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Digital image steganalysis is the art of detecting the presence of information hiding in carrier images. When detecting recently
developed adaptive image steganographymethods, state-of-art steganalysismethods cannot achieve satisfactory detection accuracy,
because the adaptive steganography methods can adaptively embed information into regions with rich textures via the guidance
of distortion function and thus make the effective steganalysis features hard to be extracted. Inspired by the promising success
which convolutional neural network (CNN) has achieved in the fields of digital image analysis, increasing researchers are devoted
to designing CNN based steganalysis methods. But as for detecting adaptive steganography methods, the results achieved by CNN
based methods are still far from expected. In this paper, we propose a hybrid approach by designing a region selection method and
a newCNN framework. In order tomake the CNN focus on the regions with complex textures, we design a region selectionmethod
by finding a region with themaximal sum of the embedding probabilities. To evolvemore diverse and effective steganalysis features,
we design a new CNN framework consisting of three separate subnets with independent structure and configuration parameters
and then merge and split the three subnets repeatedly. Experimental results indicate that our approach can lead to performance
improvement in detecting adaptive steganography.

1. Introduction

Steganography is a technique for embedding confidential
information into multimedia data, which can be used for
concealed transmission or copyright protection. Steganalysis
is an opposite art to detect the existence of steganogra-
phy. In past years, researchers have developed a variety
of information steganography techniques without affecting
image quality. LSB (Least Significant Bit) [1] is a nonadaptive
method which does not take into account the contribution of
each pixel within an image when embedding information, so
that it is proved to be defective with the development of the
detection technology.

Some adaptive steganography techniques have been pro-
posed to improve the antidetection ability by adjusting the
embedding locations on the basis of the embedding costs.
Many currently available adaptive steganography algorithms,
such as HUGO BD (Highly Undetectable Stego Bounding

Distortion) [2], WOW (Wavelet Obtained Weights) [3], S-
UNIWARD (Spatial-Universal Wavelet Relative Distortion)
[4], and HILL (High-pass, Low-pass, and Low-pass) [5], have
a high antidetection capability, andmost of themare designed
under the framework of minimizing a distortion function,
in which each pixel of an image suitable for embedding
information is firstly assigned a high embedding cost. With
the cost we can calculate the value of distortion function
and obtain the stego via minimizing the distortion function
using some coding techniques, such as STCs (Syndrome-
Trellis Codes) [6]. To detect content-adaptive schemes, some
researchers handcraft various high-dimensional features such
as the spatial rich model (SRM) [7–9] and selection channel
aware maxSRM [10] and maxSRMd2 [10]. Some other work
focuses on designing efficient convolutional neural network
(CNN) architectures [11] to extract features directly from
the input images. Qian et al. [12] proposed a CNN based
steganalysis method using Gaussian activation function and
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in [13] they transfer features generated from a pretrained
model to regularize CNN model. In literatures [14, 15], Xu
et al. proposed a new-type network structure, including
absolute value layer and batch normalization layer. In [16, 17],
hybrid networks composing many subnetworks are designed
to fit the rich-model features set. However, these CNN based
steganalysis methods do not consider the characteristics of
adaptive steganography and hence have limitation in evolving
diverse and effective steganalysis features due to the inflexible
CNN frameworks. Recently there are some other articles on
steganalysis based on deep learning. Ni et al. [18] proposed
a CNN which has a quite different structure from the ones
used in conventional computer vision tasks. Besides, a new
activation function called truncated linear unit (TLU) is
adopted in the CNN model and it incorporates the selection
channel inside the network architecture. In [19], Yang et al.
proposed another approach towards using selection channel
inside the network architecture which can improve the
detection accuracy. Compared to the existing CNN model
for steganalysis, our model can evolve effective steganalysis
features for the detection of adaptive steganography by
merging and separating subnets of CNNs and focusing on a
most effective region (MER), which can be the reference in
designing the new CNN for steganalysis.

The contribution of this paper is as follows: (1) we
design a region selection method to find the most effective
region (MER) by calculating and comparing the sum of
the embedding probabilities of each pixel in a region. The
selected region is used as an input image of CNNs. (2)
We propose a network consisting of three separate subnets,
with each subnet possessing independent structures and
diverse parameters, and the three subnets can be merged
and separated repeatedly because some studies have shown
that widening the network can significantly improve the
performance [20]. Experimental results indicate that both the
region selection method and the proposed CNN framework
can lead to performance improvement in detecting adaptive
steganography in some cases.

2. Proposed Method

Most of the state-of-the-art adaptive steganography methods
first assign the distortion value for each pixel via a distortion
function based on the embedding cost before embedding
information, and then some advanced coding techniques,
such as STCs, will be applied tominimize the expected distor-
tion value for all pixels in texture areas. Obviously, since the
degree of correlation between each pixel and the surrounding
pixels is different, according to the adaptive steganography
distortion function, pixels with different texture complexity
will get diverse loss values. Hence some pixels, which may
not be suitable for modification, in texture areas, are assigned
with low costs and some other pixels of complex texture are
assigned with high costs. We can also clearly study from
[8] that the regions with high probability are substantially
consistent with the embedding pixels. By large number of
experiments (which will be described in Section 3.2.1), we
also found that the embedding probability map for each
adaptive steganography algorithm is approximately the same.

Through this observation, we intend to roughly estimate
the position of the modified pixels by embedding probabil-
ity maps without knowing the specific modification point.
Moreover, it is imprecise to use the embedding probability
immediately to represent whether a pixel is embedded. Due
to the fact that the optimal embedding region obtained by an
embedding algorithm may be applicable to other embedding
algorithms, in this paper, we use the most effective region
instead of embedding probability of a pixel to steganalyze an
image.

2.1. The Region Selection Method. In this section we first
propose a method to predict embedded pixels using the
embedding probabilitymaps to find themost effective region.
Our main idea is to first calculate the embedding probability
of each pixel and then calculate and compare the sum of the
embedding probability of all pixels in different regions to find
the maximum one.

In the adaptive steganography, to determine whether a
pixel is suitable for modification, a distortion metric [3]
𝐷(𝑋, 𝑌) is designed to measure the embedding impact as
follows:

𝐷 (𝑋, 𝑌) =
𝑛,𝑚

∑
𝑖=1,𝑗=1

𝜌𝑖,𝑗 (𝑥𝑖,𝑗, 𝑦𝑖,𝑗) , (1)

where 𝜌𝑖,𝑗 is the cost of pixel changes (from 𝑥𝑖,𝑗 to 𝑦𝑖,𝑗). Using
the distortion function one can easily evaluate the expected
distortion and compute the probabilitiesmap.Theprobability
of modification described in [2, 21] can be calculated by

𝜋𝜆 (𝑌) =
𝑛,𝑚

∏
𝑖=1,𝑗=1

exp (−𝜆𝜌𝑖,𝑗 (𝑦𝑖,𝑗))
∑𝑦𝑖,𝑗∈I𝑖,𝑗 exp (−𝜆𝜌𝑖,𝑗 (𝑦𝑖,𝑗))

. (2)

where 𝜆 is used to satisfy the following distortion constraints:

𝐷𝜖 =
𝑛,𝑚

∑
𝑖=1,𝑗=1

∑
𝑦𝑖,𝑗∈I𝑖,𝑗

𝜋𝜆 (𝑦𝑖,𝑗) 𝜌𝑖,𝑗 (𝑦𝑖,𝑗) , (3)

or the payload constraint:

𝑠 = −
𝑛,𝑚

∑
𝑖=1,𝑗=1

∑
𝑦𝑖,𝑗∈I𝑖,𝑗

𝜋𝜆 (𝑦𝑖,𝑗) log𝜋𝜆 (𝑦𝑖,𝑗) . (4)

As shown in Algorithm 1, we estimate the embedding
probability of each pixel in an image, enumerate all possible
regions (with constant sizes), and calculate the sum of the
probabilities of each region to find the region with the
maximal value. This region is the most effective region for
steganalysis. Figure 1 gives an experimental result of the
method. The method is constrained by the selection channel
[22] elements of embedding algorithms and embedding rates.

Due to most of the adaptive steganography methods
having similar embedding positions, the inaccuracies in the
selection channel do not have an impact on the position of
MERs.The main reason is probably the following few points.
When calculating the embedding probabilities of an image
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Input: input parameters: an input image 𝐼, the width𝑊 and the height𝐻 of the region.
Output: output result: the MER 𝑂, save as PGM format.
(1) Initialize the probability map (matrix) 𝑃 with random weights 𝜃;
(2) //Select a pixel from the input image and calculate the probability.
(3) for 𝑖 = 1, Rows do
(4) for 𝑗 = 1, Column do
(5) Calculate change costs𝐷(𝑋, 𝑌) using Eq. (1);
(6) Compute 𝜆 using Eq. (4);
(7) Set the probability 𝜋𝜆(𝑋, 𝑌) = 𝑓(𝐷(𝑋, 𝑌), 𝜆) using Eq. (2);
(8) Store 𝜋𝜆(𝑋, 𝑌) in 𝑃;
(9) Initialize the MER 𝑂 with 0;
(10) //Select the upper left corner coordinates of the area with size of𝑊×𝐻.
(11) for 𝑖 = 1, Rows-𝑊 do
(12) for 𝑗 = 1, Column-𝐻 do
(13) Calculate the sum of the probability in an matrix (𝑊×𝐻) with top-left corner of (𝑖, 𝑗);
(14) Statistics out all of the sum and its corresponding 𝑖, 𝑗;
(15) Select the maximal value of those sums;
(16) Cut the𝑊×𝐻 area in an input image according to 𝑖 and 𝑗;
(17) Save this area 𝑂 as a PGM format image;

Algorithm 1: Finding the most effective region (𝑊 × 𝐻) for steganalysis.

Table 1: The ratios of the distance between two MERs extracted by different algorithms.

Algorithm Distance (the unit for location is pixel).
𝐷 = 0 0 < 𝐷 ≤ 30 30 < 𝐷 ≤ 70 70 < 𝐷 ≤ 100 𝐷 > 100

WOW 0.2 & HILL 0.2 0.2575 0.5025 0.1182 0.0472 0.0746
WOW 0.2 & HUGO 0.2 0.2544 0.4900 0.1271 0.0489 0.0796
HILL 0.2 & HUGO 0.2 0.2284 0.4137 0.1553 0.0680 0.1346
WOW 0.1 & 0.2 0.4544 0.4534 0.0525 0.0169 0.0228
HILL 0.1 & 0.2 0.4879 0.4421 0.0372 0.0127 0.0201
HUGO 0.1 & 0.2 0.4642 0.4282 0.0603 0.0200 0.0273

by our region selection method as well as in the extraction
process of maxSRM or maxSRMd2, we may need to know
the embedding algorithm and embedding rate in advance.
Having a priori knowledge can obviously make the model
have some limitations when we test the unknown image sets.
So we test the robustness of our proposed method to reduce
the impact of prior knowledge and we introduce the distance
𝐷 to denote the distance between the two MERs of images
embedding with different algorithms or rates and use the
coordinates of the points 𝑃1(𝑥1, 𝑦1), 𝑃2(𝑥2, 𝑦2) in the upper
left corner of different MERs to mark their position in the
original images.𝐷 is calculated as follows:

|𝐷| = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2. (5)

Our experiments given in Section 3 also show that when
using different embedding algorithms and embedding rates
to estimate the embedding probability, the positions ofMERs
selected by Algorithm 1 are very close. We would like to use
Table 1 to explain that our method is robust and universality.
One can even use some kind of embedding algorithm (HILL)
to roughly estimate other algorithms (WOW, HUGO BD, S-
UNIWARD, etc.), which does not affect the performance.
Finally, the selected MERs are used as the input of the CNN

model in the following subsection so that the CNNmodel can
focus on the regions with high embedding probabilities.

2.2. The Combined Network

2.2.1. The Overall Structure. Figure 2 shows the network
model designed in this paper, including preprocessing mod-
ule, the convolution and downsampling module, and classifi-
cation module. Our method broadens the network proposed
in [14] with three separate subnets and lengthens the net-
work with “depthconcat” layers, fully connected layers, and
dropout layers. In the preprocessing module, the high-pass
filter layer uses the KV filter kernel [7, 12], “SQUARE5x5,” to
obtain the image residuals. After kernel filtering, the data flow
into the combined network comprising three independent
subnets where the kernel sizes of each convolution layer in
each subnet are 1, 3, and 5, respectively. After several convo-
lution and downsampling layers, the data of the three subnets
are merged together through the concat layer 𝐷𝑒𝑝𝑡ℎ𝐶𝑜𝑛𝑐𝑎𝑡
and flow into a new combined network comprising three
subnets, where kernel sizes of the first convolution layer of
the three subnets are 1, 3, and 1, respectively. Finally the
features are merged for the second time. After two merging
operations, the network becomes a single one, including two
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(a) (b)

(c) (d)

Figure 1: TheMER for images embedded by HUGO with payload of 0.2 bits per pixel. (a) Cover image. (b)The embedding probability map.
(c) The MER with size 256 × 256 pixels (the region with green line in (b)). (d) The MER with size 384 × 384 pixels (the region with red line
in (b)).

convolution layers, two pooling layers, three full connection
layers, two dropout layers, and four activation layers, and so
forth. The configuration parameters of each layer are given
in detail in Figure 2. Taking the first convolution layer as an
example, the value 8 outside the parentheses is the number
of the kernels, 1 × 1 is the size of the kernel, 1(𝑆) is the stride,
and the rest of the configuration is entirely the same. It should
be noticed that the kernel size of the last pooling layer is
not fixed. When training the areas with different sizes, the
dimensions are different in the pooling layer so that we need
to dynamically modify the kernel size of the last pooling layer
to ensure that the data size is 1 × 1 before feeding the data to
the fully connected layer.

2.2.2. Learning Features from the Network. It is widely rec-
ognized that whenmost of the neural networks are employed
for generating the final features, original images are trained by
the convolution layer and downsampling layer, and so forth.
The purpose of convolution process is to model a correlation
between a pixel and its surrounding pixels. For instance, if you

set the convolution kernel size to 3, it means that you want
to associate a pixel with the 8 points around it (to generate
steganalysis feature). Through the establishment of this link,
after layers of dimensionality reduction, the final classifica-
tion can be achieved.At present, the kernel size of each layer is
fixed in the design of most neural networks. The large size of
the convolution kernel may cause information redundancy;
that is, a pixel may establish connections with less relevant
pixels. The small size of the convolution kernel may lead to
missing some significant information (pixels). Many neural
network framework needs to set up a configuration file. Once
these parameters have been set, they cannot be arbitrarily
modified after training begins. Accordingly, considering the
limitations of the single model, we employ three subnets
with independent structures to model the feature map with
different filter sizes. As described in Section 2.2.1, the two
“separating-merging” procedures make the learned features
further diversified. In this way, features with different grain
sizes can be generated. At the bottom of the structure we
add three fully connected layers, among these layers, and we
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Figure 2: An improved model structure consisting of three separate subnets.

use the dropout layer [23] to sparse the coefficients of the
network. “Dropout” means that the weights of some random
nodes of the hidden layer are not allowed to work when the
model is trained but may work in the next iteration. The
mathematical formula is shown as follows:

𝑌 = {
{
{

𝑊|𝑝 ∗ 𝑋, training

𝑊∗ 𝑝𝑋, testing,
(6)

where𝑋,𝑌 are the input and output, respectively, parameter𝑝
is the retaining probability of the dropout layer, and𝑊|𝑝 is the

subset of weight parameters directly sampled by probability
𝑝. During the training phase and testing phase, the output is
slightly different as shown in (6).

In training, we calculate the loss and gradient according
to the existing label and use the gradient to update the
network parameters. In this paper, we select the stochastic
gradient descent (SGD) to optimize the parameters of the
proposed network architecture, which has several advantages
such as high efficiency, fast speed, and simplifying the prob-
lem complexity. Deep learning has a limitation that we need
to do the parameters initialization manually, which is crucial
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to the final results, such as the learning rate, weight decay,
the initialization strategy of the parameters, and the ratio of
the dropout layer, so that adjusting these parameters is time-
consuming. The batch normalization layers [24] are adopted
in this model to solve this problem. The normalization
process is performed via (7) and (8):

𝑥𝑖 =
𝑥𝑖 − 𝐸 [𝑋]
√𝜎2𝑋 + 𝜖

, (7)

where values 𝑥𝑖 is an input over a minibatch of 𝑋 =
{𝑥1, 𝑥2, . . . , 𝑥𝑚}. 𝐸[𝑋] and 𝜎2𝑋 are the mean and variance of
𝑋, respectively. The output values are calculated by scaling
and shifting the normalized 𝑥𝑖 as shown in

𝑦𝑖 = 𝛾𝑥𝑖 + 𝛽, (8)

where 𝛾 and 𝛽 are learned by the network. Finally the last
softmax layer is used for classification.

3. Experiments

3.1. Dataset and Settings. The dataset used in this paper
is BOSSbase v1.01 [25] containing 10,000 grayscale images
with size of 512 × 512. We test four adaptive steganographic
algorithms: HOGU BD [2], S-UNIWARD [4], WOW [3],
and HILL [5] with default parameters during embedding
information. We also use these algorithms to get the proba-
bilitymaps. For comparison, we use SRM [7] andmaxSRMd2
[10] to extract 34,671-dimension feature and classify them
with an ensemble classifier [26]. We use the open source
framework Caffe [27] to implement the proposed model.
In our approach, among which 5000 pairs of images are
selected for training, 2500 pairs are selected as the validation
set used to optimize the parameters of the model during
the training process, and the remaining 2500 pairs are used
as test set to evaluate the efficiencies of classification. We
use two high performance graphics cards, NVIDIA Geforce
GTX TITAN X and NVIDIA Quadro K5200, to speed up the
computation and optimization, because the GPU platform is
primarily based on the CUDA framework [28] of NVIDIA
company which is widely used in scientific computing and
can extremely improve the speed of operation at present
effectivly.

When training the model, considering the sensitivity of
ReLU activation function to the learning rate, we set the
initial learning rate to 0.001. For every 50,000 iterations, the
learning rate is modified as one-tenth of the current learning
rate. The maximum number of iterations is set to 150,000.
The momentum used in gradient descent and the weight
decay used to prevent overfitting are set to 0.9 and 0.0005,
respectively. Note that when the high-pass filter layer in the
model is used to obtain the image residuals, it does not need
backpropagation process. Consequently, both the learning
rate and the weight decay of this layer are set as 0. Except
the fully connected layers, the weight decay functions of
the other layers are prohibited. For the sake of maximizing
the retention of the original image information, we adopt
the mean-pooling strategy in all pooling layers. The ratio of

dropout layer between each fully connected layer is set to
0.5. Apart from this exception, the learning rate 𝑙𝑟 𝑚𝑢𝑙𝑡 (a
parameter in Caffe) of weight in all layers is set to 1 (the
real learning rate is 𝑙𝑟 𝑚𝑢𝑙𝑡multiplied by initial learning rate
0.001) and the learning rate 𝑑𝑒𝑐𝑎𝑦 𝑚𝑢𝑙𝑡 of bias is twice of the
above value 𝑙𝑟 𝑚𝑢𝑙𝑡.

3.2. Results and Analysis. Table 1 shows the ratios of approx-
imation of the MERs extracted from 10,000 grayscale images
with the size of 512 × 512, and the size of the MERs is
384×384. We compute distance𝐷 using (5). Taking the value
0.2575 in the upper left corner as an example, it means that
25.75% of the regions extracted by WOW (with embedding
rate 0.2 bpp) and HILL (with embedding rate 0.2 bpp) are
the same (𝐷 is 0). The first three rows are the results when
using different steganographic algorithms with the same
embedding rates, and the last three rows are the results
when using the same embedding algorithms with different
embedding rates. Table 2 shows the performance comparison
of multiple methods based on the testing error performance.
We directly use the output value of the accuracy layer as the
detection rates of all experimental results. We test the four
adaptive steganography algorithms described in Section 3.1
with embedding rates of 0.1 to 0.4 bpp. Three kinds of MERs
with sizes of 256 × 256, 384 × 384, and 512 × 512 are used.
The experimental results of the three different sizes of images
are shown in columns 3–5. We compare our method with the
single network proposed in [14], SRM [7], and maxSRMd2
[10], and the corresponding experimental results are shown
in columns 6–8. The best detection result of our proposed
method in each row is shown in bold font.

3.2.1. The Effectiveness of Selection of MER. First, we conduct
experiments to show that when using different embedding
algorithms and embedding rates to estimate the embedding
probability for the same image, the MER method and Algo-
rithm 1we proposed are robustness. FromTable 1, we can find
most of the distances𝐷 are within the range of [0, 30]. When
𝐷 is greater than 70, the ratio is very small which means
that the embedding probability maps calculated by different
adaptive steganographic algorithms and different rates are
approximately the same, and the positions of MERs selected
byAlgorithm 1 using different steganographic algorithms and
embedding rates are very close. Secondly, from Table 2, we
can clearly find that the region selection strategy might be
more applicable in the case of low embedding rates for the
adaptive, algorithms includingHUGOBD[2],WOW[3], and
HILL [5], but plays a trivial role in detecting S-UNIWARD
[4], because the changed pixels will not be limited only to
the textured regions of the image as the payload increases.
As the changed pixels start to spread all over the image,
the MER based method will become less effective and may
cause serious information loss in detecting S-UNIWARDdue
to lack of considering all of the differences between covers
and stegos. In addition, the MERs with size of 384 × 384
are more competitive for detection than those of 256 × 256.
We further compare the detection performance on regions
with the same size (384 × 384) selected by our method
and randomly selected method and show the comparison
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Figure 3: The detection errors of different ways to obtain the MER.

results in Figure 3.The histograms in yellow are the detection
results on randomly selected regions and the green ones
are produced by our method. We can conclude that, for
the three kinds of adaptive steganography algorithms with
low embedding rates of 0.1 bpp and 0.2 bpp, our method
effectively outperforms by 1%∼4% in terms of the detection
accuracy compared with the random selectionmethod.More
specifically, our proposed method, the region selection, may
not be as good as some state-of-the-art methods such as
maxSRMd2 [10] because our method is not strictly following
the idea of selection channel awareness. At present some
of the commonly Selection-Channel-Aware method first
estimates the embedding probability of an image and then
selects points suitable for feature extraction. As for our
method, we estimate the embedding probability to select an
area suitable for embedding. However, we treat the points
in the MER without distinction when extracting features. In
Table 2, MERs with improper size may not be suitable for
steganalysis of adaptive steganography algorithms, especially
for HUGO and HILL. The total amount of pixels of size
384 × 384 is about half of the original picture and 256 × 256
is about a quarter of the original. In the case of appropriate
size of the region, the MER selection method achieves better
results.

3.2.2. The Effectiveness of the Proposed Network. We also
evaluate the effectiveness of the network when it is used
without considering the impact of selection of MERs. In
Table 2, the 5th column shows the experimental results of
our proposed network with original images, and the 6th–8th
columns show the performance of all of the compared
methods. We can find that in general our network achieves
better performance than the method in [14] and SRM [7].
When the embedding rates are high, the detection accuracy
is higher than that of the state-of-the-art methodmaxSRMd2
[10] except for detecting WOW [3]. MaxSRMd2 [10] must

first estimate the embedding probability when extracting
features. However, a potential disadvantage of maxSRMd2
is that the point where the embedding probability is high
does not necessarily correspond to the real embedded point,
which may cause a certain amount of information loss. Our
proposed method relies on all pixel points when using the
combined networks to extract features from 512×512 images.
Therefore, our method is more suitable to detect 512 × 512
images when the embedding rate is high.

4. Conclusion

In this paper, a new region selection method is proposed to
find the effective region for CNN to detect adaptive stegano-
graphic methods. We also design a combined network con-
sisting of three separate subnets with independent structures.
By repeatedly separating and merging the independent sub-
nets with different configuration parameters, the extracted
features are more diverse and effective. Experimental results
show that our approach has advantages and disadvantages in
different situations. At relatively high embedding rates, the
proposed combined CNN model outperforms the state-of-
the-art steganalysis methods maxSRMd2 except WOW. The
region selection strategy might be more applicable in the
case of low embedding rates for several adaptive algorithms
includingHUGOBD,WOW, andHILL. In the future, we will
consider to design new method which can choose the MER
more accurately and propose newnetwork structures that can
evolve more diverse and effective features for steganalysis.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (NSFC) under Grants nos. U1536204
and 61672386 and the Natural Science Research Project of
Colleges and Universities in Anhui Province under Grant no.
KJ2017A734.

References

[1] F. A. P. Petitcolas, R. J. Anderson, andM.G. Kuhn, “Information
hiding—a survey,” Proceedings of the IEEE, vol. 87, no. 7, pp.
1062–1078, 1999.

[2] T. Filler and J. Fridrich, “Gibbs construction in steganography,”
IEEE Transactions on Information Forensics Security, vol. 5, no.
4, pp. 705–720, 2010.

[3] V. Holub and J. Fridrich, “Designing steganographic distortion
using directional filters,” inProceedings of the IEEE International
Workshop on Information Forensics and Security,WIFS 2012, pp.
234–239, December 2012.

[4] V. Holub, J. Fridrich, and T. Denemark, “Universal distortion
function for steganography in an arbitrary domain,” EURASIP
Journal on Information Security, vol. 2014, article 1, 2014.



Security and Communication Networks 9

[5] B. Li, M. Wang, J. Huang, and X. Li, “A new cost function
for spatial image steganography,” in Proceedings of the IEEE
International Conference on Image Processing, pp. 4206–4210,
2014.

[6] T. Filler, J. Judas, and J. Fridrich, “Minimizing additive dis-
tortion in steganography using syndrome-trellis codes,” IEEE
Transactions on Information Forensics Security, vol. 6, no. 3, pp.
920–935, 2011.

[7] J. Fridrich and J. Kodovsky, “Rich models for steganalysis of
digital images,” IEEE Transactions on Information Forensics
Security, vol. 7, no. 3, pp. 868–882, 2012.

[8] W. Tang, H. Li, W. Luo, and J. Huang, “Adaptive steganalysis
against WOW embedding algorithm,” in Proceedings of the the
2nd ACM workshop, pp. 91–96, Salzburg, Austria, June 2014.

[9] W. Tang, H. Li, W. Luo, and J. Huang, “Adaptive steganalysis
based on embedding probabilities of pixels,” IEEE Transactions
on Information Forensics Security, vol. 11, no. 4, pp. 734–745,
2016.

[10] T. Denemark, V. Sedighi, V.Holub, R. Cogranne, and J. Fridrich,
“Selection-channel-aware rich model for Steganalysis of digital
images,” in Proceedings of the 2014 IEEE InternationalWorkshop
on Information Forensics and Security, WIFS 2014, pp. 48–53,
December 2014.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2323, 1998.

[12] Y. Qian, J. Dong, W. Wang, and T. Tan, “Deep learning for
steganalysis via convolutional neural networks,” in Proceedings
of the IS&T/SPIE Electronic Imaging, p. 94090J, San Francisco,
Calif, USA.

[13] Y. Qian, J. Dong, W. Wang, and T. Tan, “Learning and transfer-
ring representations for image steganalysis using convolutional
neural network,” in Proceedings of the 23rd IEEE International
Conference on Image Processing, ICIP 2016, pp. 2752–2756,
September 2016.

[14] G. Xu, H. Wu, and Y. Q. Shi, “Ensemble of CNNs for Ste-
ganalysis: An empirical study,” in Proceedings of the 4th ACM
Workshop on Information Hiding and Multimedia Security, pp.
103–107, ACM, June 2016.

[15] G. Xu, H.-Z. Wu, and Y.-Q. Shi, “Structural design of convolu-
tional neural networks for steganalysis,” IEEE Signal Processing
Letters, vol. 23, no. 5, pp. 708–712, 2016.

[16] J. Zeng, S. Tan, B. Li, and J.Huang, “Large-scale jpeg steganalysis
using hybrid deep-learning framework,” 2017.

[17] J. Zeng, S. Tan, and B. Li, “Pre-training via fitting deep
neural network to rich-model features extraction procedure
and its effect on deep learning for steganalysis,” in Proceedings
of the Media Watermarking, Security, and Forensics, Part of
IS&T International Symposium on Electronic Imaging (EI ’17),
Burlingame, Calif, USA, Juanuary-February 2017.

[18] J. Ni, J. Ye, and Y. I. Yang, “Deep learning hierarchical
representations for image steganalysis,” IEEE Transactions on
Information Forensics Security, 2017.

[19] J. Yang, K. Liu, X. Kang, E. Wong, and Y. Shi, “Steganalysis
Based on Awareness of Selection-Channel and Deep Learning,”
in Digital Forensics and Watermarking, vol. 10431 of Lecture
Notes in Computer Science, pp. 263–272, Springer International
Publishing, 2017.

[20] C. Szegedy, W. Liu, Y. Jia et al., “Going deeper with convolu-
tions,” inProceedings of the IEEEConference onComputer Vision
and Pattern Recognition (CVPR ’15), pp. 1–9, Boston,Mass, USA,
June 2015.

[21] J. Fridrich and T. Filler, “Practical methods for minimizing
embedding impact in steganography,” in Proceedings of the
Electronic Imaging, p. 650502, San Jose, Calif, USA, 2007.

[22] V. Sedighi and J. Fridrich, “Effect of imprecise knowledge of
the selection channel on steganalysis,” in Proceedings of the 3rd
ACM Information Hiding and Multimedia Security Workshop,
IH and MMSec 2015, pp. 33–42, June 2015.

[23] G. Hinton E, N. Srivastava, and A. Krizhevsky, “Improving neu-
ral networks by preventing co-adaptation of feature detectors,”
Computer Science, vol. 3, no. 4, pp. 212–223, 2012.

[24] S. Ioffe andC. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” https://
arxiv.org/abs/1502.03167.

[25] P. Bas, T. Filler, and T. Pevný, “”Break Our Steganographic
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