Differential Privacy Preserving Genomic Data Releasing via Factor Graph

Zaobo He¹, Yingshu Li¹, and Jinbao Wang² ¹Georgia State University, USA ²Harbin Institute of Technology, China

Background

- Cost of DNA sequencing drops dramatically
 - Genomic study requires analyzing large amount of genetic information from many individuals.
 - Individuals are using their genomes to learn about disease predispositions, medicines, etc.
 - Voluntary and mandated sharing of genome data among hospitals, biomedical research organizations, and other data holders.

Background (Cont.)

- □ Kin-Genomic Privacy
 - DNA sequences of relatives are even highly similar
 - No consent from one's relatives is needed to release ones genome data
 - Individuals revealing genome data may threaten the relatives' privacy besides their own.

Studied Problem

Differential privacy guaranteed kin-genomic data releasing

Previous Privacy Preserving Methods

- Signal-to-noise ratio
 - Large scale of noise is required for high-dimensional genomic data
 - Degrade the utility of released data

Our Method

- □ Key idea: degrade genomic data sensitivity
 - Less noise is required to be injected
- Factorize the high-dimensional distribution of the original genomic data with a set of low-dimensional distributions
 - For low-dimensional distributions, signal-to-noise problem avoided
 - A sufficiently accurate approximation
- Data correlations
 - SNP-trait association
 - Mendelian Inheritance Probabilities

Genome-Wide Association Studies

Objective of GWAS:

7

- Analyze genomic data to find statistical correlations between SNPs and trait (e.g., disease)
- Compare the genomes of patients with trait and the genomes of patients without trait (e.g., disease)

Case group: with disease

Control group: without disease

AACTGTCCG

ACCTGTACG

AATTGTACA

AATTGTCCA

Mendelian Inheritance Probabilities

- A child inherits one allele from mother and one from father.
- Each allele of a parent is inherited by a child with equal probability of 0.5.
- □ SNP position: BB, Bb, or bb.

Table 1: The probability distribution of Child's genotype, given different probability distribution of its parents genotypes.

Child Mother Father	BB	Bb	bb
BB	(1, 0, 0)	(1/2, 1/2, 0)	(0, 1, 0)
Bb	(1/2, 1/2, 0)	(1/4, 1/2, 1/4)	(0, 1/2, 1/2)
bb	(0, 1, 0)	(0, 1/2, 1/2)	(0, 0, 1)

Differential Privacy [DMNS, TCC 06]

Differential Privacy

D and D' are neighbors if they differ on at most one record

A randomized algorithm A satisfies \mathcal{E} -differential privacy, if for any two neighbours D and D', and for any possible output O of A, we have:

 $\Pr[A(D)=O] \le e^{\epsilon} \Pr[A(D')=O]$

Laplace Mechanism

□ E.g., for counting query Q over dataset D, returning $Q(D) + Laplace(1/\epsilon)$ maintains ϵ -differential privacy.

Our Method: High-Level Overview

JCD: Joint Conditional Distribution

 X_U : sensitive variables

12

- X_K : non-sensitive variables
- F: Mendelian inheritance probabilities
- A: SNP-trait associations

Two Challenges

- Computation of JCD is non-trivial, considering the scale of human genomes
 - Tens of millions of SNPs
 - Large scale of potential traits
- Inject differential privacy noise into genomic data (including SNPs and traits) to derive a close approximation
 - Data privacy: poor scalability; expensive
 - Data utility: high sensitivity

Solutions

- Factorize the high-dimensional JCD into the product of simpler local functions
 - Capturing data correlations (SNP-trait associations; Mendelian inheritance probabilities)
- Inject differential privacy noise into these local functions
 - Low-dimensional local functions incur low sensitivity

Computation of JCD

Belief propagation in a factor graph obtains exponential gains in efficiency.

Injection of Differential Privacy Noise

ε-DP is satisfied!

Conclusions

 Differential-privacy preserving kin-genomic data releasing

- □ Key ideas of the solution
 - Belief propagation in a factor graph for dimension reduction
 - Differential privacy noise directly injected into lowdimensional local distributions

THANK YOU!

