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Abstract. Pricing mechanisms employed by different service providers signifi-
cantly influence the role of cloud computing within the IT industry. With the 
increasing cost of electricity, Cloud providers consider power consumption as 
one of the major cost factors to be maintained within their infrastructures. Con-
sequently, modelling a new pricing mechanism that allow Cloud providers to de-
termine the potential cost of resource usage and power consumption has attracted 
the attention of many researchers. Furthermore, predicting the future cost of 
Cloud services can help the service providers to offer the suitable services to the 
customers that meet their requirements. This paper introduces an Energy-Aware 
Cost Prediction Framework to estimate the total cost of Virtual Machines (VMs) 
by considering the resource usage and power consumption. The VMs’ workload 
is firstly predicted based on an Autoregressive Integrated Moving Average 
(ARIMA) model. The power consumption is then predicted using regression 
models. The comparison between the predicted and actual results obtained in a 
real Cloud testbed shows that this framework is capable of predicting the work-
load, power consumption and total cost for different VMs with good prediction 
accuracy, e.g. with 0.06 absolute percentage error for the predicted total cost of 
the VM. 

Keywords: Cloud Computing, Cost Prediction, Workload Prediction, ARIMA 
Model, Power Consumption, Energy Efficiency 

1 Introduction 

Cloud computing is an important and growing business model that has attracted the 
attention of many researchers. Pricing mechanisms that are employed by different ser-
vice providers significantly influence the role of cloud computing within the IT indus-
try. Billing mechanisms have become even more sophisticated, as customers are 
charged per month, hour or minute. Nevertheless, there are still limited as customers 
are charged based on a pre-defined tariff for the resource usage which include CPU, 
Memory, Storage and Network. This pre-defined tariff does not consider the variable 
cost of electricity [1]. Consequently, modelling a new pricing mechanism for services 



 

 

offered that can be adjusted to the actual energy costs has become an interesting re-
search topic. 

There are limited works on cost models that measure the actual resource usage of a 
cloud service while taking consideration of variation in costs, power consumption, and 
performance together. Most cloud computing service providers charge their customers 
on a timely basis for the virtualised systems usage (with no performance guarantee) 
instead of the actual resource usage [3]. In other words, cloud service providers charge 
customers for the services offered on a timely basis, regardless of the actual resource 
usage and consideration of power consumption, which is considered one of the biggest 
operational cost factors by cloud infrastructure providers. 

Another limitation of the cost mechanism is not only dependent on the actual re-
source usage and power consumption, but also on other factors that may affect the VMs 
total cost such as performance variation. Most of the existing studies have focused on 
minimising the power consumption and maximising the total resource usage, instead of 
improving VM performance. Further, Cloud providers (e.g. Amazon EC2) [4], have 
established their Service Level Agreements (SLAs) based on service availability with-
out such an assurance of the performance. For instance, during the service operation, 
when the number of VMs increases on the same Physical Machine (PM)(overbooking), 
the resource competition may occur (e.g. once the workload exceeds the acceptable 
level of CPU utilisation) leading to VMs performance degradation. Thus, cloud service 
providers do not consider the VMs performance variation, while the VMs performance 
is a very important factor to satisfy cloud customers’ requirements. Therefore, it is es-
sential to consider VM performance variations in the composition of VM costs. 

The first step towards this is an Energy-Aware Cost Prediction Framework that may 
influence the decision making of other problems. This paper focuses on the problem of 
estimating the resource usage, power consumption, and the total cost of the VMs at 
service operation. Therefore, a framework is proposed to predict VMs workload using 
an Autoregressive Integrated Moving Average (ARIMA) model. The relationship be-
tween the VMs and PMs workload (CPU utilisation) is investigated using regression 
models in order to estimate the VMs power consumption and predict the total cost of 
the VMs. This paper’s main contributions are summarized as follow: 

 A proposed Energy-Aware Cost Modeller for Cloud system architecture to assess 
the actual consumption of Cloud infrastructure resources. 

 Energy-Aware Cost Prediction Framework that predicts the total cost for heteroge-
neous VMs by considering their resource usage and power consumption. 

 Evaluation of the proposed framework in an existing Cloud testbed in order to verify 
the capability of the prediction models. 

The remainder of this paper is organised as follows: a discussion of the related work 
is summarised in Section 2. Section 3 presents the system architecture followed by a 
discussion of the Energy-Aware Cost Prediction Framework. Section 4 presents the 
experimental set up followed by results and discussion in Section 5. Finally, Section 6 
concludes this paper and discusses the future work. 



 

 

2 Related Work 

This paper discusses the cost that is associated with the resource usage and power con-
sumption of the VMs. Previous work has looked into the area of calculating the cost of 
running services on Cloud infrastructure. Altmann and Kashef [13] presented the ser-
vice placement optimisation based on the cost model in federated clouds to guarantee 
the cost minimisation for Cloud customers. This approach depends on a brute-force 
algorithm to evaluate the cost of each possible service placement. The cost model de-
fined in their work as the sum of the fixed costs and the variable costs. The fixed costs 
include the costs for hardware and the variable costs include (e.g. the electricity cost). 
However, the cost model proposed in their work does not consider predicting the cost 
in the future. Also, more factors need to be considered (e.g. performance variation) to 
guarantee the SLAs. Horri and Dastghaibyfard [8] emphasised the difficulty of dealing 
with minimising Cloud infrastructure energy consumption while conducting the Qual-
ity of Service (QoS), especially since there is a trade-off between energy consumption 
and SLA. Therefore, they have proposed and implemented a cost model in CloudSim. 
Their approach considers the total cost including the cost of energy consumption based 
on (e.g. number of VMs and data size). Nonetheless, their objectives do not consider 
predicting the total cost or power consumption.  

In terms of prediction based on historical data, estimating the resources usage and 
power consumption of the VMs would require understanding the characteristics of the 
underlying physical resources, like idle power consumption and variable power under 
different workload, and the projected virtual resources usage, as stated in [20]. Thus, it 
is essential to get the predicted VMs’ workload first in order to get their predicted 
power. Some work has predicted future workload in a Cloud environment based on 
Autoregressive Integrated Moving Average (ARIMA) model; nonetheless, their objec-
tives do not consider predicting the power consumption. For example, Calheiros et al 
[24] introduced a Cloud workload prediction module based on the ARIMA model to 
proactively and dynamically provision resources. They define their workload as the 
expected number of requests received by the users, which are then mapped to predict 
the number of VMs needed to execute customers’ requests and meet the QoS. Caron et 
al [11] presented a resource usage prediction algorithm based on identifying similar 
usage patterns of the short-term workload history. The algorithm has shown a good 
result within 4.8% prediction error. Khan et al [16] proposed a method of characterising 
and predicting workload based on Hidden Markov Modeling to discover the correla-
tions between VMs workload that can be used to predict the changes of workload pat-
terns. Further, Wood et al [12] focused on estimating the resource requirements when 
deploying an application into a virtualised environment using a regression-based model 
to predict future CPU utilisation. While the evaluation has shown that the prediction 
error is less than 5%, however these approaches do not consider the prediction of costs 
or power consumption of the VMs. 

Other work focuses on predicting power consumption based on historical data while 
others use performance counters, which are queried directly from the hardware or the 
operating system. But, relying on performance counters would not work appropriately 
in heterogeneous environments with different server’s characteristics, as argued by 



 

 

Zhang et al [17]. Therefore, they presented a best fit energy prediction model (BFEPM) 
that flexibly selects the best model for a given server based on a series of equations that 
consider only CPU utilisation [17]. Dargie [18] proposed a stochastic model to estimate 
the power consumption for a multi-core processor based on the CPU utilisation work-
load and found out that the relationship between the workload and power is best esti-
mated using a linear function in a dual-core processor and using a quadratic function in 
a single-core processor. Further, Fan et al [19] have introduced a framework to estimate 
the power consumption of servers based on CPU utilisation only and argued in their 
results that the power consumption correlates well with the CPU usage. As their frame-
work produced accurate results, they argued that it is not necessary to use more complex 
signals, like hardware performance counters, to model power usage.  

Compared with the work presented in this paper, the ARIMA model is used to pre-
dict the VMs workload, which is then mapped within the prediction framework to get 
the predicted VMs power consumption. Then, having predicted the VMs’ workload and 
power consumption, the total cost of the VMs is predicted accordingly. 

3 Resource Usage and Power Consumption for VMs 

This section presents the proposed Energy-Aware Cost Prediction Framework to pre-
dict the resource usage, power consumption and total cost for VMs. The overall system 
architecture of this work will be discussed in the next subsection. 

3.1 System Architecture 

Cloud computing architecture consists of three standard layers, which are software as 
a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS). 
This paper will focus on the IaaS layer where the service operation takes place, as 
shown in Figure 1. 
 

 
Fig. 1. System architecture 

In the IaaS layer, the admission, allocation and management of VMs are performed 
through the interaction between the components. The highlighted component Energy-
Aware Cost Modeller is the main focus of our work. 



 

 

 SLA Manager: this component monitors and measures the SLA’s agreed 
terms. 

 VM Manager: considers the best decision in order to improve resource usage 

and reduce the power consumption cost and consequently the total cost of the 

VMs.  For instance, if performance degrades, this component will have actua-

tors to attempt to get the performance to the agreed level. This component 

interacts with the Energy-Aware Cost Modeller to request predictions related 

to the resource usage, power consumption and cost that VMs would have for 

a particular host. 

 Monitoring Infrastructure: this will monitor resource usage, power con-

sumption and performance related metrics. 

 Energy-Aware Cost Modeller: this component supports:  

1) Energy-Aware Pricing Model that considers the actual resources and 

power consumption, as introduced in our previous work [5], and 

2) Energy-Aware Cost Prediction Framework that estimates the resource 

usage, power consumption and total cost for the VMs. 

3.2 Energy-Aware Cost Prediction Framework 

In our previous work [5], we introduced an Energy-Aware Pricing Model that con-
siders power consumption as a key parameter with respect to performance and cost. 
The proposed model charges the customer based on the actual resource usage and con-
siders the cost of power consumption of the VMs.  

In this paper, we extend our work and introduce a new Energy-Aware Cost Predic-
tion Framework that would predict VMs workload (CPU, RAM, Disk and Network), 
power consumption and total cost using the ARIMA model and regression models. This 
is the main focus of this paper as shown in Figure 2.  

The ARIMA model is a time series prediction model that has been used widely in 
different domains, including finance, owing to its sophistication and accuracy; further 
details about the ARIMA model can be found in [14]. Unlike other prediction methods, 
like sample average, ARIMA takes multiple inputs as historical observations and out-
puts multiple future observations depicting the seasonal trend. It can be used for sea-
sonal or non-seasonal time-series data. The type of seasonal ARIMA model is used in 
this work as the targeted workload patterns are reoccurring and showing seasonality in 
time intervals. In order to use the ARIMA model for predicting the VMs workload in 
this work, the historical time series workload data has to be stationary, otherwise Box 
and Cox transformation [15] and data differencing methods are used to make these data 
stationary. The model selection is based on the best fit model of ARIMA based on 
Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) value. 

This framework is aimed towards predicting the total cost of the VMs. In order to 
achieve that, the VMs workload is first predicted for the next time interval using the 
ARIMA model based on historical workload patterns. Then, the predicted VMs CPU 
utilisation is correlated with the PM CPU utilisation in order to predict the power con-
sumption of PM, from which the VMs power consumption is estimated. Finally, the 
total cost for the VMs is predicted based on the predicted workload and power con-
sumption of the VMs.  



 

 

As depicted in Figure 2, the framework includes five main steps in order to predict 
the VMs workload and power consumption, then predict the total cost of VMs. To reach 
this goal, the following steps are required. 

 
Fig. 2. Energy-Aware Cost Prediction Framework 

Step 1: to predict (CPU, RAM, Disk and Network) utilisations for the next time 
interval, ARIMA model is used to identify the best fit model. After predicting the VM 
workload using the ARIMA model based on historical data, the next steps take place to 
predict the PM workload and the PM/VM power consumption using regression models. 

Before predicting the power consumption for PM/VM, understanding how the re-
source usage affect the power consumption is required. Therefore, we did an experi-
mental study to investigate the effect of the resource usage (CPU, RAM, Disk and Net-
work) on the power consumption. The findings show that the CPU utilisation correlates 
well with the power consumption, as this finding is supported in other work [17-19].  

Step 2: to predict the PM workload which is (PM CPU utilisation), would require 
measuring the relationship between the number of vCPU and the PM CPU utilisation 
for a single PM, as shown in Figure 3. This experiment was carried out on a local Cloud 
Testbed (see Section 4). Linear regression model has been applied to predict the PM 
CPU utilisation based on the used ratio of the requested number of vCPU for the VMs 
with consideration of its current workload as the PM may be running other VMs already 
[6]. The following equation is used (1): PM捲牒追勅鳥腸痛沈鎮 噺 岾ゎ 抜 岾デ 岫VM検眺勅槌塚寵牒腸鎚蝶暢寵墜通津痛槻退怠 抜 蝶暢槻鍋認賑匂南禰日如怠待待 岻峇 髪  紅峇 髪                                  岫鶏警掴寵通追追腸痛沈鎮 伐 鶏警掴彫鳥鎮勅腸痛沈鎮岻            (1) PM捲牒追勅鳥腸痛沈鎮  is the predicted PM CPU utilisation ;  is the slope and  is the intercept 
of the CPU utilisation. The VM検眺勅槌塚寵牒腸鎚  is the number of requested vCPU for each 
VM and 撃警検牒追勅鳥腸痛沈鎮  is the predicted utilisation for each VMs. The 鶏警掴寵通追追腸痛沈鎮   is the 
current PM utilisation and 鶏警掴彫鳥鎮勅腸痛沈鎮 is the idle PM utilisation. 

  
Fig. 3. Number of vCPUs vs PM CPU Utili-

sation. 
Fig. 4. The PM CPU Utilisation vs Power 

Consumption. 



 

 

Step 3: the PM power consumption is predicted based on the relationship between 
the predicted PM workload (PM CPU utilisation) with PM power consumption on the 
same PM. Using a regression analysis, the relation is best described using polynomial 
model with order three for this particular PM, as shown in Figure 4. Thus, the predicted 
PM power consumption PM捲牒追勅鳥牒栂追  measured by Watt, can be identified using the 
following formula (2).      PM捲牒追勅鳥牒栂追 噺 岫ゎ岫PM捲牒追勅鳥腸痛沈鎮岻戴 髪  ぐ岫PM捲牒追勅鳥腸痛沈鎮岻態 髪  げ岫PM捲牒追勅鳥腸痛沈鎮岻  髪  紅岻 (2) 

Where ,  and  are all slopes,  is the intercept and PM捲牒追勅鳥腸痛沈鎮  is predicted PM 
CPU utilization. 

Step 4: based on the requested number of vCPU and the predicted vCPU utilisation, 
the VM power consumption is predicted using the proposed formula in [6], as shown 
in equation (3).  VM捲牒追勅鳥椎栂追 噺 鶏警捲彫鳥鎮勅牒栂追  抜  磐 諾托掴馴賑忍寧頓鍋南濡デ 諾托槻馴賑忍寧頓鍋南濡楠謎迩任祢韮禰熱転迭  卑 髪 岫鶏警捲牒追勅鳥牒栂追 伐                                  鶏警捲彫鳥鎮勅牒栂追岻 抜  磐  諾托掴岫鍋認賑匂南禰日如茅馴賑忍寧頓鍋南濡岻デ 諾托槻岫鍋認賑匂南禰日如茅馴賑忍寧頓鍋南濡岻楠謎迩任祢韮禰熱転迭  卑           (3) 

Where VM捲牒追勅鳥椎栂追  is the predicted power consumption for one VM measured by 
Watt. VM捲眺勅槌塚寵牒腸鎚  is the requested number of vCPU and VM捲椎追勅鳥腸痛沈鎮  is the predicted 
VM CPU utilisation. デ VM検眺勅槌塚寵牒腸鎚蝶暢頂墜通津痛槻退怠   is the total of vCPU for all VMs in the 
same PM. The 鶏警捲彫鳥鎮勅牒栂追  is idle power consumption and 鶏警捲牒追勅鳥牒栂追  is the predicted 
power consumption for a single PM.  

Step 5: finally, this step predicts the total cost for the VM based on the predicted 
VM resource usage from step 1 and the predicted VM power consumption from step 4. 
The energy providers usually charge by the Kilowatt per hour (kWh). Therefore, con-
vert the power consumption to energy is required using the following equation (4): VM捲牒追勅鳥帳津勅追直槻 噺  VM捲畦懸訣鶏堅結穴喧拳堅などどど  抜  劇件兼結嫌ぬはどど                            (4) 

To predict the total cost for the VM using the proposed model, as shown in equation 
(5):  VM捲牒追勅鳥脹墜痛銚鎮寵墜鎚痛 噺 峭磐VM捲眺勅槌塚寵牒腸鎚 抜 撃警捲牒追勅鳥腸痛沈鎮などど 卑 抜 岫系剣嫌建 喧結堅 懸系鶏戟 抜 劇件兼結鎚岻嶌髪 岾VM捲牒追勅鳥眺凋暢腸鎚銚直勅 抜 岫系剣嫌建 喧結堅 罫稽 抜 劇件兼結鎚岻峇髪 岾VM捲牒追勅鳥帖沈鎚賃腸鎚銚直勅 抜  岫系剣嫌建 喧結堅 罫稽 抜 劇件兼結鎚岻峇髪 岾VM捲牒追勅鳥朝勅痛腸鎚銚直勅 抜 岫系剣嫌建 喧結堅 罫稽 抜 劇件兼結鎚岻峇髪 盤VM捲牒追勅鳥帳津勅追直槻 抜  系剣嫌建 喧結堅 倦激月匪 

Where VM捲牒追勅鳥脹墜痛銚鎮寵墜鎚痛  is the predicted total cost of the VM. VM捲牒追勅鳥眺凋暢腸鎚銚直勅  is 
the predicted resource usage of RAM times the cost for that resource for a period of 
time and so on for each resource such as CPU, Disk and Network. VM捲牒追勅鳥帳津勅追直槻 is the 
predicted energy consumption of the VM times the electricity price as announced by 
the energy providers. 

(5) 



 

 

4 Experimental Set Up 

This section describes the environment and the details of the experiments conducted in 
order to evaluate the work presented in this paper.  

In terms of the experimental design, the aim is to evaluate the new Energy-Aware 
Cost Prediction Framework presented in terms of predicting the workload, power con-
sumption and total cost for heterogeneous VMs based on historical periodic workload. 
The prediction process starts by firstly predicting the VM workload using the 
(auto.arima) function in R package [25] and then completing the cycle of the framework 
and considering the correlation between the physical and virtual resources to predict 
power consumption of the VMs on a single PM. After that, the total cost is predicted 
for the VMs based on their predicted workload and power consumption. 

A number of experiments have been designed and implemented on a local Cloud 
Testbed with the support of the Virtual Infrastructure Manager (VIM), OpenNebula [7] 
version 4.10, and KVM hypervisor for the Virtual Machine Manager (VMM). This 
Cloud Testbed includes a cluster of commodity Dell servers, and one of these servers 
with eight core E31230 V2 Intel Xeon CPU was used. The server includes 16GB RAM 
and 1000GB hard drives. Also, the server has a WattsUp meter [9] attached to directly 
measure the power consumption. Heterogeneous VMs are created and their monitoring 
is performed through Zabbix [10], which is also used for resources usage monitoring 
purposes. Rackspace [26] is used as a reference for the VMs configurations. Three types 
of VMs, small, medium and large are provided with different capacities. The VMs are 
allocated with 1, 2 and 4 vCPUs, 1, 2 and 4 GB RAM, 10 GB Disk and 1 GB Network, 
respectively. In terms of the cost of the virtual resources, ElasticHosts [27] and 
VMware [28] prices are followed: where 1 vCPU = £0.008/hr, 1 GB Memory = 
£0.016/hr, 1 GB Storage = £0.0001/hr, 1 GB Network = £0.0001/hr; and the cost of 
Energy = £0.14/kWh [21]. 

In terms of the workload patterns, Cloud applications can experience different work-
load patterns based on the customers’ usage behaviours, and these workload patterns 
consume power differently based on the resources they utilise. There are several work-
load patterns, such as static, periodic, continuously changing, unpredicted, and once-
in-a-life-time, as stated in [23]. This paper considers the periodic workload pattern as 
this work is driven towards solving the issue of the performance variation. 

Thus, a number of direct experiments have been conducted to synthetically generate 
periodic workload by using Stress-ng [2] tool in order to stress all resources (CPU, 
RAM, Disk and Network) on different types of VMs. The generated workload of each 
VM type has four time intervals of 30 minutes each. The first three intervals will be 
used as the historical data set for prediction, and the last interval will be used as the 
testing data set to evaluate the predicted results. 

5 Results and Discussion 

This section presents the evaluation of the Energy-Aware Cost Prediction Framework. 
The figures below show the predicted results for three types of VMs, small, medium 
and large, running on a single PM based on historical periodic workload pattern. Be-
cause of space limitation, only large VMs results are shown. As mentioned earlier, the 



 

 

generated VMs workload along with their power consumption and cost for the last in-
terval are used as the testing data set. 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 5. The prediction Results for a Large VM. 

Figure 5 (a, b, c and d) depict the results of the predicted versus the actual VMs 
workload, including CPU, RAM, Disk, and Network usage for the VMs. Despite the 
periodic utilisation peaks, the predicted VMs’ CPU and RAM workload results closely 
match the actual results, which reflects the capability of the ARIMA model to capture 
the historical seasonal trend and give a very accurate prediction accordingly. The pre-
dicted VMs’ Disk and Network workload is also matching the actual workload, but 
with less accuracy as compared to the CPU and RAM prediction results. This can be 
justified because of the high variations in the generated historical periodic workload 
pattern of the disk and network not closely matching in each interval, whereas the gen-
erated historical periodic workload pattern for the RAM and CPU usage are closely 
matched in each interval. Beside the predicted mean values, the figures also show the 
high and low 95% and 80% confidence intervals. 

The proposed framework can predict the power consumption for a number of VMs 
with only a small variation as compared to the actual one as shown in Figure 5 (e). The 
predicted power consumption attribution for each VM is affected by the variation in the 



 

 

predicted CPU utilisation of all the VMs, hence the predicted power consumption of 
the medium VM matches its predicted CPU utilisation as it has the highest variation 
than the other predicted VMs’ CPU utilisation. 

In terms of prediction accuracy, a number of metrics have been used to evaluate the 
results. These metrics include, Absolute Percentage Error (APE) which measures the 
absolute value of the ratio of the error to the actual observed value; Mean Error (ME) 
which measures the average error of the predicted values; Root Mean Squared Error 
(RMSE) which depicts the square root of the variance measured by the mean absolute 
error; Mean Absolute Error (MAE) is the average of the absolute value of the difference 
between predicted value and the actual value; Mean Percentage Error (MPE) is the 
computed average of percentage errors by which the predicted values vary from the 
actual values; and Mean Absolute Percent Error (MAPE) is the average of the absolute 
value of the difference between the predicted value and the actual value explained as a 
percentage of the actual value [22].  

 
Table 1. Prediction Accuracy for a Large VM. 

Parameters ME RMSE MAE MPE MAPE 

CPU Utilisation 0.03765 0.299769 0.137823 0.309809 6.615192 

RAM Usage 0.000004 0.008671 0.002587 -0.00675 0.107601 

Disk-Write Usage 0.1838898 1.116114 0.733408 0.924781 12.64005 

Network-IN Usage 0.0657477 0.225631 0.132185 -6.13982 17.56377 

Power Consumption 1.648176 2.617798 1.648176 4.358135 4.358135 

 
This framework is also capable of predicting the total cost for a number of VMs as 

shown in Figure 5 (f), with 0.06 of APE for predicted total cost of the large VM, 17.23 
of APE for the medium VM and 14.7 of APE for the small VM as shown in Figure (6).   

 
Fig. 6. The predicted versus the actual VMs total cost. 

 
The accuracy of the predicted VMs workload (CPU, RAM, Disk, Network) and their 

power consumption based on periodic workload is evaluated using these accuracy met-
rics, as summarised in Table 1. In addition, Figure (6) shows the results of the predicted 
versus the actual total cost for all VMs with the absolute percent error for the predicted 
total cost. Despite the high variation of the workload utilisation in the periodic pattern, 



 

 

the accuracy metrics indicate that the predicted VMs workload and power consumption 
achieve good prediction accuracy along with the predicted total cost. 

6 Conclusion and Future Work 

This paper has presented and evaluated a new Energy-Aware Cost Prediction Frame-
work that predicts the total cost of VMs by considering the resource usage and power 
consumption of heterogeneous VMs based on their usage and size, which reflect the 
physical resource usage by each VM.  A number of direct experiments were conducted 
on a local Cloud Testbed to evaluate the capability of the prediction models. Overall, 
the results show that the proposed Energy-Aware Cost Prediction Framework can pre-
dict the resource usage, power consumption and the total cost for the VMs with a good 
prediction accuracy based on periodic Cloud workload patterns.  

Unlike other existing works, this approach considers the heterogeneity of VMs with 
respect to predicting the resource usage, power consumption and the total cost. 

In future work, we intend to extend our approach and integrate it with performance 
prediction models to determine the costs of different scenarios. Besides, further inves-
tigation will focus on VM performance prediction models, dynamic placement of VMs, 
and demonstration of the trade-off between cost, power consumption and performance. 
Also, the scalability aspects with different prediction algorithms will be considered to 
further show the capability of the proposed work. Finally, as this paper has focused on 
predicting the VMs total cost based on periodic workload pattern, we aim to extend this 
by considering other workload patterns, such as static, continuously changing, unpre-
dicted, and once-in-a-life time workload patterns. 
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