
Publicly Verifiable Secure Cloud Storage for Dynamic Data
Using Secure Network Coding

Binanda Sengupta
Indian Statistical Institute

Kolkata, India
binanda_r@isical.ac.in

Sushmita Ruj
Indian Statistical Institute

Kolkata, India
sush@isical.ac.in

ABSTRACT
Cloud service providers offer storage outsourcing facility to
their clients. In a secure cloud storage (SCS) protocol, the
integrity of the client’s data is maintained. In this work, we
construct a publicly verifiable secure cloud storage protocol
based on a secure network coding (SNC) protocol where the
client can update the outsourced data as needed. To the
best of our knowledge, our scheme is the first SNC-based
SCS protocol for dynamic data that is secure in the standard
model and provides privacy-preserving audits in a publicly
verifiable setting. Furthermore, we discuss, in details, about
the (im)possibility of providing a general construction of an
efficient SCS protocol for dynamic data (DSCS protocol)
from an arbitrary SNC protocol. In addition, we modify an
existing DSCS scheme (DPDP I) in order to support privacy-
preserving audits. We also compare our DSCS protocol with
other SCS schemes (including the modified DPDP I scheme).
Finally, we figure out some limitations of an SCS scheme
constructed using an SNC protocol.

Keywords
Cloud Storage, Provable Data Possession, Dynamic Data,
Network Coding

1. INTRODUCTION
Cloud computing has emerged as a recent technology en-

abling a device with restricted resources to delegate heavy
tasks that the device cannot perform by itself to a pow-
erful cloud server. The services a cloud server offers in-
clude huge amount of computation, storage outsourcing and
many more. A smart phone, for example, having a low-
performance processor or a limited amount of storage ca-
pacity, cannot accomplish a heavy computation on its own
or cannot store a large amount of data (say, in the order of
terabytes) in its own storage. A client (cloud user) can del-
egate her computation or storage to the cloud server. Now,
she can just download the result of the computation, or she
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can read (or update) only the required portion of the up-
loaded data.

For storage outsourcing, the cloud server stores a massive
volume of data on behalf of its clients. However, a mali-
cious cloud server can delete the client’s data in order to
save some space. Thus, the client (data owner) has to have
a mechanism to check the integrity of her data outsourced to
the server. Secure cloud storage (SCS) protocols (two-party
protocols between the client and the server) provide a guar-
antee that the client’s data are stored untampered in the
server. Based on the nature of the data to be outsourced,
secure cloud storage protocols are classified as: SCS proto-
cols for static data (SSCS) and SCS protocols for dynamic
data (DSCS). For static data, the client cannot change her
data once they are uploaded to the server (suitable mostly
for backup or archival data). Dynamic data are more generic
in that the client can modify her data after the initial out-
sourcing. Some SSCS protocols include [3, 23, 36]; and some
DSCS protocols include [18, 39, 10, 37]. In SCS protocols,
the client can audit her data stored in the server without ac-
cessing the whole data file, and still, be able to detect an un-
wanted modification of the data done by a malicious server.
The SCS protocols are publicly verifiable if the audits can be
performed by any third party auditor (TPA) with the knowl-
edge of public parameters only; they are privately verifiable
if the secret information of the client is needed to perform
audits. In privacy-preserving audits (for publicly verifiable
SCS protocols only), the TPA cannot gain the knowledge of
any portion of the data file.

Network coding technique [2, 25] serves as an alterna-
tive to the conventional store-and-forward routing technique
used in a communication network. In a network coding
(NC) protocol, every intermediate node (all nodes except the
source and target nodes) in the network combines the incom-
ing packets to output another packet. The network coding
protocols enjoy much improved throughput, efficiency and
scalability compared to simply relaying an incoming packet
as it is. However, these protocols are susceptible to pollu-
tion attacks caused by a malicious intermediate node that
injects invalid packets in the network. These invalid pack-
ets produce more such packets downstream. In the worst
case, the target node cannot decode the original file sent
to it via the network. Secure network coding (SNC) pro-
tocols provide countermeasures to resolve this issue using
some cryptographic primitives. In an SNC protocol, the
source node authenticates each of the packets to be trans-
mitted through the network. For the authentication of the
packets, a small tag is attached to each packet. These tags
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are generated using homomorphic message authentication
codes (MACs) [1] or homomorphic signatures [13, 7, 19, 11].
Every intermediate node can combine the incoming packets
to output another packet along with its authentication tag.

In a recent work, Chen et al. [14] explore the relation
between a secure cloud storage (SSCS) protocol for static
data and a secure network coding (SNC) protocol. They
show that, given an SNC protocol, one can construct an
SSCS protocol using the SNC protocol. However, for static
data, the client (data owner) cannot perform any update
(insertion, deletion or modification) efficiently on her data
after she uploads them to the cloud server. This constraint
makes an SSCS protocol insufficient in many cloud appli-
cations where a client needs to update her data frequently.
Obviously, a naive way to update data in this scenario is to
download the whole data file, perform the required updates
and upload the file to the server again; but this procedure
is highly inefficient as it requires huge amount of bandwidth
for every update. Thus, further investigations are needed
towards an efficient (and more generic) construction of a se-
cure cloud storage (DSCS) protocol for dynamic data using
an SNC protocol.

Our Contribution Following the work of Chen et al. [14],
we provide a construction of a secure cloud storage (DSCS)
protocol for dynamic data from a secure network coding
(SNC) protocol. Unlike the construction of Chen et al., the
client, in our scheme, can efficiently perform updates (inser-
tion, deletion and modification) on her data outsourced to
the cloud server. Our contributions in this paper are sum-
marized as follows.

• We investigate whether we can provide a general con-
struction of a DSCS protocol using any SNC protocol.
We discuss about the challenges for such a general con-
struction in details, and we identify some properties an
SNC protocol must have such that an efficient DSCS
protocol can be constructed from it. Based on these
properties, we observe that, no efficient DSCS proto-
cols can be constructed using some SNC protocols.

• We provide a construction of a DSCS protocol from an
SNC protocol proposed by Catalano et al. [11]. Our
construction is secure in the standard model and of-
fers public verifiability. Moreover, since the audits are
privacy-preserving in our scheme, a third party audi-
tor cannot gain knowledge of the content of the data
file.

• Erway et al. [18] propose an efficient dynamic prov-
able data possession scheme (DPDP I). However, the
audits in this scheme are not privacy-preserving. We
modify this DPDP I scheme to make its audits privacy-
preserving.

• We analyze the efficiency of our DSCS protocol and
compare it with other existing secure cloud storage
protocols. We discuss about some limitations of an
SNC-based SCS protocol (for static or dynamic data).

The rest of the paper is organized as follows. In Section 2,
we discuss about the notations used in this paper, and we
describe the secure network coding and the secure cloud stor-
age protocols briefly. Section 3 begins with a detailed discus-
sion on the general construction of a DSCS protocol using

an SNC protocol. Then, we describe our DSCS construc-
tion along with its security analysis and the probabilistic
guarantees it offers. In Section 4, we modify the DPDP I
scheme [18] to support privacy-preserving audits with proper
security analysis of this modified DPDP I scheme. In Sec-
tion 5, we analyze the efficiency of our DSCS scheme and
compare its performance with the existing secure cloud stor-
age schemes. In the concluding Section 6, we summarize the
work done in this paper.

2. PRELIMINARIES AND BACKGROUND

2.1 Notation
We take λ to be the security parameter. An algorithm
A(1λ) is a probabilistic polynomial-time algorithm when its
running time is polynomial in λ and its output y is a ran-
dom variable which depends on the internal coin tosses of
A. An element a chosen uniformly at random from a set S

is denoted as a
R←− S. A function f : N→ R is called negli-

gible in λ if for all positive integers c and for all sufficiently
large λ, we have f(λ) < 1

λc . In general, F is used to denote
a finite field. The multiplication of a vector v by a scalar s
is denoted by s · v. The terms packet and vector are used
interchangeably in this work.

2.2 Secure Network Coding
Ahlswede et al. [2] introduce network coding as a replace-

ment of the conventional store-and-forward routing for net-
works. In network coding, intermediate nodes (or routers)
encode the received packets to output another packet which
increases the throughput of the network (optimal in case of
multicasting). Linear network coding was proposed by Li et
al. [25]. Here, the file F to be transmitted is divided into
several (say, m) packets (or vectors) v1, v2, . . . , vm each con-
sisting of n components (or blocks), and each of these com-
ponents is an element of a finite field F. In other words, each
vi ∈ Fn for i ∈ [1,m]. Then, the sender (or source) node
augments each vector to form another vector ui = [vi ei] ∈
Fn+m for i ∈ [1,m], where ei is the m-dimensional unit vec-
tor containing 1 in i-th position and 0 in others. Finally, the
sender transmits these augmented vectors to the network.

Let V ⊂ Fn+m be the linear subspace spanned by the aug-
mented vectors u1, u2, . . . , um. A random file identifier fid

is associated with the file F (or V ). In random (linear) net-
work coding [22, 21], an intermediate node in the network,
upon receiving l packets y1, y2, . . . , yl ∈ Fn+m, chooses l

coefficients ν1, ν2, . . . , νl
R←− F and outputs another packet

w ∈ Fn+m such that w =
∑l
i=1 νi · yi (here, summation

refers to vector additions). Thus, the output packet of each
intermediate node is of the form

w = [w1, w2, . . . , wn, c1, c2, . . . , cm] ∈ V

for some c1, c2, . . . , cm ∈ F, where wj =
∑m
i=1 civij for each

j ∈ [1, n]. When the receiver (or target) node accumulatesm
linearly independent vectors (or packets), it solves a system
of linear equations to obtain the file destined to it.

In a secure network coding (SNC) protocol, an authen-
tication information (or tag) is attached to each packet in
order to prevent pollution attacks. The authentication tags
are computed using homomorphic message authentication
codes (MACs) [1] or homomorphic signatures [13, 7, 19, 5,
11]. In an SNC protocol based on homomorphic signatures,
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every node in the network can verify the authenticity of
each of its incoming vectors. On the other hand, in case
of SNC protocols based on homomorphic MACs, it requires
the knowledge of the secret key to verify an incoming vector.
We define a secure network coding (SNC) protocol below.

Definition 2.1. A secure network coding (SNC) protocol
consists of the following algorithms.

• SNC.KeyGen(1λ,m, n): This algorithm generates a se-
cret key-public key pair K = (sk, pk) for the sender.

• SNC.TagGen(V, sk,m, n, fid): On input a linear sub-
space V ⊂ Fn+m, the secret key sk and a random file
identifier fid associated with V , the sender runs this
algorithm to produce the authentication tag t for V .

• SNC.Combine({yi, ti, νi}16i6l, pk,m, n, fid): Given l
incoming packets y1, y2, . . . , yl ∈ Fn+m and their cor-
responding tags t1, t2, . . . , tl for a file associated with
fid, an intermediate node chooses l random coeffi-

cients ν1, ν2, . . . , νl
R←− F and runs this algorithm.

The algorithm outputs another packet w ∈ Fn+m and
its authentication tag t such that w =

∑l
i=1 νi · yi.

• SNC.Verify(w, t,K,m, n, fid): An intermediate node
or the receiver node, on input a packet w and its tag t
for a file associated with fid, executes this algorithm
which in turn returns 1 if t is authentic for the packet
w; returns 0, otherwise.

In some schemes, the algorithm SNC.Verify requires only
the public key pk [7, 19, 11]. The knowledge of the secret
key sk is necessary to verify the incoming packets in other
schemes [1].

Security of an SNC Protocol.
The security of an SNC protocol based on a homomor-

phic signature scheme is defined by the security game be-
tween a challenger and a probabilistic polynomial-time ad-
versary A as stated below [11].

• Setup The adversary A provides the values m and
n of its choice to the challenger. The challenger runs
SNC.KeyGen(1λ,m, n) to output K = (sk, pk) and
returns pk to A.

• Queries The adversaryA specifies a sequence (adap-
tively chosen) of vector spaces Vi ⊂ Fn+m by respective
augmented basis vectors {ui1, ui2, . . . , uim} and asks
the challenger to authenticate the vector spaces. For
each i, the challenger chooses a random file identifier
fidi from a predefined space, generates an authentica-
tion tag ti by running SNC.TagGen(Vi, sk,m, n, fidi)
and gives ti to A.

• Forgery The adversary A outputs (fid∗,w∗, t∗).

Let w∗ = [w∗1 , w
∗
2 , . . . , w

∗
n+m] ∈ Fn+m. The adversary A

wins the security game if [w∗n+1, w
∗
n+2, . . . , w

∗
n+m] is not the

all-zero vector, SNC.Verify(w∗, t∗, pk,m, n, fid∗) outputs 1
and one of the following conditions is satisfied:
1. fid∗ 6= fidi for all i (type-1 forgery)
2. fid∗ = fidi for some i, but w∗ 6∈ Vi (type-2 forgery).

For a secure network coding (SNC) protocol, the prob-
ability that A wins the security game is negligible in the
security parameter λ.

We note that the security game for an SNC protocol based
on homomorphic MACs is exactly the same as the game
described above, except that the algorithm SNC.KeyGen
now produces a secret key only (unknown to the adversary
A) and the verification algorithm SNC.Verify requires the
knowledge of this secret key.

2.3 Secure Cloud Storage
In the age of cloud computing, clients may want to out-

source their huge amount of data to the cloud storage server.
As the cloud service provider (possibly malicious) might dis-
card old data to save some space, the clients need to be con-
vinced that the outsourced data are stored untampered by
the cloud server. A naive approach to ensure data integrity
is that a client downloads the whole data from the server
and verifies them individually segment by segment. How-
ever, this process is inefficient in terms of communication
bandwidth required.

Building Blocks: PDP and POR.
Researchers come up with proofs of storage in order

to resolve the issue mentioned above. Ateniese et al. [3]
introduce the concept of provable data possession (PDP)
where the client computes an authenticator (for example,
MAC) for each segment of her data (or file), and uploads
the file along with the authenticators. During an audit pro-
tocol, the client samples a predefined number of random
segment-indices (challenge) and sends them to the server.
We denote the cardinality of the challenge set by l which is
typically taken to be O(λ). The server does some computa-
tions (depending upon the challenge) over the stored data,
and sends a proof (response) to the client who verifies the
integrity of her data based on this proof. This scheme also
introduces the notion of public verifiability1 where the client
(data owner) can delegate the auditing task to a third party
auditor (TPA). The TPA with the knowledge of the pub-
lic key performs an audit. For privately verifiable schemes,
only the client having knowledge of the secret key can verify
the proof sent by the server. This is illustrated in Figure 1.
Other schemes achieving PDP include [4, 18, 39, 38].

The first paper introducing proofs of retrievability (POR)
for static data is by Juels and Kaliski [23] (a similar idea
is given for sublinear authenticators by Naor and Roth-
blum [30]). According to Shacham and Waters [36], the
underlying idea of a POR scheme is to encode the original
file with an erasure code [26, 33], authenticate the segments
of the encoded file, and then upload them on the storage
server. With this technique, the server has to delete or mod-
ify a considerable number of segments to actually delete or
modify a data segment. This ensures that all segments of
the file are retrievable from the responses of the server which
passes an audit with some non-negligible probability. Fol-
lowing the work by Juels and Kaliski, several POR schemes
have been proposed for static or dynamic data [9, 16, 10, 37,
12]. For a detailed list of POR schemes, we refer to [35].

As we deal with a single cloud server in this work, we

1The term “public verifiability” discussed in this paper de-
notes (only) whether a third party auditor having the knowl-
edge of the public parameters can perform an audit on behalf
of the client (data owner). We mention that this notion im-
plicitly assumes that the client is honest. However, a mali-
cious client can publish incorrect public parameters in order
to get an honest server framed by a third party auditor [24].
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Figure 1: The architecture of a secure cloud storage
protocol. The client processes the file and uploads it
to the cloud server. For static data, she can read the
outsourced data; for dynamic data, she can update
her data as well. If the scheme is privately verifiable,
the client having the secret key can perform audits
on the data (through challenge and response). In a
publicly verifiable protocol, she can delegate the au-
diting task to a TPA who performs audits on behalf
of the client.

only mention some secure cloud storage protocols in a dis-
tributed setting. Some of them include the works by Curt-
mola et al. [15] (using replication of data) and Bowers et
al. [8] (using error-correcting codes and erasure codes). On
the other hand, existing secure cloud storage schemes have
found applications in other areas as well [28, 34].

We define an SCS protocol for static data (SSCS) below.
We defer the definition of an SCS protocol for dynamic data
(DSCS) to Section 3.1. In general, the term verifier is used
to denote an auditor for a secure cloud storage. The client
(for a privately verifiable protocol) or a third party auditor
(for a publicly verifiable protocol) can act as the verifier.

Definition 2.2. A secure cloud storage protocol for static
data (SSCS) consists of the following algorithms.

• SSCS.KeyGen(1λ): This algorithm generates a secret
key-public key pair K = (sk, pk) for the client.

• SSCS.Outsource(F,K, fid): Given a data file F as-
sociated with a random file identifier fid, the client
processes F to form another file F ′ (including authen-
tication information computed using sk) and uploads
F ′ to the server.

• SSCS.Challenge(pk, l, fid): During an audit, the ver-
ifier sends a random challenge set Q of cardinality
l = O(λ) to the server.

• SSCS.Prove(Q, pk, F ′, fid): Upon receiving the chal-
lenge set Q, the server computes a proof of storage T
corresponding to the challenge set Q and sends T to
the verifier.

• SSCS.Verify(Q,T,K, fid): The verifier checks whether
T is a valid proof of storage corresponding to the chal-

lenge set Q. The verifier outputs 1 if the proof passes
the verification; she outputs 0, otherwise.

An SSCS protocol is publicly verifiable if the algorithm
SSCS.Verify described above involves only the public key pk.
The algorithm SSCS.Verify in a privately verifiable SSCS
protocol requires the knowledge of the secret key sk.

Security of an SSCS Protocol.
An SSCS protocol must satisfy the following proper-

ties [36].

1. Authenticity The authenticity of storage requires
that the cloud server cannot forge a valid proof of stor-
age T (corresponding to the challenge set Q) without
storing the challenged segments and their respective
authentication information untampered, except with a
probability negligible in λ.

2. Extractability The extractability (or retrievability)
of data requires that, given a probabilistic polynomial-
time adversary A that can respond correctly to a chal-
lenge Q with some non-negligible probability, there ex-
ists a polynomial-time extractor algorithm E that can
extract (at least) the challenged segments (except with
negligible probability) by challenging A for a polyno-
mial (in λ) number of times and verifying the responses
sent by A. The algorithm E has a non-black-box access
to A. Thus, E can rewind A, if required.

The SSCS protocols based on PDP guarantee the extraction
of almost all the segments of the file F . On the other hand,
the SSCS protocols based on POR ensure the extraction of
all the segments of F with the help of erasure codes.

2.4 General Construction of an SSCS Proto-
col from an SNC Protocol

Chen et al. [14] propose a generic construction of a secure
cloud storage protocol for static data from a secure network
coding protocol. They consider the data file F to be stored
in the server to be a collection of m vectors (or packets) each
of which consists of n blocks. The underlying idea is to store
these vectors (without augmenting them with unit vectors)
in the server. During an audit, the client sends an l-element
subset of the set of indices {1, 2, . . . ,m} to the server. The
server augments those vectors with the corresponding unit
vectors, combines them linearly in an authenticated fashion
and sends the output vector along with its tag to the client.
Finally, the client verifies the authenticity of the received
tag against the received vector. Thus, the server acts as an
intermediate node, and the client acts as both the sender and
the receiver (or the next intermediate router). We briefly
discuss the algorithms involved in the general construction
below.

• SSCS.KeyGen(1λ,m, n): Initially, the client executes
SNC.KeyGen(1λ,m, n) to generate a secret key-public
key pair K = (sk, pk).

• SSCS.Outsource(F,K,m, n, fid): The file F associ-
ated with a random file identifier fid consists of m
vectors each of them having n blocks. We assume
that each of these blocks is an element of F. Then,
for each 1 6 i 6 m, the i-th vector vi is of the form
[vi1, . . . , vin] ∈ Fn. For each vector vi, the client forms
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ui = [vi ei] ∈ Fn+m by augmenting the vector vi
with the unit coefficient vector ei. Let V ⊂ Fn+m be
the linear subspace spanned by u1, u2, . . . , um. The
client runs SNC.TagGen(V, sk,m, n, fid) to produce
an authentication tag ti for the i-th vector ui for each
1 6 i 6 m. Finally, the client uploads the file F ′ =
{(vi, ti)}16i6m to the server.

• SSCS.Challenge(pk, l,m, n, fid): During an audit, the
verifier selects I, a random l-element subset of [1,m].
Then, she generates a challenge set Q = {(i, νi)}i∈I ,
where each νi

R←− F. The verifier sends the challenge
set Q to the server.

• SSCS.Prove(Q, pk, F ′,m, n, fid): Upon receiving the
challenge set Q = {(i, νi)}i∈I for the file identifier
fid, the cloud server, for each i ∈ I, forms ui =
[vi ei] ∈ Fn+m by augmenting the vector vi with the
unit coefficient vector ei. Then, the cloud server runs
SNC.Combine({ui, ti, νi}i∈I , pk,m, n, fid) to produce
another vector w ∈ Fn+m (along with its authentica-

tion tag t) such that w =
∑l
i=1 νi · ui. Let y ∈ Fn be

the first n entries of w. The server sends T = (y, t) to
the verifier as a proof of storage corresponding to the
challenge set Q.

• SSCS.Verify(Q,T,K,m, n, fid): The verifier uses Q =
{(i, νi)}i∈I and T = (y, t) to reconstruct the vector
w ∈ Fn+m, where the first n entries of w are the same
as those of y and the (n+ i)-th entry is νi if i ∈ I (0 if
i 6∈ I). The verifier runs SNC.Verify(w, t,K,m, n, fid)
and returns the output of the algorithm SNC.Verify.

3. CONSTRUCTION OF AN SCS PROTO-
COL FOR DYNAMIC DATA USING AN
SNC PROTOCOL

In Section 2.4, we have discussed a general construction of
an SSCS protocol from an SNC protocol proposed by Chen
et al. [14]. In a secure network coding protocol, the number
of packets (or vectors) in the file to be transmitted through
the network is fixed. This is because the length of the co-
efficient vectors used to augment the original vectors has to
be determined a priori. That is why, such a construction is
suitable for static data in general. On the other hand, in a
secure cloud storage protocol for dynamic data, clients can
modify their data after they upload them to the cloud server
initially. In this section, we discuss whether we can provide
a general framework for constructing an efficient and secure
cloud storage protocol for dynamic data (DSCS) from an
SNC protocol.

3.1 On the General Construction of an Effi-
cient DSCS Protocol from an SNC Proto-
col

In a secure network coding (SNC) protocol, a tag is asso-
ciated with each packet such that the integrity of a packet
can be verified using its tag. The SNC protocols found in
the literature use homomorphic MACs [1] or homomorphic
signatures [13, 7, 19, 5, 11]. Following are the challenges in
constructing an efficient DSCS protocol from these existing
SNC protocols. We exclude, in our discussion, the work of
Attrapadung and Libert [5] as their scheme is not efficient

due to its reliance on (inefficient) composite-order bilinear
groups.

1. The DSCS protocol must handle the varying
values of m appropriately. In the network coding
protocols mentioned above, the sender divides the file
in m packets and augments them with unit coefficient
vectors before sending them into the network. The
length of these coefficient vectors is m which remains
constant during transmission. In a secure cloud stor-
age for dynamic data, the number of vectors may vary
(for insertion and deletion). If we follow a similar gen-
eral construction for a DSCS protocol as discussed in
Section 2.4, we observe that the cloud server does not
need to store the coefficient vectors. However, during
an audit, the verifier selects a random l-element subset
I of [1,m] and the server augments the vectors with
unit coefficient vectors of dimension m before gener-
ating the proof. Therefore, the verifier and the server
need to keep an updated value of m.

This issue can be resolved in a trivial way. The client
includes the value of m in her public key and updates
its value for each authenticated insertion or deletion.
Thus, its latest value is known to the verifier and the
server. We assume that, for consistency, the client
(data owner) does not update her data during an audit.

2. The index of a vector should not be embed-
ded in its authentication tag. In an SNC protocol,
the file to be transmitted is divided into m packets
v1, v2, . . . , vm, where each vi ∈ Fn for i ∈ [1,m] ([19]
replaces F by Z). The sender augments each vector to
form another vector ui = [vi ei] ∈ Fn+m for i ∈ [1,m],
where ei is the m-dimensional unit vector containing
1 in i-th position and 0 in others. Let V ⊂ Fn+m be
the linear subspace spanned by these augmented basis
vectors u1, u2, . . . , um. The sender authenticates the
subspace V by authenticating these augmented vectors
before transmitting them to the network [13, 1, 7, 19,
11]. In a scheme based on homomorphic MACs [1],
the sender generates a MAC for the i-th basis vector
ui and the index i serves as an input to the MAC algo-
rithm (for example, i is an input to the pseudorandom
function in [1]). On the other hand, for the schemes
based on homomorphic signatures, the sender gener-
ates a signature ti on the i-th basis vector ui. In some
schemes based on homomorphic signatures, the index i
is embedded in the signature ti on the i-th augmented
vector. For example, H(fid, i) is embedded in ti [7,
19], where fid is the file identifier and H is a hash
function modeled as a random oracle [6].

These schemes are not suitable for the construction of
an efficient DSCS protocol due to the following rea-
son. For dynamic data, the client can insert a vector
in a specified position or delete an existing vector from
a specified location. In both cases, the indices of the
subsequent vectors are changed. Therefore, the client
has to download all these subsequent vectors and com-
pute fresh authentication tags for them before upload-
ing the new vector-tag pairs to the cloud server. This
makes the DSCS protocol inefficient. However, in a few
schemes, instead of hashing vector indices as in [7, 19],
there is a one-to-one mapping from the set of indices
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to some group [13, 11], and these group elements are
made public. This increases the size of the public key
of these schemes. However, an efficient DSCS protocol
can be constructed from them. In fact, we construct
a DSCS protocol (described in Section 3.3) based on
the SNC protocol proposed by Catalano et al. [11]. We
note that Chen et al. [14] construct an SCS protocol
from the same SNC protocol, but for static data only.

3. The freshness of data must be guaranteed. For
dynamic data, the client can modify an existing vector.
However, a malicious cloud server may discard this
change and keep an old copy of the vector. As the old
copy of the vector and its corresponding tag are valid,
the client has no way to detect if the cloud server is
storing the latest copy.

We ensure the freshness of the client’s data, in our
DSCS construction, using an authenticated data struc-
ture (rank-based authenticated skip list) on the authen-
tication tags of all the vectors. In other words, the
authenticity of the vectors is maintained by their tags,
and the integrity of the tags is in turn maintained by
the skip list. The advantage of building the skip list
on the tags (over building it on the vectors) is that the
tags are much shorter than a vector, and this decreases
the size of the proof sent by the server. When a vec-
tor is inserted (or modified), its tag is also updated
and sent to the server. The server updates the skip
list accordingly. For deletion of a vector, the server
simply removes the corresponding tag from the skip
list. Finally, the server sends to the client a proof of
performing the required update properly. We briefly
discuss, in Section 3.2, about rank-based authenticated
skip lists that we use in our construction described in
Section 3.3.

In addition to the requirements mentioned above, it is
often desired that a DSCS protocol (an SCS protocol, in
general) satisfies the following properties.

4. Public verifiability For a publicly verifiable DSCS
protocol, the auditing task can be delegated to a third
party auditor (TPA). In a secure network coding pro-
tocol built on homomorphic MACs, the secret key (for
example, the secret keys of the pseudorandom genera-
tor and the pseudorandom function in [1]) is needed to
verify the authenticity of an incoming packet. This
property restricts the secure cloud storage protocol
built on such an SNC protocol to be privately veri-
fiable only.

5. Privacy-preserving audits In privacy-preserving
audits (for a publicly verifiable DSCS protocol), the
third party auditor (TPA) cannot gain the knowledge
of the challenged vectors.

Definition 3.1. A secure cloud storage protocol for dy-
namic data (DSCS) consists of the following algorithms.

• DSCS.KeyGen(1λ): This algorithm generates a secret
key-public key pair K = (sk, pk) for the client.

• DSCS.Outsource(F,K,m, fid): The client divides the
file F associated with the file identifier fid into m seg-
ments and computes authentication tags for these seg-
ments using her secret key sk. Then, she constructs an

authenticated data structure M on the authentication
tags (for checking freshness of the data) and computes
some metadata dM for M . Finally, the client uploads
the file F ′ (the file F and the authentication tags) along
with M to the cloud storage server and stores dM (and
m) at her end.

• DSCS.InitUpdate(i, updtype, dM ,m, fid): The value
of the variable updtype indicates whether the update
is an insertion after or a modification of or the dele-
tion of the i-th segment. Depending on the value of
updtype, the client modifies (m, dM ) at her end and
asks the server to perform the required update on the
file associated with fid (related information specified
in info).

• DSCS.PerformUpdate(i, updtype, F ′,M, info,m, fid):
The server performs the update on the file associated
with fid and sends the client a proof Π.

• DSCS.VerifyUpdate(i, updtype,Π,m, fid): On receiv-
ing the proof Π for the file associated with fid from
the server, the client checks whether Π is a valid proof.

• DSCS.Challenge(pk, l, fid): During an audit, the ver-
ifier sends a challenge set Q of cardinality l = O(λ) to
the server.

• DSCS.Prove(Q, pk, F ′,m, fid): The server, after re-
ceiving the challenge set Q, computes a proof of stor-
age T corresponding to Q and a proof of freshness Π.
Then, it sends (T,Π) to the verifier.

• DSCS.Verify(Q,T,K,m, fid): The verifier checks if T
is a valid proof of storage corresponding to the chal-
lenge set Q and Π is a valid proof of freshness. The
verifier outputs 1 if both the proofs pass the verifica-
tion; she outputs 0, otherwise.

A DSCS protocol can be privately verifiable if the algo-
rithm DSCS.Verify described above involves the secret key
sk of the client; it is publicly verifiable, otherwise. There-
fore, in publicly verifiable DSCS protocols, a third party
auditor (TPA) can audit the client’s data on behalf of the
client who delegates her auditing task to the TPA.

Security of a DSCS Protocol.
In addition to the authenticity and extractability prop-

erties (as required by an SSCS protocol), a DSCS protocol
must satisfy another property called freshness which guar-
antees that the server is storing an up-to-date version of the
file F . The detailed discussion on the security of a DSCS
protocol is deferred to Section 3.4.

3.2 Rank-Based Authenticated Skip Lists
For dynamic data, we need some tool to verify the fresh-

ness along with the authenticity of each of the vectors. Sev-
eral data structures like Merkle hash trees [27], rank-based
authenticated skip lists [18] and rank-based RSA trees [31,
18] are found in the literature which serve the purpose. Er-
way et al. [18] propose rank-based authenticated skip lists
based on labeled skip lists [20, 32]. In our construction, we
use this data structure since the number of levels in a skip
list is logarithmic in m with high probability [32]. We give
a brief introduction to the procedures of rank-based authen-
ticated skip lists stored remotely in a server as follows.
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• ListInit(t1, . . . , tm): Let {t1, . . . , tm} be an ordered
list of m elements on which a rank-based authenticated
skip list M is to be built. These elements are kept in
the bottom-level nodes of the skip list in an ordered
fashion. For each node z of the skip list: right(z)
and down(z) are two pointers to the successors of z,
rank(z) is the number of bottom-level nodes reachable
from z (including z if z itself is a bottom-level node),
high(z) and low(z) are the indices of the leftmost and
rightmost bottom-level nodes reachable from z, f(z)
is the label associated with the node z, and l(z) is the
level of z (l(z) = 0 for a bottom-level node z).

Initially, all these information (except the label) are
computed for each node in the skip list. In addition,
the i-th bottom-level node z contains x(z) = ti, ∀i ∈
[1,m]. Finally, for each node z, the label f(z) is com-
puted using a collision-resistant hash function h as

f(z) =


0, if z is null

f1, if l(z) = 0

f2, if l(z) > 0

with f1 = h(l(z)||rank(z)||x(z)||f(right(z))) and f2 =
h(l(z)||rank(z)||f(down(z))||f(right(z))).

The skip list along with all the associated information
are stored in the server. The client only stores the
value of m and the label of the root node r (that is,
f(r)) as the metadata dM .

• ListAuthRead(i,m): When the client wants to read
the i-th element ti, the server sends the requested el-
ement along with a proof Π(i) to the client. Let the
verification path of the i-th element be a sequence of
nodes z1, . . . , zk, where z1 is the bottom-level node
storing the i-th element and zk = r is the root node of
the skip list. Then, the proof Π(i) is of the form

Π(i) = (A(z1), . . . , A(zk)),

where A(z) = (l(z), q(z), d(z), g(z)). Here, l(z) is the
level of the node z, d(z) is 0 (or 1) if down(z) (or
right(z)) points to the previous node of z in the se-
quence, and q(z) and g(z) are the rank and label (re-
spectively) of the successor node of z that is not present
on the verification path.

• ListVerifyRead(i, dM , ti,Π(i),m): Upon receiving the
proof (ti,Π(i)) from the server, the client checks if the
proof corresponds to the latest metadata dM stored at
her end. The client outputs 1 if the proof matches with
the metadata; she outputs 0, otherwise.

Due to the collision-resistance property of the hash
function h that is used to generate the labels of the
nodes of the skip list, the server cannot pass the verifi-
cation without storing the element ti properly, except
with some probability negligible in the security param-
eter λ.

• ListInitUpdate(i, updtype, dM , t
′
i,m): An update can

be an insertion after or a modification of or the dele-
tion of the i-th bottom-level node. The type of the up-
date is stored in a variable updtype. The client defines
j = i (for an insertion or modification) or j = i−1 (for
a deletion). She calls ListAuthRead(j,m) for the ex-
isting skip list M and verifies the response sent by the

server by calling ListVerifyRead(j, dM , tj ,Π(j),m). If
the proof does not match with the metadata dM (the
label of the root node of the existing skip list M), she
aborts. Otherwise, she updates the value of m, com-
putes the new metadata d′M using the proof and stores
it at her end temporarily. Then, the client asks the
server to perform the update specifying the location i,
updtype (insertion, deletion or modification) and the
new element t′i (null for deletion).

• ListPerformUpdate(i, updtype, t′i,M): Depending on
the value of updtype, the server performs the update
asked by the client, computes a proof Π similar to the
one generated during ListAuthRead and sends Π to
the client.

• ListVerifyUpdate(i, updtype, t′i, d
′
M ,Π,m): On receiv-

ing the proofs from the server, the client verifies the
proof Π and computes the new metadata dnew based
on Π. If d′M = dnew and Π is a valid proof, the client
sets dM = d′M , deletes the temporary value d′M and
outputs 1. Otherwise, she changes m to its previous
value, deletes the temporary value d′M and outputs 0.

Due to the properties of a skip list [32], the number of
levels in a skip list is logarithmic in m with high probability.
For this reason, the size of a proof, the computation time
for the server and the verification time for the client are
O(logm) with high probability.

3.3 Construction of a DSCS Protocol from an
SNC Protocol

In this section, we construct a secure cloud storage proto-
col for dynamic data (DSCS) from the secure network coding
(SNC) protocol proposed by Catalano et al. [11] which is se-
cure in the standard model. This construction exploits a
rank-based authenticated skip list (discussed in Section 3.2)
to ensure the freshness of the dynamic data. This DSCS
protocol consists of the following procedures. Let h be the
collision-resistant hash function used in the rank-based au-
thenticated skip list we use in our construction. We assume
that the file F to be outsourced to the server is a collection
of m vectors where each of the vectors consists of n blocks.

• KeyGen(1λ,m, n): The client selects two random safe
primes p, q of length λ/2 bits each and takes N = pq.
The client chooses another random prime e of length
λ+1 (in bits) and sets the file identifier fid to be equal

to e. She selects g, g1, . . . , gn, h1, . . . , hm
R←− Z∗N . The

secret key sk is (p, q), and the public key pk consists
of (N, e, g, g1, . . . , gn, h1, . . . , hm, dM ,m, n). Initially,
dM is null. Let K = (sk, pk).

• Outsource(F,K, fid): As mentioned above, the file F
(associated with the identifier fid) consists of m vec-
tors each of them having n blocks. We assume that
each of these blocks is an element of Fe. Then, for
each 1 6 i 6 m, the i-th vector vi is of the form
[vi1, . . . , vin] ∈ Fne . For each vector vi, the client se-

lects a random element si
R←− Fe and computes xi such

that

xei = gsi(

n∏
j=1

g
vij
j )hi mod N. (1)
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Now, ti = (si, xi) acts as an authentication tag for the
vector vi. The client constructs a rank-based authenti-
cated skip list M on the authentication tags {ti}16i6m

and computes the metadata dM (the label of the root
node of M). Finally, the client updates dM in the pub-
lic key and uploads the file F ′ = {(vi, ti)}16i6m along
with M to the cloud server.

• InitUpdate(i, updtype, dM , pk, fid): The value of the
variable updtype indicates whether the update is an in-
sertion after or a modification of or the deletion of the
i-th vector. The client performs one of the following
operations depending on the value of updtype.

1. If updtype is insertion, the client selects h′
R←−

Z∗N and generates the new vector-tag pair (v′, t′).
She runs ListInitUpdate on (i, updtype, dM , t

′,m)
and sends (h′, v′) to the server.

2. If updtype is modification, the client generates
the new vector-tag pair (v′, t′). Then, she runs
ListInitUpdate(i, updtype, dM , t

′,m) and sends v′

to the server.

3. If updtype is deletion, the client runs the pro-
cedure ListInitUpdate on (i, updtype, dM , t

′,m),
where t′ is null.

The client stores the value of the new metadata d′M
temporarily at her end.

• PerformUpdate(i, updtype, F ′,M, h′, v′, t′, pk, fid):
We assume that, for efficiency, the server keeps a local
copy of the ordered list of hj values for 1 6 j 6 m.
Based on the value of updtype, the server performs
one of the following operations.

1. If updtype is insertion, the server sets m = m+1,
inserts h′ in the (i + 1)-th position in the list of
hj values (for 1 6 j 6 m) and inserts v′ after the
i-th vector. The server runs ListPerformUpdate
on the input (i, updtype, t′,M).

2. If updtype is modification (h′ is null), the server
modifies the i-th vector to v′ and runs the proce-
dure ListPerformUpdate on (i, updtype, t′,M).

3. If updtype is deletion (h′, v′ and t′ are null), the
server sets m = m − 1, deletes the particular hi
value from the list of hj values (j ∈ [1,m]) and
runs ListPerformUpdate(i, updtype, null,M).

• VerifyUpdate(i, updtype, t′, d′M ,Π, pk, fid): After re-
ceiving the proof from the server, the client performs
ListVerifyUpdate(i, updtype, t′, d′M ,Π,m). If the out-
put of ListVerifyUpdate is 1, the client outputs 1 and
updates her public key (the latest values of m, dM and
hj for j ∈ [1,m]) accordingly. Otherwise, the client
outputs 0.

• Challenge(pk, l, fid): During an audit, the verifier se-
lects I, a random l-element subset of [1,m]. Then, she
generates a challenge set Q = {(i, νi)}i∈I , where each

νi
R←− Fe. The verifier sends the challenge set Q to

the cloud server.

• Prove(Q, pk, F ′,M, fid): The cloud server, after re-
ceiving the challenge set Q = {(i, νi)}i∈I , computes

s =
∑
i∈I νisi mod e and s′ = (

∑
i∈I νisi − s)/e. The

server, for each i ∈ I, forms ui = [vi ei] ∈ Fn+m
e by

augmenting the vector vi with the unit coefficient vec-
tor ei. Then, it computes w =

∑
i∈I νi · ui mod e ∈

Fn+m
e , w′ = (

∑
i∈I νi · ui − w)/e ∈ Fn+m

e and

x =

∏
i∈I x

νi
i

gs′
∏n
j=1 g

w′
j

j

∏m
j=1 h

w′
n+j

j

mod N. (2)

Let y ∈ Fne be the first n entries of w and t = (s, x).
The server sends T = (T1, T2) as a proof of storage
corresponding to the challenge set Q, where T1 = (y, t)
and T2 = {(ti,Π(i))}i∈I .

• Verify(Q,T, pk, fid): Using Q = {(i, νi)}i∈I and T =
(y, t) sent by the server, the verifier constructs a vector
w = [w1, . . . , wn, wn+1, . . . , wn+m] ∈ Fn+m

e , where the
first n entries of w are the same as those of y and the
(n + i)-th entry is νi if i ∈ I (0 if i 6∈ I). Then, the
verifier checks whether

xe
?
= gs

n∏
j=1

g
wj

j

m∏
j=1

h
wn+j

j mod N. (3)

She also verifies if, for each i ∈ I, Π(i) is a valid proof
(with respect to dM ) for ti. The verifier outputs 1 if
the proof passes all the verifications; she outputs 0,
otherwise.

The DSCS protocol described above is publicly verifiable,
that is, a third party auditor (TPA) having the knowledge
of the public key of the client (data owner) can perform an
audit. Chen et al. [14] construct a secure cloud storage pro-
tocol for static data using the same SNC protocol [11]. They
show that, in order to make an audit privacy-preserving,
the server adds a random linear combination of some ran-
dom vectors to the computed value of y to form the final
response. Each of these random vectors is augmented with
the all-zero vector of dimension m (0m), and the client out-
sources these augmented vectors (along with their tags) to
the server initially. Due to the addition of this random com-
ponent to the resulting vector y, the third party auditor
(TPA) cannot gain knowledge of the challenged vectors. It
is easy to see that a similar change in the algorithm Prove
in our DSCS protocol mentioned above makes this scheme
privacy-preserving as well.

3.4 Security Analysis
The DSCS protocol described in Section 3.3 offers the

guarantee of dynamic provable data possession (DPDP) [18].
We describe the data possession game of DPDP between the
challenger (acting as the client) and the adversary (acting
as the cloud server) as follows.

• The challenger generates a key pair (sk, pk) and gives
pk to the adversary.

• The adversary selects a file F associated with the iden-
tifier fid to store. The challenger processes the file to
form another file F ′ with the help of sk and returns
F ′ to the adversary. The challenger stores only some
metadata to verify the updates to be performed by the
adversary later. The adversary chooses a sequence of
updates (of its choice) defined by (updtypei, infoi) for
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1 6 i 6 q1 (q1 is polynomial in the security parameter
λ) and asks the challenger to initiate the update. For
each update, the challenger runs InitUpdate and stores
the latest metadata at her end. The adversary sends a
proof after executing PerformUpdate. The challenger
verifies this proof by running VerifyUpdate and up-
dates her metadata if and only if the proof passes the
verification. The adversary is notified about the out-
put of VerifyUpdate for each update.

• Let F ∗ be the final state of the file after q1 updates.
The challenger has the latest metadata for the file F ∗.
Now, she challenges the adversary with a random chal-
lenge set Q, and the adversary returns a proof to the
challenger. The adversary wins the game if the proof
passes the verification. The challenger can challenge
the adversary q2 (polynomial in λ) number of times in
an attempt to extract (at least) the challenged vectors
of F ∗.

Our scheme satisfies the following three properties re-
quired for security.

1. Authenticity The authenticity of storage demands
that the cloud server cannot produce (or forge) a valid
response T1 = (y, t) (corresponding to the challenge set
Q = {(i, νi)}i∈I) without storing the challenged vec-
tors and their respective authentication tags appropri-
ately. Since the SNC protocol proposed by Catalano et
al. [11] is secure in the standard model and the random
challenge set Q (precisely, the coefficients νi, for i ∈ I,
used in the algorithm Prove for computing w as a lin-
ear combination of the augmented vectors) is chosen
by the verifier, the DSCS protocol we have constructed
provides a guarantee of authenticity (in the standard
model) except with a probability negligible in λ.

2. Freshness The freshness of storage requires that the
cloud server must store an up-to-date version of the
data file outsourced by the client. In our scheme, for
each update, the freshness of data is guaranteed using
the algorithm VerifyUpdate (by computing dnew from

Π and checking if d′M
?
= dnew). Moreover, for each

challenge Q, the freshness of data is guaranteed by
checking the validity of the proof T2 = {(ti,Π(i))}i∈I
(in the algorithm Verify) for the rank-based authenti-
cated skip list M . Thus, given the hash function h (see
Section 3.2) used to compute the labels of the nodes in
the skip list M is collision-resistant, the DSCS protocol
described above ensures the freshness of data.

3. Extractability The extractability (or retrievability)
of data requires that, given a probabilistic polynomial-
time adversary A that wins the data possession game
mentioned above with some non-negligible probability,
there must be a polynomial-time extractor algorithm
E that can extract (at least) the challenged vectors
(except with negligible probability) by challenging A
for a polynomially (in λ) many times and verifying the
responses sent by A. The algorithm E has a non-black-
box access to A. Thus, E can rewind A, if required.
Given the DSCS protocol satisfies the authenticity and
freshness properties mentioned above, it is not hard
to see that a polynomial-time extractor algorithm for

such an adversary A can extract (at least) the chal-
lenged vectors (for known linear combinations of these
vectors) for the DSCS scheme described above with
the help of Gaussian elimination [36].

Probabilistic Guarantees.
If the server has corrupted a fraction (say, β) of vectors

in a file, then the server passes an audit with probability
pcheat = (1− β)l, where l is the cardinality of the challenge
set Q. The probability pcheat is very small for large values
of l. Typically, l is taken to be O(λ) in order to make the
probability pcheat negligible in λ. Thus, the verifier detects a
malicious server corrupting β-fraction of the file with prob-
ability pdetect = 1− pcheat = 1− (1− β)l, and it guarantees
the integrity of almost all vectors of the file.

4. DPDP I: A DYNAMIC PROVABLE DATA
POSSESSION SCHEME

Erway et al. [18, 17] propose two efficient and fully dy-
namic provable data possession schemes: DPDP I (based
on rank-based authenticated skip lists) and DPDP II (based
on rank-based RSA trees). We consider only the DPDP I
scheme here.

4.1 Blockless Verification in DPDP I
Let there be a key generation algorithm KeyGen that pro-

duces a public key pk = (N, g), where N = pq is a product
of two large primes and g is an element of Z∗N with large
order. Suppose the initial data file consists of m̃ blocks
b1, b2, . . . , bm̃. For each block b, the client computes a tag
T (b) = gb mod N . Now, the client builds a rank-based au-

thenticated skip list M̃ on the tags of the blocks and uploads
the data, tags and the skip list to the cloud server. The in-
sertion, deletion and modification operations are performed
in a similar fashion as discussed in Section 3.3. There is no
secret key involved in the DPDP I scheme. Although Erway
et al. do not claim explicitly the public verifiability of the
DPDP I scheme, we observe that the scheme can be made
publicly verifiable by simply making the metadata dM̃ of the
up-to-date skip list and the value m̃ public (see the footnote
in Section 2.3).

During an audit, the verifier selects I, a random l-element
subset of {1, 2, . . . , m̃}, and generates a challenge set Q =
{(i, νi)}i∈I , where each νi is a random value. The verifier
sends the challenge set Q to the server. The server computes
an aggregated block B =

∑
i∈I νibi and sends {T (bi)}i∈I , B

and proofs {Π(i)}i∈I (see Section 3.2) to the verifier. The
verifier computes T =

∏
i∈I T (bi)

νi . Finally, the verifier
accepts the proof if and only if the following two conditions
hold: Π(i) is a valid proof for each i ∈ I and T = gB mod N .

4.2 Modified DPDP I to Make Audits Privacy-
Preserving

The secure cloud storage scheme for dynamic data dis-
cussed in Section 3.3 offers privacy-preserving audits where
a third party auditor (TPA) cannot learn about the actual
data while auditing. Let us investigate whether the scheme
DPDP I provides this facility.

As in the original scheme [18] (see Section 4.1), the server
sends the aggregated block B =

∑
i∈I νibi to the verifier (or

TPA) where |I| = l. Now, a TPA can obtain the bi values by
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solving a system of linear equations. Therefore, the audits
in the original scheme are not privacy-preserving. However,
it is not hard to make these audits privacy-preserving. We
modify the procedures involved in an audit as follows. As
before, the verifier sends the challenge set Q = {(i, νi)}i∈I
to the server. The server computes an aggregated block
B =

∑
i∈I νibi. Now, the server chooses a random value

r, and it computes B′ = B + r and R = gr mod N . The
server sends {T (bi)}i∈I , B′, R and proofs {Π(i)}i∈I to the
verifier. The verifier computes T = R

∏
i∈I T (bi)

νi . Finally,
the verifier accepts the proof if and only if the following two
conditions hold: Π(i) is a valid proof for each i ∈ I and

T = gB
′

mod N .
As discussed in Section 4.1, in order to make the scheme

publicly verifiable, the client includes the pair (dM̃ , m̃) in her
public key and updates it after every authenticated update
on the outsourced data.

Security Analysis.
The modified DPDP I scheme satisfies the authentic-

ity and freshness properties as described in Section 3.4 (this
directly follows from the same guarantees provided by the
original DPDP I). Given a probabilistic polynomial-time
adversary A that wins the data possession game (see Sec-
tion 3.4) with some non-negligible probability, there exists
a polynomial-time extractor algorithm E for the original
DPDP I which can extract the challenged vectors (except
with a negligible probability) by interacting with A. Now,
the extractor algorithm E ′ for the modified DPDP I chal-
lenges the adversary with two different challenge sets Q =
{(i, νi)}i∈I and Q′ = {(i, ν′i)}i∈I on the same commitment
r, where each νi (or ν′i) is a random value. Then, E ′ gets
two responses of the form B′ =

∑
i∈I νibi + r and B′′ =∑

i∈I ν
′
ibi + r, and the extractor now forms another B′′′ =∑

i∈I ν
′′
i bi where ν′′i = νi − ν′i for each i ∈ I. We note that

B′′′ =
∑
i∈I ν

′′
i bi is similar to a response from the adversary

in the original DPDP I scheme described in Section 4.1.
Thus, E ′ can extract (at least) the challenged vectors in a
similar fashion as done by E .

Privacy-Preserving Audits.
We observe that the TPA does not have an access to

the value of B. To get the value of B, the TPA has to solve
either B from gB mod N , or r from R = gr mod N , both
of which are infeasible for any probabilistic polynomial-time
adversary A, except with some negligible probability. Thus,
the audits are privacy-preserving in this modified scheme.

5. PERFORMANCE ANALYSIS
In this section, we discuss about the efficiency of our DSCS

protocol (described in Section 3.3) and compare this scheme
with other existing SCS protocols achieving provable data
possession guarantees. We also identify some limitations
of an SNC-based SCS scheme (for static or dynamic data)
compared to the DPDP I scheme (described in Section 4).

5.1 Efficiency
The computational cost of the algorithms in our DSCS

protocol is dominated by the cost of exponentiations (mod-
ulo N) required. To generate the value x in an authentica-
tion tag for each vector (in the algorithm Outsource), the
client has to perform a multi-exponentiation [29] and calcu-

late the e-th root of the result (see Eqn. 1 in Section 3.3).
The server requires two multi-exponentiations to calculate
the value of x (see Eqn. 2 in the algorithm Prove). To ver-
ify a proof using the algorithm Verify, the verifier has to
perform a multi-exponentiation and a single exponentiation
(see Eqn. 3).

As mentioned in Section 3.2, due to the properties of a
skip list [32], the size of each proof Π (related to the rank-
based authenticated skip list), the time required to generate
Π and the time required to verify Π are O(logm) with high
probability.

5.2 Comparison among PDP Schemes
As our DSCS protocol provides provable data possession

(PDP) guarantees, we compare our scheme with some other
PDP schemes found in the literature. The comparison shown
in Table 1 is done based on different parameters related to
an audit.

Now, we discuss about a few limitations of our DSCS pro-
tocol compared to DPDP I (specifically), since both of them
are secure in the standard model, handle dynamic data and
offer public verifiability. In the DSCS protocol, the audits
are privacy-preserving, that is, a third party auditor (TPA)
cannot gain knowledge of the data actually stored in the
cloud server. Although the original DPDP I scheme does
not offer privacy-preserving audits, this scheme can be mod-
ified to support the same (see Section 4.2). The issues of our
scheme compared to the modified DPDP I scheme are men-
tioned below.

1. The size of the public key is O(m+ n) in our scheme.
On the other hand, the size of the public key in the
modified DPDP I scheme is constant.

2. The authentication tags in the DSCS protocol are of
the form (s, x), where s ∈ Fe and x ∈ Z∗N . An au-
thentication tag in the modified DPDP I scheme is an
element of Z∗N . Thus, the size of a tag in the DSCS
protocol is larger than that in the modified DPDP I
scheme by λ+ 1 bits (as e is a (λ+ 1)-bit prime).

3. In our DSCS scheme, the value of (dM ,m) and the
hi values in the public key must be changed for each
insertion or deletion (only change in dM is required
for modification), whereas only the value of (dM̃ , m̃)
needs to be changed in the modified DPDP I scheme.
However, if the server keeps a local copy of the public
key (an ordered list containing hi values for i ∈ [1,m]),
then small changes are required at the server side. The
server inserts the new h value (sent by the client) in
(i+ 1)-th position in the list (for insertion) or discards
the i-th h value (for deletion).

Thus, the proposed DSCS scheme suffers from the limi-
tations mentioned above. We note that the existing SSCS
protocol [14] based on the same SNC protocol [11] also suf-
fers from the first two of these limitations. However, in this
work, we explore if an efficient secure cloud storage protocol
can be constructed from a secure network coding protocol.
A more efficient (in terms of the size of the public key or
the size of an authentication tag) SNC protocol having the
properties mentioned in Section 3.1 can lead us to construct
a more efficient DSCS protocol in future.
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Secure cloud Type Computation Computation Communication Publicly Privacy- Security
storage of for verifier for server complexity verifiable preserving model

protocols data audits

PDP [3] Static O(1) O(1) O(1) Yes No RO†

Scalable PDP [4] Dynamic‡ O(1) O(1) O(1) No No RO
DPDP I [18] Dynamic O(log m̃) O(log m̃) O(log m̃) Yes§ No Standard

Modified DPDP I Dynamic O(log m̃) O(log m̃) O(log m̃) Yes Yes Standard
(in this work)
DPDP II [18] Dynamic O(log m̃) O(m̃ε log m̃)? O(log m̃) Yes§ No Standard

Wang et al. [39] Dynamic O(log m̃) O(log m̃) O(log m̃) Yes No RO
Wang et al. [38] Dynamic O(log m̃) O(log m̃) O(log m̃) Yes Yes RO
Chen et al. [14] Static O(1) O(1) O(1) Yes Yes Standard

Our DSCS scheme Dynamic O(logm) O(logm) O(logm) Yes Yes Standard
(in this work)

Table 1: Comparison of the secure cloud storage schemes achieving PDP guarantees. For simplicity, we
exclude the security parameter λ from complexity parameters (for an audit). The value m denotes the
number of vectors in our DSCS scheme, and m̃ denotes the number of segments the data file is divided in
(such that an authentication tag is associated with each segment). The term O(ñ) is added implicitly to each
complexity parameter, where ñ is the size of each segment. For example, ñ = n in the last two schemes, where
a vector having n blocks is considered to be a segment. For all the schemes, the storage at the verifier side
is O(1), and the storage at the server side is O(|F ′|) where F ′ is the outsourced file. If l is the cardinality of
the challenge set and the server corrupts β-fraction of the file, the detection probability pdetect = 1 − (1 − β)l

for all the schemes (except, in DPDP II, pdetect = 1− (1− β)Ω(log m̃)).

† RO denotes the random oracle model [6].
‡ Scalable PDP scheme supports deletion, modification and append only for a predefined number of times,
and insertion is not supported in this scheme.
§ A small change (making the latest values of dM̃ and m̃ public) is required in the original scheme (see
Section 4.1).
? ε is a constant such that 0 < ε < 1.

6. CONCLUSION
In this work, we have proposed a DSCS protocol based on

an SNC protocol. To the best of our knowledge, this is the
first SNC-based DSCS protocol that is secure in the stan-
dard model, enjoys public verifiability and offers privacy-
preserving audits. We have also discussed about some prop-
erties an SNC protocol must have such that an efficient
DSCS protocol can be constructed using this SNC proto-
col. We have modified an existing DSCS scheme (DPDP
I [18]) to make its audits privacy-preserving. We have ana-
lyzed the efficiency of our DSCS construction and compare it
with other existing secure cloud storage protocols achieving
the guarantees of provable data possession. Finally, we have
identified some limitations of an SNC-based secure cloud
storage protocol. However, some of these limitations follow
from the underlying SNC protocols used. A more efficient
SNC protocol can give us a DSCS protocol with a better
efficiency.
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