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Dynamic key-guessing techniques, which exploit the property of AND operation, could improve the differential and linear
cryptanalytic results by reducing the number of guessed subkey bits and lead to good cryptanalytic results for SIMON. They have
only been applied in differential and linear attacks as far as we know. In this paper, dynamic key-guessing techniques are first
introduced in integral cryptanalysis. According to the features of integral cryptanalysis, we extend dynamic key-guessing techniques
and get better integral cryptanalysis results than before. As a result, we present integral attacks on 24-round SIMON32, 24-round
SIMON48/72, and 25-round SIMON48/96. In terms of the number of attacked rounds, our attack on SIMON32 is better than any
previously known attacks, and our attacks on SIMON48 are the same as the best attacks.

1. Introduction

The integral attack, proposed by Daemen et al. [1], is an
important cryptanalytic technique for symmetric-key primi-
tives. The integral distinguisher is based on the property that
when some parts of the input (constant bits) of distinguishers
are held constant whereas the other parts (active bits) vary
through all possibilities, the sum of all the output values
equals zero at some particular locations (balanced bits). In
the key recovery, the sum is random if the guessed key
is incorrect, while the sum is zero if the guessed key is
correct. As a powerful class of cryptanalytic techniques,
integral cryptanalysis has been applied tomany block ciphers,
especially the ones with low-degree round functions.

SIMON is a family of ten lightweight block ciphers
designed by the US National Security Agency [2]. The
SIMON2𝑛/𝑚𝑛 family of lightweight block ciphers have clas-
sical Feistel structures with 2𝑛-bit block size and 𝑚𝑛-bit key,
where 𝑛 is the word size.

SIMON has been extensively scrutinized [3–25]. As an
ultralightweight primitive, SIMON is a very good target for
integral cryptanalysis. In integral cryptanalysis, Wang et al.
[21] experimentally found an integral distinguisher for 14
rounds of SIMON32 and mounted a key-recovery attack on
21-round SIMON32. At EUROCRYPT 2015, Todo proposed
the division property [17], which is a generalized integral
property. This new technique enables the cryptographers to
propagate the integral property in a more precise manner.
As a result, an 11-round integral distinguisher of SIMON48
was found. Subsequently, using the bit-based division prop-
erty, Todo and Morii proved the 14-round distinguisher of
SIMON32 theoretically in [18]. However, searching integral
characteristics by the bit-based division property requires
much time andmemory complexity. In order to overcome the
problem,Xiang et al. [23] proposed a state partition to achieve
a trade-off between the accuracy of the integral distinguisher
and the time-memory complexity. Accordingly, Todo’s result
was improved by one round for SIMON48. Afterwards,MILP
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method was applied by Xiang et al. [22] to find integral
characteristics of some lightweight block ciphers, including
a 15-round integral distinguisher for SIMON48. At ACNS
2016, some integral distinguishers of SIMON-like ciphers
were constructed by Kondo et al. [10]. However, the block size
considered is only 32 bits. Later in [7], with the equivalent-
subkey technique, Fu et al. presented integral attacks on
22-round SIMON32, 22-round SIMON48/72, and 23-round
SIMON48/96. Good results [6, 13, 20] were achieved in
differential and linear cryptanalysis, as well. The cryptan-
alytic results that attack the most rounds of SIMON were
obtained in [6], and these results were achieved by linear hull
cryptanalysis.Themost efficient differential and linear attacks
on SIMON were presented with the help of dynamic key-
guessing techniques.

With regard to dynamic key-guessing techniques, they
were initially proposed to improve the differential attacks on
SIMON [20]. The techniques, which exploit the property of
AND operation, help reduce the average number of guessed
key bits significantly in differential cryptanalysis. Then they
were applied to linear hull attacks on SIMON [6]. In both
[6, 20], with the techniques above, the adversaries are able
to extend previous differential (resp., linear hull) results on
SIMON by 2 to 4 more rounds, using existing differential
(resp., linear hull) distinguishers. Subsequently, Qiao et al.
[13] released a tool, which provides the differential security
evaluation of SIMON given differential distinguishers of high
probability. Moreover, with newly proposed differentials [9],
Qiao et al. improved differential attacks against SIMON,
using the techniques. Also in the differential cryptanalysis
and linear cryptanalysis of Simeck [26], good results [13, 27]
have been obtained by using dynamic key-guessing tech-
niques. Up to now, the dynamic key-guessing techniques have
only been combined with linear and differential cryptanalysis
methods. There is no attempt to combine the dynamic key-
guessing techniques with integral attack so far.

Besides the above results under the single-key model,
the security of SIMON has also been evaluated under the
related-key [11] and known-key [8]models. In the related-key
setting, Kondo et al. [11] constructed a 15-round related-key
impossible differential distinguisher of SIMON32.

Our Contributions. In this paper, we first apply dynamic
key-guessing techniques to integral attacks. In our improved
integral cryptanalysis, we extend dynamic key-guessing
techniques to compute the sum, which is in the form of
∑𝑥 𝑓(𝑥, 𝑘) ⋅ 𝑉[𝑥], where 𝑓 is a nonlinear Boolean function
and 𝑉[𝑥] are counters for 𝑥. The dynamic key-guessing
techniques improve the time complexity of the computation
significantly. Please see the following example. Suppose
𝑓(𝑥, 𝑘) = 1 ⊕ 𝑓1(𝑥1, 𝑘1)&𝑓2(𝑥2, 𝑘2), where 𝑥 = 𝑥1 ‖ 𝑥2,
𝑘 = 𝑘1 ‖ 𝑘2, and 𝑓1 and 𝑓2 are two Boolean functions. We
guess 𝑘1 at first; then we split 𝑥 = 𝑥1 ‖ 𝑥2 into two sets:
𝑆1 = {𝑥 | 𝑓1(𝑥1, 𝑘1) = 0} and 𝑆2 = {𝑥 | 𝑓1(𝑥1, 𝑘1) = 1}. We
continue to compute the sum for each set. For set 𝑆1, there is
no need to guess 𝑘2 since 𝑓(𝑥, 𝑘) = 1 when 𝑥 ∈ 𝑆1. Finally,
we sum them up.

Using the dynamic key-guessing techniques, we present
improved integral attacks on SIMON32 and SIMON48 in

the single-key model. We present integral attacks on 24-
round SIMON32, 24-round SIMON48/72, and 25-round
SIMON48/96. In terms of the number of attacked rounds,
our attack on SIMON32 is better than any previously known
attacks, and our attacks on SIMON48 are the same as the best
attacks. In order to verify the correctness of our approach, we
implement the summation procedure of the integral attack
on 22-round SIMON32. A summary of our results is given in
Table 1.

Outline. This paper is structured as follows. Section 2 briefly
describes the specification of SIMON and some integral
distinguishers. In Section 3, we discuss the time reduction
in integral cryptanalysis of bit-oriented block ciphers. In
Section 4, we present improved integral attacks on SIMON32
and SIMON48. In Section 4.1, we give the experimental result.
Finally, Section 5 draws conclusions.

2. Preliminaries

2.1. Notations

𝑛: the word size
𝑥𝑖: the 𝑖th bit of bit string 𝑥
𝑥[𝑖−𝑗] (or 𝑥𝑖 − 𝑥𝑗): the 𝑖th to the 𝑗th bits of bit string 𝑥
𝑥𝑖1 ,...,𝑖𝑛 : the XOR sum of 𝑥𝑖, where 𝑖 = 𝑖1, . . . , 𝑖𝑛, i.e.,
⨁𝑖∈{𝑖1 ,...,𝑖𝑛}𝑥𝑖
𝑥 ‖ 𝑦: concatenation of two bit strings 𝑥 and 𝑦
𝑋𝑟: the input of round 𝑟 or output of round (𝑟 − 1)
𝑋𝑟𝐿, 𝑋

𝑟
𝑅: the left and right halves of 𝑋𝑟, that is, 𝑋𝑟 =

𝑋𝑟𝐿 ‖ 𝑋𝑟𝑅
𝑋𝑟𝐿,𝑖 (resp. 𝑋

𝑟
𝑅,𝑖): the 𝑖th bit of bit string𝑋𝑟𝐿(resp. 𝑋

𝑟
𝑅)

𝑋𝑟𝐿,[𝑖−𝑗] (or 𝑋𝑟𝐿,𝑖 − 𝑋𝑟𝐿,𝑗): the 𝑖th to the 𝑗th bits of bit
string𝑋𝑟𝐿
𝑋𝑟𝑅,[𝑖−𝑗] (or 𝑋𝑟𝑅,𝑖 − 𝑋𝑟𝑅,𝑗): the 𝑖th to the 𝑗th bits of bit
string𝑋𝑟𝑅
𝐾𝑟: the subkey used in 𝑟th round
𝑘\{𝑘𝑖1 , . . . , 𝑘𝑖𝑛}: a new bit string, of which bits are
derived from bit string 𝑘, excluding {𝑘𝑖1 , . . . , 𝑘𝑖𝑛}
⊕: bitwise XOR
&: bitwise AND
𝑥 ⋘ 𝑡: a left circular shift of bit string 𝑥 by 𝑡 bits
𝑉[𝑥],𝑊[𝑥], 𝑌[𝑥]: counters for bit string 𝑥
𝐵𝑘(𝑓):𝐵𝑘(𝑓) = ∑𝑥 𝑓(𝑥, 𝑘)⋅𝑉[𝑥], where𝑓 is a Boolean
function of 𝑥 and 𝑘 (actually,𝐵𝑘(𝑓) are counters for 𝑘)
𝐹(𝑥): 𝐹(𝑥) = [(𝑥 ⋘ 1)&(𝑥 ⋘ 8)] ⊕ (𝑥 ⋘ 2)
𝐹(𝑥)𝑖: the 𝑖th bit of bit string 𝐹(𝑥)

2.2. Description of SIMON2𝑛/𝑚𝑛. SIMON2𝑛/𝑚𝑛 is a two-
branch balanced Feistel network with 2𝑛-bit block size and
𝑚𝑛-bit key, where 𝑛 is the word size. There are 10 variants
for SIMON. The parameters of SIMON32/64, SIMON48/72,
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Table 1: Summary of some related results for SIMON32 and SIMON48.

Target Rounds Data Time Memory
(bytes)

Success
probability

Attack
type Source

SIMON32/64

21 231 263E 254 1 Integ. [21]
21 231 255.25E - 51% Diff. [20]
22 231 263E 255.8 1 Integ. [7]
22 232 258.76E - 31.5% Diff. [13]
23 231.19 257.19TWO+261.84A+256E - 28% Lin. hull [6]
24 232 263E 233.64 1 Integ. Section 4.3

SIMON48/72

18 - - - 1 Integ. [23]
22 247 271E 242 1 Integ. [7]
23 247 263.25E - 48% Diff. [20]
24 247.92 269.92ONE+267.89A+256E - - Lin. hull [6]
24 248 271E 250 1 Integ. AppendixB.2

SIMON48/96

19 - - - 1 Integ. [23]
23 247 295E 247 1 Integ. [7]
24 247 287.25E - 48% Diff. [20]
24 248 278.99E - 47.5% Diff. [13]
25 247.92 291.92TWO+289.89A+280E - - Lin. hull [6]
25 248 295E 250 1 Integ. AppendixB.3

Note.This table summaries our results along with some previous major results of SIMON32 and SIMON48 in the single-key setting; E: encryption; A: addition;
TWO: two rounds of encryption or decryption; ONE: one round of encryption or decryption.

Table 2: Parameters of SIMON32 and SIMON48.

Block size (2𝑛) Key size (𝑚𝑛) Rounds
32 (𝑛 = 16) 64 (𝑚 = 4) 32

48 (𝑛 = 24) 72 (𝑚 = 3) 36
96 (𝑚 = 4) 36

and SIMON48/96 are listed in Table 2, since only these three
variants are considered in this paper. Let 𝑋𝑖 = 𝑋𝑖𝐿 ‖ 𝑋𝑖𝑅
denote the input of round 𝑖 and 𝑋𝑖+1 = 𝑋𝑖+1𝐿 ‖ 𝑋𝑖+1𝑅 be the
output of round 𝑖. The subkey used in round 𝑖 is denoted by
𝐾𝑖. The 𝑖th round is as follows (also see Figure 1):

𝑋𝑖+1𝑅 = 𝑋𝑖𝐿,

𝑋𝑖+1𝐿 = 𝐹 (𝑋𝑖𝐿) ⊕ 𝑋𝑖𝑅 ⊕ 𝐾𝑖,
(1)

where the internal nonlinear function 𝐹 is defined as

𝐹 (𝑋𝑖𝐿) = [(𝑋𝑖𝐿⋘ 1)& (𝑋𝑖𝐿⋘ 8)] ⊕ (𝑋𝑖𝐿⋘ 2) . (2)

The key schedules are different depending on the key size.
Please refer to [2] for more details.

2.3. Integral Distinguishers of SIMON32 and SIMON48.
Attackers prepare a set of texts where some bits (constant bits)
are fixed to same values and the other bits (active bits) range
over all possible values. If some bits (balanced bits) in the
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Figure 1: Round function of SIMON.

encrypted texts sum to zero after 𝑅 rounds encryption, the
cipher has an 𝑅-round integral distinguisher.

Wang et al. [21] found a 14-round integral distinguisher of
SIMON32 experimentally. Later, Todo and Morii [18] proved
the correctness of this distinguisher using division property.
Also, Fu et al. [7] revealed this distinguisher from the view
of degree of the Boolean function. Integral characteristics of
SIMON32 and SIMON48 were found in [7, 18, 21, 22]. And
we apply them to our attacks. The constant bit, active bit,
balanced bit, and unknown bit are labeled as c, a, b, and ?,
respectively.The integral characteristics used in this literature
are as follows.

(i) SIMON32’s 14-round distinguisher:

Input: (caaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaa)
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Output: (????????????????,
?b??????b??????b)

(ii) SIMON48’s 15-round distinguisher:

Input: (caaaaaaaaaaaaaaaaaaaaaaa,
aaaaaaaaaaaaaaaaaaaaaaaa)

Output: (????????????????????????,
bbbbbbbbbbbbbbbbbbbbbbbb)

3. Time Reduction in Integral Attacks on Bit-
Oriented Block Ciphers

Suppose the input of the integral distinguisher is from the set

𝑆𝐼 = {𝑋𝑖 = (𝑋𝑖𝐿, 𝑋
𝑖
𝑅) | 𝑋𝑖𝐿,0 = 𝑐,𝑋𝑖𝐿,[1−15] ∈ F

𝑛−1
2 , 𝑋𝑖𝑅

∈ F
𝑛
2 } .

(3)

After 𝑅-round encryption, some bits of the output 𝑋𝑖+𝑅 are
balanced. For simplicity, let the first bit of the right part,
that is, 𝑋𝑖+𝑅𝑅,0 , be balanced. We add 𝛼 rounds before the
distinguisher and append 𝛽 rounds after it. Let the Boolean
expressions of 𝑋𝑖𝐿,0 and 𝑋𝑖+𝑅𝑅,0 be functions represented as
𝑓𝐸𝛼(𝑥𝑃, 𝑘𝑃) and 𝑓𝐷𝛽(𝑥𝐶, 𝑘𝐶), where 𝑥𝑃, 𝑥𝐶, 𝑘𝑃, and 𝑘𝐶 are
effective bit strings derived from the plaintext, the ciphertext,
and involved subkeys.

We briefly outline the idea of our integral attacks on 𝛼 +
𝑅+𝛽 rounds of ciphers. Given the entire codebook, we guess
some subkey bits and carry out the first 𝛼 rounds’ encryption.
Then choose a set of states that form the input space 𝑆𝐼. For
the corresponding ciphertexts, we guess the related subkey
bits and decrypt the last 𝛽 rounds to check if the target bit
𝑋𝑖+𝑅𝑅,0 is balanced.

In general, the time complexity of the integral attack is
roughlyO(2𝑙 ⋅𝑁), where 𝑙 is the number of guessed subkey bits
and 𝑁 denotes the number of plaintext-ciphertext pairs. But
we can optimize it with dynamic key-guessing techniques.

3.1. Find Collections of Ciphertexts. Let 𝑉[𝑥𝑃, 𝑥𝐶] denote the
counters into which we store the frequency of (𝑥𝑃, 𝑥𝐶). For
each guessed 𝑘𝑃, we traverse the whole plaintext space and
make partial encryptions. If 𝑓𝐸𝛼(𝑥𝑃, 𝑘𝑃) = 𝑐, we store the
corresponding ciphertext. Thus, we generate new counters
𝑊[𝑘𝑃, 𝑥𝐶], which are defined as ∑𝑥𝑃,𝑓𝐸𝛼 (𝑥𝑃,𝑘𝑃)=𝑐 𝑉[𝑥𝑃, 𝑥𝐶].

Furthermore, if 𝑓𝐸𝛼 is linear with some bit of 𝑘𝑃, say
𝑘𝑃,0, we let 𝑓𝐸𝛼(𝑥𝑃, 𝑘𝑃) = 𝑘𝑃,0 ⊕ 𝑓󸀠𝐸𝛼(𝑥𝑃, 𝑘

󸀠
𝑃), where 𝑘𝑃 =

𝑘𝑃,0 ‖ 𝑘󸀠𝑃. We now assign 𝑐 the value 𝑘𝑃,0 ⊕ 1. Accordingly,
𝑊[𝑘󸀠𝑃, 𝑥𝐶] = ∑𝑥𝑃,𝑓󸀠𝐸𝛼 (𝑥𝑃,𝑘󸀠𝑃)=1 𝑉[𝑥𝑃, 𝑥𝐶], which means that
the condition 𝑓󸀠𝐸𝛼(𝑥𝑃, 𝑘

󸀠
𝑃) = 1 can be transformed to a

coefficient. Therefore, it is sufficient to calculate𝑊[𝑘󸀠𝑃, 𝑥𝐶] =
∑𝑥𝑃 𝑓

󸀠
𝐸(𝑥𝑃, 𝑘

󸀠
𝑃) ⋅ 𝑉[𝑥𝑃, 𝑥𝐶].

3.2. Compute ∑𝑥 𝑓(𝑥, 𝑘) ⋅ 𝑉[𝑥] with Dynamic Key-Guessing
Techniques. As described above, the modeling to find the

collections of ciphertexts can be converted into the task of
computing another counter𝑊[𝑘] which is defined as

𝑊[𝑘] = ∑
𝑥

𝑓 (𝑥, 𝑘) ⋅ 𝑉 [𝑥] , (4)

where 𝑓 is a Boolean function of 𝑥 and 𝑘, and 𝑉[𝑥] denotes
the number of 𝑥. Let 𝑥 be a 𝑙1-bit value and 𝑘 be a 𝑙2-bit value.
In a naive way, it needs O(2𝑙1+𝑙2) calculations of 𝑓 to get the
counters 𝑊[𝑘]. Using dynamic key-guessing techniques, the
calculation can be done with improved time complexity. The
basic idea is as follows.

Let 𝑘 = 𝑘𝐺 ‖ 𝑘𝐴 ‖ 𝑘𝐵 ‖ 𝑘𝐶, where 𝑘𝐺, 𝑘𝐴, 𝑘𝐵, and
𝑘𝐶 are 𝑙𝐺2 , 𝑙

𝐴
2 , 𝑙
𝐵
2 , and 𝑙𝐶2 bits. After guessing 𝑘𝐺, the set of

𝑥 can be split into two sets 𝑆𝐴 and 𝑆𝐵 with 𝑁𝐴 and 𝑁𝐵
elements, respectively. For values in 𝑆𝐴, 𝑓 is independent of
𝑘𝐵. Similarly, for values in 𝑆𝐵, 𝑓 is independent of 𝑘𝐴. Thus,
∑𝑥 𝑓(𝑥, 𝑘) ⋅ 𝑉[𝑥] = ∑𝑥∈𝑆𝐴 𝑓(𝑥, 𝑘

𝐺 ‖ 𝑘𝐴 ‖ 𝑘𝐶) ⋅ 𝑉[𝑥] +
∑𝑥∈𝑆𝐵 𝑓(𝑥, 𝑘

𝐺 ‖ 𝑘𝐵 ‖ 𝑘𝐶) ⋅ 𝑉[𝑥]. We compute the sum for
each set, thenwe sum themup.Therefore, using dynamic key-
guessing techniques, the improved time complexity becomes
O(𝑁𝐴 ⋅ 2𝑙

𝐺
2 +𝑙
𝐴
2 +𝑙
𝐶
2 + 𝑁𝐵 ⋅ 2𝑙

𝐺
2 +𝑙
𝐵
2+𝑙
𝐶
2 ).

Again, we provide a toy example that illustrates the idea
behind the improvement. Let 𝑥 ∈ F32 , 𝑘 ∈ F32 , and 𝑓(𝑥, 𝑘) =
𝑥0 ⊕ 𝑘0 ⊕ ((𝑥1 ⊕ 𝑘1)&(𝑥2 ⊕ 𝑘2)). Firstly, we guess 𝑘1. Then,

∑
𝑥

𝑓 (𝑥, 𝑘) ⋅ 𝑉 [𝑥]

= ∑
𝑥1=𝑘1 ,𝑥0∈F2 ,𝑥2∈F2

(𝑥0 ⊕ 𝑘0) ⋅ 𝑉 [𝑥]

+ ∑
𝑥1=𝑘1⊕1,𝑥0∈F2 ,𝑥2∈F2

(𝑥0,2 ⊕ 𝑘0,2) ⋅ 𝑉 [𝑥] .

(5)

Next, we create four counters 𝑇0,0, 𝑇0,1, 𝑇1,0, and 𝑇1,1 and
assign some values to them: 𝑇0,0 = 𝑉[0 ‖ 𝑘1 ‖ 0] + 𝑉[0 ‖
𝑘1 ‖ 1], 𝑇0,1 = 𝑉[1 ‖ 𝑘1 ‖ 0] + 𝑉[1 ‖ 𝑘1 ‖ 1],
𝑇1,0 = 𝑉[0 ‖ (𝑘1 ⊕ 1) ‖ 0] + 𝑉[1 ‖ (𝑘1 ⊕ 1) ‖ 1], and
𝑇1,1 = 𝑉[0 ‖ (𝑘1 ⊕ 1) ‖ 1] + 𝑉[1 ‖ (𝑘1 ⊕ 1) ‖ 0]. Finally,
𝑊[𝑘] = 𝑇0,𝑘0⊕1 + 𝑇1,𝑘0⊕𝑘2⊕1. Thus, the calculation of 𝑊[𝑘]
essentially requires 2 × (2 + 2 + 22) = 24 additions, while
it takes 26 operations in a straightforward method.

See Appendix A for more information on the time
complexity of the calculation of ∑𝑥 𝑓(𝑥, 𝑘) ⋅ 𝑉[𝑥].

3.3. Compute the XOR Sum of the Recovered Bit. Assume now
that we obtain the new counters 𝑊[𝑘󸀠𝑃, 𝑥𝐶]. For a fixed 𝑘󸀠𝑃,
we guess 𝑘𝐶 and partially decrypt each effective bit string
𝑥𝐶 to get the value of the target bit, that is, 𝑓𝐷𝛽(𝑥𝐶, 𝑘𝐶).
Then, check whether the XOR sum of the recovered bit
is zero. Note that the XOR sum amounts to the parity of
∑𝑥𝐶 𝑓𝐷𝛽(𝑥𝐶, 𝑘𝐶) ⋅ 𝑊[𝑘󸀠𝑃, 𝑥𝐶]. For simplicity, let 𝑓𝐷𝛽(𝑥𝐶, 𝑘𝐶)
be 𝑘𝐶,0 ⊕ 𝑓󸀠𝐷𝛽(𝑥𝐶, 𝑘

󸀠
𝐶), where 𝑘𝐶,0 is the first bit of 𝑘𝐶, 𝑘𝐶 =

𝑘𝐶,0 ‖ 𝑘󸀠𝐶. We can omit 𝑘𝐶,0 since it does not affect the XOR
sum. Hence, the XOR sum essentially equals the parity of
new counters 𝑌[𝑘󸀠𝑃, 𝑘

󸀠
𝐶] which is defined as∑𝑥𝐶 𝑓

󸀠
𝐷𝛽

(𝑥𝐶, 𝑘󸀠𝐶) ⋅
𝑊[𝑘󸀠𝑃, 𝑥𝐶]. Also, dynamic key-guessing techniques can be
applied in the last 𝛽 rounds to improve the time complexity.
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Table 3: Each effective bit of the Boolean expression of𝑋𝑖𝐿,15.

𝑥𝑖 Representation of 𝑥𝑖 𝑘𝑖 Representation of 𝑘𝑖
𝑥0 𝑋𝑖−4𝐿,7 ⊕ (𝑋𝑖−4𝐿,8&𝑋𝑖−4𝐿,1 ) ⊕ 𝑋𝑖−4𝑅,9 ⊕ 𝑋𝑖−4𝐿,11 ⊕ 𝑋𝑖−4𝐿,15 𝑘0 𝐾𝑖−49 ⊕ 𝐾𝑖−311 ⊕ 𝐾𝑖−315 ⊕ 𝐾𝑖−213 ⊕ 𝐾𝑖−115
𝑥1 𝑋𝑖−4𝐿,8 ⊕ (𝑋𝑖−4𝐿,9&𝑋𝑖−4𝐿,2 ) ⊕ 𝑋𝑖−4𝑅,10 𝑘1 𝐾𝑖−410
𝑥2 𝑋𝑖−4𝐿,1 ⊕ (𝑋𝑖−4𝐿,2&𝑋𝑖−4𝐿,11) ⊕ 𝑋𝑖−4𝑅,3 𝑘2 𝐾𝑖−43
𝑥3 𝑋𝑖−4𝐿,12 ⊕ (𝑋𝑖−4𝐿,13&𝑋𝑖−4𝐿,6 ) ⊕ 𝑋𝑖−4𝑅,14 𝑘3 𝐾𝑖−414
𝑥4 𝑋𝑖−4𝐿,5 ⊕ (𝑋𝑖−4𝐿,6&𝑋𝑖−4𝐿,15) ⊕ 𝑋𝑖−4𝑅,7 𝑘4 𝐾𝑖−47
𝑥5 𝑋𝑖−4𝐿,8 ⊕ (𝑋𝑖−4𝐿,9&𝑋𝑖−4𝐿,2 ) ⊕ 𝑋𝑖−4𝑅,10 ⊕ 𝑋𝑖−4𝐿,12 𝑘5 𝐾𝑖−410 ⊕ 𝐾𝑖−312
𝑥6 𝑋𝑖−4𝐿,9 ⊕ (𝑋𝑖−4𝐿,10&𝑋𝑖−4𝐿,3 ) ⊕ 𝑋𝑖−4𝑅,11 𝑘6 𝐾𝑖−411
𝑥7 𝑋𝑖−4𝐿,2 ⊕ (𝑋𝑖−4𝐿,3&𝑋𝑖−4𝐿,12) ⊕ 𝑋𝑖−4𝑅,4 𝑘7 𝐾𝑖−44
𝑥8 𝑋𝑖−4𝐿,1 ⊕ (𝑋𝑖−4𝐿,2&𝑋𝑖−4𝐿,11) ⊕ 𝑋𝑖−4𝑅,3 ⊕ 𝑋𝑖−4𝐿,5 𝑘8 𝐾𝑖−43 ⊕ 𝐾𝑖−35
𝑥9 𝑋𝑖−4𝐿,11 ⊕ (𝑋𝑖−4𝐿,12&𝑋𝑖−4𝐿,5 ) ⊕ 𝑋𝑖−4𝑅,13 𝑘9 𝐾𝑖−413
𝑥10 𝑥3 ⊕ 𝑥5 𝑘10 𝑘3 ⊕ 𝑘5 ⊕ 𝐾𝑖−214
𝑥11 𝑋𝑖−4𝐿,9 ⊕ (𝑋𝑖−4𝐿,10&𝑋𝑖−4𝐿,3 ) ⊕ 𝑋𝑖−4𝑅,11 ⊕ 𝑋𝑖−4𝐿,13 𝑘11 𝐾𝑖−411 ⊕ 𝐾𝑖−313
𝑥12 𝑋𝑖−4𝐿,10 ⊕ (𝑋𝑖−4𝐿,11&𝑋𝑖−4𝐿,4 ) ⊕ 𝑋𝑖−4𝑅,12 𝑘12 𝐾𝑖−412
𝑥13 𝑋𝑖−4𝐿,3 ⊕ (𝑋𝑖−4𝐿,4&𝑋𝑖−4𝐿,13) ⊕ 𝑋𝑖−4𝑅,5 𝑘13 𝐾𝑖−45
𝑥14 𝑋𝑖−4𝐿,2 ⊕ (𝑋𝑖−4𝐿,3&𝑋𝑖−4𝐿,12) ⊕ 𝑋𝑖−4𝑅,4 ⊕ 𝑋𝑖−4𝐿,6 𝑘14 𝐾𝑖−44 ⊕ 𝐾𝑖−36
𝑥15 𝑥4 ⊕ 𝑥8 𝑘15 𝑘4 ⊕ 𝑘8 ⊕ 𝐾𝑖−27
𝑥16 𝑋𝑖−4𝐿,11 ⊕ (𝑋𝑖−4𝐿,12&𝑋𝑖−4𝐿,5 ) ⊕ 𝑋𝑖−4𝑅,13 ⊕ 𝑋𝑖−4𝐿,15 𝑘16 𝐾𝑖−413 ⊕ 𝐾𝑖−315

4. Integral Attacks on SIMON32 and SIMON48

4.1. Integral Attack on 22-Round SIMON32. We start with a
key-recovery attack over four rounds of partial encryption
and four rounds of partial decryption, exploiting the 14-
round integral characteristic. Any of balanced bits can be
taken as the target bit. Here, we pick 𝑋𝑖+14𝑅,0 . In the attack, we
compress each plaintext-ciphertext pair into counters. Then
we apply the approach given above to the reduced SIMON32.

The Boolean expression of the constant bit 𝑋𝑖𝐿,15 has the
same general form as that of the balanced bit 𝑋𝑖+14𝑅,0 . The
general form is shown in (6).The specific information on each
bit is listed in Tables 3 and 4. In the tables, 𝑋𝑖−4 and 𝑋𝑖+18,
respectively, denote the plaintext and the ciphertext.

𝑓 (𝑥, 𝑘) = 𝑥0 ⊕ 𝑘0 ⊕ ((𝑥1 ⊕ 𝑘1)& (𝑥2 ⊕ 𝑘2)) ⊕ ((𝑥3

⊕ 𝑘3)& (𝑥4 ⊕ 𝑘4)) ⊕ [(𝑥5 ⊕ 𝑘5 ⊕ ((𝑥6 ⊕ 𝑘6)

& (𝑥7 ⊕ 𝑘7)))& (𝑥8 ⊕ 𝑘8 ⊕ ((𝑥9 ⊕ 𝑘9)

& (𝑥7 ⊕ 𝑘7)))] ⊕ {(𝑥10 ⊕ 𝑘10 ⊕ ((𝑥6 ⊕ 𝑘6)

& (𝑥7 ⊕ 𝑘7))

⊕ [(𝑥11 ⊕ 𝑘11 ⊕ ((𝑥12 ⊕ 𝑘12)& (𝑥13 ⊕ 𝑘13)))

& (𝑥14 ⊕ 𝑘14 ⊕ ((𝑥3 ⊕ 𝑘3)& (𝑥13 ⊕ 𝑘13)))])& (𝑥15

⊕ 𝑘15 ⊕ ((𝑥7 ⊕ 𝑘7)& (𝑥9 ⊕ 𝑘9))

⊕ [(𝑥14 ⊕ 𝑘14 ⊕ ((𝑥13 ⊕ 𝑘13)& (𝑥3 ⊕ 𝑘3)))

& (𝑥16 ⊕ 𝑘16 ⊕ ((𝑥3 ⊕ 𝑘3)& (𝑥4 ⊕ 𝑘4)))])} .

(6)

During the computation of 𝑌[𝑘󸀠𝑃, 𝑘
󸀠
𝐶], we first guess 𝑘󸀠𝑃;

thenwe guess 𝑘󸀠𝐶. Since there is no difference between the first
and the second halves of the computation, in the following,
we mainly discuss the first half, that is, the computation of

𝑊[𝑘󸀠𝑃, 𝑥𝐶] = ∑
𝑥𝑃

𝑓󸀠𝐸 (𝑥𝑃, 𝑘
󸀠
𝑃) ⋅ 𝑉 [𝑥𝑃, 𝑥𝐶] . (7)

To describe our procedure in a convenient way, we simplify
ourmodeling.We give a brief description of themodeling.We
aim to compute another counter 𝐵𝑘

󸀠

(𝑓󸀠), which is defined as
∑𝑥 𝑓
󸀠(𝑥, 𝑘󸀠) ⋅ 𝑉[𝑥], where 𝑘 = 𝑘0 ‖ 𝑘󸀠 and 𝑓(𝑥, 𝑘) = 𝑘0 ⊕

𝑓󸀠(𝑥, 𝑘󸀠). Our approach is as follows.
(a) Guess 𝑘1, 𝑘3, 𝑘7 and then split the texts into 8 sets

according to the value (𝑥1⊕𝑘1, 𝑥3⊕𝑘3, 𝑥7⊕𝑘7). Table 5 shows
corresponding variants of the Boolean function 𝑓󸀠(𝑥, 𝑘󸀠).
Accordingly, we have

𝑓000 = 𝑥0 ⊕ [(𝑥5 ⊕ 𝑘5)& (𝑥8 ⊕ 𝑘8)] ⊕ {(𝑥10 ⊕ 𝑘10

⊕ [(𝑥11 ⊕ 𝑘11 ⊕ ((𝑥12 ⊕ 𝑘12)& (𝑥13 ⊕ 𝑘13)))

& (𝑥14 ⊕ 𝑘14)])& (𝑥15 ⊕ 𝑘15 ⊕ [(𝑥14 ⊕ 𝑘14)

& (𝑥16 ⊕ 𝑘16)])} ,

...

𝑓111 = 𝑥0,2,4 ⊕ 𝑘2,4 ⊕ [(𝑥5,6 ⊕ 𝑘5,6)& (𝑥8,9 ⊕ 𝑘8,9)]

⊕ {(𝑥6,10 ⊕ 𝑘6,10

⊕ [(𝑥11 ⊕ 𝑘11 ⊕ ((𝑥12 ⊕ 𝑘12)& (𝑥13 ⊕ 𝑘13)))
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Table 4: Each effective bit of the Boolean expression of𝑋𝑖+14𝑅,0 .

𝑥𝑖 Representation of 𝑥𝑖 𝑘𝑖 Representation of 𝑘𝑖
𝑥0 𝑋𝑖+18𝑅,8 ⊕ (𝑋𝑖+18𝑅,9 &𝑋𝑖+18𝑅,2 ) ⊕ 𝑋𝑖+18𝐿,10 ⊕ 𝑋𝑖+18𝑅,12 ⊕ 𝑋𝑖+18𝑅,0 𝑘0 𝐾𝑖+1710 ⊕ 𝐾𝑖+1612 ⊕ 𝐾𝑖+160 ⊕ 𝐾𝑖+1514 ⊕ 𝐾𝑖+140
𝑥1 𝑋𝑖+18𝑅,9 ⊕ (𝑋𝑖+18𝑅,10&𝑋𝑖+18𝑅,3 ) ⊕ 𝑋𝑖+18𝐿,11 𝑘1 𝐾𝑖+1711
𝑥2 𝑋𝑖+18𝑅,2 ⊕ (𝑋𝑖+18𝑅,3 &𝑋𝑖+18𝑅,12) ⊕ 𝑋𝑖+18𝐿,4 𝑘2 𝐾𝑖+174
𝑥3 𝑋𝑖+18𝑅,13 ⊕ (𝑋𝑖+18𝑅,14&𝑋𝑖+18𝑅,7 ) ⊕ 𝑋𝑖+18𝐿,15 𝑘3 𝐾𝑖+1715
𝑥4 𝑋𝑖+18𝑅,6 ⊕ (𝑋𝑖+18𝑅,7 &𝑋𝑖+18𝑅,0 ) ⊕ 𝑋𝑖+18𝐿,8 𝑘4 𝐾𝑖+178
𝑥5 𝑋𝑖+18𝑅,9 ⊕ (𝑋𝑖+18𝑅,10&𝑋𝑖+18𝑅,3 ) ⊕ 𝑋𝑖+18𝐿,11 ⊕ 𝑋𝑖+18𝑅,13 𝑘5 𝐾𝑖+1711 ⊕ 𝐾𝑖+1613
𝑥6 𝑋𝑖+18𝑅,10 ⊕ (𝑋𝑖+18𝑅,11&𝑋𝑖+18𝑅,4 ) ⊕ 𝑋𝑖+18𝐿,12 𝑘6 𝐾𝑖+1712
𝑥7 𝑋𝑖+18𝑅,3 ⊕ (𝑋𝑖+18𝑅,4 &𝑋𝑖+18𝑅,13) ⊕ 𝑋𝑖+18𝐿,5 𝑘7 𝐾𝑖+175
𝑥8 𝑋𝑖+18𝑅,2 ⊕ (𝑋𝑖+18𝑅,3 &𝑋𝑖+18𝑅,12) ⊕ 𝑋𝑖+18𝐿,4 ⊕ 𝑋𝑖+18𝑅,6 𝑘8 𝐾𝑖+174 ⊕ 𝐾𝑖+166
𝑥9 𝑋𝑖+18𝑅,12 ⊕ (𝑋𝑖+18𝑅,13&𝑋𝑖+18𝑅,6 ) ⊕ 𝑋𝑖+18𝐿,14 𝑘9 𝐾𝑖+1714
𝑥10 𝑥3 ⊕ 𝑥5 𝑘10 𝑘3 ⊕ 𝑘5 ⊕ 𝐾𝑖+1515
𝑥11 𝑋𝑖+18𝑅,10 ⊕ (𝑋𝑖+18𝑅,11&𝑋𝑖+18𝑅,4 ) ⊕ 𝑋𝑖+18𝐿,12 ⊕ 𝑋𝑖+18𝑅,14 𝑘11 𝐾𝑖+1712 ⊕ 𝐾𝑖+1614
𝑥12 𝑋𝑖+18𝑅,11 ⊕ (𝑋𝑖+18𝑅,12&𝑋𝑖+18𝑅,5 ) ⊕ 𝑋𝑖+18𝐿,13 𝑘12 𝐾𝑖+1713
𝑥13 𝑋𝑖+18𝑅,4 ⊕ (𝑋𝑖+18𝑅,5 &𝑋𝑖+18𝑅,14) ⊕ 𝑋𝑖+18𝐿,6 𝑘13 𝐾𝑖+176
𝑥14 𝑋𝑖+18𝑅,3 ⊕ (𝑋𝑖+18𝑅,4 &𝑋𝑖+18𝑅,13) ⊕ 𝑋𝑖+18𝐿,5 ⊕ 𝑋𝑖+18𝑅,7 𝑘14 𝐾𝑖+175 ⊕ 𝐾𝑖+167
𝑥15 𝑥4 ⊕ 𝑥8 𝑘15 𝑘4 ⊕ 𝑘8 ⊕ 𝐾𝑖+158
𝑥16 𝑋𝑖+18𝑅,12 ⊕ (𝑋𝑖+18𝑅,13&𝑋𝑖+18𝑅,6 ) ⊕ 𝑋𝑖+18𝐿,14 ⊕ 𝑋𝑖+18𝑅,0 𝑘16 𝐾𝑖+1714 ⊕ 𝐾𝑖+160

Table 5: Variants of the Boolean function 𝑓󸀠(𝑥, 𝑘󸀠).

Guess 𝑥1 ⊕ 𝑘1, 𝑥3 ⊕ 𝑘3, 𝑥7 ⊕ 𝑘7 𝑓󸀠

𝑘1, 𝑘3, 𝑘7

0, 0, 0 𝑓000
0, 0, 1 𝑓001
0, 1, 0 𝑓010
0, 1, 1 𝑓011
1, 0, 0 𝑓100
1, 0, 1 𝑓101
1, 1, 0 𝑓110
1, 1, 1 𝑓111

& (𝑥13,14 ⊕ 𝑘13,14)])& (𝑥9,15 ⊕ 𝑘9,15

⊕ [(𝑥13,14 ⊕ 𝑘13,14)& (𝑥4,16 ⊕ 𝑘4,16)])} .
(8)

Then we create new counters for the next step. For
example, if (𝑥1 ⊕ 𝑘1, 𝑥3 ⊕ 𝑘3, 𝑥7 ⊕ 𝑘7) = (1, 1, 1), 𝑓󸀠 is equal
to 𝑓111. Thus, we compress corresponding counters into new
counters 𝑉111, where

𝑉111 [𝑥0,2,4, 𝑥5,6, 𝑥8,9, 𝑥6,10, 𝑥11, 𝑥12, 𝑥13, 𝑥13,14, 𝑥9,15, 𝑥4,16] (9)

is initialized to

∑
𝑥1=𝑘1⊕1,𝑥3=𝑘3⊕1,𝑥7=𝑘7⊕1,𝑥2∈F2 ,𝑥5∈F2,𝑥8∈F2

𝑉 [𝑥] . (10)

Due to 𝑥10 = 𝑥3 ⊕ 𝑥5, 𝑥6,10 is uniquely determined by
𝑥5,6. Besides, 3-bit information is independent of the value
[𝑥0,2,4, 𝑥5,6, 𝑥8,9, 𝑥6,10, 𝑥11, 𝑥12, 𝑥13, 𝑥13,14, 𝑥9,15, 𝑥4,16]. Conse-
quently, the creation in this example costs 29 × 7 additions.

Table 6: Variants of the Boolean function 𝑓111.

Guess 𝑥5,6 ⊕ 𝑘5,6, 𝑥13,14 ⊕ 𝑘13,14 𝑓111

𝑘5,6, 𝑘13,14

0, 0 𝑓00111
0, 1 𝑓01111
1, 0 𝑓10111
1, 1 𝑓11111

(b) For each set of texts and corresponding Boolean
function, we compute 𝐵𝑘

󸀠\{𝑘1 ,𝑘3 ,𝑘7}(𝑓󸀠). We take 𝑓111 as an
example when (𝑥1 ⊕ 𝑘1, 𝑥3 ⊕ 𝑘3, 𝑥7 ⊕ 𝑘7) = (1, 1, 1).

(1) The next guesses, 𝑘5,6 and 𝑘13,14, are constrained by
the simplified Boolean function𝑓111.The corresponding texts
are split into four sets.The Boolean functions simplified even
further are shown in Table 6.

(i) (𝑥5,6 ⊕ 𝑘5,6, 𝑥13,14 ⊕ 𝑘13,14) = (0, 0).
The new counters 𝑉00111 are created. They are given by

𝑉00111 [𝑥0,2,4, 𝑥6,10, 𝑥9,15] = ∑
𝑥5,6=𝑘5,6 ,𝑥13,14=𝑘13,14

𝑉111 [𝑥0,2,4,

𝑥5,6, 𝑥8,9, 𝑥6,10, 𝑥11, 𝑥12, 𝑥13, 𝑥13,14, 𝑥9,15, 𝑥4,16] .
(11)

The creation of new counters takes 22 × (25 − 1) addition
operations. Accordingly, we have

𝑓00111 = 𝑥0,2,4 ⊕ 𝑘2,4 ⊕ ((𝑥6,10 ⊕ 𝑘6,10)& (𝑥9,15 ⊕ 𝑘9,15)) . (12)

In Appendix A, the time complexity of computing
𝐵𝑘2,4 ,𝑘6,10 ,𝑘9,15(𝑓00111) (Case 2 in Appendix A) is estimated.
The calculation of 𝐵𝑘2,4 ,𝑘6,10 ,𝑘9,15(𝑓00111) requires 2

4 additions.
(ii) (𝑥5,6 ⊕ 𝑘5,6, 𝑥13,14 ⊕ 𝑘13,14) = (0, 1).
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Similarly,

𝑉01111 [𝑥0,2,4, 𝑥6,10,11, 𝑥12, 𝑥13, 𝑥4,9,15,16]

= ∑
𝑥5,6=𝑘5,6 ,𝑥13,14=𝑘13,14⊕1

𝑉111 [𝑥0,2,4, 𝑥5,6, 𝑥8,9, 𝑥6,10, 𝑥11,

𝑥12, 𝑥13, 𝑥13,14, 𝑥9,15, 𝑥4,16] ,

𝑓01111 = 𝑥0,2,4 ⊕ 𝑘2,4 ⊕ [(𝑥6,10,11 ⊕ 𝑘6,10,11

⊕ ((𝑥12 ⊕ 𝑘12)& (𝑥13 ⊕ 𝑘13)))& (𝑥4,9,15,16

⊕ 𝑘4,9,15,16)] .

(13)

The creation of new counters takes 25 × (22 − 1) =
27 − 25 addition operations. And the calculation of
𝐵𝑘2,4 ,𝑘6,10,11 ,𝑘12 ,𝑘13 ,𝑘4,9,15,16(𝑓01111) costs 2

6.75 additions.
(iii) (𝑥5,6 ⊕ 𝑘5,6, 𝑥13,14 ⊕ 𝑘13,14) = (1, 0).

𝑉10111 [𝑥0,2,4,8,9, 𝑥6,10, 𝑥9,15]

= ∑
𝑥5,6=𝑘5,6⊕1,𝑥13,14=𝑘13,14

𝑉111 [𝑥0,2,4, 𝑥5,6, 𝑥8,9, 𝑥6,10, 𝑥11,

𝑥12, 𝑥13, 𝑥13,14, 𝑥9,15, 𝑥4,16] ,

𝑓10111 = 𝑥0,2,4,8,9 ⊕ 𝑘2,4,8,9 ⊕ (𝑥6,10 ⊕ 𝑘6,10)& (𝑥9,15

⊕ 𝑘9,15) .

(14)

The creation of new counters takes 22 × (25 − 1) =
27 − 22 addition operations. And the calculation of
𝐵𝑘2,4,8,9 ,𝑘6,10 ,𝑘9,15(𝑓01111) costs 2

4 additions.
(iv) (𝑥5,6 ⊕ 𝑘5,6, 𝑥13,14 ⊕ 𝑘13,14) = (1, 1).

𝑉11111 [𝑥0,2,4,8,9, 𝑥6,10,11, 𝑥12, 𝑥13, 𝑥4,9,15,16]

= ∑
𝑥5,6=𝑘5,6⊕1,𝑥13,14=𝑘13,14⊕1

𝑉111 [𝑥0,2,4, 𝑥5,6, 𝑥8,9, 𝑥6,10, 𝑥11,

𝑥12, 𝑥13, 𝑥13,14, 𝑥9,15, 𝑥4,16] ,

𝑓11111 = 𝑥0,2,4,8,9 ⊕ 𝑘2,4,8,9 ⊕ [(𝑥6,10,11 ⊕ 𝑘6,10,11

⊕ ((𝑥12 ⊕ 𝑘12)& (𝑥13 ⊕ 𝑘13)))& (𝑥4,9,15,16

⊕ 𝑘4,9,15,16)] .

(15)

The creation of new counters takes 25 × (22 − 1) =
27 − 25 addition operations. And the calculation of
𝐵𝑘2,4,8,9 ,𝑘6,10,11 ,𝑘12 ,𝑘13 ,𝑘4,9,15,16(𝑓11111) costs 2

6.75 additions.
(2) After this, we sum the four temporary variables up;

namely,

𝐵𝑘2,4 ,𝑘5,6 ,𝑘8,9 ,𝑘6,10 ,𝑘11−𝑘14 ,𝑘9,15 ,𝑘4,16 (𝑓111)

= (𝐵𝑘2,4 ,𝑘6,10 ,𝑘9,15 (𝑓00111) + 𝐵𝑘2,4,8,9 ,𝑘6,10 ,𝑘9,15 (𝑓10111))

+ (𝐵𝑘2,4 ,𝑘6,10,11 ,𝑘12 ,𝑘13 ,𝑘4,9,15,16 (𝑓01111)

+ 𝐵𝑘2,4,8,9 ,𝑘6,10,11 ,𝑘12 ,𝑘13 ,𝑘4,9,15,16 (𝑓11111)) .

(16)

Thus, the time complexity of the summation requires nomore
than 28 × 3 = 28.58 additions, for each 𝑘5,6, 𝑘13,14.

In this example, it takes 22×((27−22+24+27−25+26.75)×
2 + 28.58) = 212.06 additions to compute 𝐵𝑘

󸀠\{𝑘1 ,𝑘3 ,𝑘7}(𝑓󸀠).
(c) For each 𝑘1, 𝑘3, 𝑘7, we sum the eight temporary

variables up. The summation yields a time complexity of
213 × 7 addition operations.

Thus, for each 𝑥𝐶, the time complexity of computing
𝑊[𝑘󸀠𝑃, 𝑥𝐶] is approximately 219.87 additions. The details are
given in Table 7. 𝑇1 denotes the time complexity of creating
new counters according to guessed key bits. 𝑇2 denotes the
time complexity of computing the sum for each set. 𝑇3
denotes the time complexity of summing them up.

Let us review the procedure proc simon 32 bit cond
used to compute𝑌[𝑘󸀠𝑃, 𝑘

󸀠
𝐶] and the key-recovery attack on 22-

round SIMON32. The procedure is as follows.

(1) For each of 215𝑥𝐶, we compute𝑊[𝑘󸀠𝑃, 𝑥𝐶].
(2) For each of 216𝑘󸀠𝑃, we compute 𝑌[𝑘󸀠𝑃, 𝑘

󸀠
𝐶].

The time complexity of proc simon 32 bit cond proce-
dure is 215 × 219.87 + 216 × 219.87 = 236.45 additions.

The attack works as follows.

(1) Compress the whole plaintext-ciphertext pairs into
230 counters 𝑉[𝑥𝑃, 𝑥𝐶].

(2) Call proc simon 32 bit cond.
(3) Check the parity of 𝑌[𝑘󸀠𝑃, 𝑘

󸀠
𝐶]. If the parity is odd,

discard the 32-bit subkey guess. Otherwise, use the
key schedule to recover 32 bits of the master key
and then exhaustively search for the remaining 32-bit
keys.

It is noted that there is one AND operation and three
XOR operations in one round of SIMON. In our analysis,
we approximate them as four XOR operations. The time
complexity of step 1 is 232 compressions, which is equivalent
to about 232 × (104/(4 × 16 × 22)) = 228.24 encryptions.
Since we care about the parity of 𝑌[𝑘󸀠𝑃, 𝑘

󸀠
𝐶], all counters

can be taken modulo 2. The addition is actually the bitwise
XOR operation in the calculation of𝑌[𝑘󸀠𝑃, 𝑘

󸀠
𝐶].Thus, the time

complexity of step 2 is equivalent to about 236.45 × (1/(4 ×
16 × 22)) = 226 encryptions. The time complexity of step 3
is 263 encryptions. Hence, the proposed attack on 22-round
SIMON32 requires 232 known plaintexts and has a total time
complexity equivalent to about 263 encryptions.

We have implemented the calculation of 𝑌[𝑘󸀠𝑃, 𝑘
󸀠
𝐶]. The

experiment was performed on Intel Core i7-4790 with 8
GBytes of DDR3memory.The experimental result confirmed
the correctness of our technique.

4.2. Integral Attack on 23-Round SIMON32. In this section,
we extend the 22-round attack by one round. The improved
attack is as follows. Guess 13 bits’ subkey 𝑘𝛼 and partially
encrypt plaintexts, where 𝑘𝛼 = 𝐾𝑖−51 − 𝐾𝑖−56 ‖ 𝐾𝑖−58 − 𝐾𝑖−513 ‖
𝐾𝑖−515 . Then carry out the 22-round attack.

We briefly explain why there is no need to guess𝐾𝑖−57 . Let
the first bit of 𝑥𝑃 (resp., 𝑘𝑃) be 𝑥𝑃,0 (resp., 𝑘𝑃,0). In our attack,
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Table 7: Time complexity of calculating𝑊[𝑘󸀠𝑃, 𝑥𝐶] with a fixed 𝑥𝐶.

Guess 𝑥1 ⊕ 𝑘1, 𝑥3 ⊕ 𝑘3, 𝑥7 ⊕ 𝑘7 𝑓󸀠 Time
𝑇1 𝑇2 𝑇3

𝑘1, 𝑘3, 𝑘7

0, 0, 0 𝑓000 29 × 7 212.06

213 × 7

0, 0, 1 𝑓001 29 × 7 212.06

0, 1, 0 𝑓010 29 × 7 212.06

0, 1, 1 𝑓011 29 × 7 212.06

1, 0, 0 𝑓100 29 × 7 212.06

1, 0, 1 𝑓101 29 × 7 212.06

1, 1, 0 𝑓110 29 × 7 212.06

1, 1, 1 𝑓111 29 × 7 212.06

Total time ((29 × 7 + 212.06) × 8 + 213 × 7) × 23 = 219.87

wemake the redefinitions, 𝑥𝑃,0 = 𝐾𝑖−57 ⊕𝑋𝑖−4𝐿,7 ⊕(𝑋𝑖−4𝐿,8&𝑋𝑖−4𝐿,1 )⊕
𝑋𝑖−4𝑅,9 ⊕ 𝑋𝑖−4𝐿,11 ⊕ 𝑋𝑖−4𝐿,15 and 𝑘𝑃,0 = 𝐾𝑖−57 ⊕ 𝐾𝑖−49 ⊕ 𝐾𝑖−311 ⊕ 𝐾𝑖−315 ⊕
𝐾𝑖−213 ⊕𝐾

𝑖−1
15 . It is evident that𝐾

𝑖−5
7 ⊕𝑋𝑖−4𝐿,7⊕(𝑋

𝑖−4
𝐿,8&𝑋𝑖−4𝐿,1 )⊕𝑋

𝑖−4
𝑅,9⊕

𝑋𝑖−4𝐿,11⊕𝑋𝑖−4𝐿,15 can be obtained after guessing 13 bits’ subkey 𝑘𝛼.
Consequently, we still have 𝑓󸀠𝐸(𝑥𝑃, 𝑘

󸀠
𝑃) = 1.

The 23-round attack has a data complexity of 232 known
plaintexts and a time complexity of about 263 encryptions.

4.3. Integral Attack on 24-Round SIMON32. The 22-round
attack can be extended by one round in forward and one
round in backward direction in a straightforward way. The
improved attack proceeds as follows. Guess 26 bits subkey
𝑘𝛼 ‖ 𝑘𝛽, where 𝑘𝛽 = 𝐾𝑖+180 ‖ 𝐾𝑖+182 − 𝐾𝑖+187 ‖ 𝐾𝑖+189 − 𝐾𝑖+1814 .
Partially encrypt plaintexts and partially decrypt correspond-
ing ciphertexts.Then carry out the 22-round attack presented
above. It should be noted that we do not guess 𝐾𝑖+188 . The
reason is essentially the same as the case mentioned above.

In this attack, the dominant part of the time complexity
is still exhaustively searching half of the key space. The total
time complexity of our attack is about 263 encryptions. The
number of the required known plaintexts is 232. The success
probability of our attack is 100%.

The total memory complexity of our attack is determined
by the size of the entire SIMON32 codebook, 𝑉[𝑥𝑃, 𝑥𝐶] and
𝑊[𝑘󸀠𝑃, 𝑥𝐶]. This corresponds to a memory requirement of
about 233.64 bytes. Note that we can only store 𝐹(𝑋𝑖+19𝑅 )0 ⊕
𝑋𝑖+19𝐿,0 ‖ (𝐹(𝑋𝑖+19𝑅 ) ⊕ 𝑋𝑖+19𝐿 )2 − (𝐹(𝑋𝑖+19𝑅 ) ⊕ 𝑋𝑖+19𝐿 )14 ‖ 𝑋𝑖+19𝑅,4 −
𝑋𝑖+19𝑅,6 ‖ 𝑋𝑖+19𝑅,8 ‖ 𝑋𝑖+19𝑅,10 −𝑋𝑖+19𝑅,15 for each ciphertext. In addition,
there is no need to store 𝑌[𝑘󸀠𝑃, 𝑘

󸀠
𝐶]. The elements of it can

be computed on-the-fly. As soon as a value of 𝑌[𝑘󸀠𝑃, 𝑘
󸀠
𝐶] is

computed, the bit condition is checked. If the condition is
satisfied, then exhaustively search for the remaining 6-bit key.

4.4. Improved Integral Attacks on SIMON48. We can improve
the integral attacks on SIMON48/72 and SIMON48/96,
using dynamic key-guessing techniques. Since the attack
procedures for them are similar, we present these integral
attacks in Appendix B.The results are summarized in Table 1.

5. Conclusion

In this paper, dynamic key-guessing techniques are first
introduced in integral cryptanalysis, and we extend dynamic
key-guessing techniques to fit our needs. Dynamic key-
guessing techniques significantly improve the complexity of
calculating ∑𝑥 𝑓(𝑥, 𝑘) ⋅ 𝑉[𝑥]. Using dynamic key-guessing
techniques, we can attack two more rounds than previously
known integral attacks on SIMON32 and SIMON48.

Appendix

A. Time Complexities under Some Variations
of Boolean Functions

In this section, we estimate the time complexity of calculating
𝐵𝑘(𝑓), which is defined as ∑𝑥 𝑓(𝑥, 𝑘) ⋅ 𝑉[𝑥], under some
variations of Boolean functions. Let Guess denote the bit
guessed at first. Let 𝑥𝑖 ⊕ 𝑘𝑖 denote the set of texts, where
the value of 𝑥𝑖 is the same. Let 𝑓𝑖 be the simplified Boolean
function after guessing. In addition, the form of𝑓𝑖 is the same
as that of 𝑓𝑖∗. And the new counters are created with a time
complexity of 𝑇1 additions. Computing the sum for each set
costs 𝑇2 addition operations. It takes 𝑇3 additions to sum all
of them up. Moreover, total time denotes the overall time
complexity.

All the cases are similar, so we focus on Case 3 in the
following. 𝑓3 is a Boolean function of 5-bit 𝑥 and 4-bit 𝑘,
where 𝑥 = 𝑥0 ‖ ⋅ ⋅ ⋅ ‖ 𝑥4 and 𝑘 = 𝑘1 ‖ ⋅ ⋅ ⋅ ‖ 𝑘4. First, we
guess 𝑘1 and the texts are split into two sets. One set contains
the texts where 𝑥1 = 𝑘1, and the other contains the texts
where 𝑥1 = 𝑘1 ⊕ 1. Obviously, we obtain the corresponding
simplified Boolean functions,𝑥0 and𝑥0,2⊕𝑘2⊕(𝑥3⊕𝑘3)&(𝑥4⊕
𝑘4). The new counters can be created according to simplified
Boolean functions. Note that when 𝑥1 = 𝑘1, we only need
to compute 𝑉1[𝑥0 = 1] = ∑𝑥0=1,𝑥1=𝑘1 𝑉[𝑥]. Next, we try
to compute the corresponding temporary variables. When
𝑥1 = 𝑘1 ⊕1, we obtain 𝐵𝑘2 ,𝑘3 ,𝑘4(𝑥0,2 ⊕𝑘2 ⊕(𝑥3 ⊕𝑘3)&(𝑥4 ⊕𝑘4)),
referring to Case 2. And when 𝑥1 = 𝑘1, 𝐵(𝑥0) = 𝑉1[𝑥0 = 1].
Finally, we sum them up and get 𝐵𝑘(𝑓).
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Table 8: Time complexity of the calculation 𝑓1.

Guess 𝑥1 ⊕ 𝑘1 𝑓1 𝑇1 𝑇2 𝑇3

𝑘1
0 0 1 0 2
1 0 2 0

Total time 2 × (1 + 2 + 2) = 10

Table 9: Time complexity of the calculation 𝑓3.

Guess 𝑥1 ⊕ 𝑘1 𝑓3 𝑇1 𝑇2 𝑇3

𝑘1
0 0 23 − 1 0 23
1 𝑓2∗ 23 × 1 24

Total time 2 × (23 − 1 + 23 + 24 + 23) = 26.29

Table 10: Time complexity of the calculation 𝑓2.

Guess 𝑥1 ⊕ 𝑘1 𝑓2 𝑇1 𝑇2 𝑇3

𝑘1
0 0 2 × 1 0 22
1 0 2 × 1 0

Total time 2 × (2 + 2 + 22) = 24

Table 11: Time complexity of the calculation 𝑓4.

Guess 𝑥1 ⊕ 𝑘1 𝑓4 𝑇1 𝑇2 𝑇3

𝑘1
0 0 2 × (23 − 1) 0 24
1 𝑓2∗ 23 × 1 24

Total time 2 × (2 × (23 − 1) + 23 + 24 + 24) = 26.75

Case 1. 𝑓1 = 𝑥0 ⊕ ((𝑥1 ⊕ 𝑘1)&(𝑥2 ⊕ 𝑘2)) (see Table 8).

Case 2. 𝑓2 = 𝑥0 ⊕ 𝑘0 ⊕ ((𝑥1 ⊕ 𝑘1)&(𝑥2 ⊕ 𝑘2)) (see Table 10).

Case 3. 𝑓3 = 𝑥0 ⊕ (𝑥1 ⊕ 𝑘1)&((𝑥2 ⊕ 𝑘2) ⊕ (𝑥3 ⊕ 𝑘3)&(𝑥4 ⊕ 𝑘4))
(see Table 9).

Case 4. 𝑓4 = 𝑥0⊕𝑘0⊕(𝑥1⊕𝑘1)&((𝑥2⊕𝑘2)⊕(𝑥3⊕𝑘3)&(𝑥4⊕𝑘4))
(see Table 11).

B. Improved Integral Attacks on SIMON48

B.1. Integral Attack on 23-Round SIMON48. Using the 15-
round integral characteristic, we provide a key-recovery
attack (procedure proc attack simon 48) over four rounds of
partial encryption and four rounds of partial decryption.The
constant bit is 𝑋i

𝐿,23 and we take the balanced bit 𝑋𝑖+15𝑅,23 as
the bit condition. It is obvious that the Boolean expressions
of𝑋𝑖𝐿,23 and𝑋𝑖+15𝑅,23 have the same general form, as follows.

𝑓 (𝑥, 𝑘) = 𝑥0 ⊕ 𝑘0 ⊕ ((𝑥1 ⊕ 𝑘1)& (𝑥2 ⊕ 𝑘2)) ⊕ ((𝑥3

⊕ 𝑘3)& (𝑥4 ⊕ 𝑘4)) ⊕ [(𝑥5 ⊕ 𝑘5 ⊕ ((𝑥6 ⊕ 𝑘6)

& (𝑥7 ⊕ 𝑘7)))& (𝑥8 ⊕ 𝑘8 ⊕ ((𝑥9 ⊕ 𝑘9)

& (𝑥7 ⊕ 𝑘7)))] ⊕ {(𝑥10 ⊕ 𝑘10 ⊕ ((𝑥6 ⊕ 𝑘6)

& (𝑥7 ⊕ 𝑘7))

⊕ [(𝑥11 ⊕ 𝑘11 ⊕ ((𝑥12 ⊕ 𝑘12)& (𝑥13 ⊕ 𝑘13)))

& (𝑥14 ⊕ 𝑘14 ⊕ ((𝑥17 ⊕ 𝑘17)& (𝑥13 ⊕ 𝑘13)))])

& (𝑥15 ⊕ 𝑘15 ⊕ ((𝑥7 ⊕ 𝑘7)& (𝑥9 ⊕ 𝑘9))

⊕ [(𝑥14 ⊕ 𝑘14 ⊕ ((𝑥13 ⊕ 𝑘13)& (𝑥17 ⊕ 𝑘17)))

& (𝑥16 ⊕ 𝑘16 ⊕ ((𝑥17 ⊕ 𝑘17)& (𝑥18 ⊕ 𝑘18)))])} .
(B.1)

In the above function, 𝑥1 ⊕ 𝑥5 = 𝑥10 and 𝑥2 ⊕ 𝑥8 = 𝑥15.
Procedure proc simon 48 comp w/proc simon 48 comp y

(1) Guess 𝑘1, 𝑘3 and create corresponding counters.
(2) When 𝑥1 ⊕ 𝑘1 = 1 and 𝑥3 ⊕ 𝑘3 = 1, guess 𝑘7, 𝑘17 and

create corresponding counters. The other situations
can be treated in a similar way.

(3) When 𝑥1 ⊕ 𝑘1 = 1, 𝑥3 ⊕ 𝑘3 = 1, 𝑥7 ⊕ 𝑘7 =
1, and 𝑥17 ⊕ 𝑘17 = 1, guess 𝑘8,9, 𝑘13,14 and create
corresponding counters. The other situations can be
treated in a similar way.

(4) Compute temporary variables and sum them up.

Time complexity evaluation: Steps (3)-(4) cost 22 ×[(27 −
25+26.75)×4+28 ×3] = 212.63 bitwise XOR operations; Steps
(2)–(4) cost 22 ×[(29 ×7+212.63)×4+213 ×3] = 217.97 bitwise
XOR operations; Steps (1)–(4) cost 22 × [(214 + 217.97) × 4 +
216 × 3] = 222.29 bitwise XOR operations.
Procedure proc simon 48 bit cond

(1) For each of 217𝑥𝐶, call proc simon 48 comp w.
(2) For each of 218𝑘󸀠𝑃, call proc simon 48 comp y.

Time complexity evaluation: 217 × 222.29 + 218 × 222.29 =
240.87 bitwise XOR operations.
Procedure proc attack simon 48

(1) Compress the whole plaintext-ciphertext pairs into
234 counters.

(2) Call proc simon 48 bit cond.
(3) Check the bit condition. If the condition is satisfied,

use the key schedule to recover 36 bits of the master
key; then exhaustively search for the remaining key
bits. Otherwise, discard the 36-bit subkey guess.

Complexity evaluation includes 248 known plaintexts,
271/295 encryptions, and 233 bytes.

In the key-recovery attack (procedure proc attack
simon 48), the whole plaintext-ciphertext pairs are com-
pressed into counters. Thus, the memory complexity of our
attack is only determined by the size of counters used in the
attack. This corresponds to a memory requirement of about
233 bytes. Note that there is no need to store 𝑌[𝑘󸀠𝑃, 𝑘

󸀠
𝐶], since

we can compute the elements of 𝑌[𝑘󸀠𝑃, 𝑘
󸀠
𝐶] on-the-fly, similar

to the integral attack on 24-round SIMON32.
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B.2. Integral Attack on 24-Round SIMON48/72

Procedure proc attack simon 48 72 24

(1) Guess 18 bits’ subkey 𝑘𝛼 and partially encrypt plain-
texts, where 𝑘𝛼 = 𝐾𝑖−53 − 𝐾𝑖−55 ‖ 𝐾𝑖−57 ‖ 𝐾𝑖−59 − 𝐾𝑖−522 .

(2) Call proc attack simon 48.

Complexity evaluation includes 248 known plaintexts, 271
encryptions, and 250 bytes.

In this attack, the dominant part of the memory com-
plexity is the size of the entire SIMON48 codebook. This
corresponds to amemory requirement of about 250 bytes. It is
noted that we can only store (𝐹(𝑋𝑖+20𝑅 )⊕𝑋𝑖+20𝐿 )3 −(𝐹(𝑋𝑖+20𝑅 )⊕
𝑋𝑖+20𝐿 )5 ‖ 𝐹(𝑋𝑖+20𝑅 )7⊕𝑋𝑖+20𝐿,7 ‖ (𝐹(𝑋𝑖+20𝑅 )⊕𝑋𝑖+20𝐿 )9−(𝐹(𝑋𝑖+20𝑅 )⊕
𝑋𝑖+20𝐿 )23 ‖ 𝑋𝑖+20𝑅,5 ‖ 𝑋𝑖+20𝑅,6 ‖ 𝑋𝑖+20𝑅,11 − 𝑋𝑖+20𝑅,13 ‖ 𝑋𝑖+20𝑅,15 ‖ 𝑋𝑖+20𝑅,17 −
𝑋𝑖+20𝑅,20 ‖ 𝑋𝑖+20𝑅,22 ‖ 𝑋𝑖+20𝑅,23 for each ciphertext.

B.3. Integral Attack on 25-Round SIMON48/96

Procedure proc attack simon 48 96 25

(1) Guess 36 bits’ subkey 𝑘𝛼 ‖ 𝑘𝛽, where 𝑘𝛼 = 𝐾𝑖−53 −𝐾𝑖−55 ‖
𝐾𝑖−57 ‖ 𝐾𝑖−59 − 𝐾𝑖−522 and 𝑘𝛽 = 𝐾𝑖+193 − 𝐾𝑖+195 ‖ 𝐾𝑖+197 ‖
𝐾𝑖+199 −𝐾𝑖+1922 . Partially encrypt plaintexts and partially
decrypt corresponding ciphertexts.

(2) Call proc attack simon 48.

Complexity evaluation includes 248 known plaintexts, 295
encryptions, and 250 bytes.

Similar to the integral attack on 24-round SIMON48/72,
the dominant part of thememory complexity is the size of the
entire SIMON48 codebook.
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