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The Fourier phase information play a key role for the quantified description of nonlinear data. We

present a novel tool for time series analysis that identifies nonlinearities by sensitively detecting

correlations among the Fourier phases. The method, being called phase walk analysis, is based on

well established measures from random walk analysis, which are now applied to the unwrapped

Fourier phases of time series. We provide an analytical description of its functionality and

demonstrate its capabilities on systematically controlled leptokurtic noise. Hereby, we investigate

the properties of leptokurtic time series and their influence on the Fourier phases of time series.

The phase walk analysis is applied to measured and simulated intermittent time series, whose

probability density distribution is approximated by power laws. We use the day-to-day returns of

the Dow-Jones industrial average, a synthetic time series with tailored nonlinearities mimicing the

power law behavior of the Dow-Jones and the acceleration of the wind at an Atlantic offshore site.

Testing for nonlinearities by means of surrogates shows that the new method yields strong signifi-

cances for nonlinear behavior. Due to the drastically decreased computing time as compared to

embedding space methods, the number of surrogate realizations can be increased by orders of mag-

nitude. Thereby, the probability distribution of the test statistics can very accurately be derived and

parameterized, which allows for much more precise tests on nonlinearities. Published by AIP
Publishing. https://doi.org/10.1063/1.5018301

A very clear and general definition of nonlinearity in

data sets can be obtained from their representation in

Fourier space: From the Wiener-Khintchine theorem on

the one hand and the bijectivity of the Fourier transfor-

mation on the other hand it follows that the linear infor-

mation is entirely represented by the Fourier amplitudes.

Hence, all nonlinear information is contained solely in

the Fourier phases. This reasoning is also fundamental

for the development of the method of surrogates for test-

ing for nonlinearities, where surrogates are generated by

randomizing the Fourier phases and by preserving only

the linear correlations. Yet, the direct study of the

Fourier phases has so far attracted only little attention.

Here, we present a novel method to quantify the phase

information. In close analogy to the well-established

methods for random walk analysis, we propose the phase

walk analysis as a way to quantify the phase information.

We apply it to the analysis of nonlinearities in intermit-

tent, leptokurtic time series like the Dow Jones (DJ) day-

to-day return, wind data, and synthetic leptokurtic data

and outline the capabilities of the novel approach for

detecting and assessing nonlinearities.

I. INTRODUCTION

Detecting nonlinear features in time series is often

accomplished by comparing the result of a suitable nonlinear

measure to the corresponding results from a surrogate data

set. Commonly used nonlinear measures are, for example,

the Lyapunov exponent,1–3 errors in nonlinear prediction,4,5

or multifractal dimension estimates.6 All of these methods

have to be applied to the higher dimensional representations

of the time series known as attractors that are mostly

obtained by delay-coordinate-embedding.7,8 A different

attempt to identify nonlinear properties has been made in the

analysis of the Cosmic Microwave Background. Here, it

turned out very beneficial to search for correlations among

the phases of the spherical harmonics, referred to as Fourier

phases, to identify deviations from Gaussianity.9–14 Also in

the evolution of cosmic large scale structures, an increase in

such phase correlations has been observed.15–18 A similar

approach helped to uncover nonlinearities induced by certain

surrogate generating algorithms.19 Moreover, fundamental

scaling properties of highly nonlinear financial time series

have exactly been reproduced by imposing a set of correla-

tions on the Fourier phases of Gaussian white noise.20

For a comprehensive description of nonlinear data, it is

helpful to include the quantification of Fourier phase infor-

mation. It was already stated by Ruelle and Eckmann in their

seminal review paper on chaos and strange attractors21 that

“[…] the analysis of the chaotic motions themselves does not
benefit much from the power spectra, because (being squares
of absolute values) they lose phase information, which is
essential for the understanding of what happens on a strange
attractor.” Yet, little effort has so far been put into quantify-

ing and thus understanding the information contained in the

phases of nonlinear time series.22–24
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By nonlinear, we refer to all features that are not captured

by (linear) autoregressive-moving-average-models

(ARMA).25,26 The ARMA parameters comprise the linear

properties of the time series data and are fully represented by

a set of coefficients that can bijectively be mapped onto the

autocorrelation coefficients by the Yule-Walker equa-

tions.27,28 The autocorrelation function—consequently carry-

ing all linear traits—can, in turn, bijectively be mapped onto

the power spectrum by a Fourier transform, as described by

the Wiener-Khinchin-Theorem.29 Since the power spectrum is

defined as the squared amplitudes of the Fourier coefficients,

all information left to fully reconstruct the original time series

comes from the phases of the Fourier coefficients. The nonlin-

ear properties of a times series are therefore fully represented

by its Fourier phases. In the linear case, these phases are uni-

formly and identically distributed, whereas in the nonlinear

case they show various kinds of correlations among them.

Nonlinearity thus refers to all those features in time

series that are not captured by the power spectrum. A clear

categorization of the different sorts of nonlinearities is still

far from being established but would allow for a more accu-

rate model selection.

A crucial distinction is made between static and

dynamic nonlinearities.30 The former are deviations from a

Gaussian distribution of the data points in real space which

can already be induced by a static nonlinear transformation.

The latter refer to nonlinear correlations in the time series

induced by the dynamics of the system. It has been argued19

that due to shortcomings of existing surrogate generating

algorithms, one has to test for static and dynamic nonlinear-

ities separately. We follow this reasoning and outline on

carefully selected examples how a test statistics based on the

information contained in the Fourier phases can give com-

plementary insights into static nonlinearities.

Our ansatz for tracing anomalies in the Fourier phases is

based on applying random walk statistics to the unwrapped31

Fourier phases. Instead of considering a path of random steps

in time, we define random steps between Fourier phases by

following the phase index.

We present an analytic description that models the effects

of leptokurtosis as a simple form of a static nonlinearity on the

unwrapped Fourier phases. Then, we introduce a methodology

that captures these phase anomalies and validate the newly

introduced method with a statistical analysis of random distri-

butions with defined kurtosis. Finally, we apply the phase walk

method to empirical and synthetic data. The test examples

include a financial time series, a time series of wind velocities

in a turbulent environment, and an artificial time series with

tailored nonlinearities (TNs). All of these are known to carry

leptokurtic probability distributions of the observables and

dynamic features as well.20,32–36 We conclude with outlining

the performance and capabilities of the novel approach com-

pared to other techniques in nonlinear time series analysis.

II. METHODS

A. Fourier transformation and phase unwrapping

The Fourier transform of a discrete time series g(t) is

given by

GðkÞ ¼ FTðgðtÞÞ ¼ 1

N

XN�1

t¼0

gðtÞei2pkt=N ¼ jGðkÞjei/ðkÞ: (1)

Here, jGðkÞj are the moduli or amplitudes of the Fourier

coefficients G(k), /(k) are the corresponding phases with

values ranging in the interval I/ ¼� � p; p�, and N is the

number of time steps. An intrinsic feature of a numerically

computed discrete Fourier transform is that all phases are

wrapped onto the interval I/. Therefore, possible trends in

the course of the phase sequence cannot be easily recog-

nized. Linear trends, for example, lead to a sawtooth pro-

gression of the /k (see Fig. 1). To overcome this problem, a

technique known as phase tracking or unwrapping is applied

and resolves the true phases by reinterpreting the differences

between two consecutive phases. In this paper, we use a sim-

ple algorithm, introduced by Itoh.31 If the phase difference

or “rotation” D/ðkÞ ¼ /ðk þ 1Þ � /ðkÞ exceeds p—which

is considered as counterclockwise rotation—the rotation is

reinterpreted as being clockwise by subtracting 2p.

Likewise, when D/(k) is less than—p (clockwise), it is rein-

terpreted as counterclockwise by adding 2p. To construct the

differences of the unwrapped phases D/0ðkÞ, the following

rule can thus be applied:

D/0ðkÞ ¼
D/ðkÞ � 2p if D/ðkÞ > þp;
D/ðkÞ þ 2p if D/ðkÞ � �p;
D/ðkÞ else:

8<
: (2)

The unwrapped phases are then obtained by a cumulative

sum over the differences with /0ð0Þ ¼ /ð0Þ ¼ 0

/0ðkÞ ¼
Xk�1

i¼0

D/0ðiÞ: (3)

FIG. 1. Top: An artificially constructed series of Fourier phases with an

overall positive linear trend. The phases are initially constrained to the inter-

val I/ ¼� � p; p�. The blue vertical lines indicate differences between two

consecutive phase values with j/ðk þ 1Þ � /ðkÞj > p. Bottom: A recon-

struction of the unwrapped phase series (gray) according to Itoh’s algo-

rithm.31 Here, the blue curve represents the accumulated correction by the

unwrapping algorithm.
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The procedure is illustrated for an artificially constructed

series of phases in Fig. 1.

Noisy data, which are by far the most common case in

time series analysis, can induce so called fake wraps.31,37

This motivated the development of more sophisticated

unwrapping algorithms (see, for example, Ghiglia and

Pritt38). Most of them though assume the Nyquist criterion39

because aliasing might lead to wrong or discontinuous phase

differences. Additionally, they require a relatively high sig-

nal-to-noise ratio for the phase transitions to be smooth.

Both is not, in general, the case for experimental data and, in

particular, it does not hold true for the data investigated here.

We will therefore not gain advantage by using these kinds of

algorithms and stick with the presented variant.

Note here that due to the periodicity of the phases, the

unwrapping procedure leaves the Fourier phases in a modi-

fied state which, however, has no consequence for the

Fourier representation at all. A back transformation of a

Fourier representation of a time series with wrapped phases

would yield the very same time series as of one with

unwrapped phases.

B. Outliers and Fourier phases

Uncorrelated Gaussian or more generally mesokurtic

time series have a set of random, uncorrelated, and uniformly

distributed Fourier phases. A time series of uncorrelated, lep-

tokurtic noise n(t) can be expressed as a superposition of a

mesokurtic noise floor g(t) and defined shifts of specific data

points

nðtÞ ¼ gðtÞ þ
XP�1

j¼0

ajdðt� sjÞ: (4)

Here, aj is the amount of shift of the jth data point at the tem-

poral position sj. We will call these points as outliers from

now on. P is the number of outliers and the delta-function is

defined as d(t – sj) ¼ 1 if t ¼ sj and 0 else. The discrete

Fourier transform N(k) of n(t) then simply becomes

NðkÞ ¼ HðkÞ þ
XP�1

j¼0

aje
i2p

sj
Nk ¼ HðkÞ þ

XP�1

j¼0

AjðkÞ: (5)

H(k) is the discrete Fourier transform of g(t). We see that

also the Fourier representation of n(t) is a superposition of

H(k) and the complex numbers Aj(k) that represent vectors of

length aj and angle

/jðkÞ ¼
2psj

N
k / k; (6)

in the complex plane. For all sj 6¼ 0, the angle increases with

k. For sj ¼ 0, also /j becomes zero. To illustrate the effect of

those Aj(k), we first consider the simplest case of only one

dominating outlier, represented in Fourier space by A0(k).

The phase U(k) of N(k) then becomes the angle of the sum of

the two vectors A0(k) and H(k) in the complex plane. To

obtain a strong leptokurtic effect from a single outlier, we

require that it is shifted by an amount a0 that is significantly

larger than the average time series amplitude. In turn,

jA0ðkÞj ¼ a0 will strongly dominate over jHðkÞj. Hence, U(k)

will be /j(k) plus a relatively small random fluctuation

around zero, since the direction, or phase, of H(k) is ran-

domly and uniformly distributed for Gaussian noise. As

/jðkÞ / k, also U(k) grows linearly with k. Thus, the

unwrapped phases increase linearly, where the slope is deter-

mined by the position of the single outlier. The effect of one

outlier on the (unwrapped) phases is illustrated in Fig. 2.

If there is more than one outlier, a more complicated

picture in the complex plane arises. The noise floor H(k) can

still be regarded as random numbers with a relatively small

magnitude compared to the aj and a uniformly distributed

angle. The Aj(k), however, rotate with a slope of _/j ¼
d/j

dk

¼ 2psj

N as k increases. Note that also the slope increases as the

temporal position sj of the spike moves from the beginning

of the time series to its end. In the complex plane, this corre-

sponds to a chain of rotating vectors with a small random

fluctuation, given by H(k). If the number of outliers with

roughly equal magnitude is large (this would not meet the

assumption of leptokurtosis), this results in a complex super-

position of cycles and epicycles. But if there is still a limited

number of dominating outliers, an overall trend in the rota-

tion of N(k) can be recognized. This is the case for lepto-

kurtic and especially scale-free distributions. Another point

to mention is that the direction of the vector N(k) can also be

essentially steered into one particular direction, if the Aj(k)

rotate nearly coherently with k. This happens, if many sj

share roughly equal values, corresponding to a cumulation of

outliers and hence, to a burst event in the time series. For

financial data, this occurs with volatility clustering.32,40

C. Phase walks

The difference between two consecutive unwrapped

phases is again constrained to an interval ID/0ðkÞ ¼ I/0ðkþ1Þ�/0ðkÞ
¼ ½�p; p� and distributed according to a probability density

FIG. 2. Top: Gaussian noise with one outlier at t¼ 500 (blue) and t¼ 1500

(red). Bottom: Unwrapped phases for the Gaussian noise (black) and the

time series with the outlier at t¼ 500 (blue) and t¼ 1500 (red).
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function PðD/0ðkÞ ¼ xÞ. Writing the unwrapped phases as

/0ðk þ 1Þ � /0ðkÞ þ D/0ðkÞ resembles the exact form of a

one-dimensional random walk that depends on the phase index

k instead of the time t. This feature allows us to apply well

established methods from random walk analysis to the

unwrapped phases in order to test them for anomalies like

trends or periodicities. Following this perspective, we also refer

to the unwrapped phases by the term phase walk. To detect

anomalies in phase walks with quantifiable significance, we

need to formulate the null hypothesis, which we first choose to

be the phase walk of Gaussian, uncorrelated (white) noise

fgðtÞgN�1
t¼0 . The Fourier phases of this kind of noise are identi-

cally and independently distributed Pð/ðkÞ ¼ xÞ ¼ P/ðkÞðxÞ
¼ 1=2p if x 2 ½�p; p� and 0 else. It can be shown that the

same distribution describes the differences between the steps of

the unwrapped phases in this case. Thus

PD/0ðkÞðxÞ ¼ P/ðkÞðxÞ ¼
1

2p
if x 2 �p; p½ �

0 else:

8<
: (7)

Furthermore, /ð0Þ ¼ /0ð0Þ ¼ 0, as we deal with a real signal

gðtÞ. The variance corresponding to the single step distribu-

tion in Eq. (7) is then given by r2
1 ¼ p2=3. The index 1 indi-

cates the number of steps, or lag interval, between phase

/0ðkÞ and /0ðk þ 1Þ. Due to the central limit theorem, the

distribution function for a lag interval of k steps is Gaussian

with a variance r2
k ¼ kr2

1. In Fig. 3, we show 11 examples of

random walks and phase walks as well as the corresponding

probability distributions of the data points at k¼ 999. If the

phase walks behave like this, we say, that they fulfill the ran-
dom walk hypothesis (RWH). While this holds true for vari-

ous types of noise, like, e.g., colored noise or Poisson noise,

it does not, in general. To detect and quantify deviations, we

introduce a slightly adapted version of the variance ratio test.

D. Standard deviation ratio test (SRT)

Variance ratio or standard deviation ratio tests are

applied to decide whether a given time series follows the

dynamics an ideal random walk. These tests compare a vari-

ance determined from the tested data to an ideal variance rj.

If a phase walk fulfills the random walk hypothesis, the ideal

variance of the distribution of the differences of two data

points separated by a distance j can be calculated as41–43

r2
j ¼ j � r2

1 ¼
p2

3
j: (8)

One can compare this variance to an estimate of the variance

of the tested phase walk obtained by averaging.44 Taking the

square root of this ratio leaves us with a ratio SðjÞ of stan-

dard deviations

SðjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h /0ðk þ jÞ � /0ðkÞ
� �2ik

r2
j

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 �

XK�j�1

k¼0

/0ðk þ jÞ � /0ðkÞ
� �2
p2jðK � jÞ

vuuuut
: (9)

K is the total number of phases and the index difference j is

also referred to as lag phase. Test results that significantly

deviate from the RWH will either imply correlations

between the steps, deviations from the distribution of the

steps pD/0ðkÞðxÞ, or both. If SðjÞ stays below three, the phase

walk is likely to fulfill the RWH. If SðjÞ � 1 for a wide

range of j, the phase walk is likely to be centered. Finally, if

SðjÞ > 3, the phase walk is likely to have a trend. For a sta-

tistical analysis of a large number of test results, it is conve-

nient to evaluate SðjÞ only for one fixed value of j. For

phase walks with trends, SðjÞ becomes most significant for

large values j (see Fig. 4). Since trends in the phase walks

are what we expect for leptokurtic time series, we maximize

FIG. 3. Top: 11 random walks (red) with 999 uniformly distributed steps

according to Eq. (7) and 11 phase walks (blue) extracted from Gaussian

noise. Bottom: The empirical distributions of the last step k¼ 999 of con-

structed random walks (red) and extracted phase walks (blue). Both are

based on 105 realizations. Additionally, a Gaussian function with variance

r2
999 ¼ 999 � p2=3. The phase walks of Gaussian noise behave exactly like

the ideal random walks with uniform step distribution.

FIG. 4. SðjÞ for 100 ordinary phase walks (black), for one phase walk with

a significant trend, and for one phase walk that is centered (blue). The

embedded plot shows the corresponding unwrapped phase walks. For all the

ordinary phase walks, SðjÞ takes on values between 0 and 3, while the dis-

tribution stays pretty tight for small values of j. On the other hand, SðjÞ
increases rapidly for the phase walk with a trend and it decreases rapidly for

the centered phase walk.
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j by approximately setting it to the maximum phase index in

the following examples.

We like to conclude with a brief summary of the whole

test procedure:

(1) Compute the Fourier transform of the time series.

(2) Unwrap the Fourier phases according to Eqs. (2) and (3).

(3) Compute SðjÞ according to Eq. (9).

(4) Plot and interpret the result.

(5) For a statistical analysis, collect a large number of results

for a suited and fixed value of j.

III. EXAMPLES

A. Artificial leptokurtic time series

To show empirically that static nonlinearities are

directly related to phase correlations, we constructed noise

time series with leptokurtic data point distributions, by draw-

ing 20 000 random variables from an adjusted Pearson type

VII distribution (Student’s t distribution)

pðxjc2Þ¼
C

5

2
þ 3

c2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p 1þ 3

c2

� �s
C 2þ 3

c2

� � 1þ x2

2þ 6

c2

0
B@

1
CA
�5

2
� 3

c2

: (10)

This provides the option to control the kurtosis parameter c2

of the distribution if c2 � 0. For the platykurtic samples with

c2 ¼ �6/5, we used a uniform distribution instead. In both

cases, the standard deviation is normalized to 1. Figure 5

shows the distributions of SðjÞ from the standard deviation

ratio test at a fixed lag phase j ¼ 9800 for various values of

c2. For each c2, we constructed 100 000 different random

time series. It becomes clear that PSðjÞðxÞ gets wider monot-

onously as c2 increases. Large values of S(j)—indicating

trends in the phase walks—become more likely, which con-

firms a statistical influence of heavy tails on the Fourier

phases as expected in Sec. II B.

B. Empirical data

To demonstrate the test’s significance for dynamic non-

linearities, three time series known to originate from highly

nonlinear processes were selected: First, the logarithmic

daily returns of the Dow-Jones industrial average (DJ),45

reaching from 26th of May 1896 until 23rd of October 2014,

resulting in N¼ 32 222 time steps.

The second time series has been synthesised to match all

scaling properties of the data point distribution of the DJ

data set and to reproduce all static nonlinearities of the origi-

nal DJ time series. This was achieved by imposing a set of

six linear correlations on the Fourier phases as proposed by

R€ath and Laut.20 While the original time series has 15	 105

time steps, only a shorter version that is cropped to the exact

length N of DJ is used in the current analysis. This synthetic

time series is called tailored nonlinearity time series (TN).

We demonstrate that the phase walk analysis can find differ-

ences between this time series and its prototype DJ.

Third, a time series of wind velocities collected at an

Atlantic offshore wind turbine46 serves as a leptokurtic

example that also shows some non-negligible linear proper-

ties. To make the third time series comparable to the previ-

ous two examples, it is cropped to the length of DJ and

furthermore detrended by taking the differences between the

time steps. As a result, the time series reaches from 1st of

January 2004, 00:10 until 10th of July 2004, 18:20. The dif-

ference between two consecutive velocities is the change in

velocities and hence, the time series describes the wind

acceleration (WA).

FIG. 5. Top: Empirical probability distributions of the SRT results for noise

with varying kurtosis. Bottom: The same distributions on a logarithmic

scale. The small embedded window shows a slice (indicated by the dashed

gray line) through the distributions at x¼ 2.5. The probability density at

x¼ 2.5 increases monotonically with c2. Each distribution is based on

100 000 randomly generated time series with 20 000 time steps each.

FIG. 6. Top: Logarithmic daily returns of the Dow Jones Industrial Average

from 26th of May 1896 until 23rd of October 2014. Mid: Artificial time

series with tailored nonlinearities. Bottom: Wind acceleration measured at

an Atlantic offshore wind turbine from January 1st, 2004, 00:10 until July

10th, 2004, 18:20 with a sampling period of 10 min.. In the right column, the

corresponding power spectrum (gray) and its trend (red) obtained by averag-

ing over 2000 neighbors for each Fourier mode are displayed.
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All three time series and their power spectra are shown

in Fig. 6. The right column of Fig. 6 suggests flat power

spectra for DJ and TN and thus no nameable linear features.

On the other hand, the spectrum of WA drops slightly for

higher frequencies. SðjÞ will capture the static nonlinear-

ities—related only to the non-Gaussian shape of the distribu-

tions in real space—as well as all other possible nonlinear

contributions. To separate these, we perform a surrogate

assisted statistical evaluation of the test results.30 The surro-

gates are generated using two different methods:

(1) We randomize or shuffle the order of all the time steps to

destroy any temporal correlation. The surrogates there-

fore preserve the data point distribution in real space but

loose the linear properties. Since DJ and TN already

have white power spectra, their linear properties will be

reproduced statistically though. As Dolan and Spano47

argue, a non-exact replication of the original time series’

power spectrum may even result in better null

hypothesis.

(2) We create iterated amplitude adjusted Fourier transform

(IAAFT) surrogates.30,48 This algorithm preserves both

the power spectra as well as the data point distribution of

the original time series. For WA, the IAAFT surrogates

are more favorable than the shuffled variant, as it con-

tains some relevant features in the power spectrum.

For each time series, we created 105 surrogates using

both methods, respectively. These surrogates serve as the

null hypothesis for the test.

Figure 7 shows the empirical probability distributions of

SðjÞ for the different time series and algorithms and addi-

tionally the results for the original data. We choose the

maximal lag phase by setting j to almost the total number of

phases K: j ¼ K – 2¼ 16 108. As mentioned before, TN has

been tailored to exactly match the data point distribution of

its prototype time series DJ and hence, it is not surprising to

find their null distributions very similarly lying upon each

other. The results for the actual time series on the other hand

differ strongly (SDJ ¼ 20:0 and STN ¼ 32:9). The SRT

method indicates even greater significance for nonlinearities

in TN. This implies that although the static nonlinearities

have been reproduced very accurately, the dynamic nonli-

nearities of both data sets still deviate by a large amount.

The test result distributions associated with the IAAFT surro-

gates are much wider than those associated with the shuffled

surrogates. This can only be explained by assuming that

IAAFT surrogates carry nonlinearities other than those

induced by the data point distribution with a given the power

spectrum. However, the three time series can be attested to

bear dynamic nonlinearities with a probability value of at

least 
10�5. While commonly used measures have very

long computation times, the current results are verified by

smooth null distributions because orders of magnitudes more

surrogate realizations can be analyzed.

C. Comparison to other measures

In this section, we compare the SRT to some well-

established measures. Instead of plotting the result distribu-

tions, we specify a significance estimate by means of a

modified z-score49

R ¼ 0:6745 � jr �medðXÞj
medðjX �medðXÞjÞ : (11)

Here, medð�Þ is the median of a distribution of random vari-

ables �. X is distribution of the test results of the surrogates,

i.e., the null distribution. r is the test result of the time series

in question.

Three measures have been selected for comparison: a

nonlinear prediction error based measure (NLPE),4,5 a corre-

lation integral (CI),6,50 and the time reversibility (TR).51

(1) NLPE: The idea behind the nonlinear prediction error

(NLPE)4,5 is to predict the trajectory of a chosen data

point by averaging over the trajectories of its neighbor-

ing data points. If the prediction diverges significantly

from the real path, chaotic dynamics are assumed to

underlie the process.

To perform this analysis, one starts with embedding the

time series into a higher dimensional phase space. Then,

one data point xt is selected and a set of corresponding

neighbors is determined by either selecting all points in a

spherical region around xt (fixed ball or soft ball) or tak-

ing a fixed number Nnn of nearest neighbors xtn (fixed
mass). In our analysis, the last option is chosen

fsðxtÞ ¼
1

Nnn

XNnn�1

n¼0

xtnþs: (12)

The next step is to calculate the temporal mean of the

squared distances between prediction and real trajectory

FIG. 7. Top: The distribution of the SRT results for the surrogates and the

original data sets of DJ and the TN. Bottom: The distribution of the results

for the WA data set and its surrogates. The distributions are grouped by their

colors (orange for DJ, green for TN, and blue for WA). The shuffled surro-

gates are darker than the IAAFT surrogates. The vertical lines labeled by the

names indicate the results for the original data sets. IAAFT surrogates tend

to produce much wider distributions than the shuffled time series.
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over all times t. The NLPE finally becomes the square

root of this mean

WðsÞ ¼ h fsðxtÞ � xtþs½ �2i
1
2
t : (13)

For the Dow-Jones data set, we use the embedding

dimension d ¼ 8 from a publication by Small and Tse52

in which they studied the very same time series only

over a different period of time. The number of nearest

neighbors is Nnn ¼ d þ 1 ¼ 9.5 The maximal test signifi-

cance is obtained by setting s ¼ 1.

For WA, we select the parameters according to a

Publication by Ragwitz and Kantz,53 where also a time

series of wind velocities has been analyzed: d ¼ 20 and

Nnn ¼ 50. Here, again, we obtain the maximal signifi-

cance for s ¼ 1.

(2) CI: A set of fractal dimension estimates for time series

has been introduced by Grassberger and Procaccia in

1983.6,50 In their work, the order-q correlation sum is

defined as

Cqð�Þ ¼ hHð�� rijÞiq�1
i6¼j

D E
j
; (14)

¼ 1

N

XN�1

j¼0

1

N � 1

XN�1

i¼0;i 6¼j

Hð�� rijÞ

2
4

3
5

q�1

: (15)

Here, rij is the Euclidean distance between the embedded

data points xi, xj; Hð�Þ is the Heaviside step function

(Hð�Þ ¼ 1 if � > 0 and Hð�Þ ¼ 0 if � < 0), and � is a

distance threshold. In this analysis, we evaluate Cqð�Þ for

q ¼ 2 and values of � that are again chosen to maximize

the test significance: �DJ ¼ 0.01, �TN ¼ 2.5, and �WA

¼ 1.0. The embedding parameters are the same as in the

NLPE setting.

(3) TR: The time-reversibility51 is defined as

T ðsÞ ¼ hðxtþs � xtÞ3it ¼ 3 hxtþsx
2
t it � hx2

tþsxtit
h i

: (16)

Significant deviations of ðT ðsÞÞ from 0 indicate that the

signal is not invariant under time reversal. Although this

“is a sufficient and powerful indicator of nonlinearity,” it

is “not a necessary condition,” as already mentioned by

Schreiber and Schmitz.51 For each evaluation, we

selected another s that maximized the test result.

Each method has been evaluated for both shuffled and

IAAFT surrogates. The results are presented in Table I.

All test results are highly significant which makes a

detailed comparison of the test methods obsolete. The

smallest z-score of the SRT is 8.4. However, a notewor-

thy observation is that the significance of the SRT for

IAAFT surrogates is systematically lower than for shuf-

fled surrogates. The other measures do not show this pat-

tern. As earlier studies have already shown,19,54 the

IAAFT surrogates show more phase correlations and

hence more nonlinear artifacts than the shuffled surro-

gates (see also Fig. 7).

IV. CONCLUSIONS AND OUTLOOK

In this paper, we analytically characterized implications

of leptokurtosis on the Fourier phases. As the latter must

contain all nonlinear information of a time series, we pro-

ceeded with deriving a methodology, the SRT that can cap-

ture anomalies among them. With it, we first confirmed the

increase in nonlinearities with growing leptokurtosis and sec-

ond tested empirical data for nonlinearities. From smooth

null distributions representing SRT evaluations of a large

number of IAAFT surrogates, we can infer p-values of at

least 10�6 for the tested time series. Defining the null

hypothesis by the shuffled surrogates, which is valid for the

financial and tailored time series, even results in p-values

many orders of magnitude higher.

While in this paper we used the SRT only to detect non-

linearities in given data sets and to quantify the impact of

static nonlinearities, it is also possible to apply scale depen-

dent variants. That is, the SRT can be determined for

selected frequency bands. Further studies may use it to dis-

cover and quantify burstiness in even very noisy data sets.

Phase walk analysis may therefore become a powerful alter-

native to other nonlinear measures, like, e.g., the nonlinear

prediction error or correlation dimensions, with highly

reduced computational effort.

While this manuscript is largely restricted to the analysis

of leptokurtic data, future work may allow for unwinding

other types of phase entanglement, helping to better under-

stand the Fourier phase information. This might not only be

interesting from a theoretical point of view but can also be of

great value for financial applications, health sciences, or

even disaster prevention. If the phase information that is rel-

evant to characterize a nonlinear time series can efficiently

be parameterized by only a few values, very effective fore-

casting techniques, which are based on the essential Fourier

phase information, become conceivable. First ideas pointing

in this direction can be found in a publication from 2015 by

R€ath and Laut.20 Recent work suggests promising develop-

ment in forecasting techniques,55,56 but is still based on com-

putationally intense algorithms, and neglects the very habitat

of nonlinearities, that is, the Fourier phases. In an often

quoted article from 1999, Ivanov et al.57 have shown that

measuring a decline in a multifractal measure can indicate

life-threatening heart conditions, but they also uncovered

that the “nonlinear properties of the healthy heart rate are
encoded in the Fourier phases.” This should be a motivation

for further research on the meaning of Fourier phases, i.e.,

on the nonlinear heart of time series.

TABLE I. Modified z-scores [Eq. (11)] for dynamic nonlinearities being

present in the empirical time series as obtained by the SRT (SðjÞ), the non-

linear prediction error (NLPE), the correlation integral (CI), and the time

reversibility (TR). Each result is based on 100 surrogate evaluations. SðjÞ
has been evaluated at j ¼ 16 108.

Data Surrogate SðjÞ NLPE CI TR

DJ Shuffled 14.8 42.2 81.3 10.9

DJ IAAFT 8.4 41.0 74.5 14.4

TN Shuffled 24.2 51.0 70.3 24.1

TN IAAFT 12.9 52.1 73.3 25.5

WA Shuffled 14.4 46.7 4082.7 24.2

WA IAAFT 9.3 38.7 3399.4 26.0
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