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Building information models (BIMs) are maturing as a new paradigm for storing and exchanging knowledge
about a facility. BIMs constructed from a CAD model do not generally capture details of a facility as it was
actually built. Laser scanners can be used to capture dense 3D measurements of a facility's as-built condition
and the resulting point cloud can be manually processed to create an as-built BIM — a time-consuming,
subjective, and error-prone process that could benefit significantly from automation. This article surveys
techniques developed in civil engineering and computer science that can be utilized to automate the process
of creating as-built BIMs. We sub-divide the overall process into three core operations: geometric modeling,
object recognition, and object relationship modeling. We survey the state-of-the-art methods for each
operation and discuss their potential application to automated as-built BIM creation. We also outline the
main methods used by these algorithms for representing knowledge about shape, identity, and relationships.
In addition, we formalize the possible variations of the overall as-built BIM creation problem and outline
performance evaluation measures for comparing as-built BIM creation algorithms and tracking progress of
the field. Finally, we identify and discuss technology gaps that need to be addressed in future research.
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1. Introduction

Semantically rich digital facility models, known as building
information models (BIMs), are gaining attention in the Architecture,
Construction, Engineering, and Facility Management (AEC/FM) com-
munity due to their ability to enhance communication between the
various stakeholders involved in the different stages of a facility's life
cycle [34] and their multitude of potential uses, ranging from improved
planning for renovations to more accurate modeling of a building's
energy consumption [35]. A BIM represents a facility in a semantically
rich manner, unlike a traditional CAD model. Whereas a CAD model
would represent a wall as a set of independent planar surfaces, a BIM
would represent the wall as a single, volumetric object with multiple
surfaces, as well as adjacency relationships between the wall and other
entities in themodel, the identification of the object as a wall, and other
relevant properties (material characteristics, cost, etc.). A BIM can be
used, for example, toplan themodification of aprocessplantwith a level
of precision that would not be possible otherwise, reducing the
possibility of unexpected and costly delays during the construction.

While it is possible to construct a BIM from a CAD-based model of a
facility's design (as-designed condition), such amodel does not generally
capture detailed depictions of the state of a facility as it was actually built
(as-built condition) or as it exists currently (as-is condition). A facility
may not be constructed exactly as the design specified, changes may be
made during subsequent renovations, or a design model of an existing
facility may simply not exist. These observations point to the need for
methods to create BIMs that represent a facility's as-built/as-is conditions.
We use the term “as-built” to mean “as-built/as-is” for brevity hereafter.

The creation of an as-built BIM involvesmeasuring the geometry and
appearanceof anexisting facility and transforming thosemeasurements
into a high-level, semantically rich representation. The goals of this
article are threefold: 1) to document the state-of-the-art methods for
creating as-built BIMs, which are primarily manual processes; 2) to
survey existing techniqueswithin the relevantfields of civil engineering
and computer science and evaluate their suitability for automating the
as-built BIM creation process; and 3) to identify technology gaps and
barriers to automating the process. BIMs incorporate many aspects of a
facility's components, such as material characteristics, cost, and
behavioral properties. In this article, we focus primarily on methods to
model the geometry and functional properties of the components in a
facility. The processes described in the remainder of this section are a
synthesis of interviews conducted with professional laser scanning
service providers, discussions with representatives of laser scanning
hardware vendors and BIM creation software vendors, and formal
collaborations with domain experts within government agencies,
including the General Services Administration (GSA) and the National
Institute of Standards and Technologies (NIST).
1.1. Creating as-built BIMs

Laser scanners are gaining acceptance and usage in the AEC/FM
industry for creating as-built BIMs because they can rapidly and
accurately measure the 3D shape of the environment. The process of
creating an as-built BIM using laser scanners can be divided into three
main steps: 1) data collection, in which dense point measurements of
the facility are collected using laser scans taken from key locations
throughout the facility; 2) data preprocessing, inwhich the sets of point
measurements (known as point clouds) from the collected scans are
filtered to remove artifacts and combined into a single point cloud or
surface representation in a common coordinate system; and 3)
modeling the BIM, in which the low-level point cloud or surface
representation is transformed into a semantically rich BIM. These steps
are described in more detail in the next sub-sections. The focus of this
article is on the modeling step, but a brief overview of the first two
steps is provided for completeness.

1.1.1. Data collection
Laser scanning technology has made the creation of as-built BIMs

tractable. Othermethods, such as using a total-station,measuring tapes,
or even ordinary cameras, are too time-consuming or inaccurate to be
practical on a large scale, though recent results using images are
promising [29]. Laser scanners measure the distance from the sensor to
nearby surfaces with millimeter to centimeter accuracy at speeds of
thousands to hundreds of thousands of pointmeasurements per second
(Fig. 1). A single scan may contain several million 3D points. Since no
single scanning location can visualize all surfaces within a facility, scans
must be obtained frommultiple locations. Often, a digital camera is used
to capture images of the environment, which can be later fusedwith the
3D data to aid in the modeling process [6].

1.1.2. Data preprocessing
The point clouds from each scan are initially represented in the

scanner's local coordinate frame. All of the data need to be aligned in a
common, global coordinate system through a process known as
registration. Although automated registration methods have been
developed [43], in current practice, registration is still a semi-automated
process. Typically, the user must manually identify, in the 3D data, the
approximate locations of specialized targets thathavebeenplaced in the
environment to aid in the registration [34]. Data preprocessingmay also
include manual or automated filtering to remove unwanted data, such
aspoints frommovingobjects, reflections, or sensor artifacts. Depending
on the modeling algorithm or software used, the point cloud data may
be converted into surface data, usually in the formof a triangular surface
mesh. This process may be performed at the individual scan level, and
then the resulting surfaces are combined [94], or the point clouds can be
registered first, and then the surfaces can be estimated from the
combined point cloud [41].

1.1.3. Modeling the BIM
Given a point cloud of a facility, themodeling of a BIM involves three

tasks:modeling the geometry of the components (“What is the shape of
this wall?”), assigning an object category and material properties to a
component (“This object is a brickwall.”), and establishing relationships
between components (“Wall1 is connected to Wall2 at this location.”).
These tasksdonot necessarily takeplace sequentially, anddependingon
the workflow, they may be interleaved.



Fig. 1. (a) The laser scanning process for measuring 3D points (from [88], reproduced with permission of R. Staiger). (b) An example of laser-scanned data of a building under
construction.
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The goal of the geometric modeling task is to create simplified
representations of building components by fitting geometric primitives
to the point cloud data. Geometric primitives can be individual surfaces
or volumetric shapes. For example, a simple wall can be modeled as a
planar patch, or it can be a rectangular box (cuboid). Surfaces like
moldings or decorative carvings may not be well modeled by a simple
geometric primitive. In such cases, differentmodeling techniques can be
used. For linear structures (e.g., moldings), a cross-section of the object
can be modeled by fitting splines to the data and then sweeping the
cross-section along a trajectory to form the object model [20]. More
complex structures (e.g., decorative carvings) may be modeled non-
parametrically, using triangle meshes, for example, or they can be
modeled from a database of known object models [15]. Since BIMs are
normally defined using solid shapes, surface-based representations
need to be transformed into solid models.

The modeled components are labeled with an object category.
Standard BIM categories include wall, roof, slab, beam, and column [2].
Additionally, custom object categories can be created based on
individual project needs. Objects may be further augmented with
othermeta-data, such asmaterial properties or links to specifications for
custom components.

Topological relationships between components, and between
components and spaces, are important in aBIMandmustbeestablished.
Connectivity relationships indicate which objects are connected to one
another andwhere they are connected. For example, adjacentwalls will
be connected at their boundaries, andwallswill be connected to slabs at
the bottom. Additionally, containment relationships are used to encode
the locations of components that are embedded within one another,
such as windows and doors embedded within walls [2,14].

1.2. Manual creation of as-built BIMs

In current practice, the creation of as-built BIMs is largely a manual
process performed by service providers who are contracted to scan
and model a facility [34]. A project may require several months to
complete, depending on the complexity of the facility and modeling
requirements [39,70].

Because as-built BIMs are a relatively new concept, commercial
software supporting the process is somewhat fragmented and is in a state
of rapid transition. No single software tool can accomplish all aspects of
the process — reverse engineering tools excel at geometric modeling of
surfaces, but lack volumetric representations and BIM-specific capabil-
ities necessary for semantic modeling, while BIM design systems cannot
handle the massive data sets from laser scanners. As a result, modelers
often shuttle intermediate results back and forth between different
software packages during the modeling process, giving rise to the
possibility of information loss due to limitations of data exchange
standards or errors in the implementation of the standards within the
software tools [30].

The workflow for manual creation of as-built BIMs is best illustrated
through a simple example. Here, we model a portion of a room using
data collected from two scanningpositions (Fig. 2). The rawpoint clouds
are registered in a common coordinate system using the techniques
described in Section 1.1.2, and thenmerged together into a single point
cloud that serves as the input to the modeling process.

There are two main approaches for geometric modeling (Fig. 3).
The first approach is to fit geometric primitives to the 3D data directly
(Fig. 3a). Geometric modeling software typically includes tools for
fitting geometric primitives, such as planes, cylinders, spheres, and
cones to the data, as well as special-purpose tools for modeling pipes
[73,76]. These tools are semi-automated and require significant user
input. For example, to model a planar surface, the user selects a few
points or a patch of data, and a plane will be fitted to the selected data.
The planar patch may be extended using a region growing algorithm
to the extent that contiguous data lie within a tolerance distance of
the initial surface estimate [19]. In this way, approximate boundaries
of the patch can be identified, but, in practice, these boundaries can be
irregular and inaccurate (Fig. 3a). More regular boundaries can be
obtained by intersecting multiple geometric primitives. For example,
the intersection of three orthogonal planes representing two walls
and the floor forms the corner of a room as well as straight line wall–
wall and wall–floor boundaries. Depending on the software, geomet-
ric modeling may operate on point clouds or polygonal (usually
triangular) surface meshes. At present, BIM design software does not
have the capability to convert geometric primitives created with
reverse engineering tools into BIM objects directly. Therefore, it is
common practice to re-model the geometry within the BIM design
environment using the reverse engineeredmodel as a guide. The need
to transfer models back and forth between several different software
packages gives rise to data interoperability problems as well.

The second geometric modeling approach uses cross-sections and
surface extrusion (Fig. 3b). First, horizontal and vertical cross-sections
are extracted from the data, and lines are fit to the cross-sections to
represent walls and slabs in plan views. Then, vertical cross-sections



Fig. 2. Scans from individual viewpoints, one shown in red and a second shown in yellow, (a) are aligned in a common coordinate system (b) and then merged into a single
representation that contains the data from all scans (c). In real applications, tens to hundreds of scans are needed to model a facility.
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are extracted to determine the heights of walls, and any doors and
windows, with respect to the floor and ceiling. Finally, walls are
modeled by extruding the horizontal cross-section vertically based on
the constraints of the vertical cross-sections. This approach is less
computationally intensive than the surface-fitting approach, but it can
lead to errors when the components do not follow their idealized
geometries, for instance, if a wall is not truly vertical.

Various techniques can be used to speed up the modeling process.
One instance of a repeated component (e.g., a window) can be modeled
initially from data and used as a template to model additional instances.
The risk is that different instances may contain slightly different
geometry, which would cause geometric modeling errors. Prior knowl-
edge about component geometry, such as the diameter of a column, can
be used to constrain the modeling process [16], or the characteristics of
known components may be kept in a standard component library.
Fig. 3. Examples of methods for reconstructing an as-built BIM from laser scanner data (see tex
edge, while region B highlights an edge formed from region intersections. (b)Modeling using cr
resulting as-built BIM.
The category for a BIM component is determined by the modeler
when the object is first created within the BIM design software.
Relationships between components are established either manually
or in a semi-automated manner. For example, when components are
created in positions that are touching, the software may automatically
connect the two components.

1.3. Automating the creation of as-built BIMs

The manual process for constructing as-built BIMs is time-
consuming, labor-intensive, tedious, subjective, and requires skilled
workers. Even though modeling of individual geometric primitives can
be fairly quick, modeling a facility may require thousands of primitives.
The combined modeling time can be several months for an average-
sized building [70],which is frequently the bottleneck in the completion
t for details). (a) Geometric primitives are fit to the data. Region A highlights an irregular
oss-sections of the data. (c) The results of cross-sectionmodeling. (d) The geometry of the

image of Fig.�2
image of Fig.�3
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of an as-built BIM creation project. Since the same types of primitives
must be modeled throughout a facility, the steps are highly repetitive
and tedious [36]. Yet, the modeling tools are complex, and unique
situations occur frequently enough thatmodelersmust be highly skilled
and require specialized training to beproficient [70]. Evenwith training,
the decisions about exactly what elements to model and how to model
them are sufficiently subjective that there can be significant variability
in the quality of the models produced by different personnel.

These observations illustrate the need to streamline the as-built BIM
process using semi-automated and automated techniques. Ideally, a
system could be developed that would take a point cloud of a facility as
input andproduce a fully annotated as-built BIMof the facility as output.
This is a challenging problem for several reasons. Facilities can be
complex environments, oftenwith numerous unrelated objects, such as
furniture andwall-hangings,whichobscure theviewof the components
to be modeled. These unrelated objects (known as clutter) typically are
not required to be included in a BIM, and the surfaces that are occluded
result in incomplete BIM representations unless assumptions are made
about them (e.g., walls extend until they touch the floor). Even without
clutter and occlusions, the geometry of a facility can be very complex,
geometrically,withwindowanddoormoldings, lightfixtures, and other
components.

Depending on the information requirements of project participants as
well as the context of aproject, theproblemof as-built BIMreconstruction
can have several variants in terms of available inputs and expected
outputs. On the input side, additional information about a facility, beyond
the raw point cloud data, may be available. This information may be a
previously created as-built or as-designed model. We can distinguish
between variants by the dimensionality (2D plans and elevations or full
3D CAD models) and the level of semantics in the a priori data (e.g.,
geometry, object labels, object relationships). Such prior information can
simplify the BIM reconstruction process because the prior model can be
aligned with the collected data, and knowledge gleaned from that prior
model can serve as guidance. For example, it is much easier to detect and
model a doorway if the design model gives its approximate location. In
this article, we primarily focus on the most general case, but Section 4.4
discusses methods for leveraging prior information when it is available.

On the output side, the expected output of the process can vary in
terms of the level of detail, types of objects, and level of semantics to
be modeled. In some applications, such as spatial program validation,
only major building components (e.g., walls and columns) need to be
modeled, while in other applications, such as historic building
documentation, the details of even small objects are important.
Moreover, different use cases involve modeling of different types and
complexities of objects, ranging from simple planar walls in an office
building to complex assemblies of pipes and equipment in a process
plant. Finally, in some cases, the full semantics of a BIM may not be
needed, so simpler variations of the problem could omit the modeling
of relationships or even object identities, in which case the resulting
model would essentially be a CAD model. The modeling accuracy and
level of detail required for a particular use case is still an open
question, but the GSA provides guidelines for accuracy tolerances
ranging from ±51 mm down to ±3 mm and artifact sizes ranging
from 152 mm down to 13 mm [34].

The remainder of this article focuses on surveying promising
techniques from civil engineering research and related fields, such as
computer vision and robotics, and analyzing their potential and
limitations for automated as-built BIM creation. Section 2 surveys the
methods for knowledge representation throughout the BIM creation
process. Sections 3 through5 cover the three core operations: geometric
modeling (Section 3), object recognition (Section 4), and relationship
modeling (Section 5).We alsomotivate the need for standard test cases
and formal performance evaluation measures to allow different
algorithms to be compared objectively (Section 6). Finally, Section 7
concludes with a discussion of the technology gaps and directions for
future research.
2. Knowledge representation

In the as-built BIM creation process, three types of knowledge
need to be represented: knowledge about the object shapes,
knowledge about the identities of objects, and knowledge about the
relationships between objects (e.g., floor slabs are perpendicular to
walls). This section overviews the range of representations that are
commonly used for modeling and recognition, and discusses their
technical tradeoffs independently of the algorithms that use them.

2.1. Shape representation

The representation of geometric shapes has been studied extensively
[15]. In the context of as-built BIMs, shape representations can be
classified along three independent dimensions: parametric versus non-
parametric, global versus local, and explicit versus implicit. Parametric
representations describe a shape using a model with a small number of
parameters. For example, a cylindermay be represented by its radius, its
axis, and the start and end points. Non-parametric representations do
not have any parameters, per se. A cylinder can be represented non-
parametrically using a triangle mesh. Global representations describe
the shape of an entire object, while local representations may
characterize only a portion. The dimension of explicit versus implicit
representations is perhaps the most significant axis for distinguishing
shape representations. Explicit representations directly encode the
shape of an object (e.g., a triangle mesh), while implicit representations
indirectly encode object shape using an intermediate representation
(e.g., a histogram of surface normals). Explicit representations are well
suited for modeling 3D objects, whereas implicit representations are
most often used for 3D object recognition and classification [15,63].

2.1.1. Explicit shape representations
Many people are familiar with explicit shape representations

because they are encountered frequently in 3D software packages.
Most CAD packages and 3D reverse engineering environments utilize
explicit representations to describe objects in terms of surfaces, lines,
and points [49].

Explicit representations can be sub-divided into surface-based
representations and volumetric representations. The most common
surface-based representation is the boundary representation (B-rep), in
which a shape is described by a set of surface elements (its surface
boundary) along with connectivity information to describe the
topological relationships between the elements [5]. A triangle mesh is
a kind of B-rep. The faces of the mesh are the surface elements, and the
adjacency of the faces encodes the topological relationships. Volumetric
representations describe shapes by solid geometries. Constructive solid
geometry (CSG) builds complex shapes from simple geometric
primitives (e.g., cuboids, cylinders, and spheres) that can be combined
using operations such as union and intersection (Fig. 4a) [58]. Themain
advantage of CSG over B-Rep is that solid blocks are a more intuitive
means formanipulation by users [49]. However, CSG is not as flexible as
B-rep, since the applicability of CSG is limited by the primitive library
that is used [77]. Furthermore, B-rep allows efficient partial object
representation, such as partially occluded objects, a situation that occurs
commonly in as-built BIM creation [96]. There can be some overlap
between surface and volumetric representations. For example, a sphere
can be considered either a surface representation or a volumetric one.

Explicit representations may be parametric or non-parametric
(Fig. 4b and c). Since parametric representations use a small number
of parameters to describe shapes, these representations are inherently
more compact thannon-parametric representationsand, therefore, have
lower storage requirements andcomputational complexity.On theother
hand, non-parametric approaches aremore general andflexible because
they can represent free-formobjects. Parametric representations include
linear geometric shapes like planes, lines, rectangles, and cuboids
(3D boxes). Curved surfaces can also be represented parametrically. The



Fig. 4. Explicit shape representations. (a) Objects may be represented volumetrically using constructive solid geometry (CSG), for example. A surface, such as this column (b–c), may
be represented parametrically (e.g., by a radius and height) (b) or non-parametrically by a mesh (c). The insets show close-ups of the column model.
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simplest curved geometric primitives include circles, ellipses, and arcs in
2D, and spheres, cylinders, cones, and ellipsoids in 3D. More complex
curved surfaces can be represented parametrically by Bezier splines or,
more commonly, NURBS [60]. NURBS are a generalization of Bezier
splines which represent smooth surfaces using a sparse set of control
points to govern the surface shape. The most common non-parametric
representation is the triangle mesh. Other types of polygonal meshes,
such as quadrilateral meshes, are possible but less common. Recently,
point-based representations have started to become popular for
visualizing 3D data [80]. Since point clouds are the direct output of
laser scanners, visualization of point data eliminates the need to create
surface representations.

Along the dimension of global versus local, parametric representa-
tions are usually used as local representations, and complex shapes
must be decomposed into parts using, for example, CSG to represent
each part with one or more geometric primitives. In contrast, non-
parametric representations, such as triangle meshes, are flexible
enough to be used as global representations, since they can easily
describe free-form objects in their entirety.
2.1.2. Implicit shape representations
While explicit shape representations can accurately describe the

geometries needed for modeling as-built BIMs, they are not very well
suited for algorithms that automatically segment or recognize building
components or other objects. Consequently, alternate representations
are frequently employed. These representations do not directly
represent surface shape; instead, they encode shape through features
derived from thedata or ana priori library of shapemodels.Most implicit
representations are non-parametric. They can be categorized as local,
global, or an intermediate state that is sometimes called semi-local.
Fig. 5. Implicit shape representations can be categorized as local, global, or semi-local. (a) Loca
©2004 IEEE). (b)Global representations, suchas the spherical harmonics shownhere, character
of the Eurographics Association). (c) Semi-local representations, such as spin images, characte
Local representations characterize differential properties of a
surface at each location (Fig. 5a). Two common local representations
are surface normals and surface curvature. Local representations are
frequently used for segmenting a scene into surfaces [93]. For
example, points on the same planar surface will all have approxi-
mately the same surface normal and will have curvature close to zero.
Surface normal estimation can be performed directly on point clouds
[41,54] or on polygonal meshes derived from a point cloud [51].
Computing surface normals can be challenging near boundaries,
where the underlying surface is discontinuous or changes orientation,
because data from other surfaces can bias the estimate [27]. Curvature
estimation involves determining the principal curvature directions,
which are the tangential surface directions of minimal and maximal
curvature, or determining functions of the principal curvature, such as
mean or Gaussian curvature [79]. Local representations are fairly
tolerant to occlusions and clutter, since the region of support for
computing them is usually small, but the small region of support
makes them more susceptible to data noise [93].

Global representations describe the shape of an entire object
(Fig. 5b). For example, a histogram of surface normals could be used
as a descriptor to characterize the shape of a chair, and this descriptor
would likely be different from an object with significantly different
shape, such as a bookshelf [42]. Global representations are often
aggregations of a local property, such as surface distance from the object
centroid or surface curvature. Some additional examples of global
representations include shape distributions (histograms of properties of
point pairs) [69], spherical harmonics (a Fourier space representation)
[48], and skeleton structures [45]. With global representations, the
region of support includes the entire object, which makes them more
susceptible to occlusions and clutter. Generally, methods that use global
representations expect objects to be segmented from the background
l representations characterize differential properties, such as surface curvature (from [79],
ize entire shapes (from[48],©EurographicsAssociation2003; reproducedwithpermission
rize localized regions of a shape (from [47], © 1997 IEEE).
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and observed from all sides. This requirement is not often achievable in
laser scan data of real environments, which limits the practical usage of
global representations in modeling as-built BIMs.

Semi-local representations strike a balance between global and
local representations, taking the strengths of each to eliminate many
of the limitations of the extremes (Fig. 5c). Semi-local representations
encode object shape in the vicinity of a point that is typically located
on the surface of the object. The region of support used for encoding
such a shape descriptor is larger than the immediate vicinity that
would be used for computing a local representation, and yet smaller
than the entire object. This intermediate region of support makes
semi-local descriptors less sensitive to data noise. At the same time,
the limited extent of the region of support reduces the chance of the
descriptor including occluded regions or clutter, reducing their
sensitivity to these effects. Semi-local descriptors are designed so
that similarly shaped surfaces will produce similar descriptors,
making them well suited for surface matching and object recognition.
One popular semi-local descriptor is the spin image, which uses a 2D
histogram to encode surface shape in a cylindrical region around a
basis point [46]. Other descriptors include point signatures [17],
Euclidean 3D grid histograms [64], 3D shape contexts [28], and
bitangent curves [98]. A survey by Mian offers a good overview of
semi-local descriptors and their uses [63]. A more general overview of
3D shape representations can be found in [15].

2.2. Relationship representation

The relationships between objects are important information in a
BIM because they are critical for many engineering tasks, such as
navigation inside a building or diagnosis of building system faults (e.g.
using the spatial relationships between valves, pipes, and rooms for
identifying the valve to be turned off for stopping a water leak). In
addition, previous studies have shown that spatial relationships
between objects provide contextual information to assist in object
recognition [16,68].

We can identify three categories of spatial relationships that are
relevant to BIMs: aggregation relationships (e.g., part of), topological
relationships (e.g., connectivity, inside, or outside), and directional
relationships (e.g., above or below). Relationships are typically repre-
sented by a tree or graph structure. Aggregation relationships can be
modeled using a tree-based hierarchical representation that encodes
compositions in a local-to-global manner: nodes represent objects or
geometric primitives, while arcs represent aggregation relationships
between them [26,53]. Graph-based representations generalize the
hierarchical approach by allowing arcs to represent not only aggregation
relationships, but also topological and directional relationships. The B-
rep representation (Section 2.1.1) uses a graph to encode spatial
relationships between object parts [23]. Algorithms that use semantic
networks for object recognition use graphs to encode the semantic
network as well as the topological and directional relationships in the
scene [16,68].

3. Geometric modeling

Having reviewed the different categories of knowledge representa-
tion,we now turn our attention to geometric modeling— the first of the
three core operations of as-built BIM creation. Geometric modeling is
the process of constructing simplified representations of the 3D shape of
building components, such as walls, windows, and doors, from point
cloud data. The output representation can be either parametric or non-
parametric, as well as surface-based (e.g., boundary-based representa-
tion) or volumetric (e.g., CSG representation). Volumetric parametric
methods are the most relevant to BIMs, since BIMs are normally
represented primarily using parametric volumetric primitives. Howev-
er, surface-based methods are more prevalent. Non-parametric geo-
metricmodeling reconstructs a surface, typically in the formof a triangle
mesh [41], or a volume [18]. Surface-based non-parametric modeling,
known as surface reconstruction, is a well studied field [1,41,57]. Such
methods are useful formodeling complex geometries, such as statues or
friezes. Here, we focus on parametric modeling methods, which are
most relevant to construction of BIMs.

3.1. Modeling surfaces

Parametric surface modeling requires the detection and extraction
of geometric primitives and their parameters. Common types of
primitives occurring in facilities include planar surfaces, curved surfaces
(e.g., cylinders and cones), andextrusions (e.g., decorativemoldings and
trim). Research on the first two categories is muchmore prevalent than
the last category.

3.1.1. Modeling planar surfaces
Planar surfaces are often detected using bottom-up methods, using

local estimates of surface shape, such as flatness [95] or surface
curvature [82], to group data into locally similar patches (Fig. 6a).
Patches that are sufficiently planar can be grouped together based on
similarity of surface normals and co-planarity [92,95] or through more
sophisticated schemes (e.g., tensor voting [62]). Other detection
approaches include using the Hough transform or hypothesize and
test methods like the RANSAC algorithm and its variants [91]. Once a
planar region is detected, the parameters of the plane can be estimated
using total least squares fitting [32] or robust methods that are less
affected by points not belonging to theplane [65]. Themethod proposed
byThrun et al. combinesdetection andmodeling intoone algorithmthat
alternatesbetween soft assignmentof points toplanes andestimationof
the planes based on the points assigned to them [92]. Once a plane is
modeled, the boundaries of the planar patch can be estimated by
projecting the constituent points onto the modeled plane and
estimating the outline in 2D [68,75]. Such boundaries can be irregular,
though, due to the discrete sampling nature of laser scan data. More
precise boundaries can be found by computing the intersection of
neighboring planar patches [89].

3.1.2. Modeling curved surfaces
Curved surfaces can be detected using bottom-up or hypothesize

and test methods similar to plane detection methods. Different
types of curved surfaces can be classified based on local curvature
features, specifically the mean and Gaussian curvature [7]. Regions
with a specific shape signature can then be used as seed points for
surface-fitting algorithms. Many curved surfaces can be represented
by quadrics, including ellipsoids, paraboloids, cylinders, and cones.
Two main classes of surface-fitting methods are algebraic fitting and
geometric fitting. Algebraic fitting has a closed-form solution for
quadrics, but has significant bias, while geometric fitting, which
minimizes the Euclidean distance between points and the modeled
surface, has no closed-form solution and is significantly slower but
more accurate [25]. The survey by Petitjean offers a good introduction
quadric fitting methods [71].

More complex curved surfaces can be modeled with flexible
parametric representations, such as Bezier spline patches [21], NURBS
patches [60], or subdivision surfaces [40]. These representations have
been used for reverse engineering free-form surfaces and complex
manufactured parts. In the context of BIM construction, these
representations would be appropriate for smooth curved geometries
that do not fit within the class of quadric surfaces, such as cove
ceilings, archways, and spiral staircases.

3.1.3. Modeling extrusions
Modeling techniques for extracting linear structures, such as mold-

ings, beams, and pipes, are relatively rare. Moldings can be modeled by
fitting splines to a cross-section and sweeping along a trajectory, as
proposed by De Luca, but this method is mostly manual [20]. Pipe



Fig. 6. (a) Planar surfaces can be extracted from laser scan data (top-left) by fitting local plane patches to the points (top-right), grouping points together based on surface normal
(bottom-left), and then estimating the boundaries of each patch (bottom-right) (from [95], © 2006 IEEE). (b) Extruded structures, such as beams, moldings, and pipes, can be
modeled by sweeping a constant shape along a trajectory. Bauer and Polthier estimate the spine curve of a pipe and then model the segments using splines (from [4], © 2009, with
permission from Elsevier).
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modeling is important in creating BIMs of process plants, where pipes
occur frequently (Fig. 6b). These modeling algorithms first estimate the
trajectory of the pipe center, which is known as the spine curve, and then
model the curveusing straight and curved segments [33] or splines [4,55].
3.2. Modeling volumes

Many objects and environments can be represented by a combina-
tion of a small set of volumetric primitives. Various researchers have
proposed candidate sets of primitives, such as geons [9], superquadrics
[3], and generalized cylinders [10]. Geons are a qualitative set of
primitive shapes proposed byBiederman in his theory of Recognition by
Components. Geons can represent cuboids and cylinders, as well as
curved and tapered versions of these base shapes. Superquadrics are a
quantitative form capable of representing spheres, cylinders, cuboids,
octahedrons, and interpolations between these shapes. Extensions to
the basic equations allowmore complex shapes that bend or taper [59].
Generalized cylinders extend the concept of a cylinder by allowing the
cross-section shape to change as a function of position along the axis.
These models can be fit to 3D data by searching for the parameters that
best align the model's surface with the data. The large number of
parameters in these representations and potential for local minima in
the optimization function presents challenges for this data fitting
problem. Basicmethods for extracting these volumetric primitives from
3D data assume that the data are already segmented — a challenging
problem in itself [87,97]. One exception to this trend is the “recover and
select” paradigm proposed by Leonardis, which simultaneously fits
many different models to the data and dynamically selects the most
promising candidates while filtering out those that match the data
poorly [56].

So far, volumetric primitives have not been exploited much in
creating as-built BIMs, though the methods have been used in related
fields, such as building modeling from aerial data and reverse
engineering of manufactured parts. You et al. use volumetric primitives
(cylinders and spheres) to model complex roof shapes from aerial data
[99], while Lin and Chen extract primitives (planes, cuboids, spheres,
cones, and cylinders) from range data and describe objects using CSG as
part of an object recognition algorithm [58].
3.3. Modeling complex structures — windows and doors

There has been some work on detecting and modeling more
complex structures, such as windows and doors. These methods often
include some aspects of object recognition or depend on a priori
knowledge of object class. Faber and Fisher use constrained surface
fitting and a genetic algorithm to fit parametric models of doors point
clouds [22]. The method was demonstrated with rectangular and
arched doorways but requires relatively high density data and
assumes that the data have been pre-segmented. Since laser scanners
cannot easily sense glass surfaces, the data density within windows
(and some doors) is typically nearly zero. This fact allowswindow and
door openings to be modeled by fitting geometric primitives to the
boundaries of holes in wall surfaces [11,74]. Pu and Vosselman use a
triangulation-based method to detect the boundaries of sparse
regions within a building façade and then fit rectangles to the
resulting regions (Fig. 7) [74]. Böhm et al. use density-based edge
detection to find vertical and horizontal lines in the depth map of a
building façade followed by a classification of the resulting rectangles
as window or non-window [11]. They use visual information from
stereo imagery to detect and model detailed cross-bar positions
within the windows, and exploit regular repeated patterns of
windows to constrain the estimated positions.

4. Object recognition

The second core task of as-built BIM construction is object
recognition, the process of labeling a set of data points or geometric
primitives extracted from the datawith a named object or object class.
Whereas the modeling task would find a set of points to be a vertical
plane, the recognition task would label that plane as being a wall.
Object recognition algorithms may label object instances of an exact
shape (e.g. recognize instances of a specific I-beam), or they may
recognize classes of objects, where the shape may vary among
instances from the class (e.g. recognize all windows, which can vary
in height, width, etc.).

Often, the knowledge describing the shapes to be recognized is
encoded in a set of descriptors that implicitly capture object shape,
either at a semi-local or global level (Section 2.1.2). Such approaches
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Fig. 7.Detection of windows and doors (from [75], reproducedwith permission of the ISPRS). (a) Segmented point cloud showing each planar region in a different color; (b) Result of
reconstructed model with detected windows and doors outlined in black.
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are more typical of non-parametric models. For parametric represen-
tations, typically heuristics are used to encode knowledge about the
object categories (e.g., rules like “walls are vertical”), though, in
theory, this knowledge could be learned from examples.
4.1. Recognizing object instances

Among the different types of 3D object recognition within real-
world data, the problem of recognizing specific instances of known
objects is perhaps the most studied and has the best success rate.
From early work on detecting objects on a conveyer belt — the “bin-
picking” task [24] — to more recent work on recognizing vehicles and
other objects in urban environments [31,61], a successful strategy to
object instance recognition has evolved [15].

The recognition process has three general steps, the details of which
vary. First, in an offline process, shape descriptors (often semi-local) are
computed for each object to be recognized. For semi-local descriptors,
samples are taken either uniformly over the surface or at salient points,
suchas localmaximaof curvature. Thesedescriptors are stored inamodel
database that is designed to facilitate rapid lookupof descriptors basedon
similarity to a query descriptor. Second, at runtime, the algorithm is
presented with a scene in which instances of the target object are to be
detected, or possibly with a pre-segmented data instance to be
recognized. Shape descriptors are computed at locations in the query
scene, either randomly or at salient points, and the most similar
descriptors in themodel database are retrieved. The descriptor similarity
measure is designed so that similar shaped objects will result in similar
descriptors. As a result, the closest matching descriptors from the
databasewill give an indication of the object instance or its location in the
scene. Finally, as a verification step, the object from the database is
aligned with the scene to make sure that the shapes match well. This
verification can help distinguish between a few closely matching
instances. The alignment is accomplished by using the fact that the
semi-local descriptors encode shape at a specific location on an object,
and thereforematching descriptors from thedatabase should correspond
to approximately the same location on the query object. Depending on
the descriptor, one or a few correspondences will be sufficient to
determine the alignment in closed form. Usually, this coarse alignment is
followed by a fine-tuning step to exactly align the two shapes.
The work of Matei et al. is typical of this approach to instance-
based object recognition. In this case, the shape descriptor is spin
images [61]. The model database is stored in a locality sensitive hash
table, which makes lookup scale sub-linearly with the database size,
allowing recognition from a database of several hundred objects.
Verification is performed using MLESAC, a variant of RANSAC. Many
other, similar approaches have been proposed, and Campbell and
Flynn's survey offers a comprehensive overview [15].

In the context of modeling as-built BIMs, instance-based object
recognition is mainly useful for recognizing objects with known
shape, or objects that are repeated throughout a facility. Examples of
such objects include machinery in process plants, pipes, valves, and I-
beams (Fig. 8) [47].

4.2. Recognizing object classes

One disadvantage to the instance-based recognition approach is
that it cannot handle significant variation in object shape. A number of
approaches have been proposed for this more difficult task of
recognizing classes of objects. The most common approach uses
global shape descriptors, which are less discriminative than semi-
local descriptors, but better adapted to shape variations. Alternatively,
the instance-based method described above can be modified to relax
the assumption of rigid instances.

The global descriptor method for object recognition is very similar
to the aforementioned method for recognizing instances. The main
difference is that query objects are matched against examples from
the entire class, rather than just instances of a single object. The
process is somewhat simpler, since there is no possibility of verifying
the recognition by aligning the shapes [48,86]. One challenge is to
recognize the object regardless of its pose. This capability can be
achieved by designing the global descriptor to be invariant to pose or
by estimating the object pose, for example, by computing its moments
[48]. The Princeton Shape Benchmark was recently developed to
provide a common data set and evaluation methodology for
comparing 3D object classification algorithms. The corresponding
paper summarizes and compares a large number of global descriptor
methods [86]. One disadvantage of the global descriptor approach is
that it is unable to handle partial data caused by occlusion or clutter,
both of which are prevalent in laser-scanned data. In particular, the
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Fig. 8. Recognizing instances of objects (from [47], © 1997 IEEE). (a) Surface mesh input scene — a mockup of a process plant; (b) The database of objects to be recognized;
(c) Examples of objects detected in the scene and extracted, with the model (wireframe) overlaid on the original data (shaded surface mesh).
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back sides and bottoms of most objects are not visualized. Existing
methods would need to be adapted to handle such situations before
they could be practically applied in as-built BIM creation.

Instance-based methods have also been extended to allow recogni-
tionof non-rigid objects. Oneapproach is todivide objects intoparts that
can be recognized individually. For instance Huber et al. used a parts-
based method to classify types of vehicles [44], and Matei et al. used a
parts-based method to allow recognition of shapes with articulations
[61]. A second approach is to use descriptors that are themselves more
robust to shape changes [78]. While these methods are more robust to
occlusion and clutter, it is still unclear whether they could be applied to
recognition of components relevant to BIM creation.

Research on recognition of BIM-specific components, such as walls,
windows, and doors, is still in its early stages. Methods in this category
typically perform an initial shape-based segmentation of the scene, into
planar regions, for example, and then use features derived from the
segments to recognize objects. This approach is exemplified by Rusu et
al. who use heuristics to detect walls, floors, ceilings, and cabinets in a
kitchen environment [81]. A similar approach was proposed by Pu and
Vosselman to model building façades (see Fig. 7) [75].

4.3. Recognition using context

One of the challenges of recognition in the BIM context is that
many of the objects to be recognized are very similar to objects of little
relevance. For example, how does one differentiate between a wall
and the side of a bookshelf? Both are vertical planar surfaces with
little distinguishing texture. Motivated by this observation, some
researchers have proposed leveraging the spatial relationships
between objects or geometric primitives to reduce the ambiguity of
recognition results. Such approaches generate semantic labels of
geometric primitives, and test the validities of these labels with a
spatial relationship knowledge base. Usually, such a knowledgemodel
is represented by a semantic net [16,68].

For example, a semantic net may specify the relationships between
entities such as “floors are orthogonal to walls and doors, and parallel
with ceilings” (Fig. 9). During the recognition process, if a surface is
recognized as “floor,” then the algorithm will identify that the valid
semantic labels of a surface orthogonal to it can only be “wall” or “door,”
but not “ceiling,” thereby reducing the search space [16]. Such validity
checking approaches provideways to integrate domain knowledge into
the object recognition process.

Another approach for recognition is to first detect objects that are
easily recognizable, and then use the context of these initial detections
to facilitate recognition of more challenging structures. For example, Pu
and Vosselman use characteristic features, such as size, orientation, and
relationships to other prominent objects, to detect walls and roofs [75].
Then, a second stage detectswindowswithin eachof the detectedwalls.

4.4. Using prior knowledge

One strategy for reducing the search space of object recognition
algorithms is to utilize knowledge about a specific facility, such as a CAD
model or floor plan of the original design. For instance, Yue et al. overlay
a design model of a facility with the as-built point cloud to guide the
process of identifyingwhichdata points belong to specific objects and to
detect differences between the as-built and as-designed condi-
tions [100]. In such cases, object recognition problem is simplified to
be a matching problem between the scene model entities and the data
points. Another similar approach is presented in [13].

In the remote sensing and GIS domains, studies have also explored
the effectiveness of utilizing 2D drawings or GIS databases for
improving the speed and accuracy of object recognition algorithms
[50,52,84,90].

5. Relationship modeling

Spatial relationships between objects in a BIM are useful in many
scenarios, such as spatial reasoning for the diagnosis of the water
distribution system of a building. Hence, it is promising to develop
automated approaches for reconstructing spatial relationships between
objects. Common relationships modeled in a building information
model include: aggregation relationships (e.g., a window is contained in
awall), topological relationships (e.g., wall 1 is connected towall 2), and
directional relationships (e.g., the second floor is above the first floor).

Several spatial relationship models have been developed for
automatically deriving topological relationships between objects. An
example of such research studies is Nguyen et al., who utilize a 3D
solid CAD model to automatically derive topological relationships
between solid objects or geometric primitives [67]. The derived
relationships include adjacency, containment, separation, intersec-
tion, face–face intersection, face–edge intersection, common edge
intersection, and connectivity. Other examples include [37,38,66].

One approach for automatic directional relationship identification is
presented in [12]. This approach introduces two models for identifying
directional relationships between two extended solid objects (e.g.
“NorthOf”, “Above”).

6. Performance evaluation

As new methods are developed and advances in the automated or
semi-automated creationof as-built BIMs are achieved, it is important to
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Fig. 9. An example of recognition using context (reprinted from [68], © 2008, with permission from Elsevier). (a) A point cloud data set of a hallway. (b) A semantic network showing
relationships between different classes of surfaces. (c) The resulting segmented and labeled structures for the data set in (a). (d) Another example, showing the perspective of the
sensor with embedded labels.
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establish methodologies for performance evaluation to track the
progress of the field and determine which methods perform best. In
other fields, such as computer vision, standard test sets and perfor-
mance metrics have been established [72,83], but no standard
evaluation metrics have been established for as-built BIM creation as
yet. Furthermore, existing research studies that do involve performance
evaluation of related techniques lie mainly within the computer vision
and remote sensing domains [8,63], and the performance measures
used in those studies do not directly address the requirements of the
AECdomain.As a result, it is difficult forAECdomain experts touse these
measures for understanding the implications of selecting a specific
algorithm in an application scenario (e.g., determine whether a given
algorithm can achieve a certain level of detail for detecting construction
defects).

Inspired by performancemeasures previously proposed for geometric
modeling and object recognition algorithms [8,63], we now identify a set
of performance measures for modeling as-built BIMs and relate them to
the information requirements of the AEC domain (GSA 2007). These
evaluation measures can be clustered into three categories: 1) measures
related to the algorithm design; 2) measures related to environmental
and sensing conditions; and 3) measures of modeling performance.

The design of any algorithm requires up-front decisions about
numerous aspects of the algorithm such as what capabilities it should
be able to achieve, what types of inputs and outputs it requires, and so
forth. We have identified six dimensions of performance related to
algorithm design:

• Degree of automation. How much human interaction is required
during the modeling process? Is the algorithm fully automated,
partially automated, or a completely manual process?

• Input and output assumptions and data types. What type of input
does the algorithm require (e.g., point cloud only, 2D, or 3D design
model)?What type of output does the algorithm produce (e.g., level
of detail, types of objects, and level of semantics)? These variations
of the problem space were discussed in Section 1.3.

• Computational complexity. What are the time and memory
requirements of the algorithm? How does the method scale as the
size of the data or number of object types increases?

• Extensibility to new environments. Can the algorithm be extended to
handle new types of objects? Can the algorithm be applied to different
types of environments, or is it specific to oneor a certain class of spaces?

• Learning capabilities. Does the algorithm use learning to improve its
performance? Does the algorithm depend on hand-coded rules to
express knowledge, or does it learn from training data? If the
algorithm learns, how many training examples are needed?

• Confidence-level and uncertainty modeling. Does the algorithm report
its confidence in the modeling and recognition results? Does the
algorithm estimate uncertainty in the geometric modeling accuracy?
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Once an algorithm is designed and implemented, it must be tested
and evaluated on real data, ideally using standard reference data sets.
Test environments can vary considerably in form and function,
ranging from home or office environments, which have many planar
structures and repeated objects throughout the facility, to process
plants, which often feature complex arrangements of pipes and
special-purpose equipment. Within such varied environments, some
commonalities do exist, however. We identified eight factors relating
to environmental conditions:

• Types of objects present. Common object types include walls, floors,
ceilings,windows, doors, columns, beams, stairways, railings,fixtures,
pipes and conduits, railings, equipment and machinery, and clutter
objects that are not part of the facility (e.g., furniture, accessories, etc.).

• Level of sensor noise. Different sensors have different noise char-
acteristics. This measure can be expressed in terms of noise statistics
for a given data set.

• Level of occlusion.What amount of the scene or an object in the scene
is occluded? This can be expressed quantitatively as a percentage of
the total surface area that is occluded along with statistics about the
size of the occlusions.

• Level of clutter. What amount of the scene consists of clutter? This
can be expressed quantitatively as a percentage of the total scene
that is classified as clutter.

• Presence of moving objects. Does the scene contain moving objects,
such aspeople or vehicles, that interferewith the integrity of thedata?

• Presence of specular surfaces. Does the scene contain shiny surfaces,
such as polishedmetal, which laser scanners typically have difficulty
measuring accurately?

• Presence of dark (low-reflectance) surfaces. Does the scene contain
dark-colored surfaces that poorly reflect laser light, leading tomissing
or very noisy data?

• Sparseness of data. How dense are the 3D measurements on the
surface of the scene? This measure can be expressed using statistics
of data density estimates.

An as-built BIM construction algorithm can be evaluated based on its
ability to handle these various environmental conditions. For example,
an algorithm could be tested on data sets with different levels of clutter
to determine how the performance degrades as a function of clutter
level.

Finally, given an algorithm that addresses a variant of the BIM
creation problem, it is necessary to objectively evaluate the
algorithm's performance for a given set of environmental conditions.
We identify four aspects of algorithm performance:

• Geometric modeling accuracy. How accurately does the algorithm
reproduce the geometry of the facility? This can be objectively
expressed in termsof the error in position, orientation, andparameters
of each component that is modeled. Additionally, some components
may be missed entirely by the modeling algorithm, which can be
quantified by the fraction of the data that is modeled correctly within
some tolerance accuracy.

• Recognition/labeling accuracy. How accurately does the algorithm
label the relevant components within the facility? An algorithmmay
have high geometric modeling accuracy, yet still perform poorly at
identifying the type of some components. For example, a closed
door could be mislabeled as a wall. Recognition accuracy can be
quantified using precision–recall (PR) curves or receiver operator
characteristic (ROC) curves, which are commonly used for measur-
ing object recognition algorithm performance.

• Relationship modeling accuracy. To what extent does the algorithm
correctly determine relationships between the components in the
model? For example, does the algorithm correctly determine which
walls are connected to one another? These concepts can be quantified
in terms of the fraction of relationships that are correctly identified,
similar to the methods for evaluating recognition accuracy.
• Level of detail.What is the smallest size component or feature that the
algorithm can reliably model or recognize? Many AEC projects have
explicit requirements on the level of detail thatmust be encoded in an
as-built BIM. Thismeasure spansgeometricmodeling and recognition,
and one possible way of quantifying level of detail performance is to
compute the aforementioned accuracymeasures for different levels of
detail. In this way, it would be possible to determine the level of detail
where performance begins to break down.

There is still much work to do on designing and standardizing
evaluation metrics. When a discrepancy in the reconstructed as-built
model is detected, it can be challenging and even ambiguous to decide
what type of error has occurred. For example, how does one determine
the mapping between components in an algorithm's output model and
the ground truth BIM? If an algorithmperformswell, themapping could
be accomplished by considering overlap between the components in
these two models. If an algorithm performs poorly, the modeled and
ground truth components may not match up very well, and it could be
difficult todeterminewhich component in the ground truthBIM is being
represented by a given component in the output model.

7. Discussion of technology gaps

Today, the as-built BIM creation process is largely a manual
procedure, which is time-consuming and subjective. While there is a
clear need for automated, or even semi-automatedmethods for aiding
the creation of as-built BIMs, research on the subject is still in the very
early stages. Our survey shows that many of the existing methods for
geometric modeling, object recognition, and relationship modeling
can be important building blocks that as-built BIM automation can
leverage. Nevertheless, a number of technology gaps must be
addressed as research on this subject moves forward.

The majority of existing modeling work focuses on modeling only
the simplest aspects of a building — planar surfaces. Real facilities have
many complex details in their geometry, which these methods do not
yet capture. More recent work has begun to focus on modeling details,
such aswindow and door openings on building façades [11,74]. Looking
ahead, more effort is needed in modeling more complex structures like
columns, structural steel, archways, and cove ceilings, and also on
improving the performance of window and door detection and
modeling. In the longer term, methods are needed for modeling fine
details, like decorative moldings, light fixtures, and window details.
Furthermore, existing parametric modeling algorithms primarily
operate in application domains where there is little or no clutter or
occlusion, such as the reverse engineering of manufactured parts. New
methods are needed to address realistic environments, which are often
cluttered and have significant occluded surfaces.

There is a significant disconnect between the surface-based
modeling representations that dominate the prior art (as summarized
in this article) and the volumetric representation used in practice by
existing BIM tools. While there are methods for converting boundary
representations into volumetric CSG representations [85], the process is
not straightforward, and the conversion is not guaranteed to be unique.
Further research is needed either in directly modeling components
using volumetric primitives or in converting surface-based representa-
tions into volumetric BIM representations. Potentially, domain knowl-
edge could be exploited to limit the ambiguities in this transformation.

Themethods for modeling and recognition described in this article
rely on hand-coded knowledge about the domain. Concepts like
“walls are vertical” and “walls intersect with the ceiling” are encoded
within the algorithms either explicitly, through sets of rules, or
implicitly, through the design of the algorithm. Such hard-coded, rule-
based approaches tend to be brittle and break down when tested in
new and slightly different environments. One reason for this is that
the rules are not universal — some walls are not vertical, and some
walls do not intersect the ceiling. Also, it can be difficult to extend an
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algorithm with new rules or to modify the rules to work in new
environments. Methods that learn from experience can address these
limitations. Learning-based methods learn the rules (or parameters
for tuning the rules) from examples, which are hand-labeled. The
rules themselves can be modeled more flexibly. For example, instead
of encoding “walls are vertical,” one could encode a probability
distribution over the space of surface orientations, which might be
centered on vertical, but would also afford the possibility of non-
vertical walls. Based on these observations, we predict that more
flexible representations and learning-based algorithms will open the
way to significant gains in modeling capability and generality.

Research onmodeling facilities is still in its early stages, and as such,
methods and testbeds for evaluating algorithm performance have not
been formalized. Most of the prior work primarily concentrates on
qualitative assessment of performance, and typically the algorithms are
only tested on one or a few examples.Moving forward,we need towork
to develop reference testbeds that span the use cases for as-built BIMs.
These testbeds need to include the full range of environmental factors
that can affect BIM construction performance. Ideally, each environ-
mental factor should be isolated, for example, by creating a series of test
sets that have identical ground truth models but varying degrees of
clutter. The corresponding algorithm performance measures also need
to be standardized. Together, standardized test sets and standardized
performance measures would enable different algorithms to be
compared objectively. The Princeton shape modeling benchmark is a
good example of where this approach has been used successfully in a
related field [86].

Current BIM representation and data exchange formats assume
idealized geometries that are rarely seen in real facilities. Walls are
not exactly planar, and corners are rarely precisely 90 °C, for example.
Furthermore, the imperfect nature of sensing data for as-built BIMs
leads to other representation needs that are outside of the current
capabilities of BIM formats, including representation of occluded
regions and information about model uncertainty. New representa-
tions or extensions to existing representations are necessary in order
to address these capability gaps.

Finally,work is needed to link the performancemeasures for as-built
BIM creation to the needs of specific problems within the AEC domain.
Currently, requirements for as-built BIM creation might specify a
minimum sized feature that must be modeled or an accuracy
requirement for feature position.However, the requirements are usually
drivenbya specific need, suchasplanning for a renovationor preserving
the design of a historical building. Requirements that are too strict will
unnecessarily increase the cost of as-built BIM creation,while those that
are too lax will render the model useless for its intended purpose.
Therefore, it is necessary to determine the relationship between the
domain-independent requirements for as-built BIM creation with the
domain-specific needs for a given problem.

8. Conclusions

The state-of-the-art in the creation of as-built BIMs is fundamen-
tally a manual process. The time-consuming and subjective nature of
this process motivates the need for automated, or at least semi-
automated, tools for as-built BIM creation. Our survey of existing
representations and algorithms suitable for automated as-built BIM
creation shows that, while many promising techniques have been
developed, there is relatively little research specifically addressing the
problem in an AEC/FM context.

The systems that have been demonstrated often focus on special-
purpose situations, such as modeling building façades [75] or kitchens
[81], and it is not clear how well such methods would extend to the
more general problem of modeling an entire facility. Other promising
approaches have only been tested on limited and very simple
examples, and it is equally difficult to predict how they would fare
when faced with more complex and realistic data sets. For example,
the semantic network methods for recognizing components using
context work well for simple examples of hallways and barren,
rectangular rooms [16,68], but how would they handle spaces with
complex geometries and clutter, such as an office or a bathroom?

In Section 7, we identified and discussed a number of technology
gaps in automated as-built BIM creation capabilities. These gaps reveal
areaswhere research on this problem should be concentrated. Themain
areas that need to be addressed include: 1) modeling of more complex
structures than simple planes; 2) handling realistic environments with
clutter and occlusion; 3) representing models using volumetric
primitives rather than surface representations; 4) developing methods
that are easily extensible to new environments; 5) creating reference
testbeds that span the use cases for as-built BIMS; 6) representing non-
ideal geometries that occur in real facilities; and 7) developing
quantitative performance measures for tracking the progress of the
field. The methods described in this article show promise for the future
of automated as-built BIM creation, but as this list of technology gaps
indicates, there is a long way to go before automated as-built BIM
construction is considered a solved problem. As these technology gaps
are closed, algorithms for automated as-built BIM creationwill continue
tomigrate into commercial tools, and thebenefits of this automation can
be enjoyed by practitioners throughout the AEC/FM industry.
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