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Abstract

This paper presents a detailed comparison of two implicit time integration schemes for a simplc non-| lincar Hamiltonian system
with symmetry: the motion of a particle in 2 central force field. The goal is to bli tytical and 1 results p
to the stability properties of the implicit mid-point rule (the proto-typical implicit symplecuc mcthod) and a pamuular
energy-momentum conserving scheme, and to compare the two schemes with respect to accuracy. While all results presented
herein are within the context of a simpie model problem. thic problem was constructed so as to exhibit key features typical of
more complex systems with symmetry such as those arising in non-linear solid mechanics: namely, the presence of large (and
relatively slow) overall motions together with high-frequency internal motions.

Dedicated to the memory of Juan Curlos Simo

1. Introduction and motivation

In this paper we present a detailed comparison of two implicit time-integration schemes for a simple
non-linear Hamiltonian system with symmetry: thc motion of a particle in a central force field. The
model problem is constructed so as to exhibit key featurcs typical of more complex systems with
symmetry such as those arising in non-li solid h ly, the presence of large (and
relatively slow) overall motions together with high-frequency internal motions. The two schemes
considered are representative of two basic classes of implicit algorithms which are seemingly ideal for
Hamiltonian systems: the so-called symplectic integrators and the conserving (or energy-momentum)
algorithms.

First introduced in the work of DeVogelare [1] symplectic integrators are integration algorithms which
preserve exactly the symplectic character of a Hamiltonian flow. Within the class of implicit schemes the
classical example is the mid-point rule whose symplectic character was first noted in [2]; in particular,
the entire Gauss family of implicit Runge-Kutta methods are symplectic as noted independently by
Lasagni [3] and Sanz-Serna {4]. While symplectic integrators are geometrically appealing and have been
shown to produce sharp phase portraits in long-term simulations, sce e.g. [5-7], there is rumerical
evidence which shows that in general these algorithms can experience stability problems for stiff systems
with symmetry (for examples see [8-11}).
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As an alternative to (implicit) symplectic integrators we have the exact energy-momentum conserving
algorithms which by design preserve the constants of motion (for specific examples see [8-16, 23]). This
class of algorithms can be put within a general framework of discrete Hamiltonian systems with
symmetry and can be shown to possess various notions of stability analogous to those of the underlying
problem (see [17]).

The goal of this paper is to provide, within the simplest possible context, analyncal resul!s pertaining
to the stability properties of the implicit mld-po:nt rule (the prototypical implicit sy ic hod)
and a particular energy-momentum conserving scheme For both algorithms we will examme notions of
stability which are independent of integrability and di ion; in particular, general dynamic stability
and relative Lyapunov stability of relative equilibria.

For the conserving scheme we will consider we can use general results on discrete Hamiltonian
systems with symmetry to show that the scheme inherits the above notions of stability from the
underlying model problem. However, since these results apply only to conserving schemes, we cannot
use them directly to say anything about the mid-point rule. Hence, we introduce weaker notions of
stability which can be ‘easily’ applied to both algorithms directly. For example, rather than analyze the
relative Lyapunov stability of relative equilibria we introduce the notion of relative linear stability. This
weaker notion can be applied in the same fashion to both the symplectic mid-point rule and the
conserving scheme and hence will allow us to analytically compare stability properties of both schemes.
(Note that from general results on discrete Hamiltonian systems with symmetry we know a priori that
the conserving scheme inherits relative equilibria from the underlying system. At the moment we do not
know if this is so for the symplectic mid-point rule.) We then verify the stability analysis numerically and
end with a numerical comparison of accuracy.

2. The model problem

Consider a single particle of mass m >0 in R*> moving about « fixed center of force which will be
taken as the origin of an inertial coordinate system and denote the posmon of the particle by g€ R".
We restrict ourselves to conservative central forces with potential U : R®— R where the potential is by
necessity a function of the radial distance |q| only, i.e. U(g)=V(|g]) where V: R, —R. (Here, |-|
denotes the standard Euclidean norm on R®.) For any motion of the system l*—u)(l)EiR3 Newton’s
second law requires

V(gD

mi=-VU(g)=-— 4. @1

REMARKS 2.1.

(1) For celestial mechanics applications an identical equation governs the dynamics of the classical
two-body problem after reduction to the center of mass [18]. In this case m is interpreted as the
reduced mass and ¢ as the relative position vector defined for the two-body system as

m=mm,/(m, +m,), 22
994 -
The system iii {2.1) reduces to the well-known Kepler problem when the potential is of the form
V(lql} = —k/|g for some real number k > 0.

(2) To model situations arising in solid mechanics we consider the potential V to be that of a stiff
(non-linear) spring with free length A, That is, V* SA(,) 0 and V” large and positive in a
neighborhood of A,. For example, V(A) = 'k()\z — A})’ for some constant & >0.

3. Hamiltonian formulation and conservation laws

Define the momenta of the pamcle by the expressmn p=mgq and consider rewriting (2.1) in
first-order form on a phase space P =R’ x R*=R®
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g=mp.
_vidah
lal

3.1
p=

Let z=(q", p')" € P. Then. (3.1) defines a Hamiltonian system on P as follows (see [19] for an

explanation of the terminology and notation used below). Define the Hamiltonian function H: P—R
by

1 2
H@)=5-1pl* + Viigh) . (3.2)
and consider the standard two-form £: TP x TP— R given by the expression
01
0,)(82,,82,) =8z, J 8z, where J= [—1 0] . 33)

for all z€ P and 3z, € T:P‘EIR" (@ =1,2). In view of (3.2) and (3.3) we conclude that Egs. (3.1) for
the motion ¢—z(f) € P can be written in Hamiltonian form as

z=JVH(z) . (3.4)
Consider now the (symplectic) action of the rotation group G = SO(3) on P defined by

D(A, (9, p) =(Ag, A""p)
=(Aq. Ap).

where AEG. Since H is invariant under 9 wc have a Hamiltonian system with symmetry.
Furthermore, the action @ possesses a momentum map J: P— T*G =R* given by J(g,p)=gXp
which is called the angular momentum for the system. Given this structure the dynamics described by
Hamilton's equations (3.1) or (3.4) give rise to a flow on the phase space P with the following
properties.

(1) Conservation of energy. The Hamiltonian (i.e. the total energy of the system) is conserved along
solutions ¢+ z(t) € P of Hamilton's equations, i.e.

(3.5)

d
4 Hew) =0. (3.6)

(2) Conservation of total angul The lar momentum map J: P—R® defined by
J(z) = g * p is conserved along solutions 1—z(f) E P, i.c.

SIa0)=0. 3.7

(3) Symplectic character of Hamiltonian flow. For any z, € P the local flow F generated by (3.4) is a
symplectic map on (P, £2) for each ¢ for which it is defined. In particular, for each z, € P there is a
neighborhood U of z, and an interval / in R containing the origin and a map F: U X [— P which is
locally a flow for the Hamiltonian system of ordinary differential equations. That is, for any zE U the
curve defined by ¢(f) = F(z,t) = F(z) is a solution with initial condition ¢(0) =z. For each €1 the
mapping F,: U~ P is symplectic in the sense that

DFTJDF,=J, VzeU, 3.8)
where DF, is the derivative of F, at z€ U (for more details see [19]).
REMARK 3.1. Integrators for which the symplectic condition (3.8) is satisfied by the algorithmic flow

F,, are calied symplectic integrators. Within the class of implicit Runge-Kutta methods, the so-called

Gauss family satisfy this condition (see e.g. [3, 4]). The best known example is the implicit mid-point
rule [2].
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4. Notions of stability

For Hamiltonian systems with symmetry we comsider two basic notions of stability which are
independent of integrability and di ion: general dy ic stability and relative Lyapunov stability of
relative equilibria. The first deals with boundedness of solutions uniformly in time and the second with
the behavior of solutions beginning in a neighborhood of a relative equilibrium solution (i.c. an
invariant set).

4.1. General dynamic stability

Recall that a solution (g(t), p(t)) of (3.4) with initial condition (q,, p,) is said to be dynamically
stable if there is a constant K >0 such that [|(g(r), p(0))|| <K for all t=0. (Here, ||-|| denotes the
standard Euclidean norm on P.) We now investigate the dynamic stability of solutions to (3.4) for two
classes of potentials:

(1) Non-linear spring potential. The potential V : R, — R is of the form V(A) = 1k(A* — A{)’ for some
constants k >0 and A, >0. Note that V(A)=0 for all A€ R, and V(A)—  as A— . To assess dynamic
stability note that a solution (g(¢), p(r)), while it exists, remains in a level set H ™ '(c) C P where ¢ =0is
determined by the initial condition, i.e. H(g,, p,) = c. Now, while a solution exists we have

1 2
H(q(), p@) =5 m™"|p@ + V(lg@)) =c. (4.1)

2]
4]

V(lg))=c and |p(n)|*<2mc. 4.2)

Hence, while they exist, solutions are bounded. Since we are dealing with smooth Hamiltonians only
this implies that solutions are definec for all #=0. For any solution we can thus find a constant K >0
such that |[(q(r), p(t)|| <K for all 1=0.

(2) Kepler potential. The potential V: R, — R is of the form V(A) = —k/A for some constant k > 0.
Note that V(A)<0 for all A€ER,,V(A)~>0 as A—>w», and V(A)—> —= as A—0. To assess dynamic
stability we note that a solution (g(r), p(t)), while it exists, remains in a level set H'(c) C P where
¢ €R is determined by the initial condition, i.e. H(g,, p,) = c. In this case, however, we cannot show
that solutions are bounded using only level sets of the Hamiltonian. We now have to use some of the
symmetry properties, namely, the fact that the momentum map J is conserved along solutions. Suppose
the initial condition is such that J(g,, p,) = p¢ which implies (g(t). p(1)) € H '(c) NJ ~'(s). Given the
notion of a reduced system (to be introduced in the next section) we have that the following quantity

A(lql. ®) = %/ 2m + |u)* 12mlq)* + V(1q]) (4.3)

is conserved along solutions. In particular, H is the reduced Hamiltonian which we will derive shortly
and 7 €R is the reduced momentum variable defined such that [p|* = =%+ |u|*/|q|>. Now, while a
solution exists we have

m?/2m +|ul*2m|q|* - k/|ql =c. (4.4)
Assuming ¢ = —|c| <0 we get —k/|g| < —|c| which implies

la(OV=k/lel . 4.5)
Also from (4.4) and the assumption ¢ <0 we have |u|*/2m|g|* - k/|g] <0 which implies

la) = ||/ 2mik . (4.6)

Hence, H(q,, p,) = ¢ <0 implies that |q(r)| is bounded. Similarly for |7(r)| and hence |p(t)|. Thus, for
any solution with initial condition satisfying H(gq,, p,) = ¢ <0 we can find a constant K >0 such that
I(q(), pU)))| <K for all 1=0.

Clearly, any energy-momentum conserving approximation scheme (which conserves the reduced
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Hamiltonian) inherits this notion of stability from the underlying system. It is not clear, however, that
similar infinite-time results (independent of the time step) can be deduced for the mid-point rule on a
six-dimensional phase space.

4.2. Relative equilibria, reduction and relative stability

Given the Hamiltonian . ystem with symmetry (P, 2, G, H) with momentum map J: P— T%G recall
that a relative equilibrium with momentum g is a point (q,, p,) €J ' (2) C P with the property that the
solution through it satisfics

(q(). p(t)) = B(explté], (q.. p.))

. : @7
= (explt£]q.. expltélp.) .
for some £ € T,G = so(3) where exp|] is the matrix exponential and so(3) denotes the set of real 3 x 3
skew-symmetric matrices. In particular, a relative equilibrium point (q,, p,)€J '(p) C P may be
characterized as a critical point of the Hamiltonian H restricted to the level set J ™ '(pt) (see e.g.
[20-22}). Regarding Lyapunov stability for the relative equilibrium point, the most that we can say is
with respect to the set

(4., P.)1 = {(9. P EP|(q, P)= ®(A, (4., P.)). AEG,} CJ ' (p), (4.8)

where G, is the subgroup of G under which the level set J7'(p) is invariant (i.e. @,: P— P leaves this
set invariant for all g € G, ). In particular, Lyapunov stability for the set [(q,, p,)] within the momentum
level set, which is defined as relative Lyapunov stability for the point (g,, p,), may be defined using the
notions of reduction and reduced systems. Briefly, given a regular value g for J we can resirict the
original Hamiltonian system to the level set J ') and then ‘factor out’ those group motions that leave
this level set invariant. The result is a Hamiltonian system (7, 8, /) which i is <alled the reduced system.
By design, the set [(q., p.)] in J '(w)C P corresponds to a critical point Z, €FP=7""(n)/G, of the
reduced system and we say that the set [(g., p,)] is stable within J ‘() if the critical point of the
reduced system is stable. That is, a relative equilibrium point (g,, p,) € P is relatively Lyapunov stable
if the associated fixed point for the reduced system is Lyapunov stable.

By general results for discrete Hamiltonian systems with symmetry the constructions outlined above
carry over to a large class of conserving approximation schemes such as those considered herein.
Hence, for the conserving scheme we consider, if the underlying system possesses a relatively stable
relative equilibrium point so does the algorithm. We cannot, however, use the above constructions to
conclude the same for the mid-point rule. In order to ‘compare’ stability properties of both
approximation schemes we thus carry out the reduction process in detail for the underlying problem and
introduce a weaker notion of relative stability applicable to both algorithms. Our goal is to introduce a
framework in which to analytically compare the stability properties of the symplectic mid-point and
conserving algorithms, at least within the context of relative equilibria.

4.2.1. Reduction

In this section we review the notion of reduction for the model problem. The ideas presented are
well-known (see e.g. [18, Chapter 3]) and are outlined below merely to motivate the procedure for the
algorithmic setting.

Let {e,,e,,e;} be a fixed orthonormal basis in R*> and let J(z,) = #0. (The case p =0 is
degenerate and corresponds to motion along a straight line through the origin.) Since J is constant
during any mouon and by construction ¢+J =0 and p-J =0, we conclude that ¢ and p remain in a
plane I' CR® where I'= {x€R*: x- u =0}.

Assume for simplicity that g is parallel to e, and introduce plane polar coordinates (A, $) ER, x §'
in I. In addition, let {e, e, e,} be a moving orthonormal frame defined by the expressions
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e=ql/iql,
=plp, (4.9)
e =e, xe,

and let 9 be defined such that the orientation of e with respect to the fixed frame is

e =cos(I)e, +sin(d)e, . (4.10)
From (4.10) and (4.9) we see that {e,e"} span I" and have time derivatives given by
;= et
e=ve (4.11)
t=—Pe.
To obtain the reduced equations of motion we express ¢, pE I’ in the moving frame as
= )Ae,
q=Ae (4.12)

p=me+tyet,

and note immediately that the condition g = g X p implies 7 = p/A. Substituting (4.12) into Hamilton’s
equations (3.1) gives the following evolution ions for the reduced variables:

S=pn/mr?, dES',
A=w/m, AER, , (4.13)
a=-V'(A+u’/m\’, nER.

4

In the present case the reduced equations have a particularly simple form. Note that the evolutions
for A and 7 are independent of 9. Once A has been determined as a function of time, Eq. (4.13), may
bz integrated to determine 8. (In this case 9 is said to be a cyclic or ignorable coordinate.) Hence, the
reduced dynamics are completely characterized by the evolution of A and . We now show that the
reduced equauons (4.13), , are Hamiltonian with phase space P= {(a, n) ER*: AER, ).

Letz=(A,m)'€P. Then, (4.13), , define a Hamiltonian system on P as follows. Define the reduced
Hamiltonian function #: P—R by

H(z)—’-—-‘n +V,(N, (4.14)

where V,(A)=V(A) +pu 2/2mA* and consider the standard two-form : TP x TP—R given by the
expression

B (5%, 55,) = 321387, where 3=[_9 (1)] } (4.15)

In view of (4.14) and (4.15) we conclude that Egs. (4.13), ; for the motion t+—>Z(t) € P can be written
in Hamiltonian form as

£=JVH(Z). (4.16)
REMARKS 4.1.

(1) Note that the reduction followed from the conservation of total angular momentum; in
particular, the conservation of energy played no role in the reduction process. This observation is
crucial in the algorithmic setting.

(2) The potential V, in the reduced Hamiltonian is the sum of the original potential V and the
potential of the centrifugal force. In the mechanics literature, V, is known as the amended
potential and arises in the study of relative equilibria for Hamiltonian systems with symmetry.

(3) In this case the reduced equations are Hamiltonian relative to the standard two-form 4 on
PCR. In the general case, reduction yields equations which are Hamiltonian relative to a
non-standard two-form. .

(4) As required by the symplectic reduction theorem [22], the reduced flow in P is a symplectic map
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for each > 0 relative to the two-form §3: TF x TF— R. In particular, for each ¢ >0 the reduced
flow is an area-preserving map of P into itself.

4.2.2. Relative equilibria and relative linear stability
Consider a fixed point Z* € P of the reduced equations (4.16) which in components are

X=m/m,
w==VA). (4.17)

Clearly, the fixed point must be of the form £* = (A*,0)" where A* is a stationary point of the amended
potential V. Inspection of Eqs. (4.11)-(4.13) shows that a fixed point of the reduced Hamiltonian flow
on P corresponds to a steady motion on the canonical phase space P. This steady solution is a relative
equilibria for the system on P. In terms of the motion of the particle in R?, the relative equilibria
corresponds to a steady circular orbit of the particle in the plane I with radius |g| = A*.

We now introduce the notion of relative linear stability for a relative equilibria. In particular, we will
say that a relative equilibria is relatively linearly stable if the fixed point of the reduced equations in P is
lineasly stable, which we define next. .

Let F,: P— P be the t-advance mapping for the solution of the reduced equations, i.e. Z,=F(Z),
and note that by definition the fixed point Z* satisfies z* = F(£*) for all t = 0. We say that Z* is linearly
stable if infinitesimal disturbances 8Z € TP on £* do not grow in time. To examine the linear stability
of Z* we must consider the derivative D;.F,: T;.P— T;.P. First, note that as in the canonical case the
mapping F, is symplectic on P for each >0. Hence, the condition (3.8) implies

detD,Fl=1, Vi>0, ViEP, (4.18)

s that F, is an arca-preserving map of £ CR? into itself. Now consider an infinitesimal disturbance 3%
on the solution £*. The infinitesimal disturbance satisfies the equation of variations

oz, = IViT(z*) 8z, , (4.19)
which may be solved as
8%, = expldV?H(Z*)1] 82, = A, 87, - (4.20)

Hence, the evolution of the infinitesimal disturbance 87 is determined by the one-parameter group of
transformations A, = D;.F,: T;.P— T;.P. From (4.20) we see that infinitesimal perturbations of the

fixed point Z* i imal if the mapping A, is stable. In view of (4.18) stability of this mappin,

requires that the eigenvalues £, ,(4,) be simple on the unit circle in the complex plane. Since A, € R
we have

GaAA)= % tr[a,] = V—} wa]-1, 4.21)

so that the eigenvalues are simple on the unit circle if

%tr[A,]‘ <1. (4.22)

From the preceding results we conclude that the linear stability of the fixed point Z* = (A*, 0)'e P (and
hence relative linear stability of the relative equilibria on P) is determined by the trace of the linearized
t-advance mapping A, = D..F,.

REMARK 4.2. In the present case, linear stability of the fixed point Z* implies that A* is a local

of the ded pc jal, i.e. V(A*) > 0. This follows from (4.20) where a simple calculation
gives the eigenvalues of A, as

6124, = exp[£iVVi(A*) /m1]. (4.23)
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It then follows that the condition for linear stability is equivalent to V,(A*) >0 which implies non-linear
stability of the fixed point (and hence the relative equilibria). This, however, does not hold for the
general case. That is, lincar stability does not generally imply non-linear (Lyapunov) stability.
Throughout the remainder of our analysis we assume that the model problem has a stable relative
equilibria in the sense that V,(A*)>0.

5. Symplectic approximaiion: Implicit mid-point rule

In the following sections we consider the mid-point algorithm and address the question of relative
linear stability for a relative equilibria of the discrete dynamics. Beginning with the mid-point rule
formulated on the canonical phase space P = R* x R? we will show that the discrete dynamics may be
reduced to the phase space P CR*. We then show that a fixed point exists for the reduced algorithmic
equations and analyze the linear stability of this fixed point by way of the linearized algorithmic
At-advance mapping. For purposes of comparison, we then formulate the mid-point rule directly on the
reduced space P and perform a similar analysis.

5.1. Algorithmic approximation on original phase space

Let [0, T] be the time interval of interest and consider the equations of motion on P given in (3.1) or
(3.4) with initial data z(0) =z,. Given a partition {1,}"_, of [0, T] such that £,=0, ty=T, and
tys) — 1, = At>0, the algorithmic problem is to compute z,,, from given data z, € P and generate a
solution sequence (z,))-, where z, stands for an algorithmic approximation to z(r,). The mid-point
approximation to (3.4) is

Zpe1 — 2, = AJVH(Z,,, ,2) . (5.1a)
where (). 2 =4{(-), + (*),,,]. In view of (3.1) the explicit form of (5.1a) is
91—, =0m7'p
V'(|40.s1])
192112l

REMARK 5.1. For the discrete dynamics defined by the mid-point algorithm (5.1) the ‘motion’ of the
phase point in the phase space is given by a sequence (z,)Y_, in P. In this case we view the algorithmic
solution as being generated by a Ar-advance mapping F,,: P— P such that z,,, =F,(z,). For the
mid-point algorithm this mapping is defined implicitly by an expression of the form G,,(z,,2,.;) =0.

(5.1b)
Py =P, = —A

n+172 *

5.2. Properties of the algorithmic flow

The discrete dynamics described by the mid-point algorithm (S5.1a) or (5.1b) give rise to an
algorithmic flow on P with the following properties.

(1) Conservation of total angular momenium. As before, define the angular momentum map
J: P> R by the expression J(z) = ¢ X p. Then, J is preserved along any motion (z,)_, in the sense
that

J@,1)=JG,), (1=0,1,...,N). (5.2)

This result follows directly from the algorithmic equations.

(2) Symplectic character of the algorithmic flow. Consider the At-advance mapping for the mid-point
algorithm defined by the implicit relation (5.1a). Associated with this mapping we have the discrete
equation of variations

8z, = A, (2,5 2,.1) 82, . (5.3)

where A,(z,,2,.,): T, P~ T,, , P is the linearized Ar-advance mapping. A straightforward calculation
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shows that A, (z,,z2,.,) satisfies the condition in (3.8) so that the algorithmic Ar-advance mapping
defined by the implicit relation (5.1a) is a symplectic map on P with the standard two-form.

5.3. Reduction

Due to the presence of the conserved quantity J the discrete dynamics on P defined by the mid-point
algorithm (5.1a) or (5. lb) may be reduced to a phase space P CR%. As before, let {e,, ¢,, e 3) be a fixed
orthonormal basis in R and consider a motion (z,)1-, in P for which J(z,) = g #0. Since J is constant
along any motion and by construction g,-J =0 and p, -J =0, we conclude that g, and p, remain in the
plane '={xER*: x-u =0} forn=9,1,...,N.

Assume for simplicity that g is parallel to e3 and introduce plane polar coordinates (A, ) ER, x §'
in I'. Let {e,,e,,e;} be a moving orthonormal frame defined at each point of the motion by the
expressions

e,=q./g.l,
=pnlp, (5.4)
e, =e;Xe,.

At each point of the motion let 3, be defined such that the orientation of e, with respect to the fixed
frame is

e, = cos(d},)e, + sin(¥9,)e, . (5.5)
From (5.4) we see that {e,,e.} span I' for each n and hence we can express q,, g,,, €I as
n = Anen ’
e (5.6)

Qi1 =Anii€yyy -

To simplify the developments that follow it proves convenient to define a second moving frame
{é,é*,e;} which in each time interval [t,,1,,,] is given by

é= e, te,
le,.s+e,l”
S1_ €ns1 " €n
€ =—— 5.7)
|¢n+| _‘nl ’

e, =éxé*=plu.

Let =19,,, — 3, be the angle between the vectors ¢,,, and ¢, i.e. the swept angle in the interval
[t.+1,.,])- Then using the basis in (5.7) we have

= cos(8/2)é —sin(9/2)é *

(5.8)
e, ., =cos(6/2)é +sin(8/2)é *
which in view of (5.6) gives
g, = A, cos(8/2)é — A, sin(8/2)é .9

@us1 = Ay €OS(8/2) + A, sin(8/2)é

We now proceed to express p,, p,., €I in the moving frame (5.7). As before, at each point in the
motion let 7, = p, - e,. By conservation of angular momentum we have g, X p, = pe, and g, ,, X p,,, =
pe;. Taking the cross product of these expressions with ¢, and g, .,, respectively, leads to
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#r = [ 7 050/2) + 4-sin0/2) |é - [ my sino12) - -Iiws(0/2)]¢' :
(5.10)
Poir = [ Tpe1 €OS(8/2) -——sm(0/2)]e + [ ,., Sin(0/2) +——cos(o/2)]

Substituting (5.9) and (5.10) into the mid-point algorithm (5.1b) yields the following component
equations for the reduced variables A, 7 and 6:

Ay —A,
Ay —A, =Afm"[mm +n—2"7\"7-tan(0/2)] .

(5.11)
2ArHrlIZ
Tt = Ty = —ALOA, ) + 1t A tan(0/2)
Ay,
2A,,1/2 5iN(0/2) = Azm"[5 (Mysy — ™,) 5I0(0/2) + A"A”’ 005(9/2)] s
i (5.12)

Ay
2m, ., 5in(8/2) = ——Ar a(A,,, —A,)sin(8/2) + p.L-cos(o/Z),

where & =V"(|¢,.1/21)/1¢,+1,2]. Note that there are four equations for three unknown reduced
variables A, ,,7,,, and 6 (i.e. 9,,,). A simple calculation shows that the dependent cquations are
those in (5.12). Wlth the proper substitutions these two eguations become identical. Solving for the
quantity (A,,, —A,) in (5.11), and substituting the result into (5.12}, yields

tan’(9/2) ~ 3"—‘"—*‘(” IV m"a)tan(0/2)+l 0. (5.13)

Hence, Egs. (5.12) may be replaced by the single equation (5.13). The reduced algorithmic equations
are then

A1 A, =A”"-l[ Tas1r2 +I"#‘3n("/2)]

22
Ty — Ty = —Ator,,,,+p X ".ﬂ/z tan(6/2) , (5.14)
tan (0/2)— 2 A"*‘ (1 + A:’m"a) tan(6/2) +1=0

REMARK 5.2. The third equation in (5.14) may be taken to define # as an implicit function of A, and
Ans1e In principle, we could eliminate this equation and end up with a system of the fom
GA,(Z,,, Z,4,) =0 where Z, z,, —( =)' e P. That is, we may vnew (5.14) as defining an implicit map of
PCR? into itself. A tu the sy ,.' the At-ad mapping for the

reduced algorithm on P is symplectlc given that the algorithm on the caionical phase space P is
symplectic.

5.4. Swability of algorithmic relative equilibria

As in the exact case, a fixed point of the reduced algorithmic equations on P corresponds to a steady
(discrete) solution of the algorithmic equations on P. This steady solution is then a discrete analog of a
relative equilibria. Following the model problem we seek a fixed point 7*€ P of the reduced
algomhmlc equatlons . 14) In the algorithmic case, Z* is a fixed point if there exists a motion @)V
such that £, =2* (n=0,1,...,N). To this end we have the following

LEMMA 5.1. 7* = (A*,0)' € P is a fixed point of the reduced algorithmic equations (5.14) if A* is a
stationary point of an algorithmic amended putential V,: R, — R defined as
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V(A= f a(s)V'(s/afs)) ds + u?/2mA®, (5.15)
where

N )
a(A) = 1+Z.Q§(A) and 24(A)=At u/mr’.

PROOF. Consider a motion (Z,)¥_, such that £, =(A*,0)7 for all n. Setting A, =A,,, =A* and
7w, =m,,, =0in (5.14), shows that this equation is satisfied identically. From (5.14), we get

5.16
o= AI(/\")Z tan(9/2) , (5.16)
which upon substitution into (5.14); yields
At
tan(0/2)y=——". 5.17
a6/ = ey e

In view of (5.17) and (5.16) we see that the reduced algorithmic equations are satisfied by a motion of
the form Z, = (A*,0)" (n=0,1,...,N) if A* satisfies the equation

2
-t 5.18
) (5.18)
where o =V'(|q,,,/2)/|4+1/2|- For the motion we are considering we have g, =A%, and q,.,=

A*e,.,, and by definition of 6 we have e,-e,,, =cos(8). Using the definition of g,.,,, and some
trigonometric identities we arrive at

1€,1/2] = A% coOs(8/2), (5.19)
which in view of (5.17) and some more trigonemetric identities yiclds
A!‘
Mosrr2l = 1/ Atp N2 (5.20)
H3(aoer)
Substituting (5.20) into (5.18) then shows that A* must satisfy
a(AW(A" [a(A*) - (A‘) =0. (5.21)

In view of (5.15) A* must be a stationary point of V, /, as claimed. O

Regarding the existence of a zero for the function f":: R, — R (and hence the existence of a fixed
point for the reduced algorithm) we have the following

LEMMA 5.2. 17’ =0 defines A* as an implicit function of At in a neighborhood of At =0.
PROOF. Consider V as a function of both A and Ar. Then the zero level set of V' contains the point

(A' Ar)=(A%,0) where A: is the stationary pomt of the exact amended potentlal V,. Since
) V“(AC,O) V(A7) >0, the claim follows from the implicit function th a

The above result shows that there is a unique A*, and hence fixed point (A*,0) of the reduced
algorithm, for each Ar> 0 sufficiently small. The question arises, however, as to what happens for a
large range of At and how strongly A* depends on Ar. To answer these questions we present some
numerical results for a specific potential. In particular, we consider the non-linear spring potential to be
used in our numerical stability experiments which is of the form
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Fig. 1. Plot of V; versus A (with vertical axis scaled by 1/k) for time steps in the interval 0< A=< 2. Note that for each time step
there exists a unique zero which depends strongly on the time step.

»
3

V().)=lk(¢\2-hf,)2. (5.22)

Taking for the ‘stiff’ case k = 10°, A, =1, u =10, and m =1, in Fig. 1 we plot V’ versus A for a wide
range of time steps At. Since zeros of V correspond to stationary points of V the plot shows that there
exits a unique stationary point A* over a wide range of time steps and that A depends strongly on the
time step.

In analogy with the model problem, the algorithmic relative eqmllbna on P is said to be relanvely
linearly stable if the fixed point of the reduced algorithmic equations in P is linearly stable To examine

the linear stability of the fixed point we proceed as follows. Invoking the implicit fu thy the
reduced algorithmic equations (5.14) may be written in the form
6.5, 7,.0)=0, (5.23)

where Z,=(A,,,)" ePCR. By definition the fixed pomt 7* = (A*,0)" satisfies G, (3*,2*)=0.
Consider an infinitesimal disturbance 8% on the motion (£*)},. The infinitesimal dlsturbance satisfies
the discrete equation of variations

8, =A (. 1) 8, (5.24)

where A,(z,,£,.,): T;, P T;, P is the linearized At-advance mapping. The fixed point is said to be
linearly stable if the Ilnear mappmg AA,( »Z*) is stable, i.e. if the elgenvalues £1.2(A,,) are simple on
the unit circle in the complex plane. If the At-advance mapping defined implicitly by relation (5.23) is
sympleci.c on P with the standard two-form, then det[A_,,(z,,,z,m)] =1 along any motion (z,,)f,n and
the linear stability condition for the fixed point becomes

1 .
3 trfA, (2*,2%))

<1. (5.25)

Through a tedious, yet straightforward application of the chain rule we linearize (5.14) (considering 8 as
an implicit function of A, and A,.,) to obtain the discrete equation of variations. Pamculanzmg this
result for the solutxon (z‘) _o Yields (5.24) with a linearized At-advance mapping given by

Avem=5[2 8] (5.260)

where
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1 ., 1

» 1 ) ) ,
a=1-507-70; -5 %BE2] -30;-8), b=Atm™",

- 1 , 1 s

c=Ar ‘m(x—;ni)[—ni—n;-50,5(0;—3n;—8)],
1 1, 1 ) 2

d=1—502—39;—5{24;(0;—3{1;—8). (5.26b)
1,1 2

D=l+-;n;+§nrﬂ(ﬂf-3n;—8).

—[n 1eioetor ]/[lﬂhlm 2~1]

B= F( giFrTyg R 8Y¥F 16 2 .

with the sampling frequencies 2, and £2, defined as

2= At p/m(A*)?,

a2 1/ [P
Q; =08 m V(A fa), a= 140

For this particular solution one may verify that det[/ié,(z",i')] =1 so that the Ar-advance mapping
defined implicitly by (5.23) is a symplectic map on P with the standard two-form along the given
motion. (Here, we have used the fact that a mapping of the plane into itself is symplectic with respect to
the standard two-form if and only if it is area-preserving.) Regarding the linear stability of the fixed
point (and hence the relative linear stability of the relative equilibria) we have the following.

LEMMA 5.3. The relative linear siability limit for the relative equilibria of the mid-point algorithm on P
is D=2

PROOF. The result follows by direct verification of condition (5.25). From (5.26) we get
205+ 20007 + 6405 + 16002 + 3203

[P
FulA (2] =1~

3 . 5.27
308 +2405 + 40207 + 6407 + 16027 + 64 621
Considering the ‘stiff’ case {2, >> . >0 and retaining the highest-order terms in (5.27) gives

| 32420}

3 A, (7%, )] =1 —m . 8 large. (5.28)

In view of (5.28) the stability condition (5.25) is satisfied for 0 < {2, <2 and violated for £2 = 2. Hence,
for the ‘stiff’ case we have that £, =2 is the relative linear stability limit for the mid-point algorithmic
relative equilibria. O

5.5. Algorithmic approximation on reduced phase space

To contrast the results in the preceding sections which were obtained by reducing the mid-point
approximation on P, we formulate the mid-point algorithm directly on the reduced space P and address
the question of linear stability for fixed points of this formulation. The mid-point approximation to the
reduced equations (4.16) is

£y~ 2, =A1IVH(Z, .1 1) (5.29a)
where (*),.1/2 =4[(), + (-)ns1]. In view of (4.13), ; the explicit form of (5.29a) becomes
A=A, =8tm T m

My — M, = —At V,:()‘nu/z) .

(5.29b)
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By inspection, a motion of the form Z, = (A*, 0f (n=0,1,..., N) satisfies (5.29b) where A* =A isa
stationary point of the exact amended potential V,. Hence, £* = (A*, 0)T is a fixed point for the
mid-point algorithm on P and we sze that the fixed point of the reduced dynamics is exactly preserved.
To examine the Imear stability of the algorithmic fixed point we consider an infinitesimal disturbance
57 on the motion (£*)¥_,. The infinitesimal disturbance satisfies the discrete equation of variations

82,.“ =AA1(7- ¥3 )57. . (5.30)

where AA,(z,,, Z,.): T;, P T lS is the linearized Ar-advance mapping. Linearizing (5.29b) about the
solution Z* yields

E«A,(z".z")=~:—,['c' ¢l (5.31a)
where

a=1 ~;}A:’m“v,;'()").

b=arm™,

c=~AVi(AY), (5.31b)

d=1 —ZA:’ m~VAA),

D=1+%At2m"V”()&*).

As before, the fixed point is said to be linearly stable if the mappmg A‘L,(z" Z*) is stable. From (5. 31)
one can verify that det{A,,] =1 and |1 t[A, ]| <1 so that the mapping A,, and hence the fixed point is
unconditionally linearly stable.

6. Conserving approximation

Here, we consider an energy-momentum conserving algorithm and address the question of the
relative linear stability for a relative equilibria of this algorithmic approximation. We first outhne the
construction of a conserving algorithm on P and then reduce the discrete dynamics to P C R’. We then
show that the reduced algorithm has a fixed point which is exact and analyze its linear stability. (Note
that from general results on discrete Hamiltonian systems with symmetry [17] we know a priori that the
reduced scheme will inherit exactly the fixed points in the reduced phase space.) For purposes of
comparison we formulate a conserving algorithm directly on the reduced space P and perform a similar
analysis.

6.1. Algorithm approximation on original phase space

As a point of departure consider the following mid-point approximation to the equations of motion
on P:

G~ 4 =Atm 7,
Povi ~ P = ~A10(q,: 41 Mnrs2 s

where o: R’ x R— R is to be determined and as usual (*),,,,, = 1[(:), + (-),.,]. From the results for
the mid-point rule it follows that the above algorithm preserves the momentum map ] : P— R’ for any
a(q,. g,.,) €R. We now proceed to determine o such that the Hamiltonian (i.e. “he total energy) is
conserved along any motion ((g,, p,)))-, generated by (6.1). Recall, for the system at hand the
Hamiltonian H: P— R is separable, of the form H(z)= K(p)+V(iql) where K(p)= |p|*/2m is the
kinetic energy of the particle. In the intervai [t,,,.,] the change in kinetic energy is

(6.1)
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1 2 g
K(pyor) = K(p) =5 m (s = |21

:mulpnOI/Z'(pnOI_Pn)' (6.2)
Substituting the algorithmic equations (6.1) into the above identity yields

1 2 2
K(Pro) = K(po) = =5 (4,01)" ~ 10,1)0(q,0 4401 - (6.3)

The Hamiltonian is said to be conserved along a motion (z,)Y_, if H(z,,,)=H(,) for all n. This
requires K(p,.,)— K(2,)=—[V(lg,.,]) - V(|q,)} which in view of (6.3) is satisfied by setting

1 V(19,..D) ~ V(anl)
gl +la)  1gnadd — gl

Hence, the discrete dynamics described by (6.1) together with (6.4) give rise to an algorithmic flow on
P which preserves exactly the momentum map J and the Hamiltonian H.

(4> Gnar) = (6.4)

REMARKS 6.1.

(1) Note that o as given in (6.4) is well-defined in the limit as |q,,,| — |g,]— 0. In practice, when
19...1=4,] we compute & via an expansion of the form

3 gl + 1D = V(3 gl +18.D) + 25 (rosl = l0,7V(3 gyl + D) +
(6.5)

(2) The approach outlined above for the construction of an exact energy-momentum preserving
algorithm generalizes to more complicated systems such as non-linear elasticity, shells and rods
(see [8-10]). For the construction of conserving algorithms for general Hamiltonian systems with
more general momentum maps see [17].

6.2. Reduction

Due to the presence of the conserved quantity J the discrete dynamics on P defined by the conserving
algorithm (6.1) together with (6.4) may be reduced to a phase space P CR. Following the same
procedure as before yields the reduced equations

A
Aper — A, =Atm"[vr,,,,/2 +u Z"A"A tan(9/2)-|

24,
Wpay — W, = —At a/\,,¢,,2+p,/\ "A Y2 tan(0/2) , (6.6)
20,
tan’(6/2) — ——"L‘—(l +4Ar m”a) tan(8/2)+1=0,

where o= A_1, . [V(A,.) VAR, —A,).
6.3. Stability of algorithmic relative equilibria

As before, a fixed point 7*€P of the reduced algorithmic equations corresponds to a relative
equilibria for the algorithm on the original phase space P. Regarding fixed points of the reduced
algorithmic equations we have the following:

LEMMA 6.1. £*=(A*,0)"€ Pisa fixed point uf the reduced algorithmic equations (6.6) if A* is a
stationary point of the exact amended potential V, : R, — R defined as
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2 2
V.(A)=V(A) + p*[2mA* . (6.7)

PROOF. Consider a motion (z,))_, such that Z,=(A* 0)" for all n. Setting A,=A,,, =A* and
T, =m,,, =0 in (6.6), shows that this equation is satisfied identically. From (6.6), we get

o= At().’ 2 tan(8/2) , (6.8)
which upon substitution into (6.6); yields
At p
t = 6.9
an(@/2) Im(A): 6.9)

In view of (6.9) and (6.8) we see that the reduced algorithmic equations are satisfied by a motion of the
form Z, = (A*,0)"(n =0, 1,..., N) if A* satisfies the equation

2
I's
= 6.10
m(A*)*’ (6.10)
where we use the expression for o given in (6.5). For the motion we are considering we have
A, =A,,; =A* so that (6.10) becomes
2
Via* ——— =0. 6.11
W)= (©6.11)
Comparing (6.11) to (6.7) shows that A* must be a stationary point of V, as claimed. O

To examine the linear stability of the fixed point we linearize (6.6) to obtain the discrete equation of
variations (5.24). Particularizing this result for the solution (z*))., vields a linearized At-advance
mapping

-~ . 1 b
A =5]2 b]. (6.12a)
where

1 1, 1,1
a'—}~§ﬂi—zﬂ;+ﬁ(l+§0;+§ﬂf),

h=Aatm™",
1, 2 . 1, 1

c=m“m(1—;a;)[—n;—n;+413(1+§a;+§n§)].

1 1 1 1 (6.12)
—1_=0n2 _1 2 2 n2 202
d=1 20‘"’ 4.Q,+/3(1+8.(2,+8.0,),

1, 1, 1 ,
D=l+zﬂ,—ﬁ(l+§ﬂ;+§ﬂ,),

s=a;/[30i-2].

with the sampling frequencies 2, and {2, defined as
Q= At p/m(A*)?
QI =AC m™'V(A").

For this solution one 1may verify that det{&,,(£*,£*)]=1 so that the stability condition is given by
(5.25). Regarding the linear stability of the fixed point we have the following
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LEMMA 6.2. The relative equilibria for the conserving algorithm on P is unconditionally relatively
linearly stable.

PROOF. The result again follows by direct verification of (5.25). From (6.12) we have

300+ 0}

I A g £ - e —r————
PR Y T ANy TR

(6.13)
Making the assumption §2, >> {), >0 yields a result independent of £2,.. To see the effects of £, on
(6.13) we proceed as follows. Holding 2, fixed, we seek the value of §2;, if any, for which (6.13) has a
local extrema. Taking the first variation yields £2, = 2 as the only stationary point. For this value of £
we get | tr[AA,] = ~1 independent of £2,. In pdmculdr for any value of £,, we have |4 trLAA JI<1 for
0<Q, <2 and £, > 2. Furthermore, one may show using (6.12) that at £, =2 we have A, = ~Iden.

Hence, tne energy-momentum conserving algorithmic relative equilibria is relalively linearly stable for
all 2,,02,>0. O

REMARKS 6.2.

(1) In accordance with general results for discrete Hamiltonian systems with symmetry we see that
the energy-mom<ntum conserving algorithm on the canonical phase space P exactly preserves the
fixed point of the reduced dynamics, and hence preserves the relative equilibria of the original
system up to group motions.

(2) Since the conserving algorithm inherits the relative Lyapunov stability of the relative equilibria
fiom the underlying system we necessarily have unconditional relative linear stability.

6.4. Algorithmic approximation on reduced phase space

To compare with the results in the preceding sections which were obtained by reducing the
algorithmic approximation on P, we formulate the algorithm directly on the reduced space P and
address the question of linear stability for fixed points of this formulation. Our conserving approxi-
mation to the reduced equations (4.16) is

Apy = A, =Atm” ﬂ,l,w.
(6.14)
Tpor = W, = =BLG{(A,. A,Ly) s
where (-),.,; =3[(), + (),+,] and o is of the form
N VO, ) =V (A = 2] AL #4,5
U(A,,.A"‘l)—{v‘,‘(/\””’:)' An*l:Au‘ (6']5)
By inspection, a motion of the form Z, = (A*,0)" (n=0,1,.... N) satisfies (6.14) where A* =A% is a

stationary point of the exact amended potential V,. Hence, z* =(a*,0)" is a fixed point for the

conserving algorithm on P and we see that the fixed point of the reduced dynamics is exactly preserved.
To examine the linear stability of the algorithmic fixed point we consider an infinitesimal disturbance

3Z on the motion (z*)Y_,. The infinitesimal disturbance satisfies the discrete equation of variations

8Z,., = A, (8%, 27) 0, | (6.16)

where /-\m(z,,.z,,,,) T P—» T . !; is the linearized Ar-advance mapping. Linearizing (6.14) about the
solution z* yields

-
A= [2 8] (6.17a)

where
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1.,
asl-7Afm RACOR

b=Arm™", (6.17b)
= —AVIA*Y),

1., _
d=1-74cm 'ViAY),
1
D=1+ m™'V(A").
As before, the fixed point is said to be linearly stable if the mapping AAL( ,Z*) is stable. From (6.17)

one may verify that det[4,,)] = 1 and |1 tr[A,,]| <1 so that the mapping A,, and hence the fixed point is
unconditionally linearly stable.

REMARK 6.3. An important difference between the symplectic mid-point algorithm and the energy-
momentum conserving algorithm is that the latter preserves the fixed point of the reduccd dynamics
regardless of whether it is formulated on the canonical phase space P or the reduced space P. This is a
reflection of the symmetry properties of the conserving algorithm (see [17]).

7. Numerical example: Verification of stability analysis

In this section we present a numerical example to verify the stability results obtained in the preceding
sections, Specifically, we consider the conservative central force problem for a particle of unit mass with
a nonlinear spring potential V: R, — R of the form

V(;\)=%k()\2~1)2. (7.1)
For the “stiff” case we take k = 10° and take as the amplitude of the angular momentum p = 10.
7.1. Mid-point appreximation
To verify the esult of the stability analysis of the mid-point algorithm on P we have plotted in Fig. 2

(half) the trace of the amplification matrix (5.27) versus £2;. As the plot shows, the stability condition
(5.25) for the algorithmic relative equilibria is violated for 2, >2. At the point {2, =2 the eigenvalues
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sl e sl
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1 2 3

e,
Fig. 2. Trace (up to a factor of one-half) of the linearized Ar-advance mapping for the reduced mid-point algorithm.
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of the amplification matrix expericnce a bifurcation from two complex-conjugate roots with unit
modulus into two real roots one of which has modulus greater than unity.

For three values of Ar we integrated the cquations of motion on P using (5.1b) and plotted the
reduced trajectories in P. Figs. 3(a-c) show the fixed point in P and neighboring solutions which were
obtained by specifying initial conditions sllghtly away from the fixed point. Also shown are plots of the
total energy versus time for each trajectory. For the plots of the trajectories in P we have scaled the
reduced momenta = by a factor of 1/ k to balance the scalmg between the - and A-axes.

Note the dependence of the location of the fixed point Z* on At. In Fig. 3(a) for Ar =0.01 we have

*=(1.0013,0)". In Fig. 3(c) for Ar = 0.02 the fixed point has moved to £*=(1.0050,0)". Also notc the

4

Itz )
-

1 1 '.xnalu‘.
o o5 10 15 20

(b)

I

1.004 1,005 1.008
A T

Fig. 3. Reduced phase trajectorics and energy plots for the mid-point algorithm on F for (a) At = 0.01 (2, =0.1); (b) Az =0.015
{92, =0.15); (c) Ar=0.02 (2, =0.2). (@) denotes the initial condition.
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Fig. 4.
condition

puri solution i by along curve 5 of the previous figure. (®) denotes the initial

size of the stability region in Fig. 3(c). In this figure, curves 1-3 show the fixed point and neighboring
solutions which appear qualitatively correct. Slightly further away from the fixed point we have curve 4
in which we begin to see corners in the trajectory. Finally, curve 5 shows a solution which quickly leaves
the neighborhood of the fixed point and becomes a spurious solution. Fig. 4 shows the spurious solution
which results if we proceed with the computations along curve 5.

Further increases in A7 yield similar behavior, i.e., the fixed point continues to move to the right and
the stability region continues to shrink. By Ar=0.13 (ﬂ,m 1) the stability region for the fixed point
cannot be resolved due to the precision of the comp . The fixed point itself can be maintained
only for a few time steps before roundoff and tolerance errors drive the solution out of the stability
region. For some value of £2, between 1 and 2 the fixed point vanishes, i.e. it is lost after the first time
step.

Fig. 5 shows the result of integrating the reduced equations of motion on P using (5.29b). In this case
the solution curves are independent of the time step so that we show only one plot. Here, we note that
the fixed point £*=(1.7901,0)" of the reduced dynamics is exactly preserved and that the fixed point
does not have a limited stability region.

7.2. Conserving approximation

The results of the stability analysis of the energy-momentum conserving algorithm on P are verified in
Fig. 6 where we have plotted (half) the trace of the amplification matrix (6.13) versus §2,. As the plot
shows, the stablhty condition (5.25) for the algorithmic relative equilibria is satisfied for all £2; =0. The
only exception is £2, = 2 where we have |1 tr{A,,]| = 1. This point, however, is still stable as discussed
earlier.
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adedaaaa boaaa loas '....l aal 1 1
ose 1.0 i3] o 0s 10 15 20
A 1

Fig. 5. Phase trajectories and energy plots for the mid-point algorithm on F. Note that the trajectories are independent of Ar. (@)
denotes the initial condition.



0. Gonzalez, 1.C. Simo | Comput. Methods Appl. Mech. Engrg. 134 (1996) 197-222 217

05

AR
o

05

e e | 1 2l 3
o L 20 % “© L
Q,

Fig. 6. Trace (up to a factor of one-half) of the linearized Ar-advance mapping for the reduced energy-momentum conserving
algorithm.
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Fig. 7. Reduced phase trajectories and energy plots for the energy-momentum conserving algorithm on P. Note that the
trajectories are independent of Ar. (@) denotes the initial condition.

For At =0.02 we integrated the equations of motion on P using (6.1) together with (6.4) and piotted
reduced trajectories in P. Fig. 7 shows the fixed point and neighboring solutions as well as the energy
plots for each trajectory. For the conserving algorithm the location of the fixed point £*=(1.0001,0)" is
exact and is independent of At, hence we show only one plot. Also, note that this algorithm is not seen
to have a limited stability region which decreases with At as does the mid-point rule on .

Fig. 8 shows the result of integrating the reduced equations of motion on P using (6.14). Again, the
trajectories are independent of the time step so that we show only one plot. As with the formulation on

Fig. 8. Phase trajectories and energy plots for the energy-momentum conserving algorithm on P. Note that the trajectories are
independent of Ar. (@) denotes the initial condition.
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P, the fixed point £*=(1.0001,0)" of the reduced dynamics is exactly preserved and docs not have a
limited stability region. Note that the trajectories in this case are identical to those in Fig. 7 which were
obtained using the formulation on P.

8. Numerical accuracy comparisons

In this section we perform some numerical experiments to compare the relative accuracy of the
symplectic mid-point rule and the energy-momentum conserving scheme. As we saw in the previous
section the symplectic mid-point rule can have stability problems for stiff Hamiltonian systems with
symmetry. However, for moderately small time steps where the mid-point rule actually performs well,
the question arises as to how the relative accuracy of the conserving scheme compares with that of the
mid-point rule. Also, it is of interest to know how conserving schemes compare with the mid-point rule
for non-stiff problems. In view of these questions we perform our numerical experiments with the
central force problem using three different potentials: the classical Kepler potential (non-stiff), a
non-linear spring potential with low stiffness, and a non-linear spring potential with high stiffness (as
considered in the previous section).

8.1. Classical Kepler potential

In this section we present a numerical accuracy comparison between the symplectic mid-point rule
and the conserving scheme (both formulated on the original phase space) for the conservative central
force problem with the classical Kepler potential. Specifically, we consider a particle of unit mass under
the influence of a central force field with potential V: R, — R of the form

V(A)=—k/x. (8.1)

We take & = 100 and use the initial conditions g, = (0.9/V2,0,0.9/V2) and p, = (0, —100/9,0). For
the accuracy comparison we will consider the time interval [0, T] with T =4.40 and will consider the
relative displacement and momentum errors at time ¢ = T. For reference, Fig. 9 shows the trajectory
from the above initial condition for the time interval [0, 7] computed using the mid-point rule with a
relatively small time step (similar results obtained with the conserving scheme).

For the accuracy comparison we computed the solution in the time interval [0, 7] for various time
steps and plotted the relative displacement error E (T) =g, (T) - q,(T)I/ 1g.(T)| versus Ar where
q.(T) are the converged displacements at time t=T computed with Ar= . Results for the relative
momentum error E (T)=|p,(T) - p(T)|/|pAT)| were computed and ploned in a similar manner.
Fig. 10 shows the results for the Kepler potential.

For this example we see that the conserving scheme has substantially smaller displacement and
momentum errors as compared to the sympiectic mid-point rule.

1.8
08 08 06 02 0 02 04 06 08
x
Fig. 9. Numerical trajectory for central force problem with the classical Kepler potential.
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Fig. 10. Relative displacement error £ (T) and relative momentum error £,(7) versus time step Ar for the central force problem
with the Kepler potential.

8.2. Non-stiff i spring p
To determine the effect of the force potential on the relative performance of the conserving and
mid-point schemes we next consider an example in which the potential is positive-definite (i.e.
V(1) >0) along the motion. This is in contrast to the Kepler potential which is negative-definite along
motions. In particular, we consider the central force problem with potential V: R, — R of the form
V(A) =1k(A*-1)". (8.2)
We take k = 1000 and use the initial conditions g, = (0.8/ V2,0, 0.8/ V2) and p, = (0, ~100/8, 0). For
the accuracy comparison we will consider the time interval [0, T} with T =0.63 and will again consider
the relative displacement and momentum errors at time ¢ =T. For reference, Fig. 11 shows the
trajectory from thc above initial condition for the time interval [0, T] computed using the mid-point
rule with a relatively small time step (similar results obtained with the conserving scheme).

Fig. 12 shows show the results of the accuracy comparison. For this example we see that both
schemes exhibit nearly identical displacement errors. With regard to momentum errors, the mid-point
rule has a slightly smaller error for a wide range of time steps. However, for small time steps it appears
that the opposite may be true. In general, the results show that both schemes have comparable accuracy
characteristics for the problem considered. Comparing these results with those for the Kepler potential
it is clear that the relative performance of these schemes is problem dependent.
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Fig. 11. Numerical trajectory for central force problem with the non-stiff non-linear spring potential.
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Fig. 12. Relative displacement error E (T') and relative momentum error E,(T') versus time step At for the central force problem
with the non-stiff nonlincar spring potential.

8.3. Stiff non-linear spring potential

We next consider an example of a stiff system such as that considered in our earlier stability analyses.
In particular, we consider a system with a non-linear spring potential V of the same form as before with
stiffness constant k = 10° and use the same initial conditions ¢, = (0.8/ 1/2,0,0.8/V2) and p, = (0, —
100/8, 0). For the accuracy comparison we again consider the time mnerval [0, T'] with T=0.63 and
consider the relati and mc errors at time ¢t = T, For reference, Flg 13 shows the
trajectory from the above initial condition for the time interval [0, T] computed using the mid-point
rule with a relatively small time step (similar results obtained with the conserving scheme). an 14
shows the results of the accuracy comparison.

As we saw cailier the symplectic mid-point rule has stability problems for stiff systems with
symmetry. However, the numerical results show that for small time steps the mid-point rule and
conserving scheme are nearly indistinguishable from the viewpoint of accuracy. These results suggest
that, at the expense of added complexity, the conserving scheme possesses better stability properties
than the mid-point rule without a compromise in accuracy, at least for the problems considered herein.
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Fig. 13. Numerical trajectory for central force problem with the stiff non-linear spring potential.
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Fig. 14. Relative displacement error E,(T) and retative momentum crror E,(T)) versus time step A for the central force problem
with the stiff non-linear spring potential.

9. Concluding remarks

Within the context of a simple model problem, we have analyzed the stability of the symplectic
mid-point rule and an energy-momentum algorithm. We saw that the mid-point rule formulated on the
canonical phase P possessed an algorithmic relative equilibria which depended on the time step and
which was only conditionally stable. Also, we have shown by example that the stability region for a
‘stabie’ relative equilibria can decrease dramatically as the time step is increased so that it is practically
unstable for time steps substantially below critical. In contrast, the mid-point rule formulated on the
reduced space P exactly preserved the relative equilibria of the original system up to group motions. In
this setting (i.e. in the absence of group motions) the mid-point rule was shown to possess a fixed point
which was unconditionally linearly stable.

As an alternative to the symplectic mid-point rule we introduced an energy-momentum conserving
algorithm. We saw that the energy-momentum algorithm formulated on the ical phase space P
had an algorithmic relative equilibria which was independent of the time step, exact up to group
motions, and unconditionally linearly stable. Similar results were shown for a conserving algorithm
formulated directly on the reduced space.

Our stability analysis confirms a well-observed fact: the symplectic mid-point rule can experience
stability problems for stiff svstems with symmetry if the time step is not small. Regarding accuracy, our
numerical resuits show that for small time steps the mid-point rule and conserving scheme are nearly
indistinguishable. These results suggest that, at the expense of added complexity, the conserving
scheme possesses better stability properties than the mid-point rule without a compromise in accuracy,
at least for the simple model problems considered in this paper.
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