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Abstract. In this paper, we propose a family of lightweight block ciphers
CHAM that has remarkable efficiency on resource-constrained devices.
The family consists of three ciphers, CHAM-64/128, CHAM-128/128, and
CHAM-128/256 which are of the generalized 4-branch Feistel structure
based on ARX(Addition, Rotation, XOR) operations.
In hardware implementations, CHAM requires smaller areas (73% on
average) than SIMON [8] through the use of a stateless-on-the-fly key
schedule which does not require updating a key state. Regarding software
performance, it achieves outstanding figures on typical IoT platforms in
terms of the balanced performance metrics introduced in earlier works. It
shows a level of performance competitive to SPECK [8] mainly due to
small memory size required for round keys. According to our cryptanalysis
results, CHAM is secure against known attacks.
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1 Introduction

We are in the pervasive computing era. One can interact with many computing
devices, such as laptop computers, tablets, smart phone, and even glasses with
computing capabilities. Gartner, Inc. forecasts that in 2017, up 31 percent from
2016, 8.4 billion connected devices will be in use worldwide, with the number
reaching 20.4 billion by 2020. The development and spread of these computing
devices have made human life more convenient and enriching. However, in terms
of adverse effects, threats that existed in cyberspace have spread and expanded
to our everyday lives. So, it has become crucial to address security issues in
relation to highly constrained devices so as to protect our lives and property.
The first step in securing pervasive devices is to ensure that all data from them
are transferred confidentially. Cryptographic algorithms, especially block ciphers,
have been used extensively to perform this role.

Lightweight cryptography is essential for reducing size and cost of computing
and communicating devices. So in cryptography, lightweightness has been moved
from implementation issues to design consideration. A lot of block ciphers have
been designed for being lightweight in various aspect (for example chip size,
code size, power consumption, memory usage, and so on) on various platforms



for the past decade. Some of these algorithms have been shunned for various
reasons including security problems, but still many algorithms are being discussed,
applied or standardized in the real world such as HIGHT [34], PRESENT [6],
CLEFIA [48], KATAN/KTANTAN [22], PRINTCIPHER [38], LED [32], PIC-
COLO [47], PRINCE [20], SIMON/SPECK [8], LEA [33], PRIDE [1], MIDORI [3],
SPARX [29], SKINNY [11] and recently proposed GIFT [4].

Among these algorithms, SIMON and SPECK designed by NSA in 2013, are
the most focused and evaluated ciphers. They are families of non-S-box based
lightweight block ciphers. SIMON is tuned for optimal performance in hardware,
while SPECK is designed for optimal performance in software. SPECK is in ARX
structure. They are arguably regarded as the best algorithms among previously
proposed lightweight block ciphers on hardware and software platforms.

LEA is another ARX cipher designed by Hong et al. in 2013 and suitable for
common platforms (mainly 32-bit microcontrollers), but its performance is not
so impressive on 8-bit and 16-bit microcontrollers.

Contributions. We have attempted to improve LEA by increasing the level of
suitability for resource-constrained environment such as hardware and 8-bit and
16-bit microcontrollers. As a result, we propose a new family of block ciphers,
CHAM.

CHAM has the following features:

– CHAM uses an extremely simple key schedule possibly being implemented
without updating key states. This feature helps to reduce the number of
flip-flops when implementing our ciphers on hardware.

– Numbers of round keys are far fewer than the numbers of rounds, and round
functions reuse them iteratively. This reduces the memory size necessary to
store the round keys.

– Encryption uses two types of left rotation, by 1 bit and by 8 bits, to minimize
the number of operations on 8-bit AVR microcontroller.

– Round indexes are used as round constants instead of random values to
save resources while defending against slide attacks [19] and basic rotational
attacks [37].

There are many lightweight block ciphers which have the same feature of key
schedule, such as HIGHT, KATAN, PRINTCIPHER, LED, PICCOLO, PRINCE,
PICARO [45], PRIDE, and KHUDRA [40]. However, some of these ciphers are
prone to or fully broken by related-key attacks [41, 24, 36, 23, 26, 58]. Bearing this
in mind, we analyze the security of CHAM against various attacks, including
differential cryptanalysis and linear cryptanalysis. In particular, we give more
attention to security analyses in the related-key model.

By efficiency evaluation and comparison, we draw the following results. On
hardware, we implement SIMON and our ciphers by minimizing the area with
the IBM 130nm CMOS generic process library. The results are briefly presented
in Table 1. Table 2 shows a brief comparison with SPECK on the two widely
adopted target platforms of Atmega128 and MSP430. CHAM shows efficiency
competitive with one of the top-ranked algorithms, SPECK on the platforms.
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In summary, CHAM can be implemented using smaller area than SIMON in
hardware environment and shows a similar level of efficiency to SPECK in 8- and
16-bit software environments.

Table 1. Area-optimized implementation results in gate for CHAM and SIMON.

algorithm library 64/128 128/128 128/256 ref.

CHAM IBM 130nm 665 1,057 1,180 this paper
SIMON IBM 130nm 958 1,234 1,782 [8]

Table 2. Software efficiency comparison in rank metric [9](Larger is better).

scenario algorithm Atmega128 MSP430 ref.

fixed key [9]

CHAM-64/128 27.9 49.3 this paper
SPECK-64/128 29.8 50.0 [8]
CHAM-128/128 17.1 25.0 this paper
SPECK-128/128 12.7 21.7 [8]

communication [28, 27]
(without decryption)

CHAM-64/128 7.2 11.1 this paper
SPECK-64/128 6.3 9.7 FELICS website

2 Specifications and Design Principles

CHAM is a family of block ciphers with a 4-branch generalized Feistel structure.
Each cipher is denoted by CHAM-n/k with a block size of n-bit and a key size of
k-bit. Table 3 shows the list of ciphers in the family and their parameters. Here,
r and w denote the number of rounds and the bit length of a branch (word),
respectively.

Table 3. List of CHAM ciphers and their parameters.

cipher n k r w k/w

CHAM-64/128 64 128 80 16 8
CHAM-128/128 128 128 80 32 4
CHAM-128/256 128 256 96 32 8

CHAM consists of three algorithms with different parameters. All three al-
gorithms in the family are suitable for resource-constrained environments, but
at the same time they have slightly different applications according to their
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parameters. CHAM-64/128 is more suitable for low-end devices, CHAM-128/128
is a better choice for general use on 32-bit microcontrollers, and CHAM-128/256
can serve where a higher security level is required.

2.1 Notations

We use the following notations to describe CHAM-n/k.

– x‖y: concatenation of bit strings x and y

– x� y: addition of x and y modulo 2w

– x⊕ y: bit-wise exclusive OR (XOR) of x and y

– ROLi(x): rotation of w-bit word x to the left by i bits

– wH(x): Hamming weight of x, the number of nonzero bits in x.

2.2 Specifications

CHAM-n/k encrypts a plaintext P ∈ {0, 1}n to a ciphertext C ∈ {0, 1}n using a
secret key K ∈ {0, 1}k by applying r iterations of the round function as follows.

Divide the plaintext P into four w-bit words X0[0], X0[1], X0[2], and X0[3],
where P = X0[0]‖X0[1]‖X0[2]‖X0[3]. Next, compute the n-bit output Xi+1 =
Xi+1[0]‖ Xi+1[1]‖ Xi+1[2]‖ Xi+1[3] of the i-th round for 0 ≤ i < r by

Xi+1[3]← ROL8((Xi[0]⊕ i) � (ROL1(Xi[1])⊕RK[i mod 2k/w])),

Xi+1[j]← Xi[j + 1] for 0 ≤ j ≤ 2,

if i is even, otherwise,

Xi+1[3]← ROL1((Xi[0]⊕ i) � (ROL8(Xi[1])⊕RK[i mod 2k/w])),

Xi+1[j]← Xi[j + 1] for 0 ≤ j ≤ 2,

where RK[i mod 2k/w] is the round key.

Then, the ciphertext C is defined by C = Xr[0]‖Xr[1]‖Xr[2]‖Xr[3].

The key schedule of CHAM-n/k takes the secret key K ∈ {0, 1}k and generates
the 2k/w w-bit round keys RK[0], RK[1], · · · , RK[2k/w − 1]. Initially, divide
the secret key into k/w w-bit words K[0],K[1], · · · ,K[k/w − 1], where K =
K[0]‖K[1]‖ · · · ‖K[k/w − 1]. Then the round keys are generated as follows.

RK[i]← K[i]⊕ ROL1(K[i])⊕ ROL8(K[i]),

RK[(i+ k/w)⊕ 1]← K[i]⊕ ROL1(K[i])⊕ ROL11(K[i]),

where 0 ≤ i < k/w.

The structures of the key schedule and round function of CHAM are depicted
in Fig. 1, and the test vectors are provided in appendix A.
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Fig. 1. Key schedule (left) and two consecutive round functions beginning with the
even i-th round (right).

2.3 Design Principles

Design paradigm and Design approach Our goal is to design a cipher that
shows better efficiency than SIMON and SPECK on both (resource-constrained)
hardware and software. So we design in the ARX design paradigm so that
our cipher could have advantages in various resource-constrained environments.
However, it is still not easy to prove nor to theoretically bound the minimum
number of rounds with respect to the security of an ARX block cipher (although
there is an exception [29]). Hence, we decided to design our algorithms (round
function and key schedule) with a focus on efficiency and lightweight aspect and
to perform a comprehensive and detailed cryptanalysis relying on experimental
methods.

Round Functions In the instruction sets of AVR and MSP introduced in
Section 4, there is no single instruction for a rotation of arbitrary amounts. Only
byte-swap and 1-bit rotation can be used for implementing ROLi(). So, if we
want to implement 3-bit rotation, we have to implement 1-bit rotation for 3 times.
Hence, we choose every rotation amount as close as possible to 0 or 8 for the
round functions (as well as the key schedule) to achieve a better performance. At
the same time, in order to reduce the number of rounds while keeping security,
we select several combinations of rotation amounts for a round function and
consider combinations of the round functions for the whole encryption.

At first, we compare several cases of using a single round function and those of
using two slightly different round functions. Let’s denote rotation amounts of two
consecutive rounds as a 4-tuple (a, b, c, d) such that a and c are rotation amounts
for the values before the round key XOR and b and d are rotation amounts for
outputs of the additions. For example, CHAM is of type (1, 8, 8, 1). We estimate
the maximum numbers of rounds of differential characteristics with probabilities
greater than 2−n when w = 16. Table 4 shows the results.

In Table 4, the type (1, 8, 9, 1) looks like the best choice, however the type
(1, 8, 9, 1) requires more operations than the type (1, 8, 8, 1) for every two rounds,
so the overall efficiency of the type (1, 8, 8, 1) is better. Also, we test the case of
using 4-round alternating structures but could not find any better case than our
selection in the overall efficiency point of view.
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Table 4. Security evaluation results of several types of round functions.

type (0, 9, 0, 9) (1, 8, 1, 8) (1, 8, 1, 9) (1, 8, 8, 1) (1, 8, 9, 1)

diff. ch. round 58 47 40 36 33

Additionally, we use round indexes as round constants not only to defend the
slide attack and the rotational attack and but also to reduce the extra registers
for storing constants on both hardware and software implementations.

Key Schedule Key schedule is a procedure to calculate round keys from a given
secret key. Many block ciphers (AES, SIMON/SPECK [8], and so on) have their
own key schedules that consist of functions calculating each round keys from the
current key state and update the key state. And key schedules of some other
ciphers (PICCOLO [47], LED [32], and so on) consist of functions which calculate
every round key directly from the secret key. Although the former key schedules
could be also implemented to calculate every round key directly from the secret
key, the latter key schedules are more suitable for such implementation. We call
this implementation method as stateless-on-the-fly implementation and a key
schedule like latter ones as stateless-on-the-fly key schedule.

It is clear that a stateless-on-the-fly implementation of a key schedule does
not require areas (flip-flops) for storing key states on hardware, so it can be
replaced by some selecting logics. For a k-bit secret key, at least k × sf gates
are required for storing key state while roughly at most (k − 1)× sm gates are
needed for some selecting logic, where sf and sm are gate counts of D flip-flop
and 2-to-1 MUX, respectively. Therefore, the stateless-on-the-fly implementation
helps to save the hardware areas when sm < sf . For an example of CHAM-64/128
in IBM130 [8], we can theoretically save 259 gates by adopting stateless-on-the-
fly implementation for serial implementation, since sm = 2.25 and sf = 4.25.
In practice, more gates could be saved for stateless-on-the-fly implementation
because compiler could employ 3-to-1 or 4-to-1 MUXes instead of 2-to-1 MUXes
to optimize the area while D flip-flop cannot be replaced by the other cell.

The key schedules of CHAM consist of a linear function Φ from {0, 1}w to
{0, 1}2w. Let Iw be the w × w identity matrix and I lw be a w × w matrix whose
i-th row is defined by l times left rotation of i-th row of Iw for i = 1, 2, ..., w.
Then, the function Φ can be expressed by multiplication with the following binary
matrix A defined by

A = (A1|A2)
T

=
(
Iw ⊕ I1

w ⊕ I8
w | Iw ⊕ I1

w ⊕ I11
w

)T
.

Let A be a set of all matrices
(
I l0w ⊕ I l1w ⊕ I l2w | I l3w ⊕ I l4w ⊕ I l5w

)T
, where l0 =

l3 = 0, l0 6= l1 6= l2, l3 6= l4 6= l5 and 0 < l1, l2, l4, l5 < w. Let

Aj = {M ∈ A| min
x∈{0,1}w\{0}

(wH(M · x)) = j}.

We make certain that in the case of w = 16, A = A2 ∪ A4 ∪ A6.
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The matrix A is the case of l0 = 0, l1 = 1, l2 = 8, l3 = 0, l4 = 1, and l5 = 11.
It is chosen from A6 considering the number of instructions for implementations
on AVR and MSP and cryptographic properties in the related-key model. Note
that the matrix with l0 = 0, l1 = 1, l2 = 8, l3 = 0, l4 = 1, and l5 = 9 is in A4

and shows worse property for the related-key differential cryptanalysis. And the
matrix with l0 = 0, l1 = 1, l2 = 8, l3 = 0, l4 = 1, and l5 = 10 also shows worse
property than A in the viewpoint of the related-key differential cryptanalysis,
even though it belongs A6.

Additionally, we let the round keys be iteratively re-applied to reduce the
size of memory for storing the round keys in software. And we give the round
key index a tweak so that a w-bit word of a secret key cannot regularly act on
every k/w rounds.

3 Hardware Implementation

We implemented CHAM in Verilog and synthesized using Synopsys Design Com-
piler 2008.09-SP5 without the compile ultra feature. For the synthesis, the 100-kHz
frequency constraint is imposed. Clocks for plaintext flip-flops are gated and
scan flip-flops are not used. To evaluate and compare the hardware cost and
performance, we use the UMC 90nm, UMC 180nm CMOS generic process library
(UMC90, UMC180) provided by the Faraday Technology Corporation and IBM’s
8RF 130nm process (IBM130).

Figs. 2 and 3 present the round-based and the bit-serial hardware architecture
of CHAM, respectively. In both architectures, there are no flip-flops for storing
the secret key because the secret key is injected for each clock count. Instead of
the flip-flops, a k/w-to-1 w-bit MUX is required for the round-based architecture,
and a k-to-1 1-bit MUX is required for the bit-serial architecture. Since the size
of the flip-flops is larger than that of the MUXes, we can save as much as the
difference between the two sizes.
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Fig. 2. Round-based hardware architecture of CHAM.

Table 5 shows the results of comparison to other lightweight block ciphers for
each parameter and architecture in area (GE, gate equivalent) and throughput
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Fig. 3. Serialized hardware architecture of CHAM.

(Kbps@100KHz). As the table shows, every instance in our family can be imple-
mented in much smaller area than SIMON with the corresponding parameter.
Precisely, the area of the sequential logic for CHAM is much smaller than that of
SIMON because the secret key is not stored in flip-flops. Moreover, in most cases
(except for the round-based CHAM-64/128), the throughputs per area’s are also
better than those of SIMON.

4 Software Implementation

We compare software performances of our cipher and existing algorithms on
three typical microcontrollers suitable for lightweight devices. In [10, 27, 57],
Atmega128(AVR), MSP430F1611(MSP), and SAM3X8E(ARM) are widely used
as target 8, 16, and 32-bit microcontrollers, respectively. We also choose them as
our target platforms. Their features are briefly presented in Appendix B.1.

Software performances are measured based on two metrics, rank and FOM,
under two usage scenarios, Fixed-key and Communication. The metrics and
scenarios are introduced in [9, 27, 28], and described in Appendices B.3, B.4.

All our software implementations of CHAM are done in assembly language to
draw better performance as much as possible. Some of the ideas are presented
in Appendix B.2. Note also that, in our work, all the best results of CHAM are
obtained from 4-round unrolled implementations except for CHAM-128/128 on
the ARM. In that case, 8-round unroll results the best FOM value.

Table 6 presents the results of a performance comparison on the AVR and
MSP platforms using the rank metric for the fixed-key scenario. Either SPECK
or CHAM is always ranked at the top on both AVR and MSP, for all of the
parameters of the block size and key size. They outperform the remaining ciphers.
The results for SPARX [29] and LEA are drawn from performance reports posted
on the FELICS [27] project’s website.

Table 7 shows the performances based on the rank metric under the one-way
communication scenario, emphasizing variable key encryption without decryption.
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Table 5. Comparison of the hardware implementation of CHAM and other ciphers.

n k cipher
bit-serial round-based

tech. ref.
area
(GE)

throu-
ghput

area
(GE)

throu-
ghput

64 128

Twine 1,866 178.0 90n [51]
Hight 3,048 188.3 250n [34]
Gift 930 1,345 STM90 [4]

Midori 1,542 STM90 [3]
Midori 1,638 STM65 [3]
Skinny 1,399 8.1 1,696 177.8 UMC180 [11]
LED 1,265 3.4 [32]
†LED 700 3.4 [32]

Present 1,391 11.4 1,884 200.0 UMC180 [46]
Piccolo 758 12.1 1,197 193.9 130n [47]
Simon 944 4.2 1,403 133.3 ‡IBM130 [59]
Simeck 924 4.2 1,365 133.3 ‡IBM130 [59]
Simon 958 4.2 1,417 133.3 IBM130 [8]
Speck 996 3.4 1,658 206.5 IBM130 [8]
CHAM 665 5.0 826 80.0 IBM130 ours
CHAM 859 5.0 1,110 80.0 UMC180 ours
CHAM 727 5.0 985 80.0 UMC90 ours

128 128

Gift 1,213 1,997 STM90 [4]
Midori 2,522 STM90 [3]
Midori 2,714 STM65 [3]
Skinny 1,840 14.7 2,391 320.0 UMC180 [11]
LEA 2,302 4.2 3,826 76.2 UMC130 [33]
AES 2,400 57.0 UMC180 [44]

Simon 1,234 2.9 2,090 182.9 IBM130 [8]
Speck 1,280 3.0 2,727 376.5 IBM130 [8]
CHAM 1,057 5.0 1,499 160.0 IBM130 ours
CHAM 1,296 5.0 1,899 160.0 UMC180 ours
CHAM 1,084 5.0 1,691 160.0 UMC90 ours

128 256

Skinny 2,655 12.3 3,312 266.7 UMC180 [11]
Simon 1,782 2.6 2,776 168.4 IBM130 [8]
Speck 1,840 2.8 3,284 336.8 IBM130 [8]
CHAM 1,180 4.2 1,622 133.3 IBM130 ours
CHAM 1,481 4.2 2,087 133.3 UMC180 ours
CHAM 1,256 4.2 1,864 133.3 UMC90 ours

†: Hard-wired key implementation

‡: Not exactly same to the non-daggered IBM130
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Table 6. Performance comparison using the rank metric on AVR and MSP, under the
fixed-key scenario.

size(n/k) algorithm
AVR MSP

ROM RAM cpb rank ROM RAM cpb rank

64/128

SPECK[10] 218 0 154 29.8 204 0 98 50.0
CHAM 202 3 172 27.9 156 8 118 49.3
SIMON[10] 290 0 253 13.6 280 0 177 20.2
SPARX 448 2 224 9.9 366 14 136 18.7
HIGHT[9] 336 0 311 9.6 - - -

128/128

CHAM 362 16 148 17.1 280 20 125 25.0
SPECK[10] 460 0 171 12.7 438 0 105 21.7
AES[10] 970 18 146 6.8 - - - -
LEA 754 17 203 6.3 646 24 147 9.8

128/256
CHAM 396 16 177 13.2 312 20 148 19.2
SPECK[9] 476 0 181 11.6 - - - -

The results of CHAM on the AVR and MSP, obtained by optimization1 level two,
show slightly better performance than that of SPECK. The ranks of SPECK are
derived from the data reported in the FELICS website, and the best ones are
shown in the table.

On the ARM platform, CHAM-64/128 shows relatively poor result due to its
16-bit word size.2 On the other hand, CHAM-128/128, based on a 32-bit word
size, presents relatively decent result compared to SPECK-64/128.3

Table 8 shows performance comparison based on the FOM metric under
the communication scenario. SPECK-64/128 reveals the best value, followed by
CHAM-128/128.4 Considering its block size, CHAM-128/128 can be regarded as
a very good performer. The FOM of CHAM-64/128 is degraded by relatively
poor performance on ARM. However, due to the excellence on AVR and MSP,
its FOM is still ahead of all other competitors, except for SPECK. Note that all
the values other than CHAM are presented on the FELICS website.

1 The FELICS platform provides a unified implementation environment which generates
performance figures automatically. The FELICS software framework, written in C
language, permits users to implement only the core parts of encryption, decryption and
their key schedules. Due to the common operational C source codes, the performance
results are affected by the compiler’s optimization option.

2 A SIMD implementation might enhance performance. Since the ARMv7-M architec-
ture provides very limited instructions for SIMD arithmetics, it seems to be very
difficult to get non-trivial performance gain from SIMD approach.

3 The performance of SPECK-128/128 is not yet reported in the FELICS website.
4 In the comparison, we exclude Chaskey algorithm because it is not considered as a

block cipher.
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Table 7. Performance comparison using the rank metric in the one-way communication
scenario. EKS and Enc represent the key schedule and encryption.

platform algorithm
ROM RAM cycles

cpb rank
EKS Enc stack data EKS Enc

AVR
CHAM-64/128 72 280 11 184 309 23,664 187 7.2
SPECK-64/128 178 240 12 260 1,401 19,888 166 6.3

MSP
CHAM-64/128 68 210 16 184 275 16,715 133 11.1
SPECK-64/128 126 180 16 260 1,242 14,155 120 9.7

ARM
SPECK-64/128 52 164 36 260 516 6,323 53 23.2
CHAM-128/128 44 210 48 192 95 8,846 70 19.5
CHAM-64/128 124 272 48 184 170 16,944 134 8.7

Table 8. Performance comparison using the FOM metric in the communication scenario.
The key schedule, encryption and decryption steps are all included.

algorithm
AVR MSP ARM

FOM
ROM RAM cpb ROM RAM cpb ROM RAM cpb

SPECK-64/128 874 302 351 572 296 253 444 308 129 5.00
CHAM-128/128 1,230 262 337 926 258 298 528 272 144 5.47
CHAM-64/128 844 225 394 578 220 290 606 244 319 6.52
Rectangle-64/128 1,118 353 506 844 402 361 654 432 289 7.80
SPARX-64/128 1,198 392 512 966 392 287 1,200 424 319 8.57

5 Security Analysis

In this section, we summarize the security analysis results of CHAM and describe
how we determine the number of rounds for each algorithm. We then present
detailed cryptanalysis results of a number of well-known attacks applicable to
our ciphers.

5.1 Summary of the Security Analysis

Table 9 shows the maximum numbers of rounds of characteristics that can be
used for each attack. Based on these results, we determine the total number of
rounds of each cipher with the following considerations

– Round extension of characteristics
– Round extension during key-recovery phase
– Security margin

By applying the probability gathering technique used in [49] to our differential
cryptanalysis, an attacker may find differentials longer than the differential
characteristics in Table 10 in appendix C.1. But we check experimentally and
confirm that the attacker can have at most four rounds longer differentials. Also,
we verified that a boomerang and a rectangle characteristics can also be extended
at most four rounds despite their use of two differential characteristics. Although
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Table 9. The numbers of rounds of the best discovered characteristics for each cipher
and cryptanalysis.

CHAM- DC RDC LC BC RBC IDC ZCLC DLC RDLC IC RXDC

64/128 36 34 34 35 41 18 21 34 36 16 16
128/128 45 33 40 47 36 15 18 45 39 16 23
128/256 45 40 40 47 47 15 18 45 45 16 23

(R)DC: (Related-key)Differential Cryptanalysis, LC: Linear Cryptanalysis, (R)BC:

(Related-key)Boomerang Cryptanalysis, IDC: Impossible Differential Cryptanalysis ZCLC:

Zero-Correlation Linear Cryptanalysis, (R)DLC: (Related-key)Differential-Linear Cryptanal-

ysis, IC: Integral Cryptanalysis, RXDC: Rotational-XOR-Differential Cryptanalysis

such extensions can be applied only to the cryptanalyses based on difference or
linear approximation, we assume every type of characteristic can be extended by
four rounds regarding this technique.

In the key-recovery phase of an attack, if k = 2n, then one can attack k/w
more rounds by guessing k/2 bits of the secret key before filtering. Otherwise,
one cannot utilize this type of round extension. After filtering, one can add at
most three rounds during key guessing and determining steps. Hence, we claim
that the maximal numbers of rounds for which one can mount a key-recovery
attack are at most 4 + 2(k/w− 4) + 3 more than the numbers of rounds in Table
9, regardless of actual characteristics.

To estimate the numbers of rounds conservatively, we assume that an attacker
can mount successful attacks using the characteristics we have found, even if
the actual attacks are infeasible. Finally, we determine the numbers of rounds
(instances of r), as shown in Table 3 with these considerations together with a
security margin greater than 30% for full rounds5.

5.2 Cryptanalysis Results

We cryptanalyze our ciphers with the following well-studied techniques, and the
results are summarized in Table 9. We use state-of-the-art techniques, modified
for ARX structure ciphers [49, 17, 7, 53]. Using these results, we estimate the
necessary numbers of rounds to ensure proper security. This subsection includes
the results of (RK6) Differential, Linear, and (RK) Boomerang cryptanalysis and
other detailed cryptanalysis results are provided in Appendix C due to the page
limit.

(RK) Differential and Linear Cryptanalysis. We searched for (RK) dif-
ferential characteristics [16] and linear approximations of each cipher using an
automated algorithm known as the threshold search suggested in [17]. It is con-
sidered as an appropriate variant of Matsui’s branch-and-bound algorithm [43]
for ARX ciphers. Using this threshold search approach, we found differential

5 30% is a relatively high ratio for a security margin compared to those associated
with other ciphers.

6 RK stands for “related-key”.
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characteristics with a probability of p > 2−n for each cipher. These results
are given in Table 10. We denote a (RK) differential characteristic by (∆key),
∆in → ∆out, where ∆key is the difference of the secret key, and ∆in and ∆out are
the input and output differences, respectively.

For a linear cryptanalysis [42], we found linear approximations with bias
ε > 2−n/2 for each cipher. These results are given in Table 11. Γin and Γout

denote the input and output masks, respectively. We calculate the correlation of
the linear approximation by determining the bias of every addition using Wallén’s
formula [56] and applying Piling-Up Lemma [42].

(RK) Boomerang Cryptanalysis. The (RK) boomerang characteristics [54,
15] are constructed with two short (RK) differential characteristics. These char-
acteristics are the most threatening ones for our ciphers. Examples of short (RK)
differential characteristics for constructing (RK) boomerang characteristics are
shown in Table 12. A (RK) boomerang characteristic is valid when pq > 2−n/2,
where p and q are the probabilities of the two differential characteristics φ1 and
φ2, respectively, used for constructing the (RK) boomerang characteristic. Note
that (RK) rectangle cryptanalysis [13, 15] works using the same characteristics.

6 Conclusion

In this paper, we have presented CHAM, a family of lightweight block ciphers
that supports widely used block/key lengths. It is suitable for highly resource-
constrained devices, especially area-constrained hardware with the help of the
stateless-on-the-fly key schedule. Efficiency evaluations and comparisons with
other lightweight block ciphers on various platforms are provided to demonstrate
the merit of our algorithms. A variety of security analyses with extensive searching
have convinced us that it is secure against known attacks. We also believe that it
will be resistant to future attacks due to its high security margins. Moreover, the
simplicity and flexibility of CHAM allow one to design ciphers with other block
sizes and key lengths. Of course, a rigorous security analysis should be followed.
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A Test Vectors

Test vectors are represented in hexadecimal with the prefix ‘0x’.

CHAM-64/128
secret Key : 0x0100 0x0302 0x0504 0x0706 0x0908 0x0b0a 0x0d0c 0x0f0e

plaintext : 0x1100 0x3322 0x5544 0x7766

ciphertext : 0x453c 0x63bc 0xdcfa 0xbf4e

CHAM-128/128
secret Key : 0x03020100 0x07060504 0x0b0a0908 0x0f0e0d0c

plaintext : 0x33221100 0x77665544 0xbbaa9988 0xffeeddcc

ciphertext : 0xc3746034 0xb55700c5 0x8d64ec32 0x489332f7

CHAM-128/256
secret Key : 0x03020100 0x07060504 0x0b0a0908 0x0f0e0d0c

0xf3f2f1f0 0xf7f6f5f4 0xfbfaf9f8 0xfffefdfc

plaintext : 0x33221100 0x77665544 0xbbaa9988 0xffeeddcc

ciphertext : 0xa899c8a0 0xc929d55c 0xab670d38 0x0c4f7ac8

B Some Details about Software Implementation

B.1 Target Platforms

Atmega128 belongs to Atmel’s AVR microcontroller family with an 8-bit RISC ar-
chitecture. It has 32 general-purpose registers and 133 instructions. It is equipped
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with 128 KBytes of flash and 4 KBytes of RAM. MSP430F1611, a microcontroller
from Texas Instruments, adopts a 16-bit RISC architecture with 16 registers
(12 of them are general-purpose registers) and 51 instructions, including the
emulated ones. It has 48 KBytes of flash and 10 KBytes of RAM. The ARM
Cortex-M3 is a 32-bit processor core based on the ARMv7-M architecture, with 12
general-purpose registers. The core is adopted in the Atmel SAM3X8E microcon-
troller installed on the well-known Arduino Due development board. SAM3X8E
is equipped with 512 KBytes of flash and 96 KBytes of SRAM.

B.2 Implementating Bit-wise Rotation

In ARX design like CHAM, rotations by certain bit sizes might be costly to imple-
ment on our 8 and 16-bit platforms. Efficient implementation of rotation is crucial
to both high throughput and smaller memory. With this consideration,CHAM
adopts ROL8, which can be performed for free on AVR platform.

The MSP430 provides a byte-swapping instruction, which is equivalent to
ROL8 for a 16-bit word. It is slightly tricky for a 32-bit word on the MSP430.
Similarly to [21], ROL8 can be carried out in seven instructions, as in Code 1
below.7 The code require an additional temporary register to hold a 16-bit data.

ARMv7-M provides a powerful instruction, barrel shifter, which can rotate
a 32-bit word by any bit-size. Moreover, the instruction can perform a certain
kind of operation additionally after the rotation. This fact gives rise to a good
performance of CHAM-128/128. However, it appears that no single instruction
of ARMv7-M can perform bit-wise rotation for a 16-bit word. This explains the
relatively low performance of CHAM-64/128 on ARMv7-M, as can be seen in
Table 7 and 8.

Code 1. MSP430 code for 8-bit left rotation; register pairs Rh and Rl store a 32-bit
integer, ABCD, where each letter represents an 8-bit integer part; register Rt is temporary.

mov Rl, Rt : Rh=(B,A), Rl=(D,C), Rt=(D,C) ABCD

xor.b Rh, Rl : Rl=(B^D,0)

xor Rh, Rl : Rl=(D,A)

xor.b Rt, Rh : Rh=(B^D,0)

xor Rt, Rh : Rh=(B,C)

swpb Rl : Rl=(A,D) 00DA

swpb Rh : Rh=(C,B) BC00

B.3 Performance Metrics

Lightweight IoT devices are usually considered to have constrained resources.
This is why throughput alone does not fully describe the performance of an
algorithm. A smaller code size and less RAM usage are also important factors to

7 We implement ROR8, a right rotation for decryption, in eight instructions.
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consider. In [9], the authors argue the same context and introduce the metric of
rank as an overall performance indicator. It is defined as

rank = (106/cpb)/(ROM + 2× RAM),

where cpb refers to the cycles per byte consumed for a task, and ROM and RAM
are the byte sizes of the memory of each type. By definition, the larger rank is
better. Note also that RAM is considered to be twice as costly as ROM.

The FOM(figure of merit) metric, defined recently in the FELICS [28], averages
performances on AVR, MSP and ARM. For each implementation i on a device
d, we measure memory usages vi,dROM, vi,dRAM, and time cost vi,dcost. Among all the
implementations of all the ciphers, the minimums of ROM, RAM and cost are also
determined(possibly each from different implementations). Denote each minimum
by md

ROM, md
RAM, and md

cost. Then, the performance parameter pd for a cipher
on a device d is defined by

pd = min
i

(
vi,dROM/m

d
ROM + vi,dRAM/m

d
RAM + vi,dcost/m

d
cost

)
.

Finally, the figure of merit for a cipher is defined by the average of three pd’s,

FOM = (pAVR + pMSP + pARM)× 1
3 .

The definition indicates the smaller FOM is better.8

B.4 Usage Scenarios

A block cipher suite usually consists of three distinctive algorithms: the key sched-
ule, encryption and decryption. However, in lightweight applications, decryption
tends to lose its role due to well-designed modes of operations for block ciphers.
The combined performance of the key schedule and encryption is somewhat
sensitive to their usage scenarios. For an easy comparison of our cipher with the
results in the literature, we adopt two scenarios: simple encryption with a fixed
key and data communication with variable keys.

Fixed-key scenario: In this scenario, a cipher is used for authenticating devices.
There are no key schedules or decryption steps. Round keys are fixed in the
device, i.e., specifically placed in the code area. Hence, their size is added to the
code size. This scenario is used in Table 6.

Communication scenario: In this scenario, a cipher is assumed to be used for
data communication. It is defined as Scenario 1 in the FELICS [27]. Originally,
the scenario contains encryption, decryption together with their key schedules,
where 128 bytes of data are encrypted and decrypted in the CBC mode. Since
encryption part is more important for lightweight application, we define one-way
communication scenario by omitting the decryption part, which is used in Table
7. The scenario in its original meaning is also used in Table 8.

8 It can be pointed out that the definition of the FOM has a drawback that whenever
a new minimum is found by a better implementation of any cipher, the whole FOMs
of all ciphers should be updated.
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C Cryptanalysis Results

C.1 Tables of characteristics for (RK) Differential, Linear, and
(RK) Boomerang Cryptanalysis

Tables 10, 11, and 12 show characteristics for (RK) Differential, Linear, and (RK)
Boomerang Cryptanalysis, respectively.

Table 10. The best (RK) differential characteristics found. Only the input and output
differences are shown. We assume that every operation is independent. The subscript x

indicates a hexadecimal expression.

model n/k round/p characteristic

single-
key

model

64/128 36 /2−63 (0004x, 0408x, 0A00x, 0000x) → (0005x, 8502x, 0004x, 0A00x)

128/* 45/2−125 (01028008x, 08200080x, 04000040x, 42040020x)
→ (00000000x, 00110004x, 04089102x, 00080010x)

related-
key

model

64/128
key diff. (0000x, 0000x, 0000x, 0000x, 0040x, 0000x, 0000x, 4000x),

34/2−61 (20A0x, 1050x, 4000x, 2020x) → (0141x, 8080x, 4841x, 830Ax)

128/128
key diff. (00000000x, 00000000x, 00000000x, 40000000x),

33/2−125 (00410500x, 00210080x, 80102000x, 40002041x)
→ (12810001x, 8A500940x, 08001503x, 06000220x)

128/256
key diff.

(00000000x, 00000000x, 00000000x, 00000000x,
00000000x, 40000000x, 00000000x, 00000000x),

40/2−127 (42800040x, 20010420x, 00800104x, 08408082x)
→ (04405080x, 80040892x, 01000010x, 80a00008x)

Table 11. The best linear approximations found. We assume that every operation is
independent.

n/k round 〈Γin, Γout〉 ε

64/128 34 〈(0000x, 1000x, 10D9x, 8C20x), (CF06x, 0202x, 0100x, 0009x)〉 2−31

128/* 40
〈(00000000x, 08001000x, 40891038x, 3000C800x), 2−63
(06082000x, 00001001x, 42040030x, 20020000x)〉

C.2 Impossible Differential Cryptanalysis and Zero-Correlation
Linear Cryptanalysis

Impossible differential cryptanalysis [12] uses a differential characteristic that can
never occur. A zero-correlation linear approximation [7] is the counter-part of the
impossible differential characteristic in the linear cryptanalysis field. Examples
of the best impossible differential characteristics and zero-correlation linear
approximations as found here are given in Table 13.

20



Table 12. Examples of the best (RK) boomerang characteristics that we found.

model n/k round/p or q characteristic

single-
key

model

64/128
17/2−15 (8200x, 0100x, 0001x, 8000x) → (0400x, 0004x, 0502x, 0088x)

18/2−16 (8200x, 0100x, 0001x, 8000x) → (0004x, 0502x, 0088x, 0000x)

128/128
23/2−30 (08104000x, 04002000x, 00000020x, 00000010x)

→ (40010000x, 20408100x, 00000001x, 02000080x)

24/2−33 (02000000x, 41000000x, 20410000x, 10008000x)
→ (00000000x, 00040001x, 81020400x, 00000004x)

related-
key

model

64/128

key diff. (0000x, 0000x, 0080x, 0000x, 0000x, 8000x, 0000x, 0000x)
20/2−15 (0084x, 0000x, 0000x, 0000x) → (0400x, 0105x, 8080x, 0100x)

key diff. (0000x, 0000x, 0000x, 0000x, 0080x, 0000x, 0000x, 8000x)
21/2−16 (0801x, 8400x, 0084x, 0000x) → (0000x, 0400x, 0105x, 8080x)

128/128

key diff. (00000000x, 00000000x, 00000000x, 00800000x)

18/2−31 (00000801x, 80000400x, 00800004x, 00000000x)
→ (00020484x, 01000005x, 08020000x, 04010A00x)

key diff. (00000000x, 00000000x, 00000000x, 00800000x)

18/2−31 (00000801x, 80000400x, 00800004x, 00000000x)
→ (00020484x, 01000005x, 08020000x, 04010A00x)

128/256

key diff.
(00000000x, 00000000x, 00000000x, 00000000x)
(00000000x, 40000000x, 00000000x, 00000000x)

23/2−27 (08410002x, 04008000x, 00040080x, 00020040x)
→ (02020000x, 01010240x, 00000202x, 04000004x)

key diff.
(00000000x, 00000000x, 00000000x, 00000000x)
(00000000x, 40000000x, 00000000x, 00000000x)

24/2−32 (08410002x, 04008000x, 00040080x, 00020040x)
→ (01010240x, 00000202x, 04000004x, 02008002x)

Table 13. Examples of the best impossible differential characteristics and zero correla-
tion linear approximations found here.

type n/k round characteristic

impossible
differential

64/128
10 (11015, 016, 016, 016) ↔ (x61101x8, x1411x1, x16, x131101x1)
8 6↔ (x16, x16, x16, x81107) ↔ (081107, 016, 016, 01511)

128/*
8 (032, 032, 032, 11031) ↔ (032, x32, x32, x3011x1)
7 6↔ (x32, x32, x32, x241107) ↔ (032, 0241107, 032, 032)

zero
correlation
linear
approximation

64/128
11 (01511, 11015, 016, 01511) ↔ (x16, x80611x1, x16, x16)
10 6↔ (11x15, x811x7, x16, x16) ↔ (0131102, 016, 016, 016)

128/*
9 (032, 032, 03111, 11031) ↔ (x32, 01511x808, x32, x32)
9 6↔ (032, 11x31, x32, x32) ↔ (01611015, 032, 032, 032)

Characteristics are denoted by 4-tuples of w-bit sequences separated by comma. 0j , 1j ,
and xj are j-bit sequences of 0, 1, and free bit, respectively.
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C.3 (RK) Differential-Linear Cryptanalysis

A (RK) differential-linear approximation [14] is constructed with a short (RK)
differential characteristic and a short linear approximation. A (RK) differential-
linear approximation which has a correlation of pc2 > 2−n/2 can be used for
a (RK) differential-linear attack, where p is the probability of the differential
characteristic φ and c is the correlation of the linear approximation ψ. Examples
showing how to build these (RK) differential-linear approximations are given in
Table 14.

Table 14. Examples showing how to build the best (RK) differential-linear approxima-
tions found here.

model
n/k

(RK) diff.-linear approx. φ ψ

round pc2 rounds p round c2

Single-key
model

64/128 34 2−31 20 2−23 14 2−8

128/* 45 2−63 24 2−33 21 2−30

Related-key
model

64/128 36 2−28 22 2−18 14 2−10

128/128 39 2−60 17 2−26 22 2−34

128/256 45 2−61 23 2−27 22 2−34

C.4 Integral Cryptanalysis

Integral cryptanalysis [39] uses sets of chosen plaintexts of which a part is held
constant and the other part varies through all possibilities. Considering ADD-
balance [33], we found the following 16-round integral characteristic for all of our
ciphers.

(A, C, C, C)→ (C, C, C,A)→ (C, C,A, C)→ (C,A, C, C)→ (A, C, C,A)→ (C, C,A,A)→ (C,A,A, C)

→ (A,A, C,A)→ (A, C,A,B+
≪1)→ (C,A,B+

≪1,A)→ (A,B+
≪1,A,A)→ (B+

≪1,A,A,U)

→ (A,A,U,U)→ (A,U,U,B+
≪8)→ (U,U,B+

≪8,U)→ (U,B+
≪8,U,U)→ (B+

≪8,U,U,U)

C, A, B+
≪l, U represent a constant word, an active word, an ADD-balanced

word when rotated to the right by l bits, and an unknown word, respectively. The
above 16-round distinguisher means that if the first word of a plaintext is active,
which takes all w-bit values at one time, and the other words of the plaintext are
constants, then the first word of the output after 16 rounds is ADD-balanced
when rotated to the right by 8 bits.

The bit-based division property [53] is an improvement of the division prop-
erty [52] for non S-box-based ciphers. In [50], Sun et al. improved the integral
cryptanalysis result of LEA slightly by applying the bit-based division property.
Based on this result and owing to the similarity between LEA and our ciphers,
we expect that the bit-based division property will not seriously improve our
integral cryptanalysis.
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C.5 Biclique Cryptanalysis

Yanfeng et. al. [55] showed that for variants of the Feistel structure, interleaving
related-key differential trails cannot construct bicliques [5]. Hence, we consider the
bicliques from independent related-key differentials, as our ciphers have a variant
of the type-3 generalized Feistel structure. We calculate the total complexity
Cfull for a key recovery attack with independent bicliques using the following
equation,

Cfull = 2k−2d(Cbiclique + Cprecomp + Crecomp),

where Cbiclique, Cprecomp, and Crecomp denote the complexities for building-
biclique, pre-computation, and re-computation, respectively. Note that a trivial
biclique for each cipher can be derived easily from related-key differentials. The
specific complexities are shown in Table 15. The re-check complexity of a false
positive is omitted in the above equation because it is negligible.

Table 15. Complexity of the biclique cryptanalysis for each parameter.

n/k biclique round Cbiclique Cprecomp Crecomp Cfull

64/128 15 214.6 216.6 231.5 2127.5

128/128 7 229.5 232.7 263.7 2127.7

128/256 15 230.3 232.6 263.6 2255.6

C.6 Rotational Cryptanalysis

The initial version of a rotational cryptanalysis [37] can be easily defended by
constant-XOR’s. However, the recently proposed rotational-XOR cryptanalysis [2]
can be well-applied to ARX ciphers with constant XOR’s. So, we carefully applied
the rotational-XOR cryptanalysis to our algorithm and the results are shown
in the Table 16. Characteristics are initial and final δ’s. Refer to [2] for attack
conditions and the definition of δ.

Table 16. The best rotational-XOR differential characteristics found.

n/k round/p characteristic(δ)

64/128 16/2−62.225 (0000x, 0000x, 0000x, 8002x) → (0004x, 020ex, 0805x, 0810x)

128/* 23/2−125.545 (10000004x, 08000000x, 02080003x, 40040000x)
→ (00100004x, 08080400x, 00220008x, a1110d00x)
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C.7 Other Attacks

Applying round constants keeps our ciphers secure against slide attacks [19]. An
algebraic attack [25] is not effective for our ciphers due to the high nonlinearity
of such a case.
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