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Abstract

An efficient health monitoring system for damage detection in civil engineering structures using on-line monitoring data is
being developed to identify any possible damage in short time. The present work is based on the treatment of uncertainties,
which is one of the basic common difficulties faced when modelling structures. A methodology, based on interval analysis (IA)
theory [R.E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966] applied to a numerical constraint satisfaction
problem (CSP) [J.R. Casas, J.C. Matos, J.A. Figueiras, J. Vehí, O. García, P. Herrero, Bridge monitoring and assessment under
uncertainty via interval analysis, in: Ninth International Conference On Structural Safety And Reliability—ICOSSAR2005, 2005.
pp. 487–494], is implemented in the damage detection [J.R. Casas, J.C. Matos, J.A. Figueiras, J. Vehí, O. García, P. Herrero, Bridge
monitoring and assessment under uncertainty via interval analysis, in: Ninth International Conference On Structural Safety And
Reliability—ICOSSAR2005, 2005. pp. 487–494] and modelling system of a long-term monitoring project in order to achieve such
an objective. An algorithm is being developed for using such methodology with the obtained data.

Such methodology has been first checked in the laboratory with a simple reinforced concrete structure (loaded up to failure).
The obtained results are useful for identifying the load where the structure presents changes in its behaviour. The majority of the
structures present a linear elastic behaviour throughout their life. However, they tend to deteriorate; such degradation reflects on
results obtained from the long term monitoring system. Structural assessment was successfully performed in this case, enabling its
application to real structures.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Development of structural health monitoring systems (HMS) has been a subject of increasing activity in recent years.
One of the main problems in the structural assessment is the treatment of uncertainty mainly present in numerical models,
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physical and geometrical parameters such as loading, Young modulus, inertia, and so on, and in measured variables
such as displacements, strains and rotations. One of the main issues while considering the various sources of uncertainty
is how to define objective and reliable criteria for distinguishing between an abnormal behaviour (differences between
measured values and those predicted by the model) due to the presence of damages, and the differences between
measured and calculated results because of the uncertainty and randomness present in the experimental data, models
and physical parameters. When performing long term structural assessment, methodologies that take into account
these uncertainties should be implemented in an efficient, fast and user friendly way. In this paper a methodology that
considers uncertainty both in the model and in recorded data is presented.

2. Treatment of uncertainty

There exist different techniques for consideration of uncertainties in numerical models and measured variables. In
the present paper we focus on the use of the interval analysis (IA). A brief summary of this subject is presented and
their application to the management of uncertainties in structural assessment.

2.1. Interval analysis

The initial idea of IA [9,10] is to enclose real numbers in intervals and real vectors in boxes as a method of considering
the imprecision of representing real numbers by finite digits in numerical computers. The variables are not deterministic,
but take any value between the lower and the upper limits of an interval. The variables are represented by a uniform
variation and the probability distribution function is not necessary. IA has become a fundamental nonlinear numerical
tool for representing uncertainties or errors, proving properties of sets, solving sets of equations or inequalities and
optimizing globally via interval arithmetic [5,7]. A classic interval number is a closed set that includes the possible
range of an unknown number. Thus, instead of considering a fixed value a, the following representation is adopted:

A′ = [a, a] := {x�R|a�x�a}, (1)

where a is the infimum and a the supremum of the interval. The four elementary arithmetic operations (+, −, ×, ÷)
are extended to intervals. If op denotes an arithmetic operation for real numbers, the corresponding interval arithmetic
operation is

C = A op B = {a op b|a�A, b�B}. (2)

2.1.1. Modal intervals
Modal interval analysis (MIA) is a natural extension of classical interval analysis, where the concept of interval is

widened by the set of predicates that are fulfilled by the real numbers [4,12].
Physical intervals have two modalities for practical problems: there exists a value in [a, b]′(a�b), which satisfies a

predicate or some predicates concerned, and for all values in [a, b]′(a�b), they satisfy a predicate or some predicates
concerned. Classical interval analysis cannot distinguish these two types of physical intervals and denotes them as
[a, b]′(a�b) uniformly. MIA does distinguish these two types of physical intervals by denoting them differently, i.e.,
[a, b](a�b) for those proper intervals that only require the existence of a value in the domain of a�x�b to satisfy a
predicate or some predicates concerned and [b, a](a�b) for those improper intervals that require all the values in the
domain of a�x�b to satisfy a predicate or some predicates concerned, with [a, b] and [b, a] being denoted as modal
intervals henceforth on. The concept of modal intervals is similar to the concept of objects in C + + since it contains
not only a purely numerical interval, but also a physical modality of the numerical interval.

A modal interval X is defined as a couple X = (X′, ∀) or X = (X′, ∃), where X′ is its classical interval domain and
the quantifiers ∀ (universal) and ∃ (existential) are a modality selection. Modal intervals of type X= (X′, ∃) are defined
as proper intervals, while intervals of type X = (X′, ∀) are designated by improper intervals. A modal interval can be
represented using its canonical coordinates in the form

X = [a, b] =
{

([a, b]′, ∃) if a�b,

([b, a]′, ∀) if a�b.
(3)
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For example, the interval [2,5] is equal to ([2, 5]′∃) and the interval [8,4] is equal to ([4, 8]′∀). For an interval X = [a,b],
the operator Dual is defined by

Dual([a, b]) = [b, a]. (4)

A complete introduction to MIA and several examples can be found in [12]. Efficient tools to compute the range of
modal interval functions as well as many other tools can be found in http://mice.udg.es/fstar.

2.1.2. Computational implementation
In this study, the uncertainty is included in the mathematical model of the structure by replacing the uncertain

parameters by intervals. The uncertain parameter can take any value within the limits of the interval. The result of
this process is an interval value, obtained once the structural equations have been analysed with theorems of MIA.
In interval arithmetic, overestimation is one of the main drawbacks because the range of uncertainty is much larger
than the range introduced by round off error. Overestimation is due to dependency and failure of some algebraic laws
that are valid in real arithmetic. Such overestimation produces extreme and sometimes meaningless results. Interval
implementation with finite element method presents a sharp bound on possible nodal displacement for treatment of
uncertainty [3]. The system of interval equations can be written as

K · q = P , (5)

where K is the global interval matrix of the structure, p the applied interval load vector and q the unknown interval
displacement vector.

MIA can also be implemented in a HMS in connection with a constraint satisfaction problem (CSP). In this case,
the problem of damage detection in a structure can be stated as a numerical CSP for which its inconsistence has to be
proved [1].

3. Assessment methodology

Deterioration is identified as a change into a system, which affects its current or future performance. However, the
concept of damage is not meaningful without a comparison between the two different states of the system, one of them
representing the undamaged one. Methods for damage identification, also identified as structural assessment techniques,
can be classified as dynamic or static-based [2]. Static-based techniques only use static excitations, where the response
(displacement or strain) is measured at one or more locations. Present methodology is based on the application of a
static load. In this case, the behaviour of a structure when submitted to a rupture test is analysed.

3.1. Constraint satisfaction problem (CSP)

A numerical CSP, as defined in [11], is a triple CSP = (x, D, C(x)) defined by

(i) a set of numeric variables x = {x1, . . . , xn},
(ii) a set of domains D = {D1, . . . , Dn} where Di , a set of numeric values, is the domain associated with the variable

xi .
(iii) a set of constraints C(x) = {C1(x), . . . ,Cm(x)} where a constraint Ci (x) is determined by any numeric relation

(equation, inequality, inclusion, etc.) linking a set of variables under consideration.

A CSP is said to be inconsistent if one or more of its constraints are inconsistent, what is expressed by the following
expression:

CSP is inconsistent if (∀x ∈ X){¬(C1(x)) ∨ · · · ∨ ¬(Cm(x))}. (6)

Let us consider the case when the constraints are in the form C(x) := f (x) = 0, with f a continuous function from Rn

to R. The logic formulation needed for proving the inconsistence of a constraint Ci (x) is as follows:

(∀x ∈ X)¬(fi(x) = 0). (7)

http://www.mice.udg.es/fstar
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In order to prove this logic formulation, (IA) [9] is proposed. IA is a powerful mathematical tool which allows the
evaluation of constraints over the reals by means of interval computations. Then, the evaluation of formula (7) is
equivalent to proving the following interval exclusion: 0�Out(f ∗(X)), where Out(f ∗(X)) is an outer approximation
of the range of the continuous function f.

Proving the inconsistence of a CSP have been reduced to proving the exclusion of zero from the range of a set of
continuous functions. However, computing the range of a continuous function f by means of the rational extensions given
by IA provokes an overestimation of the interval evaluation, due to the possible multi-occurrences of some variables
and when the rational computations are not optimal. An algorithm based on results of MIA and branch-and-bound
techniques which allows to efficiently compute an inner and an outer approximation of f ∗ has been built [6].

4. Application

In order to determine whether a structural system is under normal or abnormal behaviour under the presence of
uncertain parameters, the structural assessment is made based on a numerical CSP, for this we must know all the
parameters of the system. Thus, MIA is used to simulate the unknown variables by solving the static equilibrium
Eq. (5) with deterministic and uncertain variables. Once all parameters are known we can define the CSP. Then we
put all the known data into the algorithm based on MIA and branch-and-bound techniques to prove the inconsistence
of the defined constraints. If there is an inconsistence we can determine the presence of an abnormal behaviour. To
demonstrate the methodology we have studied a concrete beam by means of three methods, the first and second case
are based on known variables and simulation of the unknown (i.e., rotations are simulated by solving Eq. (5)). The
third case is based only on the known variables, this is possible applying analytical redundancy reduction.

4.1. Concrete beam

A reinforced concrete beam with a square section of 0.15 m (b)×0.15 m(h) and a total length of 2.10 m was tested in
the laboratory up to failure (Fig. 1). The beam, clamped on both extremities, is loaded by two punctual forces F applied
at third parts of the span (Fig. 2). Such forces are applied by an actuator. The error in the measurement of applied
load can be modelled as a random variable with a mean equivalent to the load value and a standard deviation equal to
5% of it. Compressive tests were executed in some samples during the pouring of the beam to determine the concrete
elasticity modulus. From the samples, a mean value of 32.6 GPa and a standard deviation of 1.94 GPa (Ecm =32.6 GPa;
�Ec = 1.94 GPa) are estimated.

Fig. 1. Laboratory test of concrete beam.

Fig. 2. Concrete beam model.
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Fig. 3. Obtained load–strain diagram.

Fig. 4. Simplified numerical model (5 constraints).

A numerical model of this beam was considered in order to analyse its behaviour (see Figs. 4 and 5). The model
is constituted of one-dimensional Euler–Bernoulli beam elements and two displacements at each node. In both ends
the beam model is simply supported, the rotational displacements also being partially restrained due to the test set-up
of the supports (Fig. 1). The uncertainty is considered in the elasticity modulus (E), applied load (F), the obtained
values ($(i)) from displacement transducers attached to the studied structure (Linear variable displacement transducer,
LVDT) and in the spring stiffness (k) (for Case 2). Uniform distributions were considered for all uncertain variables.
Other variables are considered to be deterministic (length L=0.35 m; inertia I =4.21875×10−5 m4). Fig. 3 represents
the load–strain diagram obtained from this test. The force where a possible damage is detected is around 10 KN. In this
case, strains are measured at mid-span section, bottom fibre, by an electric strain gauge (tension strains).

As we can see in Fig. 3, the behaviour of the structure is divided into two parts, elastic behaviour at beginning and
nonlinear behaviour when a structural damage starts to appear. Application of IA in a CSP was used to determine the load
where the structure changes from elastic behaviour to nonlinear behaviour and to perform the structural assessment. To
formulate the CSP, simplified models that consider the existent symmetry and one-dimensional Euler–Bernoulli beam
elements were used. From the established Eq. (5), the respective constraints were obtained. Those equations depend
on uncertain variables such as the applied load (F), the Young modulus (E), and the obtained vertical displacements
from LVDT ($(i)). Taking into account the uncertainty due to material properties, the inconsistence test is made with
EI =[1 293 468.75, 1 457 156.25] N m2. The load (F) varies between 1271 and 26 279 N and is affected by the actuator
uncertainty, which is 5% of the applied value. During CSP analysis rotations ($(j)) were considered to be deterministic.
The used vertical displacements are the measured values affected by the sensor sensitivity. Two cases, as showed in
Figs. 4 and 5, have been studied to develop the numerical model of the beam for this structural assessment.

4.1.1. Case 1
The simplified model has been developed taking into account the symmetry of the beam (Fig. 4). Values obtained

from the sensors (vertical displacements) are represented by the variables$i : $1,$3 and$5. Rotations are assumed
solving Eq. (5). F, E, L and I are simulated with the previously mentioned values. The following constraints are defined
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Fig. 5. Simplified numerical model (14 constraints).

Table 1
Results for structural assessment with five constraints

No. F(N) C1 C2 C3 C4 C5

1 8439 True False True True True
2 9195 False False True True True

for this structural assessment:

C1 : 24EI

L3
�1 +

(
6EI

L2
− 6EI

L2

)
�2 − 12EI

L3
�3 − 6EI

L2
�4 ⊆ 0, (8)

C2 :
(

6EI

L2
− 6EI

L2

)
�1 + 8EI

L
�2 + 6EI

L2
�3 + 2EI

L
�4 ⊆ 0, (9)

C3 : −12EI

L3
�1 + 6EI

L2
�2 + 24EI

L3
�3 +

(
6EI

L2
− 6EI

L2

)
�4 − 12EI

L3
�5 − F ⊆ 0, (10)

C4 : −6EI

L2
�1 + 2EI

L
�2 +

(
6EI

L2
− 6EI

L2

)
�3 + 8EI

L
�4 + 6EI

L2
�5 ⊆ 0, (11)

C5 : −12EI

L3
�3 + 6EI

L2
�4 + 12EI

L3
�5 ⊆ 0. (12)

From the CSP analysis, the first inconsistence appeared in C2 for the value of F = 8439 N. It seems to be the load
where the structural behaviour changes from elastic behaviour to nonlinear behaviour. Secondly, for F = 9195 N
the constraint C1 becomes inconsistent too, confirming the appearance of a possible damage on the support region
(Table 1). CSP detects the appearance of this change near the experimental results. This is due to the fact that the used
rotations, deterministic values, were obtained by a previous elastic analysis of the structure.

4.1.2. Case 2
To simulate the clamped-clamped boundary conditions, the simplified model has been developed taking into account

a rotational spring in the model (K = K2 = K14 = 6000 KN m/rad; �k = 60 KN m/rad). During the test, displacement
transducers control the beam deflection ($i), namely �3, �5, �7, �9 and �11 (Fig. 5). Rotations are assumed solving Eq.
(5). F, E, L and I are simulated with the previously mentioned values. The following constraints are defined for this
structural assessment:

C1 : F + 6EI

L2
�2 − 12EI

L3
�3 + 6EI

L2
�4 ⊆ 0, (13)

C2 :
(

4EI

L
+ K2

)
�2 − 6EI

L
�3 ⊆ 0, (14)
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C3 : −6EI

L2
�2 +

(
12EI

L3
+ 12EI

L3

)
�3 − 12EI

L3
�5 + 6EI

L2
�6 ⊆ 0, (15)

C4 : 2EI

L
�2 +

(
4EI

L
+ 4EI

L

)
�4 − 6EI

L2
�5 + 2EI

L
�6 ⊆ 0, (16)

C5 : −12EI

L3
�3 − 6EI

L2
�4 +

(
12EI

L3
+ 12EI

L3

)
�5 − 12EI

L3
�7 + 6EI

L2
�8 − F ⊆ 0, (17)

C6 : 6EI

L2
�3 + 2EI

L
�4 +

(
4EI

L
+ 4EI

L

)
�6 − 6EI

L2
)�7 + 2EI

L
�8 ⊆ 0, (18)

C7 : −12EI

L3
�5 − 6EI

L2
�6 +

(
12EI

L3
+ 12EI

L3

)
�7 − 12EI

L3
�9 + 6EI

L2
�10 ⊆ 0, (19)

C8 : 6EI

L2
�5 + 2EI

L
�6 +

(
4EI

L
+ 4EI

L

)
�8 − 6EI

L2
�9 + 2EI

L
�10 ⊆ 0, (20)

C9 : −12EI

L3
�7 + 6EI

L2
�8 +

(
12EI

L3
+ 12EI

L3

)
�9 − 12EI

L3
�11 + 6EI

L2
�12 − F ⊆ 0, (21)

C10 : 6EI

L2
�7 + 2EI

L
�8 +

(
4EI

L
+ 4EI

L

)
�10 − 6EI

L2
�11 + 2EI

L
�12 ⊆ 0, (22)

C11 : −12EI

L3
�9 − 6EI

L2
�10 +

(
12EI

L3
+ 12EI

L3

)
�11 + 6EI

L2
�14 ⊆ 0, (23)

C12 : 6EI

L2
�9 + 2EI

L
�10 +

(
4EI

L
+ 4EI

L

)
�12 + 2EI

L
�14 ⊆ 0, (24)

C13 : −12EI

L3
�11 − 6EI

L2
�12 + F − 6EI

L2
�14 ⊆ 0, (25)

C14 : 6EI

L2
�11 + 2EI

L
�12 +

(
4EI

L
+ K14

)
�12 + 2EI

L
�14 ⊆ 0. (26)

For this numerical model first CSP analysis results were not expected because of the huge number of variables involved.
Two events were considered, first with the original experimental results and then with a signal treatment because of
the noise and delay present in them. Structural behaviour for Case 2 is improved after the signal treatment as seen in
Table 2. Inconsistence appeared in C13 and C14 for the value of F = 4085 N. Simulation of a big number of constraints
does not warranty a better solution.

4.1.3. Case 3: analytical redundancy reduction (ARR)
In order to minimize uncertainty we have made a variable reduction based on ARR. There exists analytical redundancy

if there exists two or more different ways to determine a variable. A constraint that applies to only known variables
and parameters constitutes an ARR and it can be evaluated from only observed variables in order to be used in damage
detection. Based on the simplified numerical model of five constraints (Eqs. (8) to (12)) the following ARR’s are
defined:

ARR1 :
(

24EI

L3

)
�1 −

(
24EI

L3

)
�3 +

(
12EI

L3

)
�5 ⊆ 0, (27)

ARR2 : 3EI(12�1 − 15�3 + 8�5) + 2FL3 ⊆ 0, (28)

ARR3 : 6EI(15�1 − 12�3 + 5�5) + FL3

4L3
⊆ 0. (29)
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Table 2
Results for structural assessment with 14 constraints—signal treatment

No. F(N) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

1 1271 T T T T T T T T T T T T T T
2 4085 T T T T T T T T T T T T F F
3 4184 T T T T T T T T T T F T F F
4 4688 T T T T T T T T T F F T F F
5 5794 T T T T T T T F T F F T F F
6 7989 T T T F T T T F T F F T F F
7 11 082 T T T F T T T F T F F T F F
8 11 212 T T F F F T T F T F F T F F
9 13 674 F T F F F T T F T F F T F F

10 14 902 F F F F F T T F T F F T F F
11 16 192 F F F F F T T F T F F F F F
12 18 365 F F F F F T T F F F F F F F
13 20 997 F F F F F F T F F F F F F F
14 25 927 F F F F F F F F F F F F F F

T = True; F = False.

Table 3
Results for structural assessment with 3 ARRs

No. F(N) ARR1 ARR2 ARR3

1 10 603 True True False
2 11 501 False True False
3 10 603 False False False

Results (Table 3) based on in the measured values (�1, �2 and �5) give quite an approximation of the experimental
results.

5. Structural assessment of real structures

The final objective of developing the damage identification technique, dealing with uncertainties, is their application to
real civil engineering structures. To this end, a first interesting application is the long term monitoring and assessment of
the Sorraia River Bridge, which is part of a research project—SMARTE—developed in Portugal. This project involves
one highway owner (BRISA), responsible for the maintenance of bridges and other infrastructures, and a civil and
an electronic engineering research laboratory. Sorraia River Bridge (Fig. 6) is defined as a real prototype where the
presented methodology will be tested for the first time. This bridge is a prestressed concrete bridge, with a total length
of 270 m, constructed by the cantilever process. The bridge section is a box girder type. The section height varies from
2.55 m at middle span to 6.00 m over the piers.

Fig. 7 shows instrumentation plan of this bridge. The whole sensor network will have to be measured from two
accessible locations (Local Stations) [8].

6. Conclusions and future developments

Nowadays bridge monitoring is efficiently done by different institutes and engineers. One of the problems detected
in long term monitoring of any bridge is what to do with the obtained amount of data. It is always necessary to keep in
mind that the final objective of monitoring is the assessment of bridges helping owners in their maintenance. In order
to obtain it, a new methodology based on a combination of IA and constraint propagation techniques was studied and
applied to simple examples. From IA it is possible to conclude that it is a methodology which considers the whole
uncertainty, warranting that the real answer is within the range of output values. Besides, the connection between IA
and (CSP) seems to be very useful in performing damage assessment of any structure given an uncertain model. In such
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Fig. 6. Sorraia River Bridge.

Fig. 7. Instrumentation plan of Sorraia River Bridge.

methodology, the consistency of each constraint of the system is analysed. A motivational example has been solved
to show the viability of the method, however, some cases of damage are not found because of the tolerance given
to the sensor and to the applied load. To improve it an analytical redundancy reduction is presented; this approach
demonstrates a sharper solution based on known variables and parameters.

Based on the advantages and disadvantages of each case presented and taking into account the results obtained in
the example, it was decided to use the ARR solution in the structural assessment of the Sorraia River Bridge. During
the load test, support rigidity was identified as a critical parameter of the model and therefore is considered as one of
the sources of uncertainty in the identification of future damages.
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