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Abstract. In this paper, we proposed a new nonlinear dimensionality
reduction algorithm called regularized Kernel Local Linear Embedding
(rKLLE) for highly structured data. It is built on the original LLE by
introducing kernel alignment type of constraint to effectively reduce the
solution space and find out the embeddings reflecting the prior knowl-
edge. To enable the non-vectorial data applicability of the algorithm, a
kernelized LLE is used to get the reconstruction weights. Our experi-
ments on typical non-vectorial data show that rKLLE greatly improves
the results of KLLE.

1 Introduction

In recent years it has been undergoing a large increase in studies on dimension-
ality reduction (DR). The purpose of DR is mainly to find the corresponding
counterparts (or embeddings) of the input data of dimension D in a much lower
dimensional space (so-called latent space, usually Euclidean) of dimension d
and d ≪ D without incurring significant information loss. A number of new
algorithms which are specially designed for nonlinear dimensionality reduction
(NLDR) have been proposed such as Local Linear Embedding (LLE) [1], Lapa-
cian Eigenmaps (LE) [2], Isometric mapping (Isomap) [3], Local Tangent Space
Alignment (LTSA) [4], Gaussian Process Latent Variable Model (GPLVM) [5]
etc. to replace the simple linear methods such as Principal Component Analysis
(PCA) [6], Linear Discriminant Analysis (LDA) [7] in which the assumption of
linearity is essential.

Among these NLDR methods, it is worth mentioning those which can han-
dle highly structured or so-called non-vectorial data [8] (for example video se-
quences, proteins etc which are not readily converted to vectors) directly without
vectorization. This category includes the “kernelized” linear methods. Typical
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methods are Kernel PCA (KPCA) [9], Generalized Discriminant Analysis (GDA
or KLDA) [10]. The application of the kernel function not only introduces certain
nonlinearity implied by the feature mapping associated with the kernel which
enables the algorithms to capture the nonlinear features, but also embraces much
broader types of data including the aforementioned non-vectorial data. Mean-
while, kernels can also be regarded as a kind of similarity measurements which
can be used in measurement matching algorithms like Multi-Dimensional Scal-
ing (MDS) [11]. A typical example is Kernel Laplacian Eigenmaps (KLE) [12].
Because these methods can directly use the structured data through kernel func-
tions and hence bypass the vectorization procedure which might be a source of
bias, they are widely used in complex input patterns like proteins, fingerprints
etc.

Because of its simplicity and elegant incarnation of nonlinearity from local
linear patches, LLE has attracted a lot of attention. However, it has two obvious
drawbacks. Firstly, it can only take vectorial data as input. Secondly, it does
not exploit the prior knowledge of input data which is reflected by its somewhat
arbitrary constraints on embeddings. As more and more non-vectorial data ap-
plications are emerging quickly in machine learning society, it is very desirable to
endow LLE the ability to process this type of data. Fortunately, it is not difficult
since only inner product is involved in LLE formulation. The “kernel trick ” [13]
provides an elegant solution to this problem. By introducing kernel functions,
LLE can accept non-vectorial data which can be called KLLE. Moreover, another
benefit from kernel approaches is its similarity measure interpretation which can
be seen as a prior knowledge. We will utilize this understanding to restrict the
embeddings and hence provide a solution to the second problem. This is done
by incorporating kernel alignment into the current LLE as a regularizer of the
embeddings which enforces the similarity contained in kernel function to be du-
plicated in lower dimensional space. It is equivalent to imposing a preference on
the embeddings which favors such configuration that shares the same similarity
relation (reflected by kernel function) as that among original input data. We
conclude it as a new algorithm called regularized KLLE (rKLLE) as the main
contribution of this paper. Our experiments on some typical non-vectorial data
show that rKLLE greatly improves the results of KLLE.

This paper is organized as follows. Next section gives a brief introduction to
LLE and we deduce the formulation of KLLE in sequel. rKLLE is developed in
Section 4, followed by experimental results to show its effectiveness. Finally we
conclude this paper in last section with highlight of future research.

2 Local Linear Embedding

We use following notations throughout the paper. yi and xi are the i-th input
datum and its corresponding low-dimensional embedding, and Y and X the
collection of input data and embeddings respectively. Generally, X is a matrix
with data in rows.



Locally Linear Embedding (LLE) preserves the local linear relations in the
input data which is encapsulated in a weight matrix W. The algorithm starts
with constructing a neighborhood graph by n nearest neighboring and then W
([W]ij = wij) is obtained by

W = arg min
W

N∑
i=1

∥yi −
n∑

j=1

wijyij∥2 (1)

subject to
∑

j wij = 1 and wij = 0 if there is no edge between yi and yj in the
neighborhood graph. yij is the j-th neighbor of yi.

Finally, the lower-dimensional embeddings are estimated by minimizing∑
i

∥xi −
∑
j

wijxj∥2. (2)

with respect to xi’s under the constraints
∑

i xi = 0 and 1
N

∑
i xix

⊤
i = I to

remove arbitrary translations of the embeddings and avoid degenerate solutions.
By doing this, the local linearity is reproduced in latent space.

3 Kernelized LLE

Actually, because of the quadratic form (1), wij ’s are solved for each yi separately
in LLE. So we minimize ∣∣yi −

∑
j wijyij ∣∣2 with respect to wij ’s which is∑

j

∑
k

wij(yik − yi)
⊤(yij − yi)wik = w⊤i Kiwi (3)

subject to e⊤wi = 1 where e is all 1 column vector. wi is the vector of the recon-
struction weights of xi, i.e. wi = [wi1, . . . , win] and Ki is the local correlation
matrix whose jk-th element is (yik − yi)

⊤(yij − yi).
Apparently, only inner product of input data is involved in (3). By using

the “kernel trick” [13], the inner product can be replaced by any other positive
definite kernel functions. Hence we substitute every inner product by a kernel
ky(⋅, ⋅) in the formation of Ki and have

[Ki]jk = ky(yik ,yij )− ky(yik ,yi)− ky(yij ,yi) + ky(yi,yi).

Because the kernel function implies a mapping function � from input data space
to feature space and ky(yi,yj) = �(yi)

⊤�(yj), we are actually evaluating the
reconstruction weights in feature space. After we get the reconstruction weights,
we can go further to solve (2) to obtain the embeddings in latent space.

We proceed to minimize (3) with equality constraint using Lagrange multi-
plier (we ignore the subscript i for simplicity):

J = w⊤Kw − �(w⊤e− 1)



in which stationary point is the solution. ∂J
∂w = 2Kw − �e = 0 leads to w =

1
2�K−1e. With w⊤e = 1, we have � = 2

e⊤K−⊤e
. What follows is

w =
K−1e

e⊤K−⊤e
.

The last thing is the construction of the neighborhood graph. It is quite
straightforward in fact. Since kernel function represents similarity, we can just
simply choose nmost similar input data around yi. This corresponds to searching
n nearest neighbors of �(yi) in feature space because distance can be converted
to inner product easily.

4 Regularized KLLE

Because of introducing kernel functions, not only can we process non-vectorial
data in LLE, but also we are provided similarity information among input data
which can be further exploited. The constraints used in the KLLE force the
embeddings to have standard deviation. Apparently, this preference is imposed
artificially on the embeddings which may not reflect the ground truth. This
raises a question: can we use something more “natural” instead? Combining
these points gives rise to the idea of replacing current constraint in KLLE by
similarity matching.

The idea is implemented in following steps. Firstly, we pick up a similarity
measure (kx(⋅, ⋅), another kernel) in latent space which is matched to its counter-
part in input space i.e. ky(⋅, ⋅). Secondly, the similarity matching is implemented
by kernel alignment. Thirdly, we turn the constrained optimization problem to
regularization and therefore, the new regularized KLLE (rKLLE) minimizes the
following objective function:

L =
∑
i

∣∣xi −
∑
j

wijxij ∣∣2 − �
∑
ij

kx(xi,xj)ky(yi,yj) (4)

+ �
∑
ij

k2x(xi,xj).

The second and third regularization terms are from similarity matching4. � and
� are positive coefficients which control the strength of the regularization. What
is expressed in (4) is that the embedded data will retain the same local linear
relationships as input data under the constraint that they should also exhibit
the same similarity structure as that in input space.

In rKLLE, the prior knowledge provided by ky(⋅, ⋅) is fully used in latent
space and hence avoids from introducing other “rigid” assumptions which may
be far away from the truth. There is also much room to accommodate additional
priors due to its flexible algorithmic structure. For example if we know that the

4 The second term is kernel alignment and last term is designed to avoid trivial solution
such as infinity.



embeddings are from Gaussian distribution, we can add another regularizer on
X (e.g.

∑
i x⊤i xi) at the end to incorporate this. An important issue related to

the similarity match is the selection of the kx(⋅, ⋅). In practice, we can choose
RBF kernel, kx(xi,xj) = 
 exp(−�∣∣xi−xj ∣∣2), because it has strong connection
with Euclidean distance and this connection can be fine tuned by choosing ap-
propriate hyper-parameters. Fortunately, the optimization of hyper-parameters
can be done automatically as shown below.

The computational cost of rKLLE is higher than KLLE since (4) does not
have close form solution. The above objective function can be written in simpler
matrix form

L = tr[(X−WX)⊤(X−WX)]− �tr[K⊤XKY ] + �tr[K⊤XKX ]

= tr[(X⊤MX)]− �tr[K⊤XKY ] + �tr[K⊤XKX ]

where KX and KY are the kernel Gram matrices of kx(⋅, ⋅) and ky(⋅, ⋅) respec-
tively, M = (I−W)⊤(I−W) and I is the identity matrix. We have to employ
gradient descent based solver here. For the derivative, we first obtain

∂L2,3

∂KX
= −2�KY + 2�KX ,

where L2,3 is the second and third term of L. Then we get
∂L2,3

∂X by chain rule
(it depends on the form of kx). The derivative of the first term of L is 2MX.
By putting them together, we can obtain ∂L

∂X . The derivative of L with respect
to hyper-parameters of kx, denoted by Θ, can be calculated in the same way.
Once we have the current version of X, the gradient can be evaluated. Therefore,
optimization process can be initialized by a guess of X and Θ. The initial Θ
can be arbitrary while starting X can be provided by other DR methods as long
as non-vectorial data are applicable. From the candidates of gradient descent
solvers, we choose SCG (scaled conjugate gradient) [14] because of its fast speed.

5 Experimental Results

To demonstrate the effectiveness of the proposed rKLLE algorithm, the exper-
iments of visualizing non-vectorial data (the target latent space is a normal
2-D plane) were conducted on images (MNIST handwritten digits5 and Frey
faces6) and proteins (from SCOP database, Structural Classification Of Pro-
tein7). Proteins are recognized as typical highly structured data. The results of
other algorithms are also shown for comparison.

5.1 Parameters Setting

rKLLE has some parameters to be determined beforehand. Through empirical
analysis (performing batches of experiments on different data sets varying only

5 MNIST digits are available at http://yann.lecun.com/exdb/mnist/
6 Available at http://www.cs.toronto.edu/∼roweis/data/.
7 SCOP data is available at http://scop.mrc-lmb.cam.ac.uk/scop/.



the parameters), we found the proposed algorithm is not sensitive to the choice
of the parameters, as long as the conjugate gradient optimization can be carried
out without immature early stop. So we use the following parameters throughout
the experiments which are determined by experiments: � = 1e−3 and � = 5e−5
and n = 6 in rKLLE neighborhood graph construction. The minimization will
stop after 1000 iterations or when consecutive update of the objective function
is less than 10−7. kx(⋅, ⋅) is RBF kernel and initialization is done by KPCA8.

5.2 Handwritten Digits

A subset of handwritten digits images is extracted from the MNIST database.
The data set consists of 500 images with 50 images per digit. All images are
in grayscale and have a uniform size of 28 × 28 pixels. It is easy to convert
them to vectors. So we can also present the results of other DR algorithms for
comparison. However, in rKLLE, they were treated as non-vectorial data as bags
of pixels [15] and use the shape context based IGV (SCIGV) kernel [16] which is
specially designed for shapes in images and robust to the translation of shapes
in images.

The experimental results are presented in Figure 1 and legend is in panel (c).
Visually, the result of rKLLE is much better than others. The 2D representations
of rKLLE reveal clearer clusters of digits than others. To give a quantitative
analysis on the quality of the clusters, we use the leave-one-out 1 nearest neighbor
(1NN) classification errors as in [5]. The smaller the number of errors, the better
the method. The 1NN classification errors of different methods are collected in
Table 1 and the result of each method is the best it can achieve by choosing
the optimal parameters of the method (as shown in Figure 1) according to this
standard. It is interesting to observe that rKLLE is the best regarding this
standard. It shows clearly that rKLLE improves the result of KLLE both visually
and quantitatively.

Algorithm rKLLE KLLE KLE KPCA Isomap LTSA

error 110 171 157 333 222 232

Table 1: Comparison of leave-one-out 1NN classification errors of different algo-
rithms.

5.3 Proteins

Another promising application of DR is in bioinformatics. Experiments were
conducted on the SCOP database. This database provides a detailed and com-
prehensive description of the structural and evolutionary relationships of the

8 We choose KPCA instead of KLLE because this configuration yields better results
in terms of leave-one-out 1NN classification errors.
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Fig. 1: The result of different algorithms on MNIST handwritten digits database.
The parameters of algorithms are chosen to achieve lowest 1NN classification
errors.



proteins of known structure. 292 proteins from different superfamilies and fam-
ilies are extracted for the test. The kernel for proteins is MAMMOTH kernel
which is from the family of the so-called alignment kernels whose thorough anal-
ysis can be found in [17]. The corresponding kernel Gram matrices are available
on the website of the paper and were used directly in our experiments.

Visualizing proteins on the 2D plane is of great importance to facilitate re-
searchers to understand the biological meaning. The representation of proteins
on the 2D plane should reflect the relational structure among proteins, that
is, proteins having similar structures should be close while those with different
structures should be far away.

The results are plotted in Figure 2. The results of other non-vectorial data
applicable algorithms are also presented for comparison. Each point (denoted as a
shape in the figure) represents a protein. The same shapes with the the same color
are the proteins from same families while the same shapes with different colors
represent the proteins from different families but from the same superfamilies.

rKLLE reveals the fact that proteins from the same families congregate to-
gether as tight clusters and hence gains better interpretability. Interestingly, it
also reveals the truth that the proteins from the same superfamily but different
families are similar in structure, which is reflected by the fact that the corre-
sponding groups (families) are close if they are in the same superfamily (same
shape). Others fail to uncover these.

5.4 rKLLE on Image Manifold Learning

Lastly, we present the result of rKLLE on image manifold learning. The objects
are 1965 images (each image is 20 × 28 grayscale) of a single person’s face ex-
tracted from a digital movie which are also used in [1]. Since the images are well
aligned, we simply use the linear kernel as ky(⋅, ⋅) in this case.

Two facts can be observed from the result shown in Figure 3. First, it demon-
strates group property of the faces. The faces with similar expressions and poses
congregated as clusters. Second, The embeddings of the faces in 2D latent space
indicate the possible intrinsic dimensionality of the images: expression and pose.
From left to right and top to bottom, we can read the natural transition of the
expression and pose. Therefore we can conjure that the horizontal axis might
roughly correspond to the poses and vertical one to expressions and highly non-
linearity is apparently coupled in the axes. However, the real parametric space
underpinning those faces images still needs further investigation.

6 Conclusion

In this paper, we proposed the regularized KLLE in which the original constraint
of embeddings is replaced by a more natural similarity matching. It exploits the
given information of the input data through regularization. It is a showcase of in-
corporating prior knowledge into dimensionality reduction process. Although the
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Fig. 2: The results of different algorithms with MAMOTH kernel. The parame-
ters of algorithms are chosen to achieve lowest 1NN classification errors.

computational cost is higher than KLLE or LLE, the improvement is significant
from the results of experiments on typical non-vectorial data.

Due to the flexible structure of rKLLE, it is possible to handle other prior
knowledge like class information. So it is likely to extend it to supervised or
semisupervised learning setting. This will be our future research.
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