
Local Linear Perceptrons for Classi�cationEthem Alpayd�nBo�gazi�ci University, Istanbul, TurkeyMichael I. JordanMassachusetts Institute of Technology, Cambridge MA, USAAbstract|A structure composed of local linear per-ceptrons for approximating global class discriminantsis investigated. Such local linear models may be com-bined in a cooperative or competitive way. In thecooperative model, a weighted sum of the outputs ofthe local perceptrons is computed where the weightis a function of the distance between the input andthe position of the local perceptron. In the competi-tive model, the cost function dictates a mixture modelwhere only one of the local perceptrons give output.Learning of the local models' positions and the lin-ear mappings they implement are coupled and bothsupervised. We show that this is preferrable to theuncoupled case where the positions are trained in anunsupervised manner before the separate, supervisedtraining of mappings. We use goodness criteria basedon the cross-entropy and give learning equations forboth the cooperative and competitive cases. The cou-pled and uncoupled versions of cooperative and com-petitive approaches are compared among themselvesand with multi-layer perceptrons of sigmoidal hiddenunits and radial-basis functions of Gaussian units onthe application of recognition of handwritten digits.The criteria of comparison are the generalization ac-curacy, learning time, and the number of free param-eters. We conclude that even on such a high dimen-sional problem, such local models are promising. Theygeneralize much better than radial-basis functions anduse much less memory. When compared with multi-layer perceptrons, we note that local models learnmuch faster and generalize as well and sometimes bet-ter with comparable number of parameters.I. IntroductionThe relative advantages of local and distributed repre-sentations have been frequently discussed in the neuralnetwork literature. Local methods, like kernel estimatorsand radial-basis functions, learn fast as only few hiddenManuscript received April 1, 1995. Revised manuscript receivedSeptember 15, 1995.E. Alpayd�n, Departmentof Computer Engineering,Bo�gazi�ci Uni-versity, TR-80815, Istanbul, Turkey. E-mail: alpaydin@boun.edu.tr,M. I. Jordan, Department of Brain and Cognitive Sciences, MIT,Cambridge MA02139, USA. E-mail: jordan@psyche.mit.edu

units respond to a given input thus only a small percent-age of weights need be updated at each iteration. Butmore hidden units are used with local coding and largertraining samples are needed for good generalization. Dis-tributed methods like the multi-layer perceptrons withsigmoidal hidden units learn slowly but �nd compact rep-resentations with few parameters and do not require largesamples.In a usual multi-layer network, local or distributed, theresponse of each hidden unit is scaled by a constant valuewhich is the weight from the hidden unit to the outputunit: y =Xh uhgh(x) + u0 (1)uh are the weights, u0 is the \bias" weight and gh(x)are the hidden unit values for the d dimensional input x.Alternatively, y is a superposition of the uh values wheregh(x) are the weights that determine how much of each uhwill be taken into account for input x. Frequently gh(�)values are normalized to sum to one. This implies thatfor any input, at least one of gh(�) is non-zero.In the case of purely local representation where onlyone of the gh(�) is 1 and all others are 0, y is a piecewiseconstant function. If as in Parzen windows and radial-basis functions, gh(�) are taken as gaussians, we get asmoother function. The more the gaussians overlap, thesmoother is the �nal approximation. It is evident thatjust like any boolean function can be represented as a dis-junction of conjunctions, any continuous function can beapproximated to a desired precision as a juxtaposition ofpiecewise constant functions. However, if the function isvarying considerably around a point, a piecewise constantapproximation may require many units. Taking into ac-count one more term in the Taylor expansion, we mayalso look at the linear function of the input, denoted aswh(x): y = Xh wh(x)gh(x) + uhgh(x)= Xh (W Thx)gh(x) (2)We absorbed uh as constant \bias" into W h and addeda constant dimension of 1 to x. A higher order function



than linear is also possible but we want to minimize vari-ance and not have too many free parameters. It is a goodidea to have gh(�) local like the gaussian as only few of theW h are then updated at each iteration. Each of theW Thxcomputation then is a linear \expert" which has a posi-tion encoded by V h and gh(�) measures the (normalized)distance of the input x from this position. This requiresan application-dependent distance measure D(x;V h):gh(x) = exp [D(x;V h)]Pi exp [D(x;V i)] (3)Possibilities for D(�; �) include (negative) Euclidean dis-tance, i.e, D(x;V h) = �kx � V hk (possibly modulatedby a spread parameter) and Mahalanobis distance, i.e.,D(x;V h) = �(x�V h)T��1(x�V h) where � is the co-variance matrix. V h in this case corresponds to a center,the mean, where gh(�) takes its maximum. Another pos-sibility that is simpler to compute is the dot product, i.e.,D(x;V h) = V Thx where V h de�nes a hyperplane with acertain orientation and distance from the origin. As longas the norms of V h are comparable, orderings given bythe dot product and Euclidean distance are equal.Learning in such a framework is estimating the posi-tions V and linear mappings W from a given labelledtraining sample. We make distinction between two cases:In the case where learning is coupled, there is a single costfunction for supervised training of both sets of parame-ters. In the uncoupled case, �rst proposed by Moody andDarken [1], training the positions V is an unsupervisedprocess which precedes the separate, supervised trainingof the linear mappingsW .A second type of distinction is by the degree of over-lap of the linear experts. In a competitive scheme, thearchitecture is so designed that the �nal output is equalto the output of one of the linear mappings, i.e., one ofgh(�) is one and all others are zero. This is done eitherexplicitly by choosing one, e.g., the closest and updatingits parameters only, or implicitly by a cost measure thatfavors competition. In a cooperative scheme, there is nosuch requirement and the �nal output is a blend of theoutputs of separate linear mappings.In the next section, we review existing literature on theidea. Then we formalize the architecture and discuss twoways of combining the local perceptrons. We then applyit to the problem of recognition of handwritten digits andcompare them empirically among themselves and with asingle perceptron, multi-layer network of sigmoidal hid-den units and radial-basis function network of gaussianhidden units. The three criteria on which we base ourcomparisons are learning time, number of free parame-ters, and generalization accuracy. In the �nal section, wesummarize our �ndings and conclude.

TABLE IComparison of previous approaches according to the learning strategy andthe type of combining the local mappings.Method Learning CombiningHampshire and Waibel (1990) uncoupled cooperativeStokbro et al. (1990) uncoupled cooperativeJacobs et al. (1991) coupled competitiveBottou and Vapnik (1992) uncoupled competitiveMartinetz et al. (1993) uncoupled competitiveMurray-Smith (1994) uncoupled cooperativeII. Literature SurveyConstructs like used in Eq. (2) where there are mul-tiplicative connections in which the output values of twounits are multiplied, thus allowing one unit to gate an-other, is known as a Sigma-Pi unit [2] or a product unit[3]. Previously many authors proposed structures com-posed of localized linear perceptrons both for classi�cationand function approximation. In Table I, we compare themaccording to the two axes of coupled/uncoupled learningand competitive/cooperative combination.� The Meta-Pi Network proposed by Hampshire andWaibel [4] for speech recognition contains a numberof stimulus-speci�c networks each separately trainedto recognize the speech of one individual. There isalso an additional network that is trained to inte-grate the outputs of the subnetworks to maximizethe phoneme recognition rate of the overall structure.The recognition modules or the gating network arenot restricted to be linear perceptrons.� Stokbro et al. [5] use a similar approach for pre-dicting chaotic time series. Instead of a \
at" layerof units, they �rst compute a k-d tree using the in-put samples to compute the positions of the gaus-sians. The linear mappings are then learned usingleast squares where the means and spreads of thegaussians are �xed. Their method performs, as ex-pected, better than the radial-basis functions.� Jacobs et al. [6] propose the \adaptive mixtures oflocal experts" where each local expert is a linear per-ceptron and there is a competitive gating mechanismthat localizes the experts. The gating network whichuses the dot product can also be seen as a set of per-ceptrons. This approach has later been generalizedto learn \hierarchies of experts" [7].� Bottou and Vapnik [8] propose to use \local learningalgorithms" where simple systems are trained with asmall subset of data around the given input as op-posed to training one big, complex system with all ofthe data. They achieved signi�cant improvement foran optical character recognition problem with thisapproach when for each test input, a �xed number



of neighboring samples are used to train a separatelinear perceptron.� The \neural-gas" architecture of Martinetz et al. [9]is similar in that there is a competitive scheme wherethe input space is quantized and then local linearmappings are �t to data. However these two stepsare uncoupled. A soft competition takes place forplacing the clusters that maximize the log-likelihoodand a separate least squares minimization is done af-terwards for �tting the linear mappings. For predic-tion of time series, Martinetz et al. �nd that the\neural-gas" performs better than back-propagationand radial-basis function networks. Previous work ofthe same group [10] used Kohonen's self-organizingmap that is a hard competitive scheme for inputquantization and was for the control of a robot arm.� Murray-Smith [11] similarly extends radial-basisfunction networks where each \Local Model Net" is alinear function of the input. One can have hierarchiesof them and a constructive method is given wherenew models are incrementally added when needed.It is applied to control problems with signi�cant suc-cess. III. FormalismFor each class Cj , we are given a set of data pairsfxt; ytgt where x is a d-dimensional input vector and y isa binary value that is 1 if x 2 Cj and 0 otherwise. Usingthis sample, we need to compute the posterior probabili-ties of classes P (Cjjx; �) for a novel input x, where � isthe set of modi�able parameters of our model. If we as-sume that all errors are equally costly, to minimize riskwe assign the input to the most probable class:c = argmaxj [P (Cjjx; �)] (4)For classi�cation, we can write a \softmax" model for theposterior class probabilities [12], [13]:P (Cjjx) = exp[Aj(x)]Pk exp[Ak(x)] (5)Aj denotes the total output for class j. One possibilityis to take it as a weighted sum of the responses of the nlocal experts: Aj(x) = nXr=1 �jr(x)gr(x) (6)�jr(x) is the output of expert r for class j and gr(x) isthe \weight" of expert r. Each local expert is a simpleperceptron whose output is a linear function of the input(j ranges over classes and r over experts):�jr(x) =W Tjrx (7)

The mappings implemented by the experts are de�ned bythe parameter vectors W jr. Each expert is responsiblefor inputs in a certain region only. In the simplest case,this region is delimited by a hyperplane. The softmaxfunction is used again to make sure that the gating valuessum up to 1: gr(x) = exp[V Tr x]Pi exp[V Ti x] (8)The positions of the experts are coded by the parametervectors V r. One can think of the gating network as an-other classi�er where a given input is assigned to one ofthe experts and in this regard gr values can be seen asprobabilities, P (!rjx), the posterior probability that x istaken care of by expert r.We use the cross-entropy measure that is more suitedfor classi�cation tasks than least squares for optimizationof the parameters � = fW jr;V rgj;r. We favor coupledlearning and use the same goodness measure for optimiz-ing both the expert positions and the mappings. Expertscan be combined in a competitive or cooperative manneras discussed below.A. Cooperating LearnersIn the cooperative scheme, each expert decides on theoutput by itself and then a weighted sum of the expertoutputs is computed as in Eq. (6) which is then convertedto probabilities using softmax:Oj = exp[Aj]Pk exp[Ak] (9)and we maximize the cross-entropy to decrease theKullback-Leibler distance between this value, Oj, and thedesired output, yj for all classes:E =Xj yj logOj (10)By gradient-ascent, taking the derivative of Eq. (10)with respect to the parameters and with � denoting thelearning factor, we get the following update rules for theexpert mappings:�Wjr = �(yj �Oj)grx (11)and their positions:�Vr = �(yj �Oj)gr(�jr �Aj)x (12)As seen in Eq. (12), when determining the expert posi-tions, supervised error is also taken into account and notonly the input as done by unsupervised procedures likek-means. Through coupled training of expert mappingsand positions, experts are placed in the input space insuch a way so as to minimize error. We discuss this inmore detail in Section C.



B. Competing LearnersFirst proposed by Jacobs et al. [6], a measure thatforces competition is to view the architecture as a mixturemodel [14]. The gating values are the mixture proportionsand the expert perceptron outputs are the means. If wetake gaussian components with equal variances, the like-lihood of the sample point x is given as:E = logXr gr exp24Xj yj logOjr35 (13)Eq. (13) forces experts to compete because the likelihoodis higher when they overlap less. Thus generally for agiven input, only one gr is close to 1 and others are closeto 0 and it is this expert that is responsible from givingthe whole correct output. That is we want to minimizethe distance between the required output and the outputof expert r whose gr is close to 1, after it is converted toprobabilities: Ojr = exp[�jr]Pk exp[�kr]The update equations for the expert mappings and po-sitions with gradient-ascent are as follows:�Wjr = �hr(yj �Ojr)x�Vr = �(hr � gr)x (14)with hr = gr exp[Pj yj logOjr]Pi gi exp[Pj yj logOji] :C. Coupled and Uncoupled LearnersTomake the mathematical connection between the cou-pled and the uncoupled methods clearer, let us considera competitive model where we reparameterize the gatingnetwork to describe the density directly in the input space(rather than parameterizing the discriminant surfaces grusing softmax) where the distance measure is Euclidean,thus getting a scenario similar to one used in unsuper-vised, competitive learning for uncoupled learning. Thatis, let: gr = P (!rjx)= P (!r)p(xj!r)PiP (!i)p(xj!i) (15)where P (!rjx) is the posterior probability that input xis handled by expert r and P (!r) is the prior probability.We take the likelihoods, p(xj!r), as gaussians and we rep-resent them directly by storing their means and possiblycovariances.

We want our learning algorithm to move the means ofthese gaussians, either in an uncoupled way, i.e., a clus-tering procedure, or in a coupled way by making use ofthe experts' outputs and the supervised target y.We then have the following measure:E = logXr P (!r)p(xj!r) exp24Xj yj logOjr35 (16)which di�ers from Eq. (13) in not having a softmax atthe gating network. We assume that the priors, P (!r)are equal; one can obviously also adjust them as well asa part of the learning algorithm. Considering the sim-plest case of hyperspheric gaussians of unit variance, i.e.,p(xj!r) � N (V r; 1), with gradient-ascent, one gets thefollowing update equations:�Wjr = �hr(yj �Ojr)x�Vr = �hr(x � V r) (17)with hr = gr exp[Pj yj logOjr]Pi gi exp[Pj yj logOji]which can also be written as:P (!rjy; x) = P (!rjx)p(yjx; !r)Pi P (!ijx)p(yjx; !i) (18)An uncoupled learning algorithm sets up a separateuncoupled mixture model for learning the likelihoodsp(xj!i). That is, we use a log likelihood that is localto the gating network, i.e., it does not depend on the su-pervised targets y:lg = logXr P (!r)p(xj!r) (19)Taking the derivative of lg with respect to V r, we obtainthe uncoupled learning rule:�V r = �gr(x � V r) (20)This is a soft competitive rule. A method like k-meansis a hard-competitive rule where gr is 1 if expert r is theclosest to input and 0 otherwise.The di�erence between is that Eq. (20) uses gr,P (!rjx), whereas Eq. (17) uses hr, P (!rjy;x). From Eq.(18), we see that ignoring the likelihood terms P (yjx; !r)reduces hr to gr, and therefore reduces Eq. (17) to Eq.(20). Thus the uncoupled learning algorithm is a spe-cial case of the coupled learning algorithm where we areignoring the likelihood terms P (yjx; !r). That is, in un-coupled learning, we are ignoring the supervised errors at



the output of the network in deciding where to place thecluster centers for the hidden units. Clearly in general onedoes not want to ignore these likelihoods; i.e., the coupledapproach is generally to be preferred.IV. Simulation ResultsWe tested the approaches outlined above on a largehandwritten digit database taken from the CD-ROMmade available by NIST [15]. We used 10,000 patternsfor training, 5,000 for cross-validation to determine thepoint to stop training and another 5,000 for testing. 32by 32 bitmaps after low-pass �ltering and undersamplingare reduced to 8 by 8 matrices where each element is aninteger value in the range 0 : : :16. This regularization stepimproves generalization. Thus input dimensionality is 64and there are 10 classes.We implemented the cooperative and competitive ap-proaches where learning of expert positions and mappingsare coupled, as discussed in Section III.For comparison purposes, we also implemented theiruncoupled versions. We have taken the model used in Sec-tion III.C and updated expert positions using Eq. (20).This implements a soft competition between experts. Wealso used a parameter for the spread of the gaussians thatis computed as a function of the inter-expert distance [1].With the cooperative model, expert mappings are trainedusing Eq. (11). With the competitive model, only theclosest expert gives output and is updated. That is, thereis a hard competition with a winner-take-all:gr = � 1; if kV r � xk = mini kV i � xk;0; otherwise.and update the mapping of only the winner expert.We also implemented one single perceptron, multi-layerperceptron (MLP) with one layer of hidden units andradial-basis functions (RBF) where we also used gradient-ascent on the cross-entropy measure after softmaxing theoutput units. In the radial-basis function network, thegaussian centers are trained using the unsupervised pro-cedure k-means.Each model is trained 10 times independently and wereport averages and standard deviations of the successon test set and the learning epochs made. The learningfactor, �, is adaptive for improved convergence, that is, itis decreased by multiplying with a factor less than 1 whentraining error does not decrease and training stops whenthe learning factor becomes less than 0.001. A momentumfactor of 0.7 is used. We test the network after each epochtill training stops and we choose the one that performsbest on the cross-validation set and report its performanceon the test set. This is better than stopping when erroron cross-validation increases.In terms of the number of parameters, a single percep-tron where d is the dimensionality of the input and c is the

TABLE IIComparison of various approaches for the handwritten digit recognitionproblem. The three criteria of comparison are the memory requirementmeasured as the number of free parameters, learning speed measured as thenumber learning epochs, and generalization accuracy measured as successpercentage on a test set unseen during training or cross-validation. Valuesare averages and standard deviations of 10 independent runs.No of Learning TestMethod Parameters Epochs SuccessSingle Layer 650 2.80, 0.42 91.03, 0.21MLP 10 units 760 6.90, 2.60 92.80, 0.4620 units 1,510 6.80, 2.30 94.33, 0.2930 units 2,260 7.60, 2.27 94.83, 0.1640 units 3,010 5.90, 1.37 94.89, 0.3250 units 3,760 6.70, 2.36 94.92, 0.3160 units 4,510 7.00, 1.33 95.00, 0.18RBF 50 units 3,710 2.00, 0.00 87.35, 0.81100 units 7,410 1.70, 0.48 89.91, 0.47250 units 18,510 1.60, 0.52 92.10, 0.45500 units 37,010 2.00, 0.47 93.30, 0.41Cooperative 2 experts 1,430 4.70, 0.48 91.54, 0.25(uncoupled) 4 experts 2,860 4.90, 0.32 91.51, 0.346 experts 4,290 5.10, 0.32 92.20, 0.36Competitive 2 experts 1,430 4.00, 0.47 91.14, 0.09(uncoupled) 4 experts 2,860 3.40, 0.97 91.31, 0.216 experts 4,290 3.70, 0.67 91.29, 0.12Cooperative 2 experts 1,430 4.50, 0.97 93.43, 0.30(coupled) 4 experts 2,860 4.30, 0.82 94.61, 0.266 experts 4,290 5.10, 0.99 95.08, 0.28Competitive 2 experts 1,430 3.60, 0.70 93.25, 0.60(coupled) 4 experts 2,860 3.50, 0.85 93.75, 0.396 experts 4,290 3.20, 0.63 94.03, 0.35number of classes has (d+1)�c parameters. With h hiddenunits, a one hidden layer MLP has (d+1) �h+(h+1) � cparameters. RBF does not have a bias unit in the �rstlayer thus has d �h+(h+1) � c parameters. One can alsoinitialize the gaussian centers to random patterns chosenfrom the training set thereby decreasing the number offree parameters to (h+ 1) � c; success then is around 1%less on the test set for this application. An adaptive mix-ture model, for each expert, has c � (d+1) parameters forthe classi�ers and d+ 1 for the gating.All methods are compared based on the three criteria ofgeneralization accuracy, memory requirement and learn-ing time. Results are reported in Table II.V. ConclusionsIt can be noticed that local linear perceptrons learnfaster than multi-layer perceptrons with sigmoid hiddenunits and generalize as well and sometimes better. Radial-basis functions learn faster but do not generalize well.This is due to the fact that in radial-basis functions onlya one layer perceptron is trained in a supervised manner.



In a local linear network, we train two one-layer percep-trons and in a multi-layer perceptron, we train a two-layernetwork.We note that a coupled approach where both the map-pings and their positions are trained in a supervised man-ner generalizes better than the uncoupled case where thepositions are trained in an unsupervised manner. It seemslike that in both the coupled and uncoupled cases, thecompetitive model learns faster due to the localizationof experts and the cooperative model generalizes betterdue to the smoothness introduced by averaging severalexperts.We have also tested the approach using Euclidean dis-tance as the metric where separate networks have di�erentspreads. The success is somewhat lower in that case asthe dimensionality is high and spheric gaussians assumeequal variance on all dimensions. We have not testedthe method using the full covariance matrix as, in 64 di-mensions the full covariance matrix has on the order of athousand parameters. This is both costly to compute andrequires a much larger training sample.Here we used a gradient-based method for computingthe parameters. When as in normal mixtures, there is aprobabilistic setting where the goodness function is maxi-mum likelihood, the Expectation-Maximization algorithmcan also be used to train the networks [7].To conclude, we believe that a structure composed oflocal linear perceptrons, by allowing a good compromisebetween local and distributed approaches, is a good alter-native for di�cult classi�cation tasks as it learns fast andgeneralizes quite well even when the input dimensionalityis high. AcknowledgementsThis work was carried out while EA was a visit-ing scholar at MIT supported by a scholarship fromT�UB_ITAK, Turkish Scienti�c and Technical ResearchCouncil. EA's later work is supported by T�UB_ITAKGrant EEEAG-143. We thank Zoubin Ghahramani andRod Murray-Smith for stimulating discussions. The pre-processing routines for the NIST database were madeavailable by Francesco Masulli of the University of Gen-ova, Italy. Thanks to the two anonymous reviewers forconstructive comments.References[1] J. Moody and C. Darken, \Fast learning in networks of locallytuned processing units," Neural Computation, vol. 1, pp. 281{294, 1989.[2] D. E. Rumelhart, G. E. Hinton, J. L. McClelland, \Aframework for PDP," in Parallel Distributed Processing,Explorations in the Microstructure of Cognition, vol. 1,D. E. Rumelhart, J. L. McClelland, Eds. Cambridge,MA: MITPress, 1986, pp. 45{76.
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