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Big data and visual analytics in anaesthesia and health care†

A. F. Simpao1*, L. M. Ahumada2 and M. A. Rehman1

1 Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania and the Children’s
Hospital of Philadelphia, 3401 Civic Center Boulevard, Suite 9329, Philadelphia, PA 19104-4399, USA
2 Enterprise Analytics and Reporting, The Children’s Hospital of Philadelphia, 1300 Market Street, Room W-8006, Philadelphia,
PA 19107-3323, USA

* Corresponding author: E-mail: simpaoa@email.chop.edu

Editor’s key points

† Electronic health records have
led to the rapid accumulation
of patient-related computer
data (big data).

† Data analytics applied to big
data are facilitating outcomes
research and quality
improvement efforts.

† Visual analytics based on big
data facilitate hypothesis
generation and real-time
clinical decision making.

Advances in computer technology, patient monitoring systems, and electronic health
record systems have enabled rapid accumulation of patient data in electronic form (i.e.
big data). Organizations such as the Anesthesia Quality Institute and Multicenter
Perioperative Outcomes Group have spearheaded large-scale efforts to collect
anaesthesia big data for outcomes research and quality improvement. Analytics—the
systematic use of data combined with quantitative and qualitative analysis to make
decisions—can be applied to big data for quality and performance improvements, such
as predictive risk assessment, clinical decision support, and resource management.
Visual analytics is the science of analytical reasoning facilitated by interactive visual
interfaces, and it can facilitate performance of cognitive activities involving big data.
Ongoing integration of big data and analytics within anaesthesia and health care will
increase demand for anaesthesia professionals who are well versed in both the medical
and the information sciences.
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While there is no rigorous definition of ‘big data’, the term is
applied customarily to data sets whose size, complexity, and
dynamic nature pose significant challengesto traditional data-
processing tools.1 2 Repeated observations over time and space
generate most big data; examples include worldwide users’
Internet search engine queries (e.g. Google), e-commerce
browsing and transactions (e.g. Amazon), and genomic se-
quencing in biomedical research.3 4 While the term ‘big data’
does not apply specifically to the medical field, the role of big
data has become increasingly prominent in the constantly
evolving world of medicine.

Advances in computer and networking technology, patient
monitoring systems, and electronic health record systems
(EHRs) have enabled hospitals to collect and store a rapidly in-
creasing volume and variety of patient data.5 6 Meanwhile, US
physicians and health-care organizations have adopted EHRs
at a steady rate, partly as a result of the US federal govern-
ment’s passage of the Health Information Technology for Eco-
nomic and Clinical Health Act in 2009, which incentivizes
‘meaningful use’ of EHRs with the goal of improving health-
care quality and efficiency.7 8 This narrative review discusses
the creation and analysis of robust EHR big data using analytics
methods and the current uses and challenges of big data that
are relevant to anaesthesiology.

Big data and analytics in health care
Increasing recognition of the potential utility of big data in
health outcomes research has created an impetus to collect
and pool EHR data in national data sets. These large data
sets provide access to information on rare conditions and out-
comes that are otherwise difficult to study without robust
sample sizes. Examples of health-care-related big data
efforts include collaborative nationwide database projects
sponsored by the US Department of Health and Human
Services Agency for Healthcare Research [http://www.ahrq.
gov (accessed December 18, 2014)] and the UK Health and
Social Care Information Centre [http://www.hscic.gov.uk/
(accessed December 18, 2014)]. Interest in population-level,
epidemiological anaesthesia-related research has led to the
creation of large anaesthesiology-specific databases, such as
the Multicenter Perioperative Outcomes Group (MPOG),9 the
Anesthesia Quality Institute’s (AQI) National Anesthesia Clinic-
al Outcomes Registry (NACOR),10 the Society for Ambulatory
Anesthesia database, and the Pediatric Regional Anesthesia
Network.11 The realization of big data’s potential benefits
(patient safety, evidence-based guidelines, and cost contain-
ment) requires validation of data quality followed by analysis
of the data to enhance decisions, processes, and policies.12 13
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This approach to data analysis and application is termed ‘ana-
lytics’ making decisions by the systematic use of data com-
bined with quantitative and qualitative analysis.14

Analytics and big data are used in health-care applications
outside of traditional inpatient and outpatient EHRs, such as
wearable health-monitoring systems (WHMSs) that patients
use at home. Wearable health-monitoring systems consist of
various sensors, actuators, and multimedia devices, enabling
low-cost, non-invasive continuous monitoring of indoor and
outdoor health, activity, mobility, and mental status.15 Wear-
able health-monitoring systems provide large amounts of
continuously acquired, multivariate physiological data that
necessitate data mining and analytics.16 Such systems might
reduce health-care costs through disease prevention and
enhance quality of life with improved disease management.
In addition, WHMSs can be tailored to specific uses, such as
monitoring physical activity,17 the elderly in nursing homes,18

or individuals with dementia or Parkinson’s disease.19 The feasi-
bility of using WHMSs in the inpatient setting has also been
investigated.20

Analytics methods such as mathematical and algorithmic-
based data processing, text mining, and natural language pro-
cessing have been used to analyse and derive insight from data
across a wide spectrum of health-care fields.21 Text mining and
natural language processing retrieve and extract salient infor-
mation from unstructured, semi-structured, and structured
text, such as mining research articles to facilitate cancer re-
search or detecting surgical site infections by mining EHR
notes.22 23 Anaesthetists should find relevant numerous bene-
fits of applying analytics to big data in health care, which
include improving patient care, augmenting less-sophisticated
rules-based systems, analysing continuous feeds of physio-
logical data, and optimizing financial processes and resource
utilization.24

Health analytics offers many methods for the potential im-
provement of patient care. Examples include enhancing data
aggregation with real-time analytics to provide point-of-care
information to oncologists to allow physicians to tailor care
for individual patients,25 better targeting of disease manage-
ment and innovative patient care approaches,26 formation
of searchable and accessible collections that are usable
for large-scale health analytics,27 generating life-expectancy
indices from EHR data,28 and real-time analysis of physiological
data streams in the neonatal intensive care unit for earlier
detection of deteriorating medical conditions.29 Potential
perioperative applications of such methods include data
aggregation combined with real-time analytics of intraopera-
tive physiological data to guide point-of-care anaesthetic
decisions.

There are powerful analytic tools that use big data in clinical
decision support (CDS) systems within EHRs to help anaesthe-
tists and other clinicians make more personalized, evidenced-
based decisions; such tools can extract relevant information
and provide insights in real time.30 Clinical decision support
systems have been shown to reduce errors and improve clinical
outcomes in certain settings, such as paediatric intensive care
units,31 32 and CDS can improve performance on quality and

process measures in the perioperative and medical imaging
settings.33 34 Analytics can also enhance rudimentary CDS
systems that are already in place (e.g. simple rules-based
drug–drug interaction CDS systems that require manual re-
classification as a result of suboptimal sensitivity)35 36 by
using analytics techniques to query and mine the EHR for
meaningful connections, and then integrating the knowledge-
based rules with EHR data to improve the CDS system.37 Chal-
lenges and concerns abound regarding implementation of
real-time CDS systems, such as loss of autonomy of clinicians,
risk to patient privacy, and potentially basing recommenda-
tions on faulty ‘real-life’ data.38 39 Novel systems might also
lack utility compared with conventional methods, such as a
CDS system to mitigate postanaesthesia care delays.40 While
these concerns warrant consideration, CDS systems that im-
plement analytics techniques and predictive modelling have
the potential to improve outcomes, enhance patient experi-
ences, and reduce health-care costs.33

Finance management is another use for analytics in health
care, such as identification of billing anomalies (i.e. revenue
leakage), resource allocation, cost cutting, and improving
revenue. Most health-care organizations find billing anomal-
ies using rules-based approaches and manual audits, yet
these methods are time consuming and error prone. A com-
bination of both advanced analytics approaches (e.g.
machine learning and predictive modelling) and review by
human billing experts can form a ‘dual approach’ to find
patterns in billing records that are most likely to be associated
with missing or erroneous charges; one health system used
this method and reduced audit expenses by 75%.41 Analytics
can be used to determine which factors within a broad
network of departmental activities impact a patient’s hospital
stay, and these activities can be scrutinized using analytics
methods (e.g. scheduling). For example, using analytics, one
institution determined that inefficiencies in the radiology
department adversely extended lengths of stay beyond
initial estimates. The hospital then advocated the use of pro-
active analytics assessments of networks of activities to
enhance organizational efficiency.42 Cost-cutting measures
(e.g. reducing readmission rates)43 have been targeted and
measured using analytics, such as the use of EHR data to
predict which patients are at a greater risk for using more
resources than their peers. This is accomplished by entering
EHR data into a model that is then processed by various ana-
lytic techniques in order to stratify patients as high risk.44

Revenue-generating uses of analytics include using market-
ing analytics and graphical information systems to target
catchment areas.45 46

A logical step after proliferation of EHR systems is applica-
tion of analytics to gather meaningful information from clinical
data repositories, yet even proponents of health-care big data
have raised valid concerns. One challenge presented by data is
not only quantitative (i.e. managing massive data files), but
also qualitative; while considerable data can be generated in
a rapid fashion by a hospital full of electronic patient monitors,
such monitors (e.g. pulse oximetry, capnography) are subject
to artifact generation.47 Application of analytics to data rife
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with artifacts can produce faulty conclusions (‘garbage in,
garbage out’); one potential solution is the application of
analytics such as machine learning and neural networks
during data auditing to detect errors before analysis. Consi-
deration must be taken for other unintended consequences
that can arise from the use of analytics methods, such as
re-identification of anonymized data and exclusion of disad-
vantaged populations.26 48

Visual analytics and big data in anaesthesia
and health care
Big data pose computing challenges because of their rapid vel-
ocity, immense volume, and wide variety.1 Visual analytics (VA)
tools are a category of computational tools that integrate data
analytics with interactive visual interfaces, and can be used to
navigate and manipulate big data.24 49 Visual analytics tools
enable investigative analysis and hypothesis generation by
showing connections between entities in a manner that
facilitates understanding and guides selection and application
of other analytics techniques.50 51 Visual analytics tools offer
three main benefits compared with traditional database
queries: first, the user can explore big data in a self-service
‘point-and-click’ fashion as opposed to writing database

queries manually; second, complex ideas can be communi-
cated with clarity and efficiency in visual graphs rather than
the tabular data output from a traditional database query;
and third, VA tools can display large amounts of filtered data
in near real time.52

Several steps are required to visualize big data using VA
tools. First, the data are stored in a dimensional database
model that uses online analytical processing systems that
were developed specifically to analyse very large data sets.
Dimensional models create a unique fact table that contains
all potential data transactions in addition to filters (dimen-
sions) used to associate facts and measures throughout
the database, simplifying query scripts and shortening execu-
tion times.24 53 In contrast, traditional relational database
models are highly normalized (i.e. data transactions are
spread across a multitude of tables), which can be suboptimal
for big data analysis because of the time-consuming query
scripts required to create complex reports. After data have
been audited, validated, and stored in a dimensional database,
VA tools are used to construct user-friendly dashboards
that display histograms and graphs in order to identify and
explore data trends. Visualization reduces the load on working
memory, offloads cognition, and harnesses the power of
human perception.54 Fundamental principles for effective VA

Fig 1 Screen shot of The Children’s Hospital of Philadelphia Perioperative Blood Transfusion visual analytics dashboard. This enables the user to
explore historic blood transfusion data (based on patient characteristics and procedure type).
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dashboard design include displaying critical information on a
single screen, minimizing the number of objects on the
screen, keeping graphical icons sparse, displaying context in
abbreviated form, and using multiple colour intensities rather
than multiple hues.55

Visual analytics tools are applied typically to health-care
data belonging to one of three categories: business purposes,
clinical operations, or scientific research in various health-
care-related fields, such as genomics56 and epidemiology.57

This discussion focuses primarily on the use of VA techniques
in clinical operations (i.e. patient care). Visual analytics tools
are used extensively at the authors’ tertiary care paediatric
hospital for exploration of patient and clinician data and CDS.
Examples include a dashboard for exploring blood transfusion
data filtered by patient characteristics and procedure type
before ordering blood products58 (Fig. 1) and a dashboard mon-
itoring EHR medication alerts (Fig. 2).59 Our hospital also uses
VA dashboards to monitor hand hygiene compliance, nursing
metrics, supply chain performance, and adherence to clinical
guidelines (e.g. Febrile Infant Pathway dashboard).24 Many
additional examples of VA applications in health care are
available in the literature, such as for visualizing dynamic
data from multiple EHRs,60 61 tracking symptom evolution

during disease progression,62 performing pharmacokinetic–
pharmacodynamic analysis,63 building detection models for
disease surveillance,64 visualizing outcomes data,65 and
enhancing health-care education.66 There is a paucity of
reports detailing the use of VA in anaesthesia literature
despite numerous studies describing the benefits of non-VA
methods,67 anaesthesia information management system
(AIMS) user interface usability,68 and near-real-time CDS.69

Indeed, a PubMed search using the terms, ‘visual analytics
anaesthesia’ returned zero results on December 18, 2014.

While the use of VA tools in anaesthesia remains in its
nascent stages, the first steps towards big data in anaesthesia
occurred in the early 1990s,70 71 and since then proliferation of
EHRs over the last two decades has increased availability of
clinical anaesthesia data.72 As of May 2013, 67% of US aca-
demic hospitals had installed AIMS to generate automated
electronic anaesthesia records.73 These institutions—in com-
bination with community hospitals and ambulatory surgery
centres—serve as a potential source of anaesthesia-related
big data when combined with EHR data and then aggregated
across multiple institutions.72 Whether or not the volume of
anaesthesia data can be classified as big data remains a
topic of debate.74 75 National database efforts such as the

Fig 2 Screen shot of The Children’s Hospital of Philadelphia Medication Alert Fatigue visual analytics dashboard. This enables the user to explore
electronic health record medication alert data.
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AQI’s NACOR and MPOG will continue to produce anaesthesia
big data for retrospective studies, outcomes research,76

quality assessment and management,77 and modelling for
prospective studies, although anaesthetists should be aware
of the pitfalls associated with database research, including
suboptimal data quality, validation, and security concerns.72 78

The future of analytics in anaesthesia
and health care
The proliferation of AIMS and EHRs has resulted in big data in
anaesthesia and health care to be managed and analysed
for various purposes, including practice management, quality
improvement, and outcomes research. Emerging trends for
analytics and big data in health care include facilitating popu-
lation health management and value-based accountable care,
detecting fraud, and using targeted communication and edu-
cation campaigns to facilitate patient engagement.79 The
future of anaesthesia and health-care analytics will involve
ever-increasing demand for and application of sophisticated
analytics methods and tools (e.g. VA dashboards) to explore
and analyse data with the goals of improving patient care, in-
creasing efficiency, optimizing resource utilization and alloca-
tion, and enhancing decision making at both clinical and
enterprise levels.24 80 Patient-generated big data have been
identified as a promising approach to personalized health
care and medical diagnostics via data mining and the develop-
ment of computer-aided diagnostic tools.81 82 Anaesthetists,
through national efforts such as NACOR and MPOG, will con-
tinue to leverage big data and analytics tools to conduct re-
search83 and transform data into information that can guide
clinicians and improve patient outcomes.84

Conclusions
The improving sophistication and ubiquity of electronic moni-
toring systems both in the hospital and within the community
feed ever-increasing amounts of anaesthesia and health care
big data to clinicians, administrators, and researchers. Analy-
tics methods offer promising tools to leverage big data to
improve patient care, quality assessment, financial manage-
ment, and other areas of health care. One method, visual ana-
lytics, can facilitate exploration of big data in order to generate
hypotheses and guide selection and use of advanced analytics
methods. Proliferation of AIMS and EHRs will increase the
demand for anaesthetists who can bridge the gap between
the medical and information sciences.
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