
FAST BROADCASTING WITH BYZANTINE
FAULTS

Michel Paquette ∗,1 Andrzej Pelc ∗,2

∗Département d’informatique et d’ingénierie, Université
du Québec en Outaouais, Hull, Québec J8X 3X7, Canada.
E-mail: michel.paquette@polymtl.ca, pelc@uqo.ca

Abstract: We construct and analyze a fast broadcasting algorithm working in the
presence of Byzantine component faults. Such faults are particularly difficult to
deal with, as faulty components may behave arbitrarily (even maliciously) as
transmitters, by either blocking, rerouting, or altering transmitted messages in
a way most detrimental to the broadcasting process. We assume that links and
nodes of a communication network are subject to Byzantine failures, and that
faults are distributed randomly and independently, with link failure probability
p and node failure probability q, these parameters satisfying the inequality (1 −
p)2(1−q) > 1/2. A broadcasting algorithm, working in an n-node network, is called
almost safe if the probability of its correctness is at least 1 − 1/n, for sufficiently
large n. Thus the robustness of the algorithm grows with the size of the network.
Our main result is the design and analysis of an almost safe broadcasting algorithm
working in time O(log2 n) and using O(n log n) messages in n-node networks. The
novelty of our algorithm is that it can cope with the most difficult type of faults,
potentially affecting all components of the network (both its links and nodes), and
that it is simultaneously robust and efficient. Copyright (c) 2004 IFAC

Keywords: fault tolerance, binary tree architectures, communication networks,
distributed computer control systems, noisy channels, optimality, probabilistic
models.

1. INTRODUCTION

As interconnection networks grow in size and com-
plexity, they become increasingly vulnerable to
component failures. Links and/or nodes of the
network may fail, and these failures often result in
delaying, blocking, or even distorting transmitted
messages. It becomes important to design commu-
nication algorithms in such a way that the desired

1 Supported in part by the M.Sc. CALDI Scholarship
of the Research Chair in Distributed Computing of the
Université du Québec en Outaouais.
2 Supported in part by NSERC grant OGP 0008136 and
by the Research Chair in Distributed Computing of the
Université du Québec en Outaouais.

communication task be accomplished efficiently
in spite of these faults, usually without knowing
their location ahead of time. Such communication
algorithms are called fault-tolerant.

No communication algorithm can work properly
for all fault types and configurations. For example,
if all links of a network are faulty, and faults
result in permanently blocking all transmitted
messages, there can be no hope of accomplishing
any communication task. On the other hand, such
massive failures are extremely rare in practice and
they need not be of primary concern in algorithm
design. Much more frequent are faults that dam-
age a limited number of components. Hence an



important goal is to design communication algo-
rithms that work properly, under some assump-
tions bounding the number of possible faults.

We are concerned with one of the fundamen-
tal communication procedures called broadcasting.
One node of the network, called the source, holds
a message which must be transmitted to all other
fault-free nodes. (It is assumed that the source is
fault free: otherwise, no broadcasting is possible).
There are two fundamental qualities which are
demanded of a good fault-tolerant broadcasting
algorithm. One of them is robustness, i.e., the
ability of the algorithm to work correctly in spite
of the presence of faults of some assumed type,
which are distributed in unknown locations but
according to some prescribed assumptions. The
other one is efficiency: this requirement is similar
as in the fault-free situation. In this work we adopt
two primary measures of efficiency of a communi-
cation algorithm: its time, i.e., the number of time
steps used by the algorithm, and its cost, i.e., the
number of messages used in the communication
process.

1.1 The model and terminology

The communication network is modeled as a sim-
ple undirected graph. We assume that the network
is complete, i.e., all pairs of nodes are connected
by communication links. However, our algorithm
works for much sparser networks as well, in fact for
some networks of logarithmic degree. Communi-
cation is synchronous: every elementary transmis-
sion is assumed to take one time step. We adopt
one of the communication models most widely
used in the literature, the so called one-port or
whispering model (Hedetniemi, Hedetniemi and
Liestman, 1988; Fraigniaud and Lazard, 1994). In
one time step, each node can communicate with
at most one other node, i.e., pairs of nodes com-
municating simultaneously must form a matching.

Since we are concerned with communication in the
presence of faults, we must specify the nature and
the assumed distribution of faults which our algo-
rithms can tolerate. We work with the most gen-
eral fault type: Byzantine faults. Such faults are
particularly difficult to deal with, as faulty com-
ponents may behave arbitrarily (even maliciously)
as transmitters, by either blocking, rerouting, or
altering transmitted messages in a way most detri-
mental to the broadcasting process. The main ad-
vantage of assuming such general type of faults is
that an algorithm working under this assumption,
also works correctly, and with the same or better
efficiency, in the presence of any more benign
type of failures, such as crash or fail-stop faults.
Hence, designing an efficient and robust commu-
nication algorithm for Byzantine faults increases

its portability. Another issue to be specified is the
distribution of faults. We work under the proba-
bilistic distribution scenario, widely considered to
accurately model realistic faulty environments (cf.
surveys (Lee and Shin, 1994; Pelc, 1996)). Faults
of links and nodes of the network are assumed to
be distributed randomly and independently. with
link failure probability p and node failure proba-
bility q. For our algorithm to work reliably, these
constant parameters must satisfy the inequality
(1 − p)2(1 − q) > 1/2. It should be noted that
this assumption is satisfied in most real cases:
for example our algorithm can tolerate link and
node failures occuring with probability up to 20%.
Most realistic communication networks have much
more reliable components, hence our algorithm
will behave well in practice. It is assumed that
the source of broadcasting is fault free: otherwise,
no broadcasting is possible.

Since components of the network are subject to
random failures, it is even possible that all com-
ponents fail and hence, no broadcasting algorithm
can work correctly at all times. Hence we seek al-
gorithms that have high probability of correctness.
A broadcasting algorithm, working in an n-node
network, is called almost safe, if the probability of
its correctness is at least 1 − 1/n, for sufficiently
large n. Thus the robustness of the algorithm
grows with the size of the network, which is a
desirable property, as networks encountered in
real applications are often very large. For this
reason, almost safe fault-tolerant communication
algorithms have been widely studied in the liter-
ature (cf. the survey (Pelc, 1996)).

1.2 Our results

Since redundancy is a fundamental ingredient in
all fault-tolerant communication algorithms, there
exists a trade-off between robustness and effi-
ciency of such algorithms. If we want a broad-
casting algorithm to tolerate a lot of faults, es-
pecially Byzantine faults, messages must be sent
along many alternate routes, and verified during
the communication process, thus augmenting the
running time and the cost of the algorithm. Our
main result is the design and analysis of a broad-
casting algorithm which is fast, uses relatively few
messages, and has high probability of correctness.
More specifically, we design an almost safe broad-
casting algorithm working in time O(log2 n) and
using O(n log n) messages in n-node networks, for
network components subject to Byzantine fail-
ures, under the assumption that link failure prob-
ability p and node failure probability q satisfy the
inequality (1− p)2(1− q) > 1/2.

Our algorithm is oblivious, in the sense that all
transmissions are scheduled in advance: it is pre-



determined which pairs of nodes communicate in
a given time step. The only thing that is decided
during the algorithm execution, is the content
of the messages, which depends on outcomes of
a voting scheme used to mask erroneous trans-
missions. Such algorithms have the advantage of
being easy to implement and of requiring small
local memory in network nodes. It can be proved
that every almost safe oblivious broadcasting al-
gorithm must use Ω(n log n) messages, hence our
algorithm has cost of optimal order of magnitude.
On the other hand, it is well known that any
broadcasting algorithm, even working in a fault-
free network, must have running time at least
log n. Hence the execution time of our algorithm
exceeds the optimal one by at most a logarithmic
factor.

1.3 Related work

Efficient broadcasting algorithms in various com-
munication networks have been widely studied
in the literature (see, e.g., surveys (Hedetniemi,
Hedetniemi and Liestman, 1988; Fraigniaud and
Lazard, 1994)). In particular, a lot of effort has
been devoted to the study of broadcasting un-
der the assumption that components of the net-
work may be faulty (see the survey (Pelc, 1996)).
Two commonly used fault models are the bounded
model and the probabilistic model. In the bounded
model, an upper bound k is imposed on the
number of faulty components, and their worst-
case location is assumed. Under this scenario, k-
tolerant broadcasting is usually sought (see, e.g.,
(Gargano, 1992; Peleg and Schäffer, 1989)): the
source message must reach all fault-free nodes
provided that no more than k components (links,
or nodes, or both, depending on the particular
scenario) are faulty. In the probabilistic model,
faults are assumed to occur randomly and inde-
pendently of each other, with specified probabili-
ties. Under this scenario, almost safe broadcast-
ing is often sought, similarly as in the present
paper (cf. (Berman, Diks and Pelc, 1997; Bien-
stock, 1988; Chlebus, Diks and Pelc, 1994; Diks
and Pelc, 1992)).

Byzantine faults have been widely studied in the
context of network communication, of the con-
sensus problem in distributed computing, and of
multiprocessor fault diagnosis (cf., e.g., (Lynch,
1996) and the survey (Barborak, Malek and Dah-
bura, 1993)). In (Bao, Igarashi and Katano, 1995),
broadcasting in hypercube networks was stud-
ied under the assumption that either nodes or
links (but not both) are subject to randomly
distributed Byzantine faults. In (Berman, Diks
and Pelc, 1997), a O(log n)-time broadcasting al-
gorithm was designed under the assumption that

links are subject to randomly distributed Byzan-
tine faults but all nodes are fault free. On the
other hand, in (Chlebus, Diks and Pelc, 1994)
a O(log n)-time broadcasting algorithm was pro-
posed for randomly distributed link and node fail-
ures but only of crash type: such faults can only
block messages but cannot distort them, which
significantly facilitates the design of fault-tolerant
broadcasting algorithms. To the best of our knowl-
edge, our broadcasting algorithm is the first to
cope with randomly distributed Byzantine faults
of links and nodes at the same time.

2. THE BROADCASTING ALGORITHM

2.1 The underlying network

Although we work in the complete network, our
broadcasting algorithm will in fact use very few
links. This is a desirable feature, as sparse net-
works are easier to implement. We will con-
struct an n-node network of logarithmic degree
in which almost safe broadcasting is possible (cf.
(Chlebus, Diks and Pelc, 1994; Berman, Diks and
Pelc, 1997), where a similar network was used
previously).

We use log n to denote the logarithm with base 2
and ln n to denote the logarithm with base e. For a
positive constant c, we define an n-node network
G(n, c). Let m = dc log ne and s = bn/mc. For
clarity of presentation, assume that n is a power
of 2, m is odd and divides n, and s = 2L+1−1, for
some integer L ≥ 0. By definition, L < log n. It is
easy to modify the construction and the proof in
the general case. Partition the set of all nodes into
subsets S1,..., Ss, of size m, called supernodes. In
every supernode Si, enumerate nodes from 0 to
m− 1. For any i = 1, ..., s and any j = 0, ...,m−
1, assign label (i, j) to the jth node in the ith
supernode. We assume that node (1, 0) is the
source of broadcasting. Arithmetic operations on
the second integers forming labels are performed
modulo m.

Arrange all supernodes into a complete binary
tree T with L+1 levels 0, 1, ..., L. Level 0 contains
the root and level L contains leaves of tree T . The
supernode S1, called ROOT, is the root of T . For
every 1 ≤ i ≤ bs/2c, S2i is the left child of Si and
S2i+1 is the right child of Si in the tree T . For
every 1 < i ≤ s, supernode Sbi/2c is the parent
of Si. If a supernode is a parent or a child of
another supernode, we say that these supernodes
are adjacent in T .

The set of edges of the network G(n, c) is defined
as follows. If supernodes Si and Sj are adjacent
in T then there is an edge in G(n, c) between any
node in Si and any node in Sj . Moreover, every
pair of nodes in the supernode S1 forming the



root of T are joined by an edge. These are the
only edges in G(n, c). The graph G(n, c) is called
a thick tree. It should be noted that a thick tree
is not a tree but has a tree-like structure which
will be exploited in the design of our broadcasting
algorithm. Clearly, a thick tree is a graph of
maximum degree O(log n).

2.2 The overview of the algorithm

The idea of our algorithm is the following. First
the source message is propagated to all nodes of
ROOT, using all other nodes as intermediaries.
Every node of ROOT gets m − 1 versions of the
source message. Then it computes the message
considered to be correct, by majority voting. Next,
the source message is propagated down the thick
tree, along its branches. Every supernode Si,
whose nodes already got the message, transmits
first to its left child and then to its right child.
This is done as follows. Every node of Si sends
its version of the source message to every node of
the given child. After obtaining m versions of the
source message from nodes of Si, every node of the
child of Si computes the message considered to be
correct, by majority voting. This is done until all
nodes in all supernodes compute the version of the
source message considered to be correct.

2.3 The description of the algorithm

We now proceed with a formal description of the
broadcasting algorithm. For every node u, Xu

denotes the content of register X in this node.
In the beginning, the source message is held in
register M of the source, i.e., it is M(1,0). For every
node u, the message that it computes during the
scheme execution, and considers to be the source
message, is stored in its register M . Every node u
outputs the final value of Mu as its version of the
source message.

The elementary procedure SEND(u,X, v, Y ) will
be used for adjacent nodes u, v, for the follow-
ing action: u sends Xu to v, and v assigns the
received value to its register Y . If u, v, and the
link joining u with v are fault free, the effect of
SEND(u,X, v, Y ) is the same as the assignment
Yv := Xu. Otherwise, an arbitrary value is as-
signed to Yv.

Another elementary subroutine is VOTE(v, V, A),
where V is a vector of values. This subroutine
is performed locally by node v, and it serves to
compute the correct version of the source message,
with high probability. It outputs the majority
value of all terms of a vector V of records held
in v, and stores it in record A, if such a majority
exists. Otherwise, it stores a default value.

We now describe the main procedures used in our
broadcasting algorithm.

Procedure ROOT-Propagation spreads the source
message among nodes of ROOT. After exchanging
their versions of the source message, all nodes in
ROOT vote on all received values, to compute the
correct version of the source message, with high
probability. Let R1,...,Rm−2 be the partition of
all edges in ROOT\{(1, 0)} into pairwise disjoint
perfect matchings, and let Ri(v) denote the node
matched with v by matching Ri.

procedure ROOT-Propagation
for j := 1 to m− 1 do

SEND((1, 0), M, (1, j),W )
for i := 1 to m− 2 do

for all j = 1, ..., m− 1 in parallel do
SEND((1, j),W,Ri((1, j)), B[j])
B[j](1,j) := W(1,j)

//Ri((1, j)) stores the message coming
//from (1, j) in record B[j]. Also, every
//node (1, j) assigns the value of its record
//W to the record B[j] in its vector B.

for all j = 1, ..., m− 1 in parallel do
VOTE((1, j), B, M)
//Every node in ROOT computes the majority

of
//values from vector B[1, ..., m− 1]

Procedure GROUP-Transmission transmits the
message from all nodes of one supernode to all
nodes of another. Then all nodes in the receiving
supernode vote on all received values, to compute
the correct version of the source message, with
high probability. Index addition in the procedure
formulation is done modulo m.

procedure GROUP-Transmission (i, k)
for r := 0 to m− 1 do

for all j = 0, 1, ..., m− 1 in parallel do
SEND((i, j),M, (k, j + r), B[j])

for all j = 0, 1, ..., m− 1 in parallel do
VOTE((k, j), B, M)

Procedure TREE-Propagation (l) reliably trans-
mits the source message from level l to level l + 1
of the thick tree.

procedure TREE-Propagation (l)
for all supernodes Si on level l in parallel do

GROUP-Transmission(i, 2i); //to left child
GROUP-Transmission(i, 2i + 1); //to right

child

Now Algorithm FBBF (Fast Broadcasting with
Byzantine Faults) can be succinctly formulated as
follows.



Algorithm FBBF
ROOT-Propagation
for l := 0 to L− 1 do

TREE-Propagation(l).

3. THE ANALYSIS OF ALGORITHM FBBF

Let q′ = (1 − p)2(1 − q) and c = 80 ln(2)q′

(2q′−1)2 . By
assumption, q′ > 1/2. We consider Algorithm
FBBF for the thick tree G(n, c), for this value of
c.

Proposition 3.1. Algorithm FBBF works in time
O(log2 n) and uses O(n log n) messages.

Proof. Since the size of every supernode is
O(log n), the procedures ROOT-Propagation and
GROUP-Transmission each take time O(log n).
Since the number of levels in the thick tree is
O(log n) as well, it follows that the execution time
of Algorithm FBBF is O(log2 n). In order to esti-
mate the number of messages, observe that each
pair of nodes, adjacent in the thick tree, exchange
at most two messages. Since the maximum degree
of the thick tree is O(log n), the number of edges
in it is O(n log n), and consequently Algorithm
FBBF uses O(n log n) messages. 2

It remains to prove the main result of this section,
concerning the correctness of Algorithm FBBF. In
the proof we will use the following probabilistic
lemma known as Chernoff’s bound (cf. (Hagerup
and Rüb, 1989/90)). It will be needed to estimate
the probability that the majority of a set of
pairwise disjoint paths joining two nodes, are fault
free. Since paths are pairwise disjoint, the events
that they do not contain faulty components are
independent, and Chernoff’s bound can be used.

Lemma 3.1. Let X be the random variable denot-
ing the number of successes in a Bernoulli series of
length m with success probability q. Let 0 < ε < 1.
Then Prob(X ≤ (1− ε)mq) ≤ e−ε2mq/2.

Theorem 3.1. Algorithm FBBF is almost safe.

Proof. We define the following events:

• C is the event that, at the end of Algorithm
FBBF, all fault-free nodes get the correct
source message. We denote by pC the proba-
bility of event C.

• Let x be a branch of the thick tree. Bx is the
event that, at the end of Algorithm FBBF,
all fault-free nodes in all supernodes in the
branch x, get the correct source message. We
denote by pBx the probability of event Bx.

• CROOT is the event that, at the end of proce-
dure ROOT-Propagation, all fault-free nodes
in ROOT get the correct source message. We

denote by pCROOT
the probability of event

CROOT .
• CSOURCE,i, for i = 1, ...,m − 1, is the

event that, at the end of procedure ROOT-
Propagation, a fault-free node (1, i) gets
the correct source message. We denote by
pCSOURCE,i the probability of event CSOURCE,i

• Let supernode Si be the parent of supern-
ode Sk in the thick tree. CSk is the event
that, at the end of procedure GROUP-
Transmission(i, k), all fault-free nodes in Sk

get the correct source message. We de-
note by pCSk

the conditional probability
Prob(CSk|CSi).

For any event E, we will use the notation E to
denote the complement of E, and pE to denote
1− pE .

Consider the event CSOURCE,i. Node (1, i) is
joined with the source by m− 2 pairwise disjoint
paths of length 2, and one path of length 1
(the joining edge). The probability that such a
fixed path of length 2 does not contain faulty
components, is q′ = (1−p)2(1−q). The probability
for the path of length 1 is even larger: 1 −
p. For pairwise disjoint paths, these events are
independent, hence Lemma 3.1 can be used to
estimate the probability that the majority of
these paths are free of faults. If this holds, event
CSOURCE,i holds as well. Hence we get

pCSOURCE,i ≤ e
−(2q′−1)2(m−1)q′

8q′2 ≤ e
−(2q′−1)2mq′/2

8q′2 .(1)

In view of m = dc log ne and c = 80 ln(2)q′

(2q′−1)2 we have

pCSOURCE,i
≤ e

5 ln(2) log(n)(−(2q′−1)2

(2q′−1)2/8q′
q′

8q′2 . (2)

= e−5 ln(n) = 1/n5. (3)

We know that pCROOT ≤ ∑m
i=1 pCSOURCE,i ,

since CROOT is the intersection of all events
CSOURCE,i, for fault-free nodes (1, i). Hence
pCROOT

≤ m · 1/n5 ≤ 1/n4, for sufficiently large
n.

Let supernode Si be the parent of supernode Sk

in the thick tree. Consider the event Ej that a
single fixed fault-free node (k, j) in supernode Sk

gets the correct source message at the end of pro-
cedure GROUP-Transmission(i, k). Suppose that
all fault-free nodes in Si got the correct source
message prior to the execution of this procedure.
Node (k, j) gets the source message through m
disjoint paths, each consisting of one node from
Si and one joining link. The probability that both
components in such a single path are fault free, is
(1−p)(1−q) > q′. Hence the conditional probabil-
ity Prob(Ej |CSi) is larger than pCSOURCE,i

. Con-
sequently, Prob(Ej |CSi) ≤ 1/n5, which implies
pCSk

≤ m · 1/n5 ≤ 1/n4, for sufficiently large n.



Fix a branch x of the thick tree. For sufficiently
large n, we have

pBx = pCROOT
·

L∏

i=1

pCSi . (4)

pBx
≥ (1− 1

n4
)L+1 ≥ (1− 1

n4
)n. (5)

We have (1−1/n4)n3 → 1 and (1−1/n2)n2 → 1/e.
Hence, for sufficiently large n,

(1− 1/n4)n3
> (1− 1/n2)n2

, (6)

which implies

1− 1/n4 > (1− 1/n2)1/n. (7)

Thus we get pBx ≥ (1 − 1
n4 )n ≥ 1 − 1/n2. By

definition of events C and Bx we have

C ⊂
⋃
{Bx : x is a branch in the thick tree}. (8)

Since there are 2L ≤ n branches in the thick tree,
we finally get, for sufficiently large n,

pC ≤ n · 1
n2

= 1/n, (9)

hence Algorithm FBBF is almost safe. 2

4. CONCLUSION

We proposed an almost safe broadcasting al-
gorithm working in time O(log2 n) and using
O(n log n) messages in n-node networks, subject
to Byzantine faults of components. The fact that
the algorithm is almost safe guarantees that its
reliability grows with the size of the network. The
novelty of our algorithm is that it copes with the
most difficult type of faults potentially affecting
all components of the network: both its links
and nodes. Our algorithm has the optimal cost
complexity, and its running time differs from the
lower bound only by a logarithmic factor. The
question of whether there exists an almost safe
broadcasting algorithm working in time O(log n)
under our Byzantine fault scenario remains a chal-
lenging open problem suggested by our result.

REFERENCES

Bao, F., Y. Igarashi and K. Katano (1995). Broad-
casting in hypercubes with randomly dis-
tributed byzantine faults. Proc. WDAG’95,
972, pp. 215–229.

Barborak, M., M. Malek and A. Dahbura (1993).
The consensus problem in fault-tolerant
computing. ACM Computing Surveys, 25,
pp. 171–220.

Berman, P., K. Diks and A. Pelc (1997). Reliable
broadcasting in logarithmic time with byzan-
tine link failures. Journal of Algorithms, 22,
pp. 199–211.

Bienstock, D. (1988). Broadcasting with random
faults. Disc. Appl. Math., 20, pp. 1–7.

Chlebus, B.S., K. Diks and A. Pelc (1994). Sparse
networks supporting efficient reliable broad-
casting. Nordic Journal of Computing, 1,
pp. 332–345.

Diks, K. and A. Pelc (1992). Almost safe gossiping
in bounded degree networks. SIAM J. Disc.
Math., 5, pp. 338–344.

Fraigniaud, P. and E. Lazard (1994). Methods,
problems of communication in usual net-
works. Disc. Appl. Math., 53, pp. 79–133.

Gargano, L. (1992). Tighter bounds on fault-
tolerant broadcasting, gossiping. Networks,
22, pp. 469–486.

Hagerup, T. and C. Rüb (1989/90). A guided
tour of chernoff bounds. Inf. Proc. Letters,
33, pp. 305–308.

Hedetniemi, S.M., S.T. Hedetniemi and A.L. Li-
estman (1988). A survey of gossiping, broad-
casting in communication networks. Net-
works, 18, pp. 319–349.

Lee, S. and K.G. Shin (1994). Probabilistic diag-
nosis of multiprocessor systems. ACM Com-
puting Surveys, 26, pp. 121–139.

Lynch, N.A. (1996). Distributed Algorithms. Mor-
gan Kaufmann Publ., Inc.. San Francisco.

Pelc, A. (1996). Fault-tolerant broadcasting, gos-
siping in communication networks. Networks,
28, pp. 143–156.

Peleg, D. and A.A. Schäffer (1989). Time bounds
on fault-tolerant broadcasting. Networks, 19,
pp. 803-822.


