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Background

I
0 Cost of DNA sequencing drops dramatically

0 Genomic study requires analyzing large amount of
genetic information from many individuals.

O Individuals are using their genomes to learn about
disease predispositions, medicines, etc.

O Voluntary and mandated sharing of genome data
among hospitals, biomedical research organizations,
and other data holders.




Background (Cont.)
N

0 Kin-Genomic Privacy

0 DNA sequences of relatives are even highly similar

0 No consent from one’s relatives is needed to release
ones genome data

O Individuals revealing genome data may threaten the
relatives’ privacy besides their own.



Studied Problem

0 Differential privacy guaranteed kin-genomic data
releasing



Previous Privacy Preserving Methods
N

0 Signal-to-noise ratio

O Large scale of noise is required for high-dimensional
genomic data

O Degrade the utility of released data



Our Method

I .,
0 Key idea: degrade genomic data sensitivity
O Less noise is required to be injected
0 Factorize the high-dimensional distribution of the original
genomic data with a set of low-dimensional distributions

O For low-dimensional distributions, signal-to-noise problem
avoided

O A sufficiently accurate approximation
0 Data correlations
0 SNP-trait association

0 Mendelian Inheritance Probabilities



Genome-Wide Association Studies

0 Obijective of GWAS:

O Analyze genomic data to find statistical correlations
between SNPs and trait (e.g., disease)

O Compare the genomes of patients with trait and the
genomes of patients without trait (e.g., disease)

Case group: @

with disease

AACTGTCCG

ACCTGTACG

without disease AATTGTCCA

Control group: @3 AATTGTACA



Mendelian Inheritance Probabilities
N

0 A child inherits one allele from mother and one from
father.

0 Each allele of a parent is inherited by a child with
equal probability of 0.5.

0 SNP position: BB, Bb, or bb.

Table 1: The probability distribution of Child’s genotype, given different prob-
ability distribution of its parents genotypes.

Child Mother
BB Bb bb
Father
BB (1, 0, 0) (1/2,1/2, 0) (0, 1, 0)
Bb (1/2, 1/2, 0){(1/4, 1/2, 1/4)|(0, 1/2, 1/2)
bb (0, 1, 0) (0, 1/2,1/2) (0,0, 1)
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Differential Privacy
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A randomized algorithm A satisfies &-differential
privacy, if for any two neighbours D and D’, and for
any possible output O of A, we have:

Pr[A(D)=0] < ef Pr[A(D’)=0]



Laplace Mechanism
N

<>

«—— f(D)

—> A(D) = f(D)+Laplace(Af/e)

Af = maxp, | 1f(D) = (D) |,
For a counting query f: Af =1

0 E.g., for counting query Q over dataset D, returning

Q(D) + Laplace
privacy.

(1/€) maintains €-differential



Our Method: High-Level Overview
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JCD: Joint Conditional Distribution
Xy: sensitive variables

Xk: non-sensitive variables

F: Mendelian inheritance probabilities
A: SNP-trait associations
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Two Challenges

I S,
0 Computation of JCD is non-trivial, considering the
scale of human genomes
0 Tens of millions of SNPs
O Large scale of potential traits
0 Inject differential privacy noise into genomic data

(including SNPs and traits) to derive a close
approximation

O Data privacy: poor scalability; expensive

O Data utility: high sensitivity



Solutions
T

0 Factorize the high-dimensional JCD into the product
of simpler local functions

o0 Capturing data correlations (SNP-trait associations;
Mendelian inheritance probabilities)

0 Inject differential privacy noise into these local
functions

O Low-dimensional local functions incur low sensitivity



Computation of JCD
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Belief propagation in a factor graph obtains exponential gains in efficiency.



Injection of Differential Privacy Noise
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Compensabillity property:
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Conclusions

A
0 Differential-privacy preserving kin-genomic
data releasing

0 Key ideas of the solution

O Belief propagation in a factor graph for dimension
reduction

o Differential privacy noise directly injected into low-
dimensional local distributions
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