop a
novel multiscale image restoration procedure for photon imaging
systems. It consists in separating in the wavelet-domain data points
which belong to structures from those due to the noisy background.
The latter are replaced by coefficients obtained by the introduction
of a multiresolution regularity constraint. The restored image re-
presents therefore a compromise between fidelity to the data and
fidelity to the a priori knowledge on the smoothness of the soluti-
on. The performance of the method is assessed with simulated data
experiments.

1. INTRODUCTION

Nuclear medicine imaging is a widely used commercial imaging
modality. As a diagnosis tool, it is unique in that it documents or-
gan functionand structure. It is a way to gather information that
may be otherwise unavailable or require surgery. A patient under-
going a nuclear medicine exam [1] recieves a very small amout of
a radioactive pharmaceutical which is targeted for uptake in spe-
cific regions of the body. As the radioactive pharmaceutical de-
cays, gamma rays are emitted from within the patient. Imaging the
gamma ray emissions provides a mapping of the distribution of the
pharmaceutical, and hence a mapping of the anatomy and physi-
ologic function of the organ. The imaging system is the gamma
camera which proceeds by converting gamma rays into light pho-
tons, which will be detected and located by a set of photomulti-
plier tubes. One of the major sources of error in these imaging
systems is Poisson noise [2] which degrades such images in both
qualitative and quantitative senses and hinders image analysis and
interpretation. Hence, improvements in image quality represents a
significant opportunity to advance the state-of-the-art in this field.

The paper is organized as follows. In section 2 we give the
statistical model of the image. In section 3, we describe the struc-
ture detection in the wavelet domain and introduce the notion of
significant coefficients. In section 4, we discuss the regularized
reconstruction. In section 5, we derive the algorithm correspond-
ing to the restoration method. Section 6 exposes the results of the
method on simulated data experiment. Finally we outline our fu-
ture work.

2. STATISTICAL IMAGE MODEL

The raw nuclear medicine image or scintigram is acquired by count-
ing photon detections at different spatial locations over an obser-
vation period ofT seconds. Let us define the local uptake density
�(x; y; z) as being the number of radionuclides taken up per unit
volume of the imaged organ. LetI(kx; ky) be the random variable

”
number of photon counts at position(kx; ky) of the scan during

timeT “. This variable has a Poisson distribution [3]

P (I(kx; ky) = n) =
�np (kx; ky)

n!
e
��p(kx;ky)

where�p is the rate of events integrated over the counting interval
T . If we suppose the desintegration constant of the radionuclide,
�r, constant over time, we have:

�p(kx; ky) = �rT

Z
V

�(x; y; z)dV

with V being the volume of the organ corresponding to a pixel
on the scan. Since�p(kx; ky) is not constant over the scintigram,
I(kx; ky) obeys a non-uniform Poisson distribution. The scinti-
gram is thus a representation of the uptake density which is cor-
rupted by a statistical fluctuation.

3. STRUCTURE DETECTION

We would like to separate the data points which belongs to struc-
tures (areas of different sizes that have an abnormal uptake in
comparison to the adjacent gland) from those due to the noisy
background. This is performed in the wavelet domain because
the wavelet transform provides a method for local analysis which
has the extra advantage of yielding coefficients equal to zero for
a locally constant signal [4]. Having a noisy representation of the
uptake density, the wavelet coefficients associated with the scinti-
gram could be different from zero although the underlying uptake
density is constant. Consequently, the existence of structures at a
given scale is tied to the presence at this scale of wavelet coeffi-
cients with a large enough absolute value [5].

3.1. Significant Wavelet Coefficients

In order to discern between the wavelet coefficients due to a statis-
tical fluctuation of the counts and those due to an existing structure,



we analyse the statistical significance of the coefficients by com-
parison with the values obtained from a locally uniform Poissonian
distribution. We are faced to a classical decision problem [6]: we
focus on two hypotheses and give a rule between them based on the
sample evidence. We hope to show that the uptake density varies
at scale2j , to do this we suppose for the sake of argument that the
uptake density is constant at scale2j , we then look for evidence
against the supposition we made. Stating the hypotheses in terms
of the wavelet coefficient of the population we have:

H0 :W(2j ; kx; ky) = 0

Ha :W(2j ; kx; ky) 6= 0

We find the probability of getting an outcome at least as far as the
actually observed statistic from what we would expect whenH0

is true. This probability is called the P-value and calculated as
follows:

� If W (2j ; kx; ky) > 0

P = Prob(W(2j ; kx; ky) > W (2j ; kx; ky)) (1)

� If W (2j ; kx; ky) < 0

P = Prob(W(2j ; kx; ky) < W (2j ; kx; ky)) (2)

WhereW (2j ; kx; ky) are the wavelet coefficients of the sample
data. The evidence we obtain is then compared with the significant
level�which is a fixed level of evidence that we regard as decisive.
If the P-value is as small or smaller than�, we can not consider
at the level of decision� that the value of the coefficient is only
due to noise. We rejectH0 in favor ofHa which means that the
image is not considered being constant at scale2j . We say that
we detected a statistically significant wavelet coeficient at level�.
If the P-value is bigger than�, although non zero, we consider
that the wavelet coefficient is caused by a chance fluctuation of the
underlying random process and acceptH0.

3.2. Probability distribution of the wavelet coefficients

In order to compute the P-value, we need to compute the probabil-
ity density function of the wavelet coefficient under the hypothesis
H0, that is for a locally uniform Poisson distribution. This law
depends on the analysing wavelet. We will start by justifying the
choice of the wavelet and then describe how we obtained the prob-
ability density function.

The 2D discrete wavelet transform is calculated using Mallat’s
algorithm [7] implemented as a filter bank where the application of
a lowpass filter h and a highpass filter g is alternated on rows and
columns of the imageI(kx; ky). In order to interpret the output
of the filters as the wavelet series of the continuous imageI(x; y),
the input signal of the filter bank,I(kx; ky), must be the filtered
version ofI(x; y) with translated versions of the scaling function:

I(kx; ky) =< I(x; y); �(x� kx)�(y � ky) >

In nuclear medicine imagingI(kx; ky) corresponds to the number
of photon counts at position(kx; ky) of the scan; it can be inter-
preted as the filtered version of the continuous imageI(x; y) by
the scaling function which takes the value one in the surface cor-
responding to a pixel, and zero otherwise. This scaling function

corresponds to the Haar wavelet, which can be associated to the
filters:

h = [1; 1] g = [1; �1]

Let us noteF (2j ; kx; ky) the scaling coefficient at scale2j

andWh(2
j ; kx; ky), Wv(2

j ; kx; ky) andWd(2
j ; kx; ky) the hor-

izontal, vertical and diagonal wavelet coefficients at scale2j . The
scaling and wavelet coefficients at the next scale2j+1 are obtained
by:

F (2j+1; kx; ky) = 1 + 2 + 3 + 4
Wh(2

j+1; kx; ky) = 1 � 2 + 3 � 4
Wv(2

j+1; kx; ky) = 1 + 2 � 3 � 4
Wd(2

j+1; kx; ky) = 1 � 2 � 3 + 4

(3)

where

1 = F (2j ; kx; ky) 2 = F (2j ; kx; ky + 1)
3 = F (2j ; kx + 1; ky) 4 = F (2j ; kx + 1; ky + 1)

Under the null hypothesis, a constant uptake density is assumed,
this means thatI(kx; ky) = F (20; kx; ky) are assumed to be Pois-
son variables of parameter�p. It follows that the scaling coef-
ficientsF (2j ; kx; ky) are Poisson variable of constant parameter
22j�p. The wavelet coefficientsWh, Wv andWd being calcu-
lated as a the difference of two sums of Poisson variables (3):
Wh;v;d(2

j+1) = S1 � S2, whereS1 andS2 are Poisson variables
of parameter22j+1�p, their probability density fonction can be
calculated as follows:

p(Wh;v;d(2
j+1) = �) =

+1X
m=0

P (S1 = � +m)P (S2 = m)

= e
�22(j+1)�p

+1X
m=0

(22j+1�p)
�+2m

(� +m)!m!

= e�2
2(j+1)�pI�(2

2(j+1)�p)

WhereI�(x) is the modified Bessel function of integer order [8].

3.3. Thresholding

At each scale, the significant level� corresponds to a threshold
that we will notet2j . The wavelet coefficientsW are separated in
two groups: the non significant coefficientsX and the significant
coefficientsY where:

Y (2j ; kx; ky) =

(
W (2j ; kx; ky) if jW (2j ; kx; ky)j > t2j ,
0 otherwise.

We thus separated the contribution of signal from that of noise.

4. REGULARIZED RECONSTRUCTION

Our image processing problem is to obtain an estimateÎ = F̂ i(20)
of the true imageI using the raw data imageI = F (20). The
solution that consists in reconstructinĝI from Y taking X=0 is
not acceptable due to the block effects that it provoques: when
a wavelet coefficient is lost by thresholding, information on the
local gradient of the image is lost and the signal is reconstructed
using the local mean. We therefore consider the X coefficients as
unknown coefficients that have to be determined. Due to the fact



that there exists an infinity of solutions, we are faced to an ill-
posed problem [9]. This problem can be resolved by introducing a
priori knowledge defined by a multiresolution regularity constraint
of minimum gradient [10]. The restored image takes into account
the information given by the significant coefficients (fidelity to the
data) but its non-significant coefficients are defined by the a priori
on the smoothness of the solution (regularization constraint).

We introduce the analysis operatorsH2, Gh, Gv andGd so
that the analysis equations of the multiresolution analysis can be
written as:

F (2j+1) = H2F (2j) Wh(2
j+1) = GhF (2j)

Wv(2
j+1) = GvF (2j) Wd(2

j+1) = GdF (2j)

and the synthesis operatorsfH2, fGh, fGv andfGd so that the syn-
thesis equation can be written as:

F (2j) = fH2F (2j+1) + fGhWh(2
j+1)

+ fGvWv(2
j+1) + fGdWd(2

j+1)
(4)

We want to find the coefficientsW so that the reconstruction of
the signal with these coefficients minimizes, at each scale the mul-
tiresoltion gradient constraint:

C(2j) = kDxF (2j)k2 + kDyF (2j)k2

whereDx andDy are the horizontal and vertical gradient oper-
ators. The solutionŴh(2

j+1), Ŵv(2
j+1) and Ŵd(2

j+1) must
minimizeC(2j). This leads to

@C(2j)

@Wh(2j+1)
= GhL2F (2j) = 0

@C(2j)

@Wv(2j+1)
= GvL2F (2j) = 0

@C(2j)

@Wd(2j+1)
= GdL2F (2j) = 0

ReplacingF (2j) by (4), we obtain a system of the formY = AX
where the vectorY is known,A is the operator to inverse andX
is the unknown vector. In order to make the inversion, we use the
Van-Cittert algorithm [11] which leads to an iterative solution of
the form:

Ŵ
(n+1)
h (2j+1) = Ŵ

(n)
h (2j+1)� �GhL2F̂

(n)(2j)

Ŵ
(n+1)
v (2j+1) = Ŵ

(n)
v (2j+1)� �GvL2F̂

(n)(2j)

Ŵ
(n+1)
d (2j+1) = Ŵ

(n)
d (2j+1)� �GdL2F̂

(n)(2j)

(5)

whereL2 corresponds to the laplacian obtained by convolution
with the filter: 24 0 �1 0

�1 4 �1
0 �1 0
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5. ALGORITHM

We apply a coarse to fine processing to the wavelet coefficients
of the raw data imageI = F (20): the restoration starts with the
lowest resolution2jm until it reaches the resolution20. The Pois-
son parameter is first supposed to be constant over the whole image
and taken as the original image mean, it is then progressively mod-
ified and takes the value�ip(kx; ky) = F̂ i(20). This leads to the
following algorithm:

1. Compute the wavelet coefficientsWh;Wv;Wd of the raw
data imageI until the desired resolution2jm is reached.

2. Initialize i to 0 and start with the constant Poisson param-
eter�ip =

P
I/number of pixels ofI. Let �0 be a conver-

gence parameter.

3. Start at the lowest resolution2j = 2jm and initializen to
0, let �1 be a convergence parameter.

4. ComputeF (n)(2j�1) using (4).

5. Compute the residuals

� R
(n)
h (2j) = GhL2F

(n)(2j�1)

� R
(n)
v (2j) = GvL2F

(n)(2j�1)

� R
(n)
d (2j) = GdL2F

(n)(2j�1)

6. Compute the new solution using (5). Only the non-significant
wavelet coefficientsX̂ must be modified. The significant
coefficients remain unchanged.

7. Convergence test:

� if kR(n)(2j ; kx; ky) � R(n�1)(2j ; kx; ky)k
2 < �1

for each of the 3 wavelets planes, go to step 8.

� elsen n+ 1, go to step 4.

8. if j=0 then

� if kF̂ i(20)�F̂ i�1(20)k2 < �0, end of the algorithm.
The reconstructed image iŝI = F̂ i(20).

� elsei i + 1, �ip(kx; ky) = F̂ i(20) go to step 3.

elsej  j � 1, n = 0, go to step 4 to restore the next
resolution .

Figure 1: True imageI

6. SIMULATED DATA EXPERIMENT

Nuclear medicine imaging is of particular importance in the detec-
tion of the nodular thyroid disease that is the development by the
thyroid of one or more localized swellings called nodules. Thy-
roid nodules do not function like normal thyroid tissue. They take
up less (cold nodule) or more (hot nodule) radioactive material
than the normal thyroid tissue and may be cancerous. The major
chalenge facing a physician examining a thyroid scan is to identify
the nodules and to classify them as hot or cold.



Figure 2: Raw imageI

Figure 3: Reconstructed imagêI

In this section we present a simulated imaging experiment
in order to assess the performance of our restoration method on
scintigrams of the thyroid. The simulated intensity imageI (fig. 1)
consists of a background of constant intensity where nodules are
represented by a gaussian intensity profile. It was designed to have
an intensity range similar to that encountered in nuclear medicine
imaging. The nodules exhibit different contrasts with respect to the
local environment and are of different sizes. Fig. 2 shows the raw
count imageI obtained from the intensity image by the introduc-
tion of Poisson noise. The reconstructed imageÎ is shown in fig. 3.
The algorithm did a good job of reducing the background noise:
mse(I; I) = 49:5; mse(Î; I) = 0:9. Qualitatively, the objects in
the image have been protected in the sense that intensity-related,
position-related, and morphological information remained faithful
to the original data. Moreover, the method leads to a compression
of the signal: the sole knowledge of the significant coefficients
permits under the use of the regularization constraint to obtain the
reconstructed image. It therefore suffices to store the significant
coefficients instead of storing the raw image. This results in an
important gain of storage place (we reached in our example a stor-
age gain of 210:1).

7. FUTURE WORK

We are currently investigating the intensity and size sensibility of
the method (minimum size and/or intensity that a structure must
have to be recognized as such). Intensity-related and position-
related measures will be introduced to measure quantitatively the
accuracy of the restoration. The performances will then be tested

with nuclear medicine imagery. Future work will introduce the
point spread function of the imaging system.

Finally we mention that this restoration method is applica-
ble to all applications where photon detection lies at the heart of
the image formation process including astronomical and low-light
imaging.
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