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Abstract: We introduce a novel, Bayesian nonparametric, infinite-mixture
regression model. The model has unimodal kernel (component) densities,
and has covariate-dependent mixture weights that are defined by an infinite
ordered-category probits regression. Based on these mixture weights, the
regression model predicts a probability density that becomes increasingly
unimodal as the explanatory power of the covariate (vector) increases, and
increasingly multimodal as this explanatory power decreases, while allowing
the explanatory power to vary from one covariate (vector) value to another.
The model is illustrated and compared against many other regression mod-
els in terms of predictive performance, through the analysis of many real
and simulated data sets.
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1. Introduction

In terms of Bayesian inference, a prior is nothing more than a probability mea-
sure on distribution functions. More common in parametric inference is that one
is putting all the mass of the prior onto specific shaped distribution functions,
such as the normal, and hence the probability measure need only be assigned
to the mean and variance parameters. In nonparametric problems, on the other
hand, the need is to put a probability measure on a variety of shapes of dis-
tribution function and the prior in such cases is characterized by the random
distribution functions generated from the prior. The Dirichlet process is one such
random type of construction which generates distribution functions (Ferguson,
1973). The obvious drawback to these constructions is that discrete distribution
functions are constructed, and hence there has been an interest in constructing
random distribution functions which admit density functions. This is provided
by means of the DP mixture model (Lo, 1984). Indeed, Bayesian nonparametric
inference has become routinely employed in a wide range of application areas,
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with the DP mixture model being the most widely-used Bayesian nonparametric
model.

A considerable amount of current research has extended such nonparametric
models to the regression case. The vast majority of this research is based on
infinite-mixture models that take on the general form:

f(y|x) =
∫
f(y|x, θ)dGx(θ) =

∞∑

j=1

f(y|x, θj(x))ωj(x), (1)

where the random mixing distribution,

Gx(·) =
∞∑

j=1

ωj(x)δθj(x)(·), (2)

depends on covariates x = (x1, . . . , xp)
⊺, the mixture weights ωj(x) sum to 1 at

every x ∈ X , and δθ(·) denotes a degenerate distribution with point mass at θ.
The Bayesian regression model (1) is completed by the specification of a prior
distribution on the weights {ωj(x)}j=1,2,... and atoms {θj(x)}j=1,2,..., which are
infinite collections of processes indexed by the x-space. The Bayesian nonpara-
metric regression model (1) is very general and encompasses many regression
models; including fixed-effects and random-effects linear and generalized linear
models (GLMs), finite-mixture latent-class and hierarchical mixtures-of-experts
regression models, as well as infinite mixtures of Gaussian process regressions.

Nearly all of the research on the general model (1) has focused on Dependent
Dirichlet process (DDP) (MacEachern, 1999; 2000; 2001). One popular approach
to DDP modeling specifies a regression model for the atoms θj(x), but assumes

covariate-independent stick-breaking weights ωj = υj
∏j−1
k=1(1 − υk), with beta

random variates υj ∼ind be(aj , bj), as in the ordinary DP and other stick-
breaking processes (Ishwaran & James, 2001). For example, the ANOVA/linear
DDP model specifies the linear structure θj(x) = x⊺βj with βj ∼i.i.d. G0

for normal kernel densities f(y|x, θj(x)) := n(y|θj(x), σ2) (e.g., De Iorio et al.
2004). Similar models take θj(x) ∼ind G0x, with G0x a general Gaussian process
(e.g., Gelfand et al. 2005). Another DDP modeling approach specifies covariate-

dependent stick-breaking weights of the form ωj(x) = υj(x)
∏j−1
k=1(1 − υk(x)),

with υj ∼ Qj and υj(x) : X → [0, 1] (e.g., Griffin & Steel, 2006; Dunson &
Park, 2008; Rodŕıguez & Dunson, 2011). Yet another DDP modeling approach
specifies a DP multivariate normal mixture model for (x, y), for inference of
the conditional density f(y|x) (Müller et al. 1996; Walker & Karabatsos, 2012).
Other DDP-based models include the hierarchical DP (Teh et al., 2006), and
the nested DP (Rodŕıguez, et al. 2008). An alternative, non-DDP based model
of the form (1) assumes a covariate-dependent geometric distribution for the
weights (Fuentes-Garćıa et al. 2010).

Several Bayesian nonparametric regression models are not mixture models
of the form (1). They include regression models that are based on a continu-
ous mixture distribution G that is assigned a mixture of Pólya trees (MPT),
with G ∼

∫
PT(α,G0(θ))dP (θ), where PT(α,G0(θ)) a finite Pólya tree prior
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(Hanson, 2006), or based a dependent continuous mixing distribution Gx that
is modeled by another tailfree process (Jara & Hanson, 2011). They also include
models that are based on either a logistic Gaussian process for (x, y) (Tokdar
et al., 2010), as well as product partition models (Müller & Quintana, 2010;
Park & Dunson, 2010; Müller et al., 2011; Holmes et al. 2005).

While we have briefly summarized the models for Bayesian nonparametric
regression, we also need to make some pertinent comments. In the parametric
case, it is typical that the extent to which the covariates are influencing the
outcomes is via the modeling of changes in mean and variance of a family of
distributions, such as the normal. If one models normal data without covariates
then one can anticipate a level of variance. If now relevant covariates are included
into the model as a linear structure then one must anticipate that the variance
estimator is reduced. And often quite substantially. So one notices that one
is looking for a reduction in the variance of the error distribution when the
covariates are explaining the outcomes.

To us at least, this idea appears lacking in the current Bayesian nonparamet-
ric regression models. The probability model for f(y|x) is as flexible as it is for
the model one would employ without covariates, i.e. f(y). This is evident simply
by looking at (1) and (2). So what is the equivalent feature we are looking for to
reduce in the nonparametric case and which should be modeled explicitly? Since
the nonparametric model without covariates has an infinite number of mixtures
(and hence an arbitrary number of modes), which is clearly the dominating
aspect of the model, it is the number of modes that we are seeking to reduce
when modeling the covariates. Specifically we should be allowing the model to
indicate the number of modes at each covariate.

Hence, with normal linear regression we aim to reduce the variance; with
nonparametric regression we aim to reduce the number of modes. Here we fur-
ther elaborate and explain this particular choice. If at any particular x it is that
f(y|x) is highly multimodal then prediction at or near this x is problematic.
Multimodes are commonly associated with different behavior or clusters and
so prediction here would be lacking conciseness. Historically, we would expect
covariates to have been collected which allowed f(y|x) to be modeled as a close
to unimodal density function for each x. To make this argument more concrete,
let us consider an illustration. Suppose at each x the different modes of f(y|x)
correspond to an outcome based on some unobserved state of the individual. Pre-
diction then becomes almost meaningless since one would actually be predicting
by mixing over a number of possible states. It would in this case be incumbent
on the experimenter to collect the necessary information for the individual, i.e.
the missing information (covariate) to properly classify people and make sense
of prediction. Hence, a unimodal prediction, and the necessary covariate infor-
mation to effect this, are essential. This is not about collecting any covariate;
just those which make and ensure meaningful prediction. A stronger point of
view is that prediction with multimodal outcomes is practically meaningless.
Each mode representing something different.

Current models seem not to be dealing with this issue and rather model the
maximum number of modes needed to cover all covariate values. Our model



Adaptive-modal Bayesian nonparametric regression 2041

explicitly models the number of modes at each covariate. So a small or even
single mode if the covariate at a particular location is explaining a lot; and
many modes if the covariate at another location is explaining little.

Therefore, in this paper, we introduce a novel Bayesian nonparametric re-
gression model, which has a random density of the form (1). Specifically, the
covariate dependent mixture weights ωj(x) are modeled by an ordered-category
probits regression for the infinite component labels j = 0,±1,±2, . . . , and the
kernels f(y|θj) are chosen to be unimodal kernel densities that are independent
of x.

Our basic modeling assumption is that the covariate x is explaining more
precisely where the outcome y is to be found. We can assume, at one end of the
scale, that precision is such that the regression density function is unimodal. So
given an x the model will determine which fj(·|θ) = f(·|θj) the y comes from.
Hence, we would model:

f(y|x) =
∑

j

I(x ∈ Aj) fj(y)

for some set of disjoint sets (Aj)
∞
j=1 which cover all possible x, where I(·) denotes

the indicator function. This effectively gives a mixture model with weights

ωj(x) = I(x ∈ Aj).

It is interesting to note that if we attempt to mix over the covariates, assuming
they have a density function φ(x), then we would have

f(y) =
∑

j

ωj fj(y),

where

ωj =

∫

Aj

φ(dx) ,

and hence returning the typical Bayesian nonparametric mixture model with
no covariates. On the other hand, providing the same type of nonparametric
distribution for f(y|x) as f(y) seems to make little sense and suggests that the
covariate x is explaining little, if anything.

At the other end of the scale, if we assume the covariates are explaining
nothing, then we would expect the model for y given x to be the same as
a model one would select for y alone without covariates. The feature of our
model is that we have a parameter which models this explanatory aspect of the
covariates. So we can have f(y|x) as unimodal on the one hand and f(y|x) as
an infinite-mixture model on the other hand. Clearly, in a Bayesian context, we
allow a prior for this key parameter which lets the data itself determine the level
of explanation.

Our model for the ωj(x) is based on the Gaussian distribution function and
will be presented in Section 2. Given the infinite number of (fj(y)), we see that
there is no reason why these densities should also depend explicitly on x and
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perhaps the closest model to our own is provided by the product partition model
of Müller and Quintana (2010).

Describing the layout of the paper: In Section 2 we fully describe our re-
gression model, and in Appendix A we describe the Markov chain Monte Carlo
(MCMC) methods for estimating its posterior distribution. In Section 3, we il-
lustrate our model through the analysis of many real and simulated data sets. In
so doing, we compare the predictive performance of two important versions of
our models, against many other regression models of common usage. Section 4
concludes with a discussion.

2. The Regression Model

Using our motivation for the mixture weights given in Section 1, our Bayesian
density regression model is given by:

f(y|x) =
∫
f(y|θ)dGx(θ) =

∞∑

j=−∞

f(y|θj)ωj(ηω(x), σω(x)), (3)

with mixture weights

ωj(ηω(x), σω(x)) = Φ({j − ηω(x)}/σω(x))− Φ({j − 1− ηω(x)}/σω(x)),

where Φ(·) is the standard normal c.d.f. and the f(y|θj) (j = 0,±1,±2, . . .)
are chosen to be unimodal component (kernel) densities. Also, ηω(x) : R

p→ R

and σω(x) : Rp→ R
+ are random functions, with p the number of covariates

in the vector x. It is easy to see that the weights sum to 1 at every x ∈ X .
The model is completed by the specification of prior densities on the θj and on
(ηω(x), σω(x)).

These ideas are illustrated in Figure 1, which plots the mixture weights
and the corresponding density of our model, f(y|x), for a range of σω(x),
given ηω(x) = .7, and assuming normal kernel density functions f(yi|θj) =
n(yi|µj , σ2

j ), given samples of (µj , σ
2
j ) from a normal-gamma distribution. As

shown, the conditional density f(y|x) is unimodal when σω(x) is small, and
f(y|x) becomes more multimodal as σω(x) increases. The parameter σω(x) in-
dicates the degree to which the covariates x explains the dependent variable
Y . At one extreme, a small value of σω(x) indicates that the covariates highly
explain the dependent variable, meaning f(y|x) is unimodal, and modeled as
one of the unimodal kernel densities f(y|θj). Mathematically, a small σω(x) cor-
responds to a mixture weight ωj(ηω(x), σω(x)) that is near 1 for j − 1 < η < j,
with all the other mixture weights ωj(ηω(x), σω(x)) being near 0 for η < j − 1
or η > j, and then f(y|x) ≈ f(y|θj). This is because the function Φ(η/σ) is
approximately 0 for η < 0, while it is approximately 1 for η > 0. At the other
extreme, a large value of σω(x) indicates that x explains little in the dependent
variable Y . Specifically, as σω(x) ↑ ∞, the mixture weights become more spread
out and then f(y|x) becomes more multimodal, and then we recover typical
Bayesian density regression models.
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Fig 1. Density f(y|x) for σω(x) = 1/20, 1/2, 1, 2, given ηω(x) = .7 and given sampled values
of (µj , τ2j ) for normal (unimodal) kernel densities.

It is possible to specify a prior on σω(x), to match a prior belief on the evo-
lution of the number of modes in the dependent response Y as a function of
the covariates x. To explain, let us suppose that for a particular x it is that
ηω(x) = 0, so the corresponding key j is j = 0. Different ηω(x) will lead to dif-
ferent key j. If we want approximately 2Nx+1 modes at x, then we would want

ω−Nx
(0, σω(x)) + · · ·+ ω0(0, σω(x)) + · · ·+ ωNx

(0, σω(x)) = .9,

for example. This could also be .95, and so on, and in general write as 1 − α.
Then we need to choose σ(x), at this x for which

1√
2π

Nx/σ(x)∫

−Nx/σ(x)

e−0.5s2ds = 1− α.

Thus

σ(Nx) =
Nx

Φ−1(1 − α/2)
.

Hence, the prior for would have expectation σ(Nx) and a variance to express the
uncertainty in this choice. More generally, at a particular x, if ηω(x) is given,
then the key j is the one closest to ηω(x). If 2Nx+1 modes are sought then, sim-
ilarly, we would now choose σω(x) to have mean given by σ(Nx) which satisfies

1− α = Φ

(
Nx + ηω(x)

σ(Nx)

)
− Φ

(−Nx + ηω(x)

σ(Nx)

)
.

In the present study, we focus on linear structures for the mixture weights,
namely ηω(x) = (1,x⊺)βω and σω(x) = exp[(1,x⊺)λω]

1/2, along with mul-
tivariate normal prior (βω,λω) ∼ n(βω,λω|mω,Vω). While it is possible to
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consider more flexible Gaussian process priors, the choice of linear structure
for (ηω(x), σω(x)) leads to more computational tractability in the MCMC es-
timation of the posterior distribution of the model, especially when either the
sample size (n) and the number of predictors (p) is large. Also, we argue that
compared to Bayesian density regression models that assume stick-breaking mix-
ture weights, the mixture weights ωj(ηω(x), σω(x)) of our model are more inter-
pretable because they follow the form of a familiar, ordered-probits regression,
for infinitely many categories j = 0,±1,±2, . . ..

As for choices of the component densities f(y|θj), we may consider either
of two cases. On the one hand, we may follow common practice and spec-
ify the components to be normal densities, that is f(y|θj) := n(y|µj , σ2

j ) for
j = 0,±1,±2,±3, . . ., with µ := (µj |j = 0,±1,±2, . . .) and σ := (σj |j =
0,±1,±2, . . .) assigned conjugate normal-gamma prior densities, with the gamma
density parameterized by shape (α) and rate (β). The full prior distribution of
our normal kernel regression model is:

π(ζ) = π(µ,σ2,βω,λω)

=





∞∏

j=−∞

n(µj |µµj , σ2
µj)ga(σ

−2
j |ασj , βσj)



 n(βω,λω|mω,Vω).

On the other hand, we may specify each kernel f(y|θj) as a more flexible, gen-
eral unimodal density, modeled by a scale mixture of uniform (un(·|·)) densities
with mode (or mean) µj , defined by

f(y|θj) :=
∫

un(y|µj − ψ, µj + ψ)dPj(ψ). (4)

The mixing distribution Pj is assigned a nonparametric, stick-breaking (SB)
prior Pj ∼ SB(aj = (alj)l≥1,bj = (blj)l≥1, P0j) (Ishwaran & James, 2001), in
order to fully support the entire class of unimodal densities f(y|θj) (Brunner,
1992). Hence, Pj and the clustering structure are allowed to change with j. This
SB prior is assigned Pareto baseline distribution

P0j(ψ) = Pa(ψ|αψj , βψj),
along with an independent prior on the mean (or mode) µj . In these terms, recall
that each random Pj ∼ SB(aj ,bj , P0j) is constructed by Pj(·) =

∑∞
l=1 ωljδψlj

(·),
given ψlj ∼ind P0j = Pa(αψj , βψj) (l = 1, 2, . . .) and stick-breaking mixture

weights ωlj = υlj
∏j−1
k=1(1 − υlk), with υlj ∼ind be(alj , blj) (l = 1, 2, . . .) (Sethu-

raman, 1994). For example, the two parameter Poisson-Dirichlet process is given
by aj = 1 − a and bj = b + ja for some 0 ≤ a < 1 and b > −a (Perman, et al.
1992), with the choice a = 0 and b = α resulting in the Dirichlet process hav-
ing baseline (expected) distribution P0j and precision parameter α (Ferguson,
1973). Then, the general unimodal kernel in (4) can be re-written as:

f(y|θj) :=
∞∑

l=1

un(y|µj − ψlj , µj + ψlj)ωlj =

∞∑

l=1

I(µj − ψlj < y < µj + ψlj)

2ψlj
ωlj .

(5)
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Skewness can be introduced if felt necessary by making different the upper and
lower limits of the uniform distribution. In all, the full prior density of our
uniform-mixture (general unimodal) kernel regression model is:

π(ζ) = π(µ,ψ,υ,βω,λω) = n(βω,λω|mω,Vω)
∞∏

j=−∞

n(µj |µµj , σ2
µj)

×
{

∞∏

l=1

be(υlj |alj , blj)pa(ψlj |αψj , βψj)
}
.

In most applied regression settings, there is little prior information available
about the parameters of the given regression model. Therefore, in such common
settings where it is of interest to apply either version of our Bayesian non-
parametric regression model, we may specify high prior (finite) variance for the
model parameters ζ, in an attempt to specify a non-informative prior. Indeed,
the specification of such a proper diffuse prior reflect a standard procedure in
Bayesian analysis (e.g., see Gelman et al., 2008). So for our regression model,
the following proper diffuse (high-variance) priors may be considered. We may
assume a multivariate normal n(0, diag(105I2(p+1))) prior for the parameters
(βω ,λω) of the mixture weights ωj(ηω(x), σω(x)), to reflect high prior uncer-
tainty about the number of modes in f(y|x). For our normal kernel regression
model, we may assume gamma priors σ−2

j ∼iid ga(ασj = 1, βσj = .001). For our
uniform-mixture kernel regression model, we may assume the Poisson-Dirichlet
process as a diffuse prior for the infinite uniform scale-mixtures (i.e., alj = .5
and blj = .5 + .5l, for υlj ∼ind be(alj , blj) and l = 1, 2, . . .; j = 0,±1,±2, . . .),
along with Pareto prior parameters (αψj = 1, βψj = .01) for ψlj . Also, for the
µj , the normal prior mean and variance parameters (µµj , σ

2
µj) can be chosen

according to prior knowledge about the first two moments of the dependent re-
sponse Y . For example, if the observed response data have been standardized to
values yi (i = 1, . . . , n) having mean zero and variance 1, then we could choose
(µµj = 0, σ2

µj = 3). Of course, the choice of priors may vary over data sets in
practice, as appropriate.

According to standard arguments of probability theory involving Bayes’
theorem, given a sample set of data Dn = {(xi, yi)}ni=1, having likelihood∏n
i=1 f(yi|xi; ζ) under our regression model, and given a proper prior density

π(ζ) defined over the space Ωζ of ζ, the posterior density of ζ is proper and
given by:

π(ζ|Dn) ∝
n∏

i=1

f(yi|xi)π(ζ) (6)

up to a proportionality constant. Then given any chosen x, the posterior pre-
dictive density of Y is defined by

fn(y|x) =
∫
f(y|x; ζ)π(ζ|Dn)dζ. (7)

Such posterior densities can be estimated via the implementation of standard
Gibbs MCMC sampling methods for infinite-dimensional models, which involve
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the use of strategic latent variables (Kalli, Griffin, & Walker, 2010). For more
details, see Appendix A.

It is possible to use many variations of the base regression model, after mak-
ing straightforward modifications to the model’s priors and MCMC algorithm.
Again, see Appendix A for more details. Modeling variations can, at least, in-
volve either: the multiple imputation of censored dependent responses yi; the
analysis of a binary or ordinal dependent variable via the modeling of latent
dependent responses; the modeling of covariate-dependent kernel densities; and
the specification of spike-and-slab priors for βω, for automatic Bayesian vari-
able selection. Also, a multi-level version of our regression model, assigned a
prior {(βωq,λωq)}Qq=1 ∼ π(βω,λω), can be used for settings where multiple
observations are obtained for each one of Q populations, and the goal is to bor-
row information across them, while assuming exchangeability both between and
within populations.

3. Illustrations

In this section, we illustrate our normal kernel regressionmodel, and our uniform-
mixture kernel regression model, through the analysis of 24 real data sets, and
the analysis of 40 simulated data sets. In Section 3.1, we illustrate our models
through the analysis of student literacy performance data, involving several co-
variates describing the student, and the student’s classroom, teacher, and school.
In Section 3.2, we illustrate our models through the analysis of data from a med-
ical experiment, involving a binary (0-1) dependent response, with a small num-
ber of covariates. In Section 3.3, we describe the results of the simulation study,
to investigate the predictive performance of our regression models, for a wide
range of data-generation models. They include data-generation models where
the dependent variable density f(y|x) is unimodal, and include data-generation
models where the number of modes in f(y|x) depends on x. Finally, in Section
3.4, we illustrate our models through the analyses of 22 more real data sets,
which come from a range of scientific fields, and vary widely both in terms of
the sample size (n), the number of covariates (p). Throughout this Section 3, we
compare the predictive performance of our regression models, against the per-
formance of many other current Bayesian and non-Bayesian regression models
of common usage. Specifically, these other models are of widespread availability
via publicly-contributed software packages.

For each model m, of a set of M models (m = 1, . . . ,M) that are fit to a
common data set Dn, we measure predictive performance using the mean-square
error criterion

Dt(m) = t

n∑

i=1

{yi − En(Yi|xi,m)}2 +
n∑

i=1

Varn(Yi|xi,m) (8a)

= GF (m) + Pen(m) (8b)

for a fixed choice t ∈ [0, 1] (Laud & Ibrahim, 1995; Gelfand & Ghosh, 1998).
Then among the M models compared, the model attaining the smallest value
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of Dt(m) is identified as the model with the best predictive performance. The
criterion (8a) is based on predictive means and variances

En(Yi|xi,Dn,m) =

∫
yfn(y|xi,m)dy,

Varn(Yi|xi,m) =

∫
{y − E(Yi|xi,m)}2fn(y|xi,m)dy,

respectively, given the the model’s posterior predictive density, fn(y|xi,m). The
first term GF (m), in (8a), measures the model’s goodness-of-fit to the n data
samples. The second term, Pen(m), is a penalty that is large when the model
either over-fits or under-fits the data Dn. For a non-Bayesian model having
point estimate ζ̂n = ζ̂(Dn), the criterion can be estimated via Ên(Yi|xi,m) =

E(Yi|xi,m, ζ̂n) and V̂arn(Yi|xi,m) = Var(Yi|xi,m, ζ̂n) (i = 1, . . . , n). Gelfand
and Ghosh (1998) showed that the criterion (8a) has a Bayesian decision-
theoretic justification for a general choice of t ∈ [0, 1]. See Appendix A for
details on the MCMC estimation methods for Dt(m). In practice, the choice
t = 1 is usually adopted as a standard default for the criterion. For a recent
example, see Gelfand and Banerjee (2010), who used the criterion to compare
different spatial models. But the choice t = 1/2 also has a theoretical justifica-
tion (Ibrahim et al., 2001). When t = 1, it is easy to show that:

D1(m) =

n∑

i=1

En[(yi − y)2|xi,m] =

n∑

i=1

∫
(y − yi)

2fn(y|xi,m)dy.

So the estimate of D1(m) is obtained by generating posterior predictive sample

y
pred(s)
i (i = 1, . . . , n) at each iteration s = 1, . . . , S of the MCMC chain, and
then taking

D̂1(m) =
1

S

S∑

s=1

n∑

i=1

(
yi − y

pred(s)
i

)2

.

For all the data sets analyzed later in subsections 3.1–3.4, Appendix B de-
scribes the software packages and priors that were used to fit all regression
models that were treated as competitors to our normal-kernel model and to
our uniform-mixture-kernel model. Package defaults were used. Throughout this
Section 3, all the competing Bayesian regression models were assigned proper
diffuse prior distributions (see Appendix B). In fact, according to user’s manuals
of the software packages, most of the empirical illustrations of the competing
Bayesian models assumed such priors. For our normal kernel regression model
and our uniform-mixture kernel regression model, we later describe the specific
priors we assumed for µ, for each data set analyzed. But otherwise, throughout
Section 3, we assumed proper diffuse (high variance) priors for all the other
model parameters, as described at the end of Section 2. Also, to analyze the all
the 64 total data sets considered in this Section, all Bayesian regression models
were fit by using between 50,000 to 300,000 MCMC posterior samples. In all
these cases, the estimates of the Dt(m) criterion, for t = 1/2, 3/4, 1, stabilized
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over MCMC iterations according to trace plots, and had sufficiently-small 95%
Monte Carlo (MC) confidence intervals according to a consistent batch means
estimator (Jones et al., 2006), after discarding a few thousand initial burn-in
MCMC samples. It turned out that for all the 24 real data sets and for 39 of
the 40 simulated data sets we analyzed in this manuscript, the decision of the
best predictive model was the same over choices t = 1/2, 3/4, 1, after account-
ing for the 95% MC confidence intervals of the Dt(m) estimates for the models
compared. Thus, henceforth, we will present model comparisons in terms of the
standard D1(m) criterion. Also, to enable comparisons across data sets having
different sample sizes (n), we will occasionally report D1(m)/n.

3.1. School Data

This subsection concerns that analysis of data from the 2006 Progress in Inter-
national Reading Literacy Study (PIRLS), on 565 low-income students from 21
U.S. elementary schools. The dependent variable is student literacy score (named
READSC; mean=45.2, s.d.=9.7). There are 8 covariates: a binary (0,1) indica-
tor of male status (MALE; mean=.5), student age (AGE; mean=10.2, s.d.=.7),
student’s class size (SIZE; mean=22.9, s.d.=4.4), percent of English language
learners in student’s class (ELL; mean=7, s.d.=9.5), student’s teacher years
of experience (TEXP4; mean = 3.01, s.d.=2.7) and education level (TED=5 if
bachelor’s degree; TED=6 if master’s or Ph.D.; mean=5.4, s.d.=.5), the number
of students enrolled in student’s school (ENROL; mean=581.4, s.d.=238.9), and
the student’s school safety rating (SAFE=1 is high; SAFE=3 is low; mean=1.5,
s.d.=.6).

For data analysis, our normal-kernel regression model, and our uniform-
mixture kernel regression model, each assumed prior µj ∼i.i.d. n(50, 100). This
prior reflects previous knowledge that PIRLS literacy scores are scaled to have
mean 50 and variance 100. Also, for each covariate k = 1, . . . , p = 8, the data
xk = (x1k, . . . , xnk)

⊺ had been rescaled to have mean 0 and variance 1. This
centering will allow us to investigate how the literacy score density changes as
a function of one covariate, after controlling for (zeroing out) the effects of all
the 7 other covariates.

According to the D1(m) criteria presented in Table 1, both our normal ker-
nel regression model, and our uniform-mixture kernel regression model, attained
better predictive performance, compared to 15 other regression models of com-
mon usage. (For the normal kernel model, the D1(m) estimate the half-width
of the 95% MC confidence interval was 161, whereas for the uniform-mixture
kernel model, the half-width was 256). For the normal kernel model, the left
column of Figure 2 presents the conditional posterior predictive densities of the
student literacy score, conditional on small (17), medium (25), and large (31)
class sizes, after controlling for (zeroing out) the seven other covariates by fixing
them to their mean z-standardized value of zero. As shown, the median literacy
score decreases with increasing class size, as consistent with previous educa-
tional theory, and the inter-quartile range decreases as well. Also, each of the



Adaptive-modal Bayesian nonparametric regression 2049

Table 1

For the PIRLS data, a comparison of the predictive performance between models.
(GCV=Generalized Cross-Validation; ML=Maximum Likelihood; REML=Restricted

Maximum Likelihood; AIC=Akaike’s (1973) Information Criterion. The other acronyms are
described in Appendix B)
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Fig 2. For the PIRLS data, the posterior predictive density of Y given a value of one covariate,
and given the average of all the 7 other covariates (zero).

three predictive densities have about five modes of literacy scores, suggesting
5 distinct clusters of students with respect to literacy performance. The right
column of Figure 2 presents the conditional posterior predictive densities of the
student literacy score, conditional on 1 year, 4 years, and 11 years of teaching
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experience, after controlling for (zeroing out) the seven other covariate. Here
it is shown that the median literacy score increases with years of teaching ex-
perience, again consistent with previous educational theory. Also, the number
and locations of the modes change along with changes in the number of years of
teaching experience. Finally, the estimates of σω(x), conditional on the poste-
rior mean estimate of λω, were found to have mean 3.8 and standard deviation
of .3 over the 565 subjects. So the 8 covariates seem to have some explanatory
power in the prediction of literacy, but also more covariates can be added to
improve this power. This seems true, especially given the multimodal predictive
densities presented in Figure 2.

3.2. AZT Data

Here we analyze a data set of n = 338 subjects, obtained from Agresti (1996,
p. 119), where the dependent variable is a binary (0/1) indicator of the presence
of AIDS symptoms (with 20.4% of subjects reporting such symptoms). The
covariates include a 0-1 indicator of white race (65.1% white; 34.9% African
American), a 0-1 indicator of AZT treatment receipt (50.3%), and their inter-
action. We analyzed these data using several regression models. They included
our normal kernel regression model, and our uniform-mixture kernel regression
model, each of which assumed priors µj ∼i.i.d. n(0, 100). Also, for each of our
models, the kernel densities are for the latent variables underlying the binary
(0-1) dependent responses. See Appendix A for more details.

Table 2 compares the predictive performance between 11 regression models.
Both our normal kernel regression model, and our uniform-mixture kernel re-
gression model, had virtually the same D1(m) predictive criterion value, and
had better predictive performance than all the 9 other regression models. Also,

Table 2

For the AZT data, a comparison of the predictive performance between models.
(PQL=Penalized Quasi-Likelihood; GLM=Generalized Linear Model;

ML=Maximum-Likelihood; CV=Cross-Validation. The other acronyms are described in
Appendix B)
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Fig 3. Estimated predictive densities of the latent AIDS symptoms (Sym) variable, for each
of the four subject groups defined by race indicator (White), AZT treatment indicator (AZT),
and their interaction (W×A).

the ANOVA-linear DDP model had much better predictive performance than 8
models. For our normal kernel regression model, Figure 3 presents the posterior
predictive densities of the latent dependent response, conditional on all four pos-
sible values of the three covariates in x. The figure shows that AZT treatment
tends to lower the incidence of AIDS symptoms, for both races. Finally, with re-
gards to the explanatory power of the 3 covariates in the regression model, the es-
timates of σω(x), conditional on the posterior mean estimate of λω, was found to
have mean 3.1 and standard deviation .7 over the 338 subjects. Given this result,
and the multimodality of the predictive densities (Figure 3), it seems that the
three covariates have some, but not very much, explanatory power for prediction.

3.3. Simulation Study

Here, we consider a simulation study of many regression models, using a broad
range of complex data-generating models. In terms of the D1(m) criterion, we
compare the predictive performance between of our normal kernel regression
model, our uniform-mixture kernel model, and 10 other models that provided
the the closest competitors for the PIRLS and AZT data. The other competing
models are BART, the additive model, the DP-mixed intercepts linear regression
model, ANOVA/linear DDP model, the median regression model with a MPT
prior for the error distribution, MARS, the LASSO estimated via the LARS
algorithm, the Bayesian LASSO, and the normal normal-mixed intercepts lin-
ear regression model (either estimated by maximum-likelihood, or restricted
maximum likelihood). Again, Appendix B provides details about the competing
models. To analyze all the 40 simulated data sets considered in this subsection,
our normal kernel model, and our uniform-mixture kernel model, each assumed
priors µj ∼i.i.d.n(µ̂, 100), with µ̂ the empirical mean of the simulated Y .
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First, we simulated 20 data sets according to a 5 × 2 × 2 design, assuming
that the true densities f(y|x) are unimodal, normal densities. Each of the 20
cells of this simulation design are defined according to one of 5 complex mean
regression functions for Y , either homoscedastic and heteroscedastic variances
for Y , and either n = 100 or n = 225 samples of (yi,xi). Specifically, the 5
regression functions are given as follows.

E1(Y |x) = 1.9[1.35 + exp(x1) sin(13(x1 − .6)2) exp(−x2) sin(7x2)], (9)

E2(Y |x) = (−2x1)
I(x1<.6)(−1.2x1)

I(x1≥.6) + cos(5πx2)/(1 + 3x22), (10)

E3(Y |x) = (x⊤β)2 exp(x⊤β);β = (2, 1, 1, 1)⊤/71/2, (11)

E4(Y |x) = (3, 1.5, 0, 0, 2, 0, 0, 0)x, (12)

E5(Y |x) = 10 sin(πx1x2) + 20(x3 − .5)2 + 10x4 + 5x5 +

10∑

k=6

0xk. (13)

Function (9) is a complex 2-dimensional surface (Hwang, et al., 1994), func-
tion (10) is a discontinuous additive model (Hastie & Tibshirani, 1990, pp.
247-51), function (11) is a nonlinear function of 4 predictors, function (12) is a
linear model with 5 of the 8 covariates irrelevant, and function (13) is a complex
high-dimensional interaction with 5 of the 10 covariates irrelevant (Friedman,
1991). Respectively for the 5 mean functions, a data set of n observations (i.e.,
n = 100 or n = 225) was generated from the distribution with densities

n(yi|E1(Y |xi), σ2
i )un2(xi|0, 1), n(yi|E2(Y |xi), σ2

i )un2(xi|0, 1),
n(yi|E3(Y |xi), σ2

i )un2(xi|0, 1), n(yi|E4(Y |xi), σ2
i )n8(xi|0, (.5|j−k|)8×8),

n(yi|E5(Y |xi), σ2
i )un10(xi|0, 1).

Under homoscedasticity, these 5 densities assumed σ2
i = .0625, σ2

i = .5, σ2
i = 2,

σ2
i = 9, and σ2

i = 1, respectively. Under heteroscedasticity, the variances σ2
i had

5 distinct values that changed every n/5th sample. Specifically, for these 5 densi-
ties, the variances were (.002 5, .022 5, .062 5, .122 5, .25), (.125, .19, .25, .38, .5),
(2, 4, 2, 4, 2), (4.49, 6.55, 9, 13.1, 17.98), and (.5, .76, 1, 1.49, 1.99), respectively.

We simulated 20 additional data sets according to another 5× 2 × 2 design,
now assuming that the f(y|x) are multimodal, mixtures of normal densities,
with the number of modes depending on x, where x consists of p = 10 covari-
ates with sampling density un10(x|0, 1). For each of the 5 conditions of this
design, the number of modes in f(y|x) depended on x in a particular way.
Also, in the same manner as the unimodal density f(y|x) simulations, each cell
is defined by either homoscedastic or heteroscedastic variances for Y , and by
either n = 100 or n = 225 samples of (yi,xi). Specifically, for each of these
20 simulated data sets (i.e., each cell of the simulation design), the number
of modes in the true data-generating f(y|x) depended on x, via the function
Nmodes = min(max(floor(E4(Y |x)), 1), 4), where Nmodes ranged from 1 to 4, and
with E4(Y |x) defined by equation (12). The four possible modes are defined by
functions E1(Y |x), E2(Y |x), E3(Y |x), and E5(Y |x), according to equations (9),
(10), (11), and (13), respectively.
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Table 3

For 20 simulated unimodal data sets, a comparison of the predictive performance between
the new nonparametric regression models, and the most-competitive alternative models. For

each data set, a bold number indicates the model (or models) with the best value of a
statistic, after accounting for the 95 percent Monte Carlo confidence interval.

(Hom.=Homoscedastic condition; Het.=Heteroscedastic condition; kern.=kernel;
unif.-mix.kern.=uniform-mixture kernel; int.=intercepts; ML=Maximum likelihood. The

other acronyms are described in Appendix B)

For the first of the 5 multimodal simulation conditions, as a function of
Nmodes, the modes evolved in the order of E1(Y |x), E2(Y |x), E3(Y |x), and
E5(Y |x). Specifically, under this condition, each data set was generated from the
distribution with densities n(yi|Ezi(Y |xi), σ2

i ) for i = 1, . . . , n, with zi ∼ un{1}
when Nmodes = 1, zi ∼ un{1, 2} when Nmodes = 2, zi ∼ un{1, 2, 3} when
Nmodes = 3, and zi ∼ un{1, 2, 3, 5} when Nmodes = 4. Similarly, for the 4 of
the remaining 5 multimodal conditions, respectively, the modes, as a function
of Nmodes, evolved in the order of E5(Y |x), E3(Y |x), E2(Y |x), E1(Y |x); the
order of E3(Y |x), E1(Y |x), E5(Y |x), E2(Y |x); the order of E2(Y |x), E5(Y |x),
E1(Y |x), E3(Y |x); and the order of E1(Y |x), E5(Y |x), E3(Y |x), E2(Y |x).

Table 3 presents the results of the normalized predictive criterion D1(m)/n,
over the 20 data sets simulated under unimodal densities f(y|x). For space
considerations, we only present the results for the models with the best pre-
dictive performance. (For the normal-mixed intercepts regression model, the
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Table 4

For 20 simulated multimodal data sets, a comparison of the predictive performance between
the new nonparametric regression models, and the most-competitive alternative models. For

each data set, a bold number indicates the model (or models) with the best value of a
statistic, after accounting for the 95 percent Monte Carlo confidence interval.

(Hom.=Homoscedastic condition; Het.=Heteroscedastic condition; kern.=kernel;
unif.-mix.kern.=uniform-mixture kernel; int.=intercepts; ML=Maximum likelihood. The

other acronyms are described in Appendix B)

results were very similar for maximum-likelihood (ML) and for restricted maxi-
mum likelihood (REML)). As shown, our normal-kernel regression model tended
to have better predictive performance than all other models, while having the
smallest (best) criterion value D1(m) for half of the 20 simulated data sets.
So it seems that, overall, this model tended to do best in predicting truly-
unimodal densities. As consistent with our discussions in Sections 1 and 2, the
DDP model tended to overfit data generated by truly-unimodal densities. Specif-
ically, the normal kernel model tended to have superior predictive performance
for conditions where the number of covariates (p) was 4 or less, and where all
the covariates were not irrelevant (i.e., all covariates had truly non-zero regres-
sion coefficients). The BART, ANOVA/linear DDP and normal-mixed intercepts
models tended to have superior predictive performance where there were more
covariates, with a subset of these covariates being irrelevant (i.e., the covariate
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subset had truly zero regression coefficients). Though, recall that the true data-
generating densities f(y|x) were normal. This partially explains why our normal
kernel model tended to show better predictive performance than the uniform-
mixture kernel model, and why the BART and normal-mixed intercepts model
appeared competitive.

Table 4 presents the results of the normalized predictive criterion D1(m)/n,
over the 20 data sets simulated under multimodal densities f(y|x). Again,
only the models with the best predictive performance are shown. Here, the
ANOVA/linear DDP model and our normal-kernel regression model tended to
have the best predictive performance. The DDP model attained the smallest
value of D1(m) for most of the 20 data sets. Our uniform-mixture kernel model
did not perform as well as the other two models, because the true simulating
densities f(y|x) were multivariate normal mixtures. Finally, the apparent supe-
riority of the DDP model is consistent with our earlier discussion (Sections 1
and 2), that DDP-based models are more-specifically designed to handle highly-
complex multimodal densities f(y|x). However, when these densities f(y|x) are
not so highly-complex and multimodal, the DDP model will tend to overfit the
data, as shown by the results of the unimodal simulations.

3.4. Comparisons on 22 More Real Data Sets

Here, we compare the predictive performance between the same 11 regression
models we considered in the simulation study, for a wide range of 22 real data
sets that are described by Kim et al. (2007) (excluding the Bayesian LASSO).
These data sets are summarized in Table 5. Also, before analyzing each of the
data sets, the data for each covariate, and the dependent variable data, were
separately z-standardized to have mean zero and variance 1. This facilitated
model comparisons across the 22 data sets, in terms of the predictive criterion
D1(m)/n. Also, throughout all data analyses, our normal kernel model, and our
uniform-mixture kernel model, each assumed prior µj ∼i.i.d.n(0, 3). However, we
found that for 5 of the largest data sets where np ≥ 11, 572, the ANOVA/linear

Table 5

A summary of the 22 data sets, in terms of the name, sample size, and the number of
predictors
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Fig 4. Boxplots comparing the D1(m) predictive performance over the 22 data sets, for
the 5 best-performing models. (NKERN=New model, normal kernel; UKERN=New model,
uniform-mixture kernel; AL-DDP= ANOVA/linear DDP-model; DPint=DP-mixture of in-
tercepts linear regression model.)

DDP model could not be estimated, due to memory limitations of modern com-
putational power. The posterior estimation of this model requires the computer
to handle many thousands of MCMC samples, of more than n(p+1) parameters.

The box-plots in Figure 4 compare the predictive performance of the models
over the 22 data sets. For space considerations, this figure only presents the
results for only the models having the best median D1(m)/n predictive perfor-
mance, over the data sets. The left panel of Figure 4 compares models over the
17 data sets that were not too large to be estimated by the ANOVA/linear DDP
model. As shown in this panel, both our normal kernel model and our uniform-
mixture kernel model tended to have the best D1(m)/n predictive performance.
The right panel of the figure compares models for the 5 largest data sets that
could not be estimated by the ANOVA/linear DDP model. In this panel, again,
both of our models had the best median D1(m)/n predictive performance. Fi-
nally, our normal kernel model had the best predictive performance for 11 of
the 22 data sets, and won the most data sets, compared to all the other 10
regression models. This was followed by BART, which won 4 of the data sets.

4. Discussion

We have described a Bayesian nonparametric regression model, and demon-
strated the suitability of the model through the analysis of many real and sim-
ulated data sets.

The key to our proposal, is to model weights wj(x) which can be close to
1 for specific regions of x for a particular j. This will ensure outcomes from a
region of x values will have with high probability the observations coming from
the same component. This is an appealing property. The prevailing alternative
type of model is only to ensure wj(x) is close to wj(x

′) for x close to x′; which
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has no implication for the observations coming from each covariate, other than
they come from the same component with the same probability. This is not how
it should work.

The stick-breaking prior is a case in point. For if f(y|x) is a model as flexible
as usual choices for f(y) (e.g., the Dirichlet process mixture model), then no
attempt is being made to understand how x is influencing the outcome of y
at all. It is not possible to achieve this interpretation for the weights based on
stick-breaking (DDP) models, i.e., ωj(x) = υj(x)

∏j−1
k=1(1 − υk(x)). In order to

have a single ωj(x) close to 1, it must be that υ1(x) is close to 1, and so it can
only be ω1(x) ≈ 1, and hence the lack of flexibility.

On the other hand, at one end of our model we have that there exists sets
(Aj) such that f(y|x) = fj(y) is a unimodal density. Mixing over the x then
yields a standard infinite-mixture model for the y alone. The resulting model,

f(y|x) =
∑

j

fj(y)ωj(x),

where

ωj(x) =

{≈ 1 for x ∈ Aj
≈ 0 for x /∈ Aj ,

is a simple yet powerful model; at its heart lies the idea that x is explaining
outcomes and hence once known, the density f(y|x) should be a simple density,
e.g., unimodal.

We achieve a more general framework by taking ωj(x) = ωj(ηω(x), σω(x)).
As illustrated in Figure 1, a small σω(x) returns the ωj(x) = I(x ∈ Aj) with x at
its most explanatory, while as σω(x) increases the skewness and multimodality
of f(y|x) increases, and the less explanatory x becomes. A prior on this key
parameter σω(x) allows the data to determine the level of explanation.

In future research, it would be interesting to provide theoretical results that
characterize the support of our Bayesian nonparametric regression model, as
Barrientos et al. (2012) have done for the dependent Dirichlet process.

Appendix A: MCMC Algorithm

Our infinite-dimensional regression model can be estimated via the implemen-
tation of the MCMC sampling methods of Kalli et al. (2010). This method
involves introducing strategic latent variables, to implement exact MCMC algo-
rithms for the estimation of the model’s posterior distribution. Specifically, for
our normal kernel regression model (Section 2), latent variables (ui, zi ∈ Z)ni=1

are introduced, such that conditional on these variables, and given a decreasing
function ξj = exp(−|j|), the model’s data likelihood can be written as

n∏

i=1

{I(0 < ui < ξ|zi|)ξ
−1
|zi|

n(yi|µzi , σ2
zi)ωzi(ηω(xi), σω(xi)) }. (14)
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Marginalizing over the each of the latent variables (ui, zi) in (14), for each
i = 1, . . . , n, returns the original likelihood,

n∏

i=1





∞∑

j=−∞

n(yi|µj , σ2
j )ωj(ηω(xi), σω(xi))



 ,

of our infinite-dimensional model. Thus, conditional on the latent variables,
the infinite-dimensional model can be treated as a finite-dimensional model.
This, in turn, permits the use of standard MCMC methods to sample the
model’s full joint posterior distribution. Given all variables, save the (zi)

n
i=1, the

choice of each zi have minimum −Nmax and maximum Nmax, where Nmax =
maxi[maxj I(ui < ξj)|j|].

Specifically, for our normal kernel regression model, which assumes functions
η(xi) = x

⊺

i βω and σω(xi) = exp((1,x⊺

i )λω)
1/2, the following full conditional

posterior densities are sampled at each stage s (s = 1, . . . , S) of the MCMC
algorithm.

1. π(µj | · · · ) = n

(
µj

∣∣∣∣∣
µµjσ

2
j + njσ

2
µjyj

σ2
j + njσ2

µj

,
σ2
jσ

2
µj

σ2
j + njσ2

µj

)
, for j = 0, . . . ,±Nmax,

with nj =
∑
i:zi=j

1, yj =
1
nj

∑
i:zi=j

yi, and given draws ui ∼ind un(0, ξ|zi|)
(i = 1, . . . , n);

2. π(σ−2
j | · · · ) = ga(σ−2

j |ασj + (nj/2), βσj +
1
2

∑
i:zi=j

(yi − µj)
2), for j =

0, . . . ,±Nmax;
3. Pr(zi = j| · · · ) ∝ I(ui < ξ|j|)ξ

−1
|j| n(yi|µj , σ2

j )ωj(η(xi), σ(xi)), for j =
0, . . . ,±Nmax;

4. π(βω| · · · ) = n(βω|m∗
βω,V

∗
βω), givenV∗

βω = (V−1
βω+X⊺diag(σ−2

ω (x1), . . . ,

σ−2
ω (xn))X)−1,m∗

βω = V∗
βω(V

−1
βωmβω+X⊺diag(σ−2

ω (x1), . . . , σ
−2
ω (xn))z

∗),

X = ((1,x⊺

i ))n×(p+1), and z∗ = (z∗1 , . . . , z
∗
n)

⊺, given draws z∗i ∼ind
π(z∗i | · · · ) ∝ n(x⊺

i βω, σ
2
ω(xi))I(z

∗
i ∈ (zi − 1, zi]) (i = 1, . . . , n).

5. π(λω| · · · ) ∝ n(λω |mλω,Vλω)
∏n
i=1 n(z

∗
i |ηω(xi), exp((1,x⊺

i )λω)).

The full conditional posterior densities in Steps 1, 2, and 4 follow from standard
Bayesian normal linear models, assigned conjugate prior distributions (O’Hagan
& Forster, 2004). The full conditional of λω in Step 5 can be sampled us-
ing an efficient random-walk Metropolis-Hastings algorithm, with multivariate
normal proposal distribution having mean m∗

λω = V∗
λω(V

−1
λωmλω + 1

2X
⊺z)

and covariance matrix V∗
λω = (V−1

λω + 1
2X

⊺X)−1, where zi = x
⊺

i λω + {(zi −
x
⊺

i βω)/ exp(x
⊺

i λω)}− 1 (i = 1, . . . , n) and z = (z1, . . . , zn)
⊺ (Cepeda & Gamer-

man, 2001). The above 5-step sampling algorithm is repeated a large number

S of times, to construct a discrete-time Harris ergodic Markov chain {ζ(s) =
(µ,σ2,βω,λω)

(s)}Ss=1 having a posterior distribution Π(ζ|Dn) as its stationary
distribution, provided that the prior for ζ is proper (Robert & Casella, Section
10.4.3 2004).

We have written MATLAB (2012, The MathWorks, Natick, MA) code that
implements the MCMC sampling algorithm. Standard methods, available from
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available from our ownMATLAB code, can be used to check whether the MCMC
algorithm has generated a sufficiently-large number of samples from the model’s
posterior distribution. Given a finite S number of samples {ζ(s)}Ss=1 generated
by the MCMC algorithm, univariate trace plots can be used to evaluate the
mixing of the chain (i.e., the degree to which the chain explores the support of
the posterior distribution), while batch means and subsampling methods can
be used to calculate standard errors of marginal posterior estimates of chosen
scalar functionals of ζ (e.g., Jones et al., 2006), after excluding burn-in samples.

Simple extensions of the above MCMC algorithm can be used to address
straightforward extensions of the normal kernel model presented in Section 2,
and to address other important tasks of data analysis:

• Uniform-mixture kernel densities: This choice of densities leads to our
uniform-mixture kernel model (see Section 2). The MCMC sampling meth-
ods of Kalli et al. (2010) can be used to perform posterior inferences with
this model, by introducing latent variables (ui, u

′
i, zi ∈ Z, z′i ∈ Z

+)ni=1,
such that conditional on these variables, the model’s data likelihood is
defined by

n∏

i=1

{
I(0 < ui < ξ|zi|)ξ

−1
|zi|

I(0 < u′i < ξz′
i
)ξ−1
z′
i

×ωzi(η(xi), σ(xi))ωz′iziun(yi|µzi − ψz′
i
zi , µzi + ψz′

i
zi)

}
. (15)

Marginalizing over the each of the latent variables (ui, u
′
i, zi ∈ Z, z′i ∈

Z
+)ni=1 in (15), for each i = 1, . . . , n, returns the original likelihood,

n∏

i=1





∞∑

j=−∞

[
∞∑

l=1

I(µj−ψlj<y<µj+ψlj)
2ψlj

ωlj

]
ωj(ηω(xi), σω(xi))



 ,

of this infinite-dimensional, Bayesian nonparametric model. So again, con-
ditional on the latent variables, the infinite-dimensional model can be
treated as a finite-dimensional model. This, in turn, permits the use of
standard MCMC methods to sample the model’s full joint posterior dis-
tribution. Given all variables, save the (zi, z

′
i)
n
i=1, the choice of each zi

is finitely bounded by ±Nmax, and the choice of each z′i has maximum
finite value N ′

max, where Nmax = maxi[maxj I(ui < ξj)|j|] and N ′
max =

maxi[maxl I(u
′
i < ξl)l]. Specifically, for our uniform-mixture kernel regres-

sion model, the first three steps of the original 5-step MCMC algorithm are
modified, to sample from the following full conditional posterior density,
as follows:

1. π(µj | · · · ) ∝ n(µj |µµj , σ2
µj)I(µj ∈ [a∗µj , b

∗
µj]), for j = 0,±1, . . . ,±Nmax,

where a∗µj = maxi:zi=j{yi − ψz′
i
j} and b∗µj = mini:zi=j{yi + ψz′

i
j}, given

draws ui ∼ind un(0, ξ|zi|) (i = 1, . . . , n).
2. π(ψlj | · · · ) = pa(ψlj |αψj +

∑n
i=1 I(z

′
i = l, zi = j), b∗µlj), for l = 1, . . . , N ′

max

and j = 0,±1, . . . ,±Nmax, given draws u′i ∼ind un(0, ξz′
i
) (i = 1, . . . , n),

where b∗ψlj = max{βψj ,maxi:z′
i
=l,zi=j |yi − µzi |}.
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3. Pr(z′i = l, zi = j| · · · ) ∝ [ωj(η(xi), σ(xi))υlj
∏l−1
k=1(1 − υkj)}/(ξlξ|j|)] ×

un(yi|µj − ψlj , µj + ψlj), given draws υlj ∼ind be(alj +
∑n

i=1 I(z
′
i = l,

zi = j), blj +
∑n
i=1 I(z

′
i > l, zi = j)), for j = 0,±1, . . . ,±Nmax and

l = 1, . . . , N ′
max.

The full conditional posterior densities in Steps 1 and 2 follow from the
standard Bayesian uniform models with a conjugate, Pareto prior for the
scale parameter ψ.

• Sampling the posterior predictive distribution of Y given x: For the nor-
mal kernel regression model (uniform-mixture kernel model, respectively),
a step is added to the existing MCMC algorithm, to sample from the full
conditional posterior predictive distribution of Yi given a data-observed
xi, which is n(yi|µzi , σ2

zi) (is un(yi|µzi − ψz′
i
zi , µzi + ψz′

i
zi), respectively),

for i = 1, . . . , n. For the normal kernel model, to draw samples from the
posterior predictive distribution of Y , given an unobserved value of x

(or given an observed x for which y is missing from the data), another
step is added to the MCMC algorithm, that draws a sample ypred ∼
n(µz , σ

2
z) from the full-conditional posterior predictive density, given a

sample z = j drawn with probability proportional to ωj(ηω(x), σω(x)),
j = 0,±1,±2, . . . , N∗

max, where N
∗
max is a sufficiently-large value satisfy-

ing

ω−N∗

max
−1(ηω(x), σω(x)) = ωN∗

max
+1(ηω(x), σω(x)) < ε ≈ 0.

For example ε = 10−5, but it is easy to find a sufficiently-large N∗
max that

corresponds to zero mixture weights, according to the numerical precision
of a computer. For the uniform-mixture kernel model, we draw ypred ∼
un(µz−ψz′z, µz+ψz′z), with (z = j, z′ = l) sampled with probability pro-

portional to ωj(η(x), σ(x))υlj
∏l−1
k=1(1−υkj)}, for j = 0,±1,±2, . . . ,±N∗

max

and j = 0,±1,±2, . . . ,±N ′∗
max for sufficiently-large (N∗

max, N
′∗
max), as be-

fore. Here, a sufficiently-large N
′∗
max method can be found by using meth-

ods for approximating the DP (Ishwaran & James, 2001).
• Multiple imputation of a censored dependent response yi: At each itera-
tion of the MCMC algorithm, a plausible value of a dependent response yi
(e.g., a log-event time yi = log(timei)), that is censored and known only
to fall within an interval (ayi , byi ], is sampled from the full conditional
posterior predictive density π(y|xi, · · · ) ∝ n(y|µzi , σ2

zi)I(y ∈ (ayi , byi ]),
and then is imputed as the updated value of yi. For the uniform-mixture
kernel model, the sampling method proceeds similarly, after replacing
n(y|µzi , σ2

zi) with the uniform density un(y|µzi − ψz′
i
zi , µzi + ψz′

i
zi).

• Discrete-valued dependent variable: Using a standard idea (Albert & Chib,
1993), our model can be extended to handle discrete-valued dependent
variable responses, yi ∈ {0, 1, . . . , Cmax

i ≥ 1} (i = 1, . . . , n). Here, Cmax

is the maximum ordinal category, with Cmax = 1 for a binary (0-1) de-
pendent variable. For a chosen set of unimodal kernel densities f(y|θj)
(j = 0,±1,±2, . . .), such as the normal kernels or the uniform-mixture
kernels, the idea is to introduce latent responses y∗i underlying each dis-
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crete response yi (i = 1, . . . , n), and to define the regression model by:

f(yi|xi) =
∫

Ai(yi)

∞∑

j=−∞

f(y∗i |θj)ωj(ηω(xi), σω(xi))dy∗i , i = 1, . . . , n.

Here, each Ai(·) is a set function. Given the flexibility of our Bayesian
nonparametric regression model, we may define A(yi) = (yi − ∞I(yi=0),
yi∞I(yi=C

max

i )] (Kottas et al., 2005). The choice of normal kernel densi-
ties (uniform-mixture kernel densities, respectively) implies the use of a
regression model with inverse-link function modeled by a scale mixture of
normal c.d.f.s. (uniform c.d.f.s, respectively). For the normal kernel model
(uniform-mixture kernel model, respectively), this extension to discrete-
valued dependent variables is achieved by adding a step to the MCMC
algorithm, to sample a latent variable y∗i from its full conditional posterior
density π(y∗| · · · ) ∝ n(y∗i |µzi , σ2

zi)I(y
∗ ∈ Ai(yi)) (π(y

∗| · · · ) ∝ un(y∗|µzi −
ψz′

i
zi , µzi + ψz′

i
zi)I(y

∗ ∈ Ai(yi)), respectively)), for all i = 1, . . . , n. Then,
Steps 1-3 of the MCMC algorithm proceed with the sampled latent vari-
ables y∗i , instead of yi (i = 1, . . . , n). Also, a sample of the discrete Y pred

from its full conditional posterior predictive distribution, given x, is drawn
by taking ypred = min(max{floor(y∗) + 1}, 0], Cmax), given a sampled la-
tent variable y∗. For the normal kernel model (uniform-mixture kernel
model, respectively), such a latent variable is sampled by y∗ ∼ n(µz , σ

2
z)

(by y∗ ∼ un(µz − ψz′z, µz + ψz′z), respectively).
• Covariate-dependent kernels: Consider a model with covariate-dependent

kernels n(y|µj + x
⊺

i β, σ
2
j ) (j = 0,±1,±2, . . .) and prior β ∼ n(mβ,Vβ).

For this model, a step is added to the original 5-step MCMC algorithm,
to sample from n(β|m∗

β, V
∗
β) and from

π(µj | · · · ) ∝ n(µj |µµj , σ2
µj)

∏

i:zi=j

n(yi|µzi + x
⊺

i β, diag(σ
2
1 , . . . , σ

2
n))

(j = 0,±1,±2, . . .), where V∗
β = (V−1

β + X⊺diag(σ−2
1 , . . . , σ−2

n )X)
−1
,

m∗
β = V∗

β(V
−1
β mβ +X⊺diag(σ−2

1 , . . . , σ−2
n )(y −µz), X = ((1,x⊺)), µz =

(µz1 , . . . , µzn)
⊺, and y = (y1, . . . , yn)

⊺ (or latent y = (y∗1 , . . . , y
∗
n)

⊺, as
applicable). Here, either (σ2

1 , . . . , σ
2
n) = (σ2

z1 , . . . , σ
2
zn) as in the original

normal kernel model, or (σ2
1 , . . . , σ

2
n) = (σ̂2

1 , . . . , σ̂
2
n) as in meta-analysis

where each σ̂2
i is the sampling variance of study effect-size yi. Also, we

may assume (σ2
1 , . . . , σ

2
n) = σ2 with prior σ−2 ∼ ga(ασ, βσ), in which case

V∗
β = σ2

n(V
−1
β + X⊺X)

−1
, and then we add an MCMC step to sample

from the full conditional posterior ga(σ−2|ασ + n/2, βσ + {(y−µz)
⊺(y−

µ
z
)−m∗

β(V
∗
β)

−1m∗
β}/2). In all cases, posterior predictive sampling, im-

putation of a censored dependent response, and the sampling of latent
variables for discrete dependent response proceeds as above for the origi-
nal normal kernel model, after replacing n(y|µz , σ2

z) with n(y|µz+x⊺β, σ2
z)

(where perhaps z = zi, and/or σ
2
z = σ̂2

i , or σ
2
z = σ2, as applicable).
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• Calculating Dt(m): For a given Bayesian model m, the estimate of the
criterion Dt(m) (t ∈ [0, 1]) is obtained by:

D̂t(m) = t
n∑

i=1

{yi − Ên(Yi|xi,m)}2

+

n∑

i=1

{Ên(Y 2
i |xi,m)− Ên(Yi|xi,m)2},

given Ên(Yi|xi,m) = 1
S

∑S
s=1 y

pred(s)
i , Ên(Y

2
i |xi) = 1

S

∑S
s=1(y

pred(s)
i )2,

and posterior predictive samples {{(ypred(s)i |xi,m)}ni=1}Ss=1. If t = 1, then

more simply D̂1(m) = 1
S

∑n
i=1{yi − y

pred(s)
i }2.

• Spike-and-slab variable selection. Spike-and-slab priors can be assigned to
βω, to provide automatic variable (predictor) selection in posterior anal-
ysis, and provide added insight regarding which covariates significantly
predict the dependent variable Y . Specifically, the spike-and-slab prior is
defined by βω|γ ∼ N(0,Vγ), with Vγ = diag(vγk1 v1−γk0 |k = 0, 1, . . . , p)
for some chosen large v1 (e.g., v1 = 100) and small v0 (e.g., v0 = .01),
along with independent Bernoulli priors γk ∼ind ber(Pr(γk = 1)) (k =
0, 1, . . . , p) (George & McCulloch, 1997). For spike-and-slab variable selec-
tion, the following step is added to the original 5-step MCMC algorithm,
to sample independently from the following full conditional posterior dis-
tributions:

Pr(γk| · · · ) =
n(βk|0, vγk1 v

(1−γk)
0 ) Pr(γk = 1)γk [1− Pr(γk = 1)]1−γk

n(βk|0, v1) Pr(γk = 1) + n(βk|0, v0)[1 − Pr(γk = 1)]
,

k = 1, . . . , p.

In practice, a given covariate Xk can be viewed as a significant predic-
tor, when the marginal posterior probability Pr(γk = 1|Dn) exceeds 1/2
(Barbieri & Berger, 2004).

• Multi-level modeling of mixture weights. The multi-level version of our

model has prior {βωq}Qq=1|Vβω ∼iid n(0,Vβω), along Wishart hyperprior

V−1
βω ∼ wi(aVβω

,ΣVβω
). For this multilevel model, Step 4 of the original

MCMC algorithm is modified to sample from the following full conditional
posterior densities: π(βωq| · · · ) ∝ n(βωq|0,Vβω)

∏
i∈q n(z

∗
i |(1,x⊺

i )βωq,

exp((1,x⊺

i )λωq)) (q = 1, . . . , Q), π(V−1
βω| · · · ) = wi(V−1

βω|aVβω
+ Q + p,

{ΣVβω
+

∑Q
q=1 βωqβ

⊺

ωq}−1), where π(βωq| · · · ) may be sampled using a
Metropolis-Hastings algorithm. Similarly, we may model λ as varying over
the Q populations, by assigning priors {λωq}Qq=1|Vλω ∼iid n(0,Vλω) and

V−1
λω ∼ wi(aVλω

,ΣVλω
). The computationally-expensive matrix inversion

required for the full conditional π(V−1
βω| · · · ) can be avoided, with per-

haps only some loss of modeling flexibility, by instead modeling with
the ridge priors (βωq,λωq)|vω ∼iid n(0, vωIp+1) and v−1

β ∼ ga(αω , βω).

Then, after treating all the coefficient vectors βω = (β⊺

ω1, . . . ,β
⊺

ωQ)
⊺
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and λω = (λ⊺

ω1, . . . ,λ
⊺

ωQ)
⊺ as each being (Qp + 1)-dimensional param-

eters constructed from a design matrix X that specifies all 2-way in-
teractions between the p covariates and the Q population (0-1) indi-
cators, the full conditional posterior distribution of βω is a multivari-
ate normal according to Step 4 of the original MCMC algorithm, the
full conditional of λω can be sampled as in Step 5 of the original algo-
rithm. Also, a MCMC step is added to sample full conditional posterior
v−1
ω ∼ ga(αω +Qp+ 1, βω + .5β⊺

ωβω + .5λ⊺

ωλω).

Appendix B: Software and Priors for the Other Models

All the other regression models, used for comparisons in all the data analyses of
Section 3, were fitted using defaults of appropriate packages of the R statistical
software (R Development Core Team, 2011). They include the additive model
estimated under ridge regression via generalized cross-validation (GCV) and
thin-plate splines (Wood, 2004; mgcv package, Wood, 2010), the Bayesian Addi-
tive Regression Trees (BART) model using the 200 tree default (Chipman et al.,
2010; BayesTree package, Chipman & McCulloch, 2010), the multivariate adap-
tive regression splines (MARS) model which combines the use of tensor-product
splines and stepwise variable selection (Friedman, 1991; earth package, Milbor-
row, 2009), mean and variance regression estimated under restricted maximum
likelihood (REML) (statmod package, Smyth, 2010), the single-index model
under penalized estimation (Polzehl & Sperlich, 2009; EDR package, Polzehl,
2010), least-squares linear regression models, and normal random effects mod-
els with random school-level intercepts (Hierarchical Linear Models, HLM), fit
either by REML or maximum likelihood (ML) estimation (nlme package, Pin-
heiro et al., 2010). For the PIRLS data set, the 40 simulated data sets, and
the 22 additional real data sets, the LASSO model (LASSO=Least Absolute
Shrinkage and Selection Operator) was estimated using the LARS algorithm,
and the penalty-shrinkage parameter λ for the fixed regression coefficients was
estimated by minimizing Mallows’ (1973) Cp criterion (Efron, et al. 2004; us-
ing the lars package, Hastie & Efron, 2007). Both the LASSO model and the
Bayesian LASSO (Park & Casella, 2008; monomvn package, Gramacy, 2010)
assumed covariates x∗ that were an order-2 polynomial (“quadratic”) expan-
sion of x, and also each column of the n× p design matrix ((x∗i1, . . . , x

∗
ip)

⊺)n×p
was standardized to have unit L2 norm. For the AZT data, the LASSO logit
binary regression model was estimated, with coefficient penalty parameter (and
covariates) selected by minimizing deviance via 10-fold cross-validation (using
the glmnet package; Friedman et al., 2010). For all data sets, the finite mixture
of linear and logit regressions were fit by maximum likelihood (using the flexmix
package; Gruen & Leisch, 2007). Here, the number of mixture components was
chosen to minimize Akaike’s Information Criterion (1973). Finally, nearly all of
the competing Bayesian regression models were fit using the DPpackage (Jara,
2011). The Bayesian LASSO (Park & Casella, 2008) was fit using the monomvn
package (Gramacy, 2010). The code that was used to fit all these other regression
models can be requested from the first author.
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All of the competing Bayesian regression models, used to analyze the data
in Section 3, assumed proper diffuse priors. Each ANOVA/linear DDP model
assigned a multivariate normal baseline distribution with density n(β|µ,T ) for
the full vector of p+ 1 random regression coefficients β, along with normal and
inverted-Wishart hyperpriors µ ∼ n(0, 103Ip∗) and T ∼ iw(p∗ + 3, I), where
p∗ = dim(β). Each DP-mixed intercepts regression model, and the MPT-mixed
intercepts logit regression model, assigned the same baseline distribution, and
corresponding hyperpriors, for the intercept parameter, β0. All DP-based mod-
els assumed a gamma hyper-prior α ∼ ga(.01, .01) for the DP precision pa-
rameter, α. In the Mixture of Pólya Trees (MPT) model (Hanson, 2006), a
10-level tree was specified with beta random variables having parameters αk,
with k the level in the tree, with α fixed to 1. MPT models were also fit us-
ing a α ∼ ga(.01, .01) hyperprior, but this did not appear to lead to a sig-
nificant advantage in terms of the D1(m) predictive criterion. All DP-based
and MPT-based models assigned a gamma hyperprior density ga(.01/2, .01/2)
to the inverse error variance σ−2. This included the median regression model
that assigned a MPT prior to the regression errors, with this prior having
normal baseline distribution with density n(0, σ2). Nearly all Bayesian models
that were parameterized by a vector of fixed (non-mixed) regression coefficients
β (e.g., β = (β1, . . . , βp)

⊺ for the DP-mixed intercepts regression model) as-
signed a multivariate normal β ∼ n(0, 103I) prior. The Bayesian LASSO model,
for the fixed coefficients, assigned priors β0 ∝ 1, independent Laplace priors
π(β1, . . . , βp|σ2) =

∏p
k=1(λβ/{2

√
σ2}) exp(−λβ |βk|}σ−1), σ2

∝ 1/σ2, and hy-
perprior λ2β ∝ 1/λ2β. All of these default diffuse prior specifications are very
similar to the priors used for the empirical examples presented in user’s manu-
als of the DPpackage and the monomvn package of R.
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