
Measuring Fault Tolerance with the FTAPE FaultInjection ToolTimothy K. Tsai and Ravishankar K. IyerUniversity of IllinoisCenter for Reliable and High Performance ComputingCoordinated Science LaboratoryUrbana, IllinoisEmail: fttsaijiyerg@crhc.uiuc.eduTelephone: (217) 244-1768 Fax: (217) 244-5686AbstractThis paper describes FTAPE (Fault Tolerance And Performance Eval-uator), a tool that can be used to compare fault-tolerant computers. Themajor parts of the tool include a system-wide fault injector, a workloadgenerator, and a workload activity measurement tool. The workload cre-ates high stress conditions on the machine. Using stress-based injection,the fault injector is able to utilize knowledge of the workload activity to en-sure a high level of fault propagation. The errors/fault ratio, performancedegradation, and number of system crashes are presented as measures offault tolerance.Keywords: fault injection, workload generator, fault tolerance measure-ment, stress-based injection1 IntroductionA method for measuring the fault tolerance of any computer is desirable.Such a method could be used to compare fault-tolerant computers. For systemdesigners, di�erent fault-tolerant designs could be evaluated, and feedback canbe provided in the design process. A fault tolerance measure would be useful topurchasers of new fault-tolerant systems in encapsulating the e�ectiveness ande�ciency of the fault tolerance.This paper describes FTAPE (Fault Tolerance and Performance Evaluator).The tool combines a fault injector and a workload generator with a workloadactivity measurement tool in order to inject faults under high stress conditionsbased on workload activity. It is well known that high stress and complex work-loads cause greater propagation of faults and detection of errors[5]. By usingknowledge of the workload activity, the fault injector can maximize the chancethat faults are activated. The tool also characterizes the fault tolerance of a com-puter by producing a single measure. This use of FTAPE is analogous to theuse of synthetic benchmarks in evaluating CPU performance. Despite the
awsof such measures, these benchmarks are nevertheless useful in comparing di�er-ent systems. In the area of fault tolerance, no such benchmarks are currentlyavailable. Although it may be argued that measures produced by FTAPE are

not be the most de�nitive, they are certainly useful as fault tolerance measuresand should motivate the discussion in the area of fault tolerance metrics.The use of fault injection to measure fault tolerance is needed because theerror detection and recovery mechanisms that comprise the fault tolerance of acomputer can only be tested when activated by faults and their correspondingmanifestations. The fault injector in FTAPE can inject faults throughout thetarget system, including in CPU, memory, and disk components. This ability toinject faults into di�erent parts of the system is needed due to the distributednature of the fault tolerance mechanisms.The workload generator is synthetic and designed to produce workloads thatwill exercise the CPU, memory, and disk. The amount and intensity of theworkload in each area of the system (CPU, memory, and disk) can be controlledand speci�ed as distributions over time.We de�ne stress-based injection as the process of injecting faults based upona measurement of the current workload activity. Stress in this sense refers tothe amount of activity caused by the workload which could encourage faultpropagation. In this paper, fault propagation refers to the activation of faultsand the resulting deviation of the system state from the fault-free case. The e�ectof the fault is propagated due to the activity of the workload. The workloadactivity measurement tool provides two values: (1) the level of workload activityin each system component (CPU, memory, and disk), which determines thelocation of injection, and (2) the level of workload activity in the entire system,which determines the time of injection. Results from several experiments areprovided to demonstrate the e�ectiveness of stress-based injection in increasingfault propagation.Since the tool characterizes the fault tolerance of the system using a singlequantity, a metric for that characterization is needed. Several metrics are pro-posed and measured. The ratio of detected errors to injected faults representsthe e�ectiveness of error detection, while performance degradation representsthe e�ciency of error recovery. The number of system crashes measures thee�ectiveness of error recovery.FTAPE is designed to be used on a functioning hardware implementationof a fault-tolerant computer. The tool has been implemented on a TandemIntegrity S2 fault-tolerant computer. Experiments using the tool show the e�ectof di�erent workloads in in
uencing fault propagation. A measure of the overallsystem fault tolerance is also obtained. The implementation of FTAPE hasbeen designed to be portable, although the fault injector is dependent to somedegree upon the architecture of the measured machine. Plans exist to port thetool to other fault-tolerant machines and to compare the fault tolerance of thosemachines.2 Related WorkThere are several di�erent approaches to fault injection. A detailed discussioncan be found in [6]. Fault injection tools can be classi�ed as simulation-basedor prototype-based. Simulation involves the injection of faults into electrical,logical, or functional simulation models. Simulation has the ability to model

complex systems with greater accuracy than analytic modeling. However, en-suring that the simulated models are realistic and containing simulation timeexplosion are challenges. Examples of fault simulators include FOCUS [2] andMEFISTO [7].For prototype-based injection, faults are injected into existing physical sys-tems. There are several methods for injecting faults into these computers.Hardware-implemented fault injection uses additional hardware instrumenta-tion to introduce faults. FTMP [3] and MESSALINE [1] use active probes andspecial sockets to alter currents and voltages on chip pins. Radiation [4] canalso be used to inject chip-level faults. Although these methods inject actuallow-level, physical faults, they require special hardware and accessibility to thetarget system hardware and have the possibility of damaging the target system.Another method of injection involving prototypes is software-based fault in-jection (SWIFI). This method uses software to emulate the e�ect of lower-levelhardware faults by altering the contents of memory or registers. No additionalhardware is required. Some fault injection tools based on SWIFI are given inTable 1. FIAT injects faults into the user process image in memory. FERRARIuses software traps to inject faults. HYBRID uses hardware and software moni-toring of SWIFI faults. DEFINE is a distributed version of FINE [11], which isable to emulate software faults as well as hardware faults. SFI is used to validatedependability mechanisms and has been used on a distributed real-time system.FTAPE di�ers from these tools by adding a synthetic workload generator anda workload activity measurement tool that enables the fault injector to injectfaults based upon dynamic workload measurements. Performance degradationis measured along with other quantities as measures of the overall system faulttolerance. Table 1: Software-implemented Fault Injection ToolsSystemName Under Test Fault TypesFIAT [13] IBM RT CPU, memory, communicationsFERRARI[9] Sun CPU, memory, bus, communicationsHYBRID [15] Tandem S2 CPU, memoryDEFINE [10] Sun CPU, memory, bus, SW, distributedSFI[12] HARTS CPU, memory, communicationsFTAPE Tandem S2 CPU, memory, disk3 Description of ToolFTAPE is a tool that integrates the injection of faults and the generationof the workload necessary to propagate those faults. The tool is composed ofthree main parts: FI (the fault injector), MEASURE, and WG (the workloadgenerator). Figure 1 shows how these three parts interact. A more detailed

description of each part of the tool follows.

Workload

Activity

WorkloadFaults

Workload specsFI WG

cpu mem io

MEASUREFigure 1: Block Diagram of FTAPE3.1 Fault InjectorThe method of injection used by the current version of FTAPE is software-implemented fault injection, which uses software to emulate the e�ects of un-derlying physical faults. For instance, a bit in a memory location can be
ippedto emulate the e�ect of an alpha particle on a memory bit. This method offault injection is selected because it is more controllable than hardware-basedinjection and does not require additional injection hardware.The main goal of fault injection is to exercise the error detection and recoverymechanisms in the target system. The best way to do this is to inject faultsthroughout the entire system. FTAPE partitions the system into three mainareas: cpu, mem, and io. For each area a di�erent method of fault injectionis required. These areas are also targeted by the WG in order to increase thechance for the injected faults to be propagated by the workload.3.1.1 Fault Injection MethodThe fault injection methods used by the FI are described below. Note thatfault-tolerant systems have widely varying architectures and therefore requiredi�erent fault injection techniques. The following is for the implementation ofFTAPE on the Tandem Integrity S2:Injection method 1: inject cpu The CPU fault models include single/mul-tiple bit-
ip and zero/set faults in CPU registers.Faults are injected into CPU registers, speci�cally, saved1 general purposeand
oating point registers, the program counter, the global pointer, and1Saved registers are those registers who values must be preserved across procedure calls.

stack pointer. These registers were chosen because faults in these registerhave a higher chance of propagation compared to faults in other registers(e.g., temporary registers).Injection method 2: inject mem The memory fault models include single/multiple bit-
ip and zero/set faults in local and global memory.Faults are targeted at heavily used parts of memory. Faults are injectedby directly modifying the contents of selected memory locations.Injection method 3: inject io The I/O fault models include valid SCSI anddisk errors.Faults are injected into a mirrored disk system. The method of injectioninvolves using a test portion of the disk driver code that sets error
ags forthe next driver request. Thus, the next request activates the error handlerin the driver code, and one half of the disk mirror may be disabled.3.1.2 Fault Selection MethodThe time and/or location for each fault injection is determined using oneof the following methods. Some of the methods involve the measurement ofworkload stress, which is described in the next section:Selection method 1: location stress-based injection (LSBI) Faults areinjected into the area (CPU, memory, or I/O) with the greatest normalizedstress.Selection method 2: time stress-based injection (TSBI) Faults areinjected during the time the composite system stress (described later) isgreater than a speci�c threshold.Selection method 3: randomly The fault time is selected randomly basedon a speci�ed distribution (e.g., an exponential interarrival distributionwith a speci�ed mean of 20 seconds), and the fault location is randomlychosen based on a uniform distribution.On the Tandem S2, if an error is detected, all injections are suspended until theerror is corrected, because an error detection disables the component in whichthe error was detected (e.g., a detected error in the CPU forces the entire CPUo�-line).3.2 Workload GeneratorThe main purpose of the workload generator is to provide an easily control-lable workload that can propagate the faults injected by the FI. The workload issynthetic to allow easy control of the workload, based on a few parameters. Thesame areas that are used by the FI (cpu, mem, and io) are targeted for workloadactivity. The workload is composed of a mixture of the following three functions,each of which exercises one of the three main system areas intensively:Function 1: use cpu This function is CPU-intensive. It consists of repeatedadditions, subtractions, multiplications, and divisions for integer and
oat-ing point variables. These operations are performed in a loop containing

conditional branches. Memory accesses are limited by using CPU registersas much as possible.Function 2: use mem This function is memory-intensive. A large memoryarray is created, and locations in this array are repeatedly read from andwritten to in a sequential manner. The array is larger than the size of thedata cache in order to ensure that accesses are being made to the physicalmemory (because the cache is direct mapped with a block size of one word).Function 3: use io This function is I/O-intensive. A dummy �le system iscreated on a mirrored disk system. Opens, reads, writes, and closes arerepeatedly performed.In practice, each function is usually speci�ed to last the same amount oftime (e.g., one second). Then the composition of each workload process canbe speci�ed to contain a speci�c proportion of each function. For instance, aworkload that is CPU-intensive with a small amount of memory and I/O activitycan be speci�ed to contain 90% of the cpu function and 5% each of the mem andio functions. Such a workload would be said to have a composition of 90/5/5.When the workload process is executed, each function will be randomly chosenaccording to the corresponding probabilities.Each function also reads and writes data from a special global interdepen-dence array which forces data
ow among functions. This is necessary to encour-age fault propagation among functions. Otherwise, a data fault in one functionis usually overwritten if the fault in
uences only variables local to that functionand the system doesn't detect the error before the end of the function. Theamount of data
ow among functions via the interdependence array can be con-trolled by resetting parts of the array to default values. This has the e�ect ofproviding some measure of control of data
ow, and therefore fault propagation,through global variables.The intensity is the amount of activity in each function relative to the max-imum possible activity. The intensity of each function is decreased by substi-tuting calls to the usleep() function instead of code that would otherwise beexecuted. Thus, an intensity of 100% would contain no additional usleep()calls. The ability to control the intensity is useful for studying the impact of theworkload activity level on fault propagation. For most of the workloads used inthe experiments in Section 4, the intensity is varied from 100% to 20% over aperiod of about nine minutes2. Varying the intensity emphasizes the e�ect ofhigh and low workload activity on the amount of fault propagation.Finally, the workload provides the FI with information needed to determinethe location of certain faults, such as which processes are currently executingand what portions of memory are being used.3.3 MEASUREMEASURE is a tool that monitors the actual workload activity. Althougheach workload function is designed to be very intensive for one system area, each2This time period needs to be long enough for the MEASURE tool and FI to react to thecorresponding workload activity.

function must necessarily cause activity in other system areas. For instance, theio function must also use the CPU and perform memory reads and writes as wellas accessing the disk. Thus, the MEASURE tool is necessary to measure theactual activity caused by the workload.MEASURE returns the level of workload stress for each system area as wellas for the system as a whole. The stress is the amount of workload activity,especially that which can aid fault propagation. As with the FI, the methodsneeded to obtain the stress measures for each system area are system dependentto some extent. For each system area, the following methods are used to obtainthe workload stress:Method 1: measure cpu The stress measure is based upon the CPU utiliza-tion. On the S2, the sar utility returns the CPU utilization.Method 2: measure mem The stress measure is based upon the number ofreads and writes per second to the memory space used by the workload.Since any software method of obtaining this information would incur anunacceptable amount of overhead, a hardware method is used. A TektronixDAS 9200 logic analyzer is used to count the number of memory accesses.This count is automatically sent to the MEASURE program every 10 sec-onds. A detailed description of the setup needed to measure mem stresscan be found in Young[14].Method 3: measure io The stress measure is based on the number of diskblocks accessed per second. On the S2, the sar utility returns the numberof disk blocks accessed per second.Each stress measure is normalized in order to compare the di�erent mea-sures. The normalization is performed by running a set of various workloads3and obtaining a distribution of the raw stress measures (i.e., CPU utilization,memory accesses/second, and disk blocks/second). Each raw stress measure wasnormalized to a value between 0 and 1, inclusively, based on the following for-mula, where Xmin is the 5th percentile value and Xmax is the 95th percentilevalue in the raw stress distribution:Xnormal = min�max�� X �XminXmax �Xmin� ; 0� ; 1� :One disadvantage of the current methods is the relatively long amount of timebetween measurements (about 10 seconds). This is mainly due to the amount oftime required by the logic analyzer to count memory accesses. However, most ofthis time is used to set up the logic analyzer; the actual count only takes aboutone second. A newer logic analyzer will be used in the future to signi�cantlydecrease this setup time.4 ExperimentsThe main goals of the following experiments are3These workloads had compositions of 33/33/33, 20/20/60, 20/60/20, and 60/20/20.

� to illustrate the use of FTAPE in investigating a speci�c machine as itperforms in the presence of faults and� to illustrate the e�ectiveness of stress-based injection.The target machine for these experiments is the Tandem Integrity S2 fault-tolerant computer. A brief description of the S2 is given in Section 4.1. Thegeneral experimental procedure is described in Section 4.2. The �rst set ofexperiments, described in Section 4.3, involves injecting matched faults (i.e.,faults that are injected into areas of greatest workload stress) and unmatchedfaults (i.e., faults that are injected into areas of least workload stress). Theseexperiments expose the sensitivity of certain workloads to speci�c faults. Thenext set of experiments, presented in Section 4.4, illustrates the e�ectiveness ofstress-based injections in increasing fault propagation.4.1 Description of S2The Integrity S2[8] is a fault-tolerant computer designed by Tandem Com-puters, Inc. The core of the S2 is its triple-modular-redundant processors. Eachprocessor includes a CPU, a cache, and an 8MB local memory. Although thesethree processors perform the same work, they operate independently of eachother until they need to access the doubly-replicated global memory. At thispoint, the duplexed Triple Modular Redundant Controllers (TMRCs) vote onthe address and data. If an error is found, the faulty processor is shut down.If it passes a power-on self-test (POST), it is reintegrated into the system bycopying the states of the two good processors. Voting also occurs on all I/Oand interrupts. In addition, the local memory is scrubbed periodically. Thisarchitecture ensures that a fault that occurs on one processor will not propagateto other system components without being caught by the TMRC voting process.4.2 General Experimental ProcedureEach experiment is composed of two runs, one with faults and one without.The reason for this duplication is that it allows the calculation of the performancedegradation, which is the ratio of two times: (1) the extra time required by theworkload due to the detection and correction of faults by the system and (2) theworkload execution time without faults. This ratio is adjusted by the numberof faults injected. If Tf is the workload execution time under fault injection,Tnf is the time with no faults, and n is the number of faults injected, then theperformance degradation isPerformanceDegradation = 1n (TfTnf � 1): (1)Performance degradation is a measure of the amount of extra time a systemrequires to recover from detected errors. Performance degradation can be usedas a measure of a system's fault tolerance, where a lower level of degradationmeans that the recovery mechanisms are more e�cient. In order to obtain thismeasure, runs of the experiment which cause system crashes are ignored, since

Global
Memory

Global
Memory

IOP IOP

I/O Devices

Controller

Controller

Voter Voter

TMRC TMRC

CPU CPU CPU
Local

Memory
Local

Memory
Local

Memory

Figure 2: Overview of Tandem Integrity S2 Architecturethe degradation would be in�nite in that case. Instead, the number of systemcrashes is counted and can be used as another measure of fault tolerance (i.e.,how well the system is able to recover from faults).One run of each experiment consists of the following steps:1. Start the MEASURE tool.2. Run the workload while injecting faults. Measure the total workload timerequired (Tf in Equation 1).3. Run the workload a second time, this time without injecting any faults.Again measure the total workload time required (Tnf in Equation 1).For the second non-injection run, the FI is still executed, but with null injectionmasks. In other words, the FI goes through the motions of injecting faults, butinstead of
ipping a bit (XORing with a 1) and setting a disk error (setting theerror value to a nonzero value), the FI doesn't
ip a bit (XORs with a 0) and setsa null disk error (sets the error value to a zero value). By so doing, the secondrun will also invoke the same FI overhead as the �rst run, which is needed whencomparing workload execution times.In addition to performance degradation, the ratio of error detections to faultinjections is measured for each run. This ratio represents the e�ectiveness of errordetection. Since it is usually desirable to detect as many faults as possible, theerrors/fault ratio should be maximized. Although analogous to error detectioncoverage, it is di�erent because multiple injected faults may be concurrentlypresent in a system component. When a single error in that component isdetected, reintegration of that component results in correction and removal of

all faults in that component. Thus, the errors/fault ratio is always less than orequal to the error detection coverage.Performance degradation and the errors/fault ratio can also be used to mea-sure the level of fault propagation on a single machine. Since the detection andrecovery mechanisms on a machine remain the same from one run to another,variations in these two measures are caused by the detection of errors caused byinjected faults. The more the faults propagate, the more error detections andthe errors/fault ratio are likely to increase. A larger number of error detectionscauses more recovery activity and hence increases the performance degradation.4.3 Sensitivity of Workloads to FaultsFaults are activated and propagated by workloads. The experiments in thissection show that more fault propagation occurs when the locations of faults andhigh workload activity are the same. The experiments consist of injecting faultsinto a single system component. Two types of workloads are executed along withthose fault injections: (1) a workload with little activity in that component and(2) a workload with its activity mostly concentrated in that component. Thus,for experiment (c) in Table 2, faults are injected only into the disk. The �rstrow represents a non-disk intensive workload, while the second row represents adisk-intensive workload. The injection time was chosen based on an exponentialarrival distribution with a mean of 20 seconds.The results are given in Table 2. Each row represents seven runs. From thetable, it can be seen that the errors/fault ratio and the performance degradationare higher for the second row of each experiment. This means that the faultpropagation is indeed higher when the injection location matches the locationof high workload activity. For instance, the errors/fault ratio for io injectionsincreases from 0.248 to 0.700 when the workload activity becomes disk-intensive.Similarly the performance degradation increases from 0.001257 to 0.030363.The increase in the errors/fault ratio occurs because the injected faults areaccessed by the workload more frequently when the workload activity is con-centrated in the injection area. Furthermore, the high workload activity causesthe accessed fault to produce additional errors. For instance, a CPU fault maybe a corrupted register. That register may be a pointer to a memory location.Each time that corrupted register is referenced by the workload, an additionalmemory error is created (i.e., fault propagation). This fault propagation e�ectis increased when the workload causes the register to be used more often.4.4 Stress-based Injection ResultsStress-based injection is a method of selecting the time and location forinjected faults with the goal of producing the greatest fault propagation possible.Injected faults must be activated and propagated in order to adequately exercisethe error detection and correction mechanisms on a fault-tolerant system. Thus,by using stress-based injection, the likelihood that the fault tolerance of a systemis tested can be increased.To show that stress-based injection increases fault propagation, experimentswere performed using using �ve di�erent stress-based injection strategies:

Table 2: Sensitivity of Workloads to FaultsInjection CompositionExp Location cpu mem ioa cpu 4 48 48cpu 90 5 5b mem 48 4 48mem 5 90 5c io 48 48 4io 5 5 90Execution ExecutionInj. Errors Faults ErrorsFault Time with Time without PerformanceExp Loc. Detected Injected Faults (sec) Faults (sec) Degradationa cpu 9 61 0.148 1588 1544 0.000467cpu 26 101 0.257 2334 2236 0.000434b mem 2 87 0.027 1948 1928 0.000119mem 3 71 0.038 1558 1537 0.000193c io 12 48 0.248 2026 1910 0.001257io 26 37 0.700 3347 1583 0.030363Strategy Descriptionlt Use both location-based stress injection (LSBI) and time-based stress injection (TSBI).l Use LSBI.t Use TSBI.random Randomly select injection times from an exponential distri-bution and injection locations from a uniform distribution.ltLOW Use both LSBI and TSBI. However, select injection timeswhen the composite stress is below a speci�c threshold, andselect the injection location (CPU, memory, I/O) with thelowest measured stress.The errors/fault ratio and performance degradation for the �ve injectionstrategies used with the same workload are given in Figure 3. The �gure showsaverages based on 19 runs for each injection strategy. The workload used is adisk-intensive workload. From the �gure, it can be seen that the highest levelof fault propagation (as measured by the errors/fault ratio and performancedegradation) is obtained when using both the location-based and time-basedinjection strategies (labeled in the graph as \lt"). If only the location-basedstrategy (labeled as \l") is used, then the propagation is lower. However, thelocation-based strategy still produces more propagation than using the time-based or random strategies (labeled as \t" and \random", respectively). Thus,for this disk-intensive workload, injecting faults into the disk produces morefault propagation than choosing the injection location randomly. However, ifadditionally the faults are injected only when the dynamic workload activity ishigh, then even more propagation occurs.The measured performance degradation in Figure 3 is small, partly becauseit is divided by the number of faults injected. However, the measure is signi�cant

because it is intended to be used as a relative measure. Thus, the importance ofthe measure is that the combined location-base and time-based injection strategyproduces more performance degradation than the other strategies.
Errors/Fault

0.0000

0.2000

0.4000

0.6000

0.8000

ltLOW

randomt

l

lt

Performance
Degradation

0.0000

0.0100

0.0200

0.0300

randomt

l

lt

Figure 3: Errors/Fault and Performance DegradationThis same e�ect can be seen for other workloads. Figure 4 shows the er-rors/fault ratio for several workloads. For each workload, the errors/fault ratiois higher when the location-based strategy is combined with the time-basedstrategy. Again, the combined strategy is labeled as \lt" in the graph, while thelocation-based strategy alone is labeled as \l".

Workload d Workload e Workload f
0.00

0.05

0.10

0.15

0.20

0.25

l l

l
lt lt

lt

Figure 4: Errors/Fault for Several WorkloadsAs shown in Table 2, disk faults have a much higher errors/fault ratio andperformance degradation compared to CPU and memory faults. To ensure thatthe results of the experiments are not biased by this, the results were also cal-culated for the same experiments in Figure 4 ignoring disk faults. The resultsare given in Table 3. Again, the errors/fault ratio is highest when the location-

Table 3: Stress-based Injection Results For CPU and Memory FaultInjection Composition # Errors Faults ErrorsFaultExp Method cpu mem io Runs Detected Injectedd lt 90 5 5 19 4 22 0.1749�0.0362l 90 5 5 18 13 104 0.1206�0.0147t 90 5 5 19 2 17 0.1184�0.0353random 90 5 5 19 3 23 0.1170�0.0302ltLOW 90 5 5 6 12 169 0.0740�0.0161e lt 33 33 33 12 11 66 0.1679�0.0261l 33 33 33 17 7 71 0.1007�0.0169t 33 33 33 18 3 29 0.1075�0.0264random 33 33 33 16 3 28 0.1053�0.0282ltLOW 33 33 33 5 4 94 0.0403�0.0177f lt 20 20 60 19 7 60 0.1178�0.0187l 20 20 60 10 4 52 0.0874�0.0220t 20 20 60 9 3 33 0.1003�0.0298random 20 20 60 19 4 32 0.1151�0.0254ltLOW 20 20 60 6 2 76 0.0263�0.0147based and time-based injection strategies (labeled as \lt") are combined. Theerrors/fault ratios for the lt strategies are highlighted in the table. For theerrors/faults ratio, 95% con�dence intervals are given.System Crash DataThe results above do not include experiments which resulted in system crashes.The number of system crashes is given in Table 4 classi�ed by the injection strat-egy and workload used. Each row represents a di�erent workload, and each col-umn represents the injection strategy used. For example, the \lt" column of row\e" shows that 3 system crashes occurred while the combined location-based andtime-based injection strategy was used with workload (e). The table includesdata for 272 runs, during which a total of 5 system crashes occurred. All crashesoccurred when the location-based and time-based injection strategies were used.This result is consistent with the results of the other experiments in this paper,which show that the combined location-based and time-based strategy seems toproduce the most fault propagation.Repeatability5 ConclusionsFTAPE is a tool that can be used to compare the fault tolerance of computersystems. Stress-based injection is used to to inject faults at the times and lo-cations of greatest workload activity. This encourages fault propagation, whichis necessary to ensure that the fault-tolerant mechanisms are adequately exer-cised. Experiments on the Tandem Integrity S2 show that fault propagation (asmeasured by error/fault, performance degradation, and system crashes) is high-est when faults are injected (1) into components (e.g., CPU) that are exercised

Table 4: Number of Observed System CrashesInjection strategiesExperiment lt l t random ltLOWd 0 0 0 0 0e 3 0 0 0 0f 1 0 0 0 0g 1 0 0 0 0Total 5 0 0 0 0heavily by the workload and (2) at times of greatest overall workload stress.6 AcknowledgmentsThanks are due Tandem Computer, Inc., and especially Luke Young, for theirhelp in this work. This research was supported in part by the Advanced ResearchProjects Agency (ARPA) under contract DABT63-94-C-0045, ONR contractN00014-91-J-1116, and by NASA grant NAG 1-613, in cooperation with theIllinois Computer Laboratory for Aerospace Systems and Software (ICLASS).The content of this paper does not necessarily re
ect the position or policy ofthese agencies, and no endorsement should be inferred.References[1] J. Arlat et al. Fault injection for dependability validation-a methodol-ogy and some applications. IEEE Transactions on Software Engineering,16(2):166{182, February 1990.[2] G. S. Choi, R. K. Iyer, and V. Carreno. Focus: An experimental envi-ronment for fault sensitivity analysis. IEEE Transactions on Computers,41(12):1515{1526, December 1992.[3] G. B. Finelli. Characterization of fault recovery through fault injection onFTMP. IEEE Transactions on Reliability, 36(2):164{170, June 1987.[4] U. Gunne
o, J. Karlsson, and J. Rorrin. Evaluation of error detectionschemes using fault injection by heavy-ion radiation. In Proceedings 19thInternational Symposium on Fault-Tolerant Computing, pages 340{347,Chicago, Illinois, June 1989.[5] R. Iyer, D. Rossetti, and M. Hsueh. Measurement and modeling of com-puting reliability as a�ected by system activity. ACM Transactions onComputer Systems, 4:214{237, August 1986.[6] R. Iyer and D. Tang. Experimental analysis of computer system depend-ability. Technical Report CRHC-93-15, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1993.[7] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. Fault injectioninto VHDL models: The MEFISTO tool. In 24st International Symposiumon Fault-Tolerant Computing, 1994.

[8] D. Jewett. Integrity S2: A fault-tolerant UNIX platform. In 21st Interna-tional Symposium on Fault-Tolerant Computing, pages 512{519, Montreal,Canada, June 1991.[9] G. Kanawati, N. Kanawati, and J. Abraham. Ferrari: A fault and errorautomatic real-time injector. In Proc. 22nd International Symposium onFault-Tolerant Computing, Boston, Massachusetts, 1992.[10] W.-L. Kao and R. K. Iyer. De�ne: A distributed fault injection and mon-itoring environment. In Proceedings of IEEE Workshop on Fault-tolerantParallel and Distributed Systems, June 1994.[11] W.-L. Kao, R. K. Iyer, and D. Tang. FINE: A fault injection and monitor-ing environment for tracing the unix system behavior under faults. IEEETransactions on Software Engineering, 19:1105{1118, November 1993.[12] H. Rosenberg and K. Shin. Software fault injection and its application indistributed environment. In Proceedings of the 23rd International Sympo-sium on Fault-Tolerant Computing, France, June 1993.[13] Z. Segall, D. Vrsalovie, et al. FIAT-fault injection-based automated testingenvironment. In 18th International Symposium on Fault-Tolerant Comput-ing, pages 102{107, 1988.[14] L. Young and R. Iyer. Error latency measurements in symbolic architec-tures. In AIAA Computing in Aerospace 8, pages 786{794, Baltimore, Mary-land, October 1992.[15] L. Young, R. Iyer, K. Goswami, and C. Alonso. A hybrid monitor assistedfault injection environment. In Proceedings of the Third IFIP WorkingConference on Dependable Computing for Critical Applications, pages 163{174, Mondello, Sicily, Italy, September 1992.

