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Robust and High Fidelity Mesh Denoising
Sunil Kumar Yadav, Ulrich Reitebuch, and Konrad Polthier

Abstract—This paper presents a simple and effective two-stage mesh denoising algorithm, where in the first stage, the face normal
filtering is done by using the bilateral normal filtering in the robust statistics framework. Tukey’s bi-weight function is used as similarity
function in the bilateral weighting, which is a robust estimator and stops the diffusion at sharp edges to retain features and removes
noise from flat regions effectively. In the second stage, an edge weighted Laplace operator is introduced to compute a differential
coordinate. This differential coordinate helps the algorithm to produce a high-quality mesh without any face normal flips and makes the
method robust against high-intensity noise.

Index Terms—Mesh Denoising, Robust Statistics, Face normal processing, Tukey’s bi-weight function, High Fidelity Mesh, Differential
Coordinate.
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1 INTRODUCTION

M ESH denoising is one of the most active and fascinat-
ing research areas in geometry processing as digital

scanning devices become widespread to capture the 3D
points of a surface. In the process of data acquisition, noise
is inevitable due to various internal, and external sources.
Mesh denoising algorithms are focused to remove this un-
desired noise and compute a high-quality smooth function
on a triangular mesh for further use in rendering, scientific
analysis, reverse engineering and medical visualization. In
general, both sharp features and noise are high-frequency
components on the surface and are ambiguous in nature.
During the surface denoising, it is a challenging task to
decouple these components, which is essential to compute a
smooth surface with sharp features.

1.1 Related Work
In last two decades, a wide variety of smoothing algorithms
have been introduced to remove undesired noise, while
preserving sharp features in the geometry. For a compre-
hensive review on mesh denoising, readers are referred
to [1], [2] and [3]. Here, an overview of current state-of-
the-art methods is given, which are based on differential
coordinates and bilateral filtering.

The concept of differential coordinates was initially in-
troduced by Alexa [4] as a local shape descriptor of a
geometry. Differential coordinates are able to preserve the
fine details on a triangular mesh, which leads to their fur-
ther applications in mesh processing, for example, Lipman
et al. [5] used the same concept for mesh editing. Mesh
quantization [6] and shape approximation [7] are also done
by using the concept of differential coordinates. Sorkine
et al. [8] introduced a general differential coordinate-based
framework for mesh processing. Later, Su et al. [9] utilized
differential coordinates to remove noise and compute a
smooth surface.

The bilateral filtering was initially proposed by Tomasi
et al. [10] for image smoothing. The relation between
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anisotropic diffusion [11] and bilateral filtering is explained
by Barash [12]. In continuation, Black et al. [13] and Durand
et al. [14] expressed anisotropic diffusion and bilateral fil-
tering in the robust statistics framework [15]. The concept
of bilateral smoothing was extended for mesh denoising by
Fleish et al. [16] and later, Jones et al. [17] explained the same
concept in the robust statistics framework. Bilateral filtering
was applied to the two-stage surface denoising method by
Zheng et al. [18], where the weight functions were computed
based on the normal differences (similarity measurement)
and spatial distances between neighbouring faces. Later,
researchers proposed a general framework for bilateral and
mean shift filtering in any arbitrary domain [19]. Recently,
several bilateral normal-based denoising algorithms have
been published. For example, Wei et al. [20] utilized both
face and vertex normals to produce a smooth surface and
Yhang et al. [21] proposed a guided mesh normal filtering
based on the joint bilateral filtering [22]. A tensor voting
guided mesh denoising was also introduced by Wei et al.
[23], where feature classification was done using the normal
voting tensor and then MLS fitting was applied to remove
noise.

The compressed sensing framework is also utilized to
produce feature preserving mesh denoising algorithms. He
et al. [24] extended the L0 image smoothing concept to a
mesh denoising algorithm where the algorithm maximizes
the piecewise flat regions on noisy surfaces to remove noise.
The L1 optimization based algorithms were introduced by
Wang et al. [25] and Wu et al. [26] where features were
preserved from the residual data by the extended ROF
(Rudin, Osher and Fatemi) model. In continuation, Lu et al.
[27] detected features on the noisy surface using quadratic
optimization and then removed noise using L1 optimization
while preserving features. Later, researchers utilized the L1-
median normal filtering along with vertex preprocessing
to produce a noise free surface [28]. Recently, Yadav et al.
[3] proposed a binary optimization-based mesh denoising
algorithm, where noise was removed by assigning a binary
values to a face normal-based covariance matrix. Centin et
al. [2] proposed a normal-diffusion-based mesh denoising
algorithm, which removes noise components without tem-
pering the metric quality of a surface. In this paper, a mesh
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denoising algorithm is introduced to provide a high fidelity
mesh structure against different levels of noise without
creating any normal flips.

1.2 Contribution

We propose a two-stage mesh denoising method, where
the face normal processing is mainly motivated by the
robust statistics framework in anisotropic diffusion and
bilateral filtering. Basically, the robust statistics framework
is focused on developing different estimators which are
robust to outliers. In the mesh denoising and robust statistic
framework, sharp features are considered as outliers and a
proper estimator will avoid these outliers to preserve sharp
features and remove undesired noise components from a
noisy surface.

We apply Tukey’s bi-weight function for the similarity
function as a robust estimator which stops the diffusion
at sharp features and produces smooth umbilical regions.
In the vertex update step, we use a differential coordinate-
based Laplace operator along with edge-face normal orthog-
onality constraint. This Laplace operator is computed using
the edge length as the weight function to produce a high-
quality mesh without face normal flips and it also makes the
algorithm more robust against high-intensity noise.

2 METHOD

The proposed method is implemented in two different
stages. In the first stage, noisy face normals are processed
using the bilateral filtering in the robust statistics framework
and in the second stage, a high fidelity mesh is reconstructed
using a edge-face normal orthogonality constraint and a
edge-weighted differential coordinate.

2.1 Robust Bilateral Face Normal Processing

In the first step of the proposed algorithm, we smooth noisy
face normals using the bilateral filter, which is a non-linear
filter and it computes output using the weighted average of
the input:

ñi =
1

Ki

∑
j∈Ωi

ajf(|ci − cj |, σc)g(|ni − nj |, σs)nj , (1)

where nj represents a noisy face normal and belongs to the
geometric neighbour disk Ωi of the central face normal ni.
The geometric neighborhood is more robust against non-
uniform meshes compared to the combinatorial neighbor-
hood [3]. The normalization factor Ki is defined as:

Ki =
∑
j∈Ωi

ajf(|ci − cj |, σc)g(|ni − nj |, σs),

where aj is the area of the corresponding face. The term
f(|ci − cj |, σc) and g(|ni − nj |, σs) represent the closeness
and the similarity functions whose kernel widths are con-
trolled by σc and σs respectively and ci and ci are the
centroids of face i and j.

Robust Estimation
The problem of the estimation of a smooth surface from a
noisy surface can be written by using the tools of robust
statistics. As shown by Black et al. [13], Durand et al. [14]
and Jones et al. [17], to compute a smooth surface, Equation
(1) can be written as the following minimization problem:

min
ni

∑
j∈Ωi

ajf(|ci − cj |, σc)ρ(|ni − nj |, σs), (2)

where ρ is a robust error norm. The minimization of the
above function will lead to smooth face normals. To solve
Equation (2), the first derivative of the ρ-function should
be zero which is a so-called influence function Ψ(x, σs) =
ρ′(x, σs), where x can be any variable (in our algorithm x =
(ni − nj)). The influence function shows the behaviour of a
ρ-function.

For anisotropic diffusion and bilateral filtering, the influ-
ence function Ψ(x, σs) and ρ(x, σs)-function can be written
in terms of the similarity function g(x, σs) [14]:

Ψ(x, σs) = xg(x, σs), ρ(x, σs) =

∫
xg(x, σs)dx.

The selection of a ρ-function will be crucial to avoid outliers.
In our framework, the outliers will be sharp features and
an appropriate ρ function will help the algorithm to retain
sharp features and remove noise components.

(a) g(x, σs) (b) Ψ(x, σs) = xg(x, σs) (c) ρ(x, σs)

Figure 1: A Gaussian-based similarity function and corre-
sponding influence function and ρ-function [13].

(a) g(x, σs) (b) Ψ(x, σs) = xg(x, σs) (c) ρ(x, σs)

Figure 2: Tukey bi-weight similarity function and corre-
sponding influence function and ρ-function [13].

For example, the least square estimator (a quadratic
ρ-function) will be the most naive estimator because it
will have a linear influence function without any bounds
and will be very sensitive to outliers. Figure 1 shows the
Gaussian-based ρ-function which has a bounded influence
function Ψ(x) and gives smaller weight to outliers com-
pared to the least square estimators. Figure 2 shows that
Tukey’s bi-weight function produces more robust results com-
pared to the least square and Gaussian-based estimators
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because it completely cuts off the diffusion at sharp features
(outliers) and removes noise from non-feature areas. Tukey’s
bi-weight function is defined as [13]:

g(x, σs) =

{
1
2{1− (x/σs)

2}2 if |x| ≤ σs,
0 if |x| > σs.

(3)

In terms of preserving features, Tukey’s bi-weight function is
more effective compared to the Gaussian function because
it does not allow the diffusion across sharp features and
removes noise components along these sharp features effec-
tively. In our algorithm, we use Tukey’s bi-weight function as
the similarity function to produce feature preserving smooth
face normals. For the closeness function f(ci − cj , σc), a
Gaussian function is used.

2.2 High Fidelity Mesh Reconstruction

In the second step of the denoising process, we need to
impose the effect of processed face normals to the corre-
sponding vertices. To reconstruct a high fidelity mesh, we
minimize the following quadratic energy function:

min
ṽi

{
‖vi − ṽi‖2 +

Nv(i)−1∑
j=0

∑
(i,j)∈∂Fk

‖ñk · (vi − vj)‖2

+‖Ri‖2
}
,

(4)

where ṽi and vi are the newly computed and the noisy
vertex positions. The terms Nv(i) and ∂Fk represent the
number of vertices and the boundary edge of the vertex star
of vi respectively. The second term of the energy function
synchronizes a vertex position to the corresponding face
normal by using the concept of orthogonality between edge
vector and face normal [29]. The term Ri helps algorithm
to produce a high fidelity mesh and makes the proposed
algorithm robust against high-intensity noise. This term is
computed using a differential coordinate and can be written
as:

Ri = Di + Dti , (5)

where Di and Dti represent the differential coordinate

(a) Di = 0 (b) Di 6= 0

Figure 3: An example to show the effect of differential
coordinate Di at the second stage of the proposed algorithm.

and its tangential component respectively. The differential
coordinate at the vertex vi and is defined as:

Di = 4vi − vi, (6)

where
4vi =

1∑
j∈N(i)

wij

∑
j∈N(i)

wijvj . (7)

The weighting term is defined as wij = ‖vi − vj‖2, which
is basically based on the edge length of connected vertices.
As shown in Figure 3, the differential coordinate Di com-
putes the deviation vector from the centroid of the 1-ring
neighbour.

(a) Noisy (b) Tangent direction (c) Using Equation (4)

Figure 4: The Fandisk model corrupted by a uniform noise
(σn = 0.65le) in random direction where le is the average
edge length. Figure (b) and (c) show effect of the diffusion
of Di only in the tangent direction and using Equation
(4) respectively. The sharp feature curve (black curve) is
computed using the dihedral angle (θ = 35◦). The magnified
view shows that the diffusion only in tangent direction is not
able to reconstruct the sharp corner.

The term Dti is computed w.r.t the corresponding vertex
normal and the vertex normal at the vertex vi is approxi-
mated using the processed face normals:

n̄vi =
1∑

j∈Fv(i)

aj

∑
j∈Fv(i)

ajñj , (8)

where ñj and aj represents the processed face normal and
the area of the corresponding face, similar to Equation
(1). The term Fv(i) represents the set of faces, which are
connected to the vertex vi. Now by using this 1-ring vertex
normal, the differential coordinate component in the tangent
direction is computed as:

Dti = Di − 〈Di, n̄vi〉n̄vi , (9)

where the term 〈Di, n̄vi
〉n̄vi represents the component of

the differential coordinate in the vertex normal direction.
The normal component of the differential coordinate will be
more effective against high-intensity noise because mostly
noise affects in surface normal direction. Diffusion only
in normal direction leads to more shrinkage because the
shape information of a geometry is embedded in the surface
normal. Similarly, diffusion of tangential components leads
to a better mesh quality, less shrinkage, and less shape de-
formation. However, it is less effective against high-intensity
noise. Figure 4 shows the effect of diffusion only in tangent
direction and another one by using Equation (4). As it can
be seen, the diffusion along the tangent and the normal
directions produces a better result compared to the diffusion
only in the tangent direction.

Minimization of energy function mentioned in equa-
tion (4) can be done by the gradient descent method and
the updated vertex position will be:

ṽi = vi +
1

3|Fv(i)|

Nv(i)−1∑
j=0

∑
(i,j)∈∂Fk

(ñk · (vi − vj))

+λIRi,

(10)
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(a) Noisy (b) σs = 0.1 (c) σs = 0.5 (d) σs = 1.5 (e) λI = 0.0 (f) λI = 0.2 (g) λI = 0.6

Figure 5: The Bearing model is corrupted with an uniform noise (σn = 0.5le) in random direction (a). For Figure (b)-(d),
λI = 0.02 and for Figure (e)-(g), σs = 0.8. The black curve shows the sharp edge information in the smooth geometry and
is detected using the dihedral angle θ = 65◦. The second row shows the magnified view mesh structure at a sharp edge.
The red color faces are with wrong orientation (flipped normals).

(a) Original (b) Noisy (c) [11] (d) [18] (e) [24]

(f) [21] (g) [20] (h) [27] (i) [3] (j) Ours

Figure 6: Fandisk model corrupted with a Gaussian noise (σn = 0.3le) in random direction. The first row shows the results
produced by state-of-the-art methods and our proposed method. The black curve shows the sharp edge information in the
smooth geometry and is detected using the dihedral angle θ = 70◦.

(a) Original (b) Noisy (c) [18] (d) [24] (e) [21] (f) [3] (g) [2] (h) Ours

Figure 7: The Nicola model, a non-uniform triangulated mesh surface corrupted by Gaussian noise in random direction.
The magnified view of the eyes and the nose shows that the proposed method preserves better sharp features without
creating piecewise flat areas compared to state-of-the-art methods.

where λI is the isotropic smoothing or mesh fidelity factor.
We iterate the whole procedure mentioned in Equation (10)
several times to get the desired result. In each iteration,
using the same value of λI leads to feature blurring, shape
deformation and volume shrinkage in the smoothed surface
as noise is getting lower with the iterations. To overcome
this problem, the effect of isotropic smoothing should get
reduced after each iteration. We reduce λI in every iteration
by λp+1

I = 0.6λpI , where p represents the number iterations.

3 EXPERIMENTS, RESULTS AND DISCUSSION

We have performed our denoising scheme on various kinds
of CAD (Figure 4, 5, 6, 8 and 9) and CAGD (Figure 7 and 9)

models. These models consist of different levels of features
and are corrupted with different kind of synthetic noise
(Gaussian and uniform) in different random directions.
We also included real scanned data (Figure 10, 11 and 12)
models in our experiments. We provide the visual and
quantitative comparison of our method to several state-of-
the-art denoising methods in which we implemented [3],
[16], [18], [11] and [24] based on their published article and
several results of [2], [20], [21], [30] and [27] are provided
by their authors.



5

(a) Original (non-
uniform mesh)

(b) Noisy (c) [18] (d) [24] (e) [20] (f) [3] (g) [2] (h) Ours

Figure 8: Non-uniform triangulated mesh surface corrupted by Gaussian noise (σn = 0.35le) in normal direction. The
first row shows the results obtained by state-of-the-art methods and the proposed method. The second row shows the
magnified view of the corner and the cylindrical hole of the corresponding geometry.

(a) Original (b) Noisy (c) [11] (d) [18] (e) [24] (f) [20] (g) [3] (h) Ours

Figure 9: Figure (a) shows the noisy models, which are corrupted by a uniform noise (σn = 0.5le) in random directions.
Figure (b)-(h) show the results produced by state-of-the-art methods and the proposed method. The second row shows the
magnified view of the mesh quality at the sharp corners. The sharp feature curves are computed at θ = 65◦ (for the Bearing
model) and the red color faces are with wrong orientation (flipped normals).

(a) Original (b) [18] (c) [24] (d) [21] (e) [27] (f) [3] (g) [2] (h) Ours

Figure 10: The Angel model, a triangulated mesh surface (real data) obtained by a 3D scanner. The figures shows the result
produced by the proposed method, better preserving sharp features (both eyes) compared to state-of-the-art methods.

3.1 Parameters

In the proposed method, we discussed about five differ-
ent parameters: kernel widths of the closeness and sim-
ilarity functions (σc and σs), geometric neighbour disk
(Ω), isotropic/mesh fidelity factor λI and the number of
iterations p. Throughout the algorithm, the radius of the
neighbour disk is defined as r = 2ca, where ca represents
the average distance between the centroid of faces and
the kernel width of the closeness function is half of the
radius of the neighbour disk (σc = ca). The average cen-
troid distance-based radius will make the algorithm robust

against irregular sampling as the denser region will have
more faces compared to the rare region during the face
normal processing. Effectively, the user has to tune only
3 parameters (σs, λI and p) to get the desired results. In
the quantitative comparison table, the proposed method pa-
rameters are mentioned in the following format (σs, λI , p).
Similarly, (τ, r, p) for [3], where τ is the feature threshold,
r is the radius of the geometric neighborhood disk and p is
the number of iterations. The parameters (σc, σs, p) for [16],
(σs, p) for [18], (λ, s, p) for [11] and α for [24], where σc and
σs are the standard deviation of the Gaussian function in
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(a) Original (b) [11] (c) [16] (d) [18] (e) [24] (f) [27] (g) [3] (h) Ours

Figure 11: The Pierrot model (real data) is corrupted by a 3D scanner noise. The figures shows the results obtained by
state-of-the-art methods and the proposed method.

(a) Noisy (b) Ours

Figure 12: Figure (a) shows the noisy model of a hu-
man retina with marching cube artifacts and the proposed
method removes these artefacts by choosing the appropriate
value of λI .

the bilateral weighting. The variables s and λ represent the
step size and the smoothing threshold. The term α controls
the amount of smoothing in [24].

Figure 5 shows the effect of the kernel width parameter
σs of the similarity function and isotropic factor λI . The
black curve represents sharp features and is computed using
the dihedral angle, θ = 65◦ between neighboring faces.
From Figure 5 (b-d), the isotropic factor is fixed, λI = 0.02.
The small value of the σs = 0.1 produces a piecewise
flat region and is not able produce a noise free surface
with sharp features (Figure 5 (b)). For σs = 1.5, the sharp
features are smoothed out and for σs = 0.5, the algorithm
produces an optimal result. Similarly, from Figure 5 (e-g),
the parameter σs is fixed, σs = 0.8. For λI = 0, we can
see that the reconstructed surface has several edge flips
(faces with wrongly oriented normals) and the algorithm
is not able to preserve all desired features (Figure 5(e)).
However, the algorithm produces a high fidelity mesh with
sharp features when we use λI = 0.2 (Figure 5(f)) and
blurs the sharp features with bigger isotropic factor (Figure
5 (g)). In general, the value of λI depends on noise intensity
on surfaces. The higher the intensity of noise the more
normal flips will be produced during the denoising process,
therefore, it is better to use a bigger value of λI to avoid
these normal flips. At the same time, higher values for λI
have to be carefully as these could produce edge blurring
and volume shrinkage.

3.2 Visual Comparison

Figure 6-11 represent a visual comparison of the proposed
method with several state-of-the-art methods. Figure 6
shows the Fandisk model, which is corrupted with a moder-
ate intensity Gaussian noise in random direction. The sharp

feature curve (black curve) shows that the proposed method
preserves sharp features (especially at corners) effectively
and does not produce false features at the cylindrical region
compared to state-of-the-art methods. Method [3] and [27]
manage to produce features at sharp corners but do not
recover the sharp features on the whole surface. Method
[24] creates false features at the cylindrical region and is not
able to preserve the corner features [2]. The Nicola model
(Figure 7) has a non-uniform mesh and is corrupted by a
Gaussian noise in random direction. The magnified view
shows that our method preserves sharp features around
the eye regions better than state-of-the-art methods and
does not produce any false features around the nose area
(piecewise flat areas). Figure 8 shows the Joint sharp model
with non-uniform mesh corrupted with a Gaussian noise
(σn = 0.35le) in normal direction, where le is the average
edge length. As it shown, the proposed method reconstructs
the cylindrical region and corners without creating any false
features. Method [3] produces a quite similar result to ours
while Method [21] and [24] produce false features around
the cylindrical region. The other state-of-the-art methods
are not able to preserve sharp features. Figure 9 provides a
visual comparison between state-of-the-art methods and the
proposed method where models are corrupted with high-
intensity of noise (σn = 0.5le). As shown in Figure 9, our
method is able to remove noise components properly and
retains the sharp features without creating any edge flips.
Method [18] is able to preserve sharp features but produces
edge flips and the mesh quality is not optimal. Method [24]
is using an isotropic regularization factor which helps the
algorithm to produce a good quality mesh on the planar
areas but fails to produce similar triangles near the sharp
edges (second row Figure 9(e)).

In general, real data is captured using the 3D scanners
and have quite low intensity of noise. Thus, it is difficult
to see a considerable difference between the results of
the proposed method and state-of-the-art methods. Figure
10 shows that our algorithm is capable of better preserv-
ing features around both eyes compared to state-of-the-art
methods. Methods [3] and [18] are able to retain the feature
in the right eye but fail for the left eye. The other state-of-
the-art methods are not able to preserve the fine level of
features in both eyes. In case of the Pierrot model (Figure
11), our method removes noise effectively around the eyes
and preserves features. Methods [27] and [3] retain similar
scale of the feature but are not able to remove noise properly.
Figure 12 shows the applicability of the proposed method
to medical data. As shown in Figure 5, the level of the
feature can be controlled by using the parameter λI , which
is effective in real data smoothing. For example, Figure
12(a) shows a noisy model of human retina obtained by
the optical coherence tomography [31]. The surface has the
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marching cube artefacts which is removed by the proposed
method along with noise components effectively.

Table 1: Quantitative Comparison
Models Methods MSAE Ev×10−3 Q Parameters

[16] 7.45 172.7 1.18 (0.3, 0.3, 30)
[11] 6.269 76.87 1.00 (0.05, 0.05, 50)

Nicola [18] 5.25 66.07 1.02 (0.3, 60)
|F | = 29437 [24] 6.50 99.58 0.91 (1.4)
|V | = 14846 [21] 5.82 69.63 1.05 (Default)

[3] 5.900 72.8 1.02 (0.3, 0.15, 50)
Ours 5.5 66.14 0.9 (1.6, 0.06, 25)
[18] 3.17 0.590 1.45 (0.3, 50)

Bearing [24] 4.70 1.24 1.58 (4.0)
|F | = 6950 [20] 3.95 0.783 2.62 (Default)
|V | = 3475 [3] 4.43 0.698 1.66 (0.3,0.08,80)

Ours 2.32 0.588 0.74 (0.8,0.2,100)
[16] 3.777 0.530 0.83 (0.3, 0.3, 40)
[11] 2.630 0.766 0.78 (0.009, 0.05, 50)

Joint [18] 1.808 0.263 0.77 (0.4, 100)
|F | = 52226 [24] 1.768 0.500 0.75 (1.4)
|V | = 26111 [21] 0.956 0.179 0.83 (Default)

[20] 2.874 0.366 1.67 (Default)
[27] 1.16 1.49 0.71 (Default)
[3] 0.829 0.171 0.91 (0.3, 0.05, 60)

Ours 1.032 0.198 0.73 (1.0, 0.2, 150)
[16] 8.567 4.422 0.87 (0.4, 0.4, 40)

Fandisk [11] 5.856 4.910 0.79 (0.07, 0.05, 30)
|F | = 12946 [18] 2.727 1.877 0.76 (0.4,70)
|V | = 6475 [24] 4.788 5.415 0.766 (1.4)

[21] 2.221 1.702 0.97 (Default)
[27] 3.1 4.42 0.7 (Default)
[3] 2.692 1.964 0.89 (0.3, 0.2, 50)

Ours 2.201 1.844 0.7 (0.55, 0.2, 100)
[18] 14.88 19.64 2.72 (1.0, 100)

Chinese Lion [24] 8.93 25.34 1.51 (1.4)
|F | = 118276 [20] 19.22 21.5 2.38 (Default)
|V | = 59140 [3] 21.39 21.89 2.16 (0.3, 1.0,100)

Ours 8.795 18.35 0.85 (0.4, 0.3, 100)

3.3 Quantitative Comparison

For the quantitative comparison, we are using three dif-
ferent parameters. Two of them show differences between
the ground truth and smooth model and the so-called L2

vertex-based positional error and the orientation error re-
spectively. The third parameter computes the mesh quality
of a smoothed surface. The L2 vertex-based positional error
from the original ground truth model is represented by Ev

and defined as [32]:

Ev =

√√√√ 1

3
∑

k∈F ak

∑
i∈V

∑
j∈Fv(i)

ajdist(ṽi, T )
2
,

where F is the triangular element set and V represents the
set of vertices. The terms ak and aj are the corresponding
face areas. The distance dist(ṽi, T ) is the closest L2-distance
between the newly computed vertex ṽi and the triangle T
of the reference model.

The MSAE computes the orientation error between the
original model and the smooth model and is defined as:

MSAE = E[∠(ñ,n)],

where ñ is the newly computed face normal and n repre-
sents the face normal of the reference model. The term E
stands for the expectation value.

Mesh quality of the surface mainly refers to the shape of
the faces in the mesh. For a better mesh quality, the size and
angles of the triangular face should not be too small or too
large. To measure the quality of faces, we use the ratio of the

circumradius-to-minimum edge length of the corresponding
face [33]:

Q =
r

emin
,

where r and emin are circumradius and minimum edge
length of the corresponding triangle. Ideally, every face
belonging to the mesh should be an equilateral triangle with
a quality index of Q = 1/

√
3.

Table 1 shows the quantitative comparison of our
method with state-of-the-art methods. For the models which
are corrupted with high-intensity noise (Bearing, Chinese
Lion and Sharp Sphere), the proposed method has lower
values of Ev , MSAE and Q compared to Methods [18] and
[24]. Method [18] produces a quite similar value of Ev but
bigger values for MSAE and Q because of the several edge
flips. He et al. [24] produces a good quality mesh in planar
regions but does not produce a similar quality of triangles
near sharp features, which leads to a higher value mesh
quality index. For the Nicola model, our method produces
a quite similar values for the position and orientation error
(slightly bigger) to Method [18], because our algorithm also
follows the bilateral filtering technique and in addition, we
use an isotropic factor which introduces a small amount of
volume shrinkage. At the same time, it produces a good
quality mesh.

Table 2: Running Time (in seconds)
Models Fandisk Bearing Nicola Joint Lion
Time (s) 5.8 4.2 4.3 45.3 92

3.4 Running Time
As it is explained by [3], the two-stage denoising methods
have quite similar running time complexity. The proposed
algorithm also follows the two-stage denoising scheme and
has the complexity ofO(nc·nf ·p), where nc is the number of
faces within the neighbourhood, nf and p are the numbers
of faces and iterations respectively. The implementation of
the algorithm is quite straightforward and simple. First of
all, we compute the smooth face normals using Equation
(1) then rearrange vertices by following the Equation (10).
Our implementation is done in a single computation thread
using Java. Table 2 shows the running time of our algorithm
for different models according to the parameter values
mentioned in Table 1.

4 CONCLUSION

In this paper, we presented a robust mesh denoising al-
gorithm which produces a high-quality mesh along with
sharp features. In the first step of the proposed method, a
robust statistics framework is applied for noisy face normal
smoothing where Tukey’s bi-weight function is used as the
robust estimator. Tukey’s bi-weight function completely stops
the diffusion across sharp edges and removes noise along
the sharp features and from flat areas. In the second step,
a vertex position is updated using edge-face normal or-
thogonality constraints along with differential coordinates.
Differential coordinates helps the algorithm to produce a
high-quality mesh, makes it robust against high-intensity of
noise and avoids normal flips during the denoising process.
In section 3, we have shown the robustness of the proposed
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algorithm not only against different kinds and levels of
noise but also against the face normal flipping. The quan-
titative comparison table shows that our method produces
better mesh quality compared to state-of-the-art methods.
Similarly, for the positional and the orientation error, the
proposed method is either better or similar to state-of-the-
art methods.
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