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With the development of cloud computing, the advantages of low cost and high computation ability meet the demands of
complicated computation of multimedia processing. Outsourcing computation of cloud could enable users with limited computing
resources to store and process distributed multimedia application data without installing multimedia application software in
local computer terminals, but the main problem is how to protect the security of user data in untrusted public cloud services.
In recent years, the privacy-preserving outsourcing computation is one of the most common methods to solve the security
problems of cloud computing. However, the existing computation cannot meet the needs for the large number of nodes and the
dynamic topologies. In this paper, we introduce a novel privacy-preserving outsourcing computation method which combines
GM homomorphic encryption scheme and Bloom filter together to solve this problem and propose a new privacy-preserving
outsourcing set intersection computation protocol. Results show that the new protocol resolves the privacy-preserving outsourcing
set intersection computation problem without increasing the complexity and the false positive probability. Besides, the number of
participants, the size of input secret sets, and the online time of participants are not limited.

1. Introduction

Network multimedia comes into fashion in the form of
services; there are many methods to protect multimedia data
in traditional service mode, such as steganography [1, 2] and
data embedding [3]. By providing diversified media services,
a new service mode, multimedia computing, has become an
attractive technology to generate, edit, process, and search
various media contents, like images, videos, audios, graphs,
and so on [4]. For purposes of multimedia applications and
services based on Internet andmobile Internet, it needs lots of
computation resources so as to serve millions of netizens and
wireless users, which means a large demand for multimedia
cloud computing. Cloud computing is a new computing
mode which could provide kinds of data service based on
its computational resources. As an important application
of cloud computing, outsourcing computation could enable

users with narrow computing power to outsource complex
function calculations to cloud servers and could guarantee
the correctness of outputs and privacy of both inputs and
outputs. So in this newmultimedia computationmode based
on cloud computing, users can store and process distributed
multimedia application data without installing multimedia
application software in local computer terminals to ease off
the load of maintenance and updating. With regard to the
large amount of computation of sites, data, and attribute
dimensions, we introduce PSI into cloud computing.There is
a wide range of applications where Secure Multiparty Com-
putation is introduced into cloud computing considering the
privacy-preserving algorithms.

Private Set Intersection (PSI) is an important research
branch of Secure Multiparty Computation (SMC), which is
a research hotspot in recent years. Privacy-preserving set
operation can be described as the situation that multiple
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participants wish to complete set intersection computation
based on their private secret sets, and they cannot receive
additional information other than results after computation.
In PSI research model, participants complete secure com-
putation using their private computing resources through
mutual communication. Privacy preservation has become a
key factor in extending the application of cloud computing,
and it is the current research trend. In order to implement
PSI in cloud computing successfully to solve the problems
mentioned, Privacy-preserving Outsourcing Set Intersection
(POSI) is proposed.

1.1. Contributions. The work we have completed in this
paper contributes to the study and development of privacy
preservation as well as outsourcing computation in several
aspects as follows:

(1) We summarize system models of current privacy-
preserving technology and propose a systemmodel of
privacy-preserving outsourcing computation proto-
col in cloud computing. It can guarantee the security
and correctness of the data.

(2) We study and implement a privacy-preserving set
intersection protocol based on GM homomorphic
encryption scheme and Bloom filter, and the pro-
posed protocol is proved to be significant.

(3) In detail, the protocol has some characteristics as
follows:

(a) The participant encrypts the secret set locally
and consigns ciphertexts to the server who
completes the outsourcing computation, but the
server is unable to know about the participant’s
secret set because it does not have the private
key to decrypt them. So it guarantees security.
Participants can check whether one or more
items of data are in the intersection.

(b) The protocol does not require sizes of partic-
ipants’ sets being the same as well as public
compared to the existing PSI protocols [5–14].

(c) The protocol can implement secure outsourcing
computation of more than two participants’
secret set intersection without the limitation
that participants should be online at the same
time, while the existing secure outsourcing
computation protocol of set intersection [15]
can only solve the situation with two partici-
pants online.

(d) The protocol has a lower probability of com-
munication complexity and false positive error
verification compared with [15].

(e) The protocol is safe under the semihonest
model. We provide a full proof with simulation
based security.There are two reasons why we do
not design a protocol in the malicious model.(1)The proposed algorithm can be packaged as
software. When we use peripheral secure tech-
nology to make the software difficult to be tam-
pered with, semihonest model is safe enough.

(2) Converting protocol in semihonest model
to malicious model is an independent research
topic with plenty of achievements currently. If
necessary, the algorithm can be converted into
one in themaliciousmodel based on the existing
research findings.

1.2. Related Work. The following sections describe the
research progress of privacy-preserving set intersection and
outsourcing computation.

1.2.1. Secure Multiparty Computation. Protocols for Secure
Multiparty Computation enable a set of parties to carry out
a joint computation on private inputs, without revealing
anything but the output. Over the past decade, there has
been a major research effort to develop Secure Multiparty
Computation. Zhou et al. [16] proposed a secure multiparty
subset protocol using the Bloom filter and homomorphic
encryption scheme. However, their protocol may yield a false
positive. Liu et al. [17] proposed an information-theoretically
secure protocol to solve the multiparty millionaires’ problem
using the vectorization and secret splitting methods; their
protocol can resist collusion attacks. Sun et al. [18] proposed
a secure outsourcing multiparty computation protocol on
lattice-based encrypted data in two-cloud-servers scenario.
Their protocol was completely noninteractive between any
users, and both of the computation and the communication
complexities of each user in our solution were independent
of the computing function.

1.2.2. Privacy-Preserving Set Intersection. Privacy-preserving
set intersection is a research focus in the field of cryptography.
The PSI problem can be described as the situation that
multiple participants wish to complete the set intersection
computation based on their private secret sets, and they
cannot receive additional information other than results after
the computation.

According to different implementation principles, we can
classify research findings of PSI into the following four types.

(i) The Oblivious Polynomial Evaluation Based Protocols.
Oblivious polynomial evaluation is the first method to imple-
ment the PSI protocol. Dachman-Soled et al. [5] implemented
a PSI protocol in malicious models using Shamir Threshold
Secret Sharing technology. The computational complexity of
the algorithm is 𝑂(𝑚𝑛𝑘 log 𝑛 + 𝑚𝑘2log2𝑛), and the com-
munication complexity is 𝑂(𝑛𝑘 + 𝑚𝑘2log2𝑛), in which 𝑘 is
the secure parameter, while 𝑚 and 𝑛 are the sizes of the
participant input sets.

(ii) The Oblivious Pseudorandom Function Based Protocols.
At the TCC Conference in 2008, Hazay and Lindell [6] pro-
posed a privacy-preserving set intersection protocol based
on the oblivious pseudorandom function. The scheme is safe
in the weakly malicious model, which means participants’
malicious behavior will be found with a high probability.
Later, Hazay and Nissim [7] used zero-knowledge proof
and perfectly hiding commitment scheme to implement
a privacy-preserving set intersection protocol in malicious
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model. The communication complexity of the algorithm is𝑂(𝑚+𝑛(log log𝑚+𝜎)), and the computational complexity is𝑂(𝑚+𝑛𝜎), in which𝑚 and 𝑛 are the sizes of the two sets. 𝜎 is
elements’ largest binary number of bits in the set. Jarecki and
Liu [8] proposed a privacy-preserving intersection protocol
under the CRS model based on the Decisional-q-Diffie-
Hellman Inversion hypothesis. De Cristofaro and Tsudik
[9, 10] proposed a privacy-preserving intersection operation
protocol with linear complexity under the semihonest model
based on the One-More-Gap-DH hypothesis. Later, De
Cristofaro et al. [11] proposed an efficient privacy-preserving
intersection operation scheme against malicious attackers
based on the DDH hypothesis.

(iii) The Bloom Filter Based Protocols. Bloom filter is a new
data structure introduced in recent years, of which the struc-
ture is similar to bit-map. Compared to bit-map, Bloom filter
savesmore space and can quickly judge whether an element is
in a set. But there is a certain rate of error recognition in this
method. In 2012, Many et al. [12] introduced Bloom filter into
the privacy-preserving intersection operations.They used the
secure multipart multiplication protocol to get the Bloom
filter vector corresponding to the intersection of participants
and then get the set intersection. However, the algorithm is
insecure because the intersection Bloom filter vector leaked
information of each participant’s set. In 2013, Dong et al.
[13] designed amore efficient privacy-preserving intersection
protocol based on Bloom filter, using secret sharing and
oblivious transfer. Take the privacy-preserving intersection
operation protocol under semihonest model as an example;
the scheme Dong et al. [13] proposed requires 2(𝑘 + 𝑘 log2𝑒)𝑛
times of hash operations and hundreds of public key opera-
tions. In 2014, Pinkas and Schneider [14] designed a random
confusion Bloom filter to optimize efficiency of the protocol
of Dong et al. [13], using oblivious extension protocol.

(iv) The Garbled-Circuit Technology Based Protocols. Using
garbled-circuit technology to solve privacy-preserving prob-
lems is a common method of Secure Multiparty Compu-
tation, but many references in the past suggest that the
method is less efficient. In 2012, Huang et al. [19] designed
the intersection-specific circuit based on the idea of “Sort-
Compare-Shuffle” and implemented the privacy-preserving
intersection operation protocol using Yao’s generic garbled-
circuit method. The experimental results of Huang et al.
[19] show that the scheme of De Cristofaro and Tsudik
[9, 10] is more efficient when the security level is low, and
as the security level increases, the scheme of Huang et al.
[19] is significantly better than that of De Cristofaro and
Tsudik [9, 10] considering efficiency of the program. In
2014, Pinkas and Schneider [14] optimized the GMW scheme
using oblivious extension protocol, used the optimizedGMW
scheme to evaluate the intersecting circuit designed by
Huang et al. [19], and implemented a more efficient privacy-
preserving intersection operation protocol on Boolean cir-
cuits. The computational complexity is 18𝑛𝜎 log 𝑛 times of
symmetric encryption operations, while the communication
complexity is 𝑂(6𝑛𝑘𝜎 log 𝑛), in which 𝑘 is the secure para-
meter.

1.2.3. Privacy-Preserving Outsourcing Computation. Out-
sourcing computation in multimedia processing is an emerg-
ing technology in recent years. Although the study of privacy-
preserving outsourcing computation has just started, it is the
current research hot spot.

At the CRYPTO conference in 2010, Gennaro et al.
[20] proposed privacy-preserving issues in verifiable com-
putations and designed a privacy-preserving outsourcing
computation protocol that can achieve verifiable efficiency
based on the homomorphic encryption technology. In 2011,
Mohassel [21] designed a noninteractive security outsourcing
computation protocol on linear algebraic operations based
on homomorphic encryption. In 2013, Parno et al. [22]
designed the Pinocchio system which implemented efficient
outsourcing computation, but the system did not take into
account the privacy-preserving issues of the information
input by participants; Schoenmakers et al. [23] designed the
Trinocchio system to solve the leakage of Pinocchio system,
enabling efficient verifiable secure outsourcing computation.
In the same year, Peter et al. [24] designed a secure outsourc-
ing computation protocol for common functional functions,
using a dual decryption mechanism scheme with additive
homology, and implemented an efficient face recognition
system in cloud computing environment based on this
protocol. In 2013, Xing et al. [25] constructed a verifiable
secure outsourcing computation protocol using the blind
product as a matrix product, matrix determinant, and matrix
inverse. The security does not depend on any cryptographic
assumptions. In 2014, Hu and Tang [26] implemented the
secure outsourcing protocol of multiplication on the elliptic
curve in the cloud computing environment, which could
effectively accelerate the efficiency of signature verifica-
tion.

Although the PSI protocol has implemented plenty of
achievements, they cannot be converted to be used in
privacy-preserving set intersection outsourcing computation
directly. At present, the research on the privacy-preserving
issues in set intersection outsourcing computation has just
started, while the findings are still not enough. Accord-
ing to our searching results, Kerschbaum [15] proposed a
set intersection secure outsourcing protocol based on SYY
homomorphic encryption scheme andBloomfilter. However,
the protocol has the following problems: (1) the protocol
only solves the secure outsourcing computation of two
participants’ set intersections, while one of the participants
needs to be both common participant and server at the
same time; (2) during the process of the protocol, all the
participants are required to be online at the same time; (3)
there is a high probability of false positive error judgement in
the protocol.

1.3. Organizational Structure. In the second session, we
introduce secure definition in the scheme and the underlying
cryptographic tools. We show the system model in Section 3
and present the privacy-preserving set intersection compu-
tation protocol which can be applied into cloud computing
in Section 4. In Section 5, we give the correct proof of the
protocol, error probability analysis, and security proof as well
as efficiency analysis and comparison. Finally, we summarize
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prospects of our protocol’s application in multimedia pro-
cessing based on cloud computing in the Conclusion.

2. Background

2.1. Secure Model and Secure Definition. Since the protocol
proposed in this paper belongs to one kind of the Secure
Multiparty Computation protocols, we use secure models
and secure definitions of Secure Multiparty Computation
protocols.

Participants of Secure Multiparty Computation are clas-
sified into honest participants, semihonest participants, and
malicious participants. During the implementation of the
protocol, honest participants completely comply with the
protocol, with no provision of false data, leakage, eavesdrop-
ping, and suspension of the protocol; semihonest participants
will finish each step following the requirements of the imple-
mentation without behaviors mentioned earlier, but they will
keep all the information they collected in order to judge
secret messages of other participants; malicious participants
completely ignore the requirements of the protocol. They
may provide false data, leak all the information they collect,
eavesdrop, or even suspend protocols.

The semihonest model is safe and widely used in Secure
MultipartyComputation.Themodel can be intuitively under-
stood as the situation that if a semihonest participant can
directly use their input and output of protocols to obtain
any information he can reach in the implementation of
the protocol by a separate simulation of the entire protocol
implementation process, it can be guaranteed in the protocol
that the input is private. If a computation protocol can
be simulated like this, participants cannot obtain valuable
information from the execution of the protocol, and such
protocol is safe.

Definition 1 (private computation under semihonest model).
In the implementation of protocol Π, the information that
participants 𝑃1 and 𝑃2 obtain is recorded as

VIEWΠ1 (𝑥, 𝑦) = (𝑥, 𝑟1, 𝑚11, 𝑚12, . . . , 𝑚1𝑡 )
VIEWΠ2 (𝑥, 𝑦) = (𝑥, 𝑟2, 𝑚21, 𝑚22, . . . , 𝑚2𝑡 ) . (1)

In the equations, 𝑟𝑖 represents the random number 𝑃𝑖 gen-
erates and 𝑚𝑖𝑗 represents the 𝑗th message 𝑃𝑖 receives. After
the protocol ends, the output of participant 𝑃𝑖 is recorded as
OUTPUTΠ𝑖 (𝑥, 𝑦). We can see that in fact OUTPUTΠ𝑖 (𝑥, 𝑦) is
a part of VIEWΠ𝑖 (𝑥, 𝑦).

As for the deterministic function 𝑓, we can say that
protocolΠ computes𝑓 under the semihonestmodel privately
if and only if probability polynomial time algorithms 𝑆1 and𝑆2 exist, and it conforms to the equations:

{𝑆1 (𝑥, 𝑓1 (𝑥, 𝑦))}𝑥,𝑦∈{0,1}∗ 𝑐≡ {VIEWΠ1 (𝑥, 𝑦)}𝑥,𝑦∈{0,1}∗
{𝑆2 (𝑦, 𝑓2 (𝑥, 𝑦))}𝑥,𝑦∈{0,1}∗ 𝑐≡ {VIEWΠ2 (𝑥, 𝑦)}𝑥,𝑦∈{0,1}∗

(2)

for |𝑥| = |𝑦|.

2.2. GM Homomorphic Encryption. A high-level description
of Gentry’s scheme is as follows. The scheme is based on
identifying ideals 𝐼 in polynomial quotient rings𝑍[𝑥]/(𝑓(𝑥))
(with ∘(𝑓) = 𝑛) with euclidean lattices 𝐿𝐼 ⊆ 𝑅𝑛 by mapping
eachresidue polynomial 𝑟(𝑥) = 𝑎0 + ⋅ ⋅ ⋅ + 𝑎𝑛−1𝑥𝑛−1 to its
vector of coefficients (𝑎0, . . . , 𝑎𝑛−1). Gentry calls these objects
ideal lattices. Ideal lattices provide additive andmultiplicative
homomorphisms modulo a public key ideal. We obtain
an encryption procedure Encrypt such that Encrypt(𝑥1) +
Encrypt(𝑥2) = Encrypt(𝑥1 + 𝑥2) and Encrypt(𝑥1) ⋅
Encrypt(𝑥2) = Encrypt(𝑥1 ⋅ 𝑥2). Therefore, any circuit 𝐶
with efficient description can be evaluated homomorphi-
cally. However, this somewhat fully homomorphic scheme
(SWHE) is not perfect. Due to the noisy nature of the scheme,
with each homomorphic gate evaluation the noise term in the
partial result grows. After the evaluation of only a logarithmic
depth circuit, the decryption fails to recover the correct result.
Tomake the schemework, Gentry uses a number of tricks. He
introduces a reencryption procedure calledRecrypt that takes
a noisy ciphertext and returns a noise-reduced version. In a
brilliant move, Gentry manages to obtain Recrypt again from
the SWHE scheme by simply homomorphically evaluating
the decryption circuit using encrypted secret key bits on the
noisy ciphertext. To make this work, the SWHE needs to be
able to handle circuits that are deeper than its own decryption
circuit before the level of noise becomes too large. SWHE
schemes with this property are called bootstrappable.

2.3. XOR Secret Sharing. The secret publisher converts his
secret 𝑠 into 𝑛 subsecrets and sends them to other partici-
pants. The secret sharing scheme is called a (𝑡, 𝑛) threshold
secret sharing scheme when they can recover the secret 𝑠
if and only if at least 𝑡 participants contribute their specific
subsecrets.

When the threshold 𝑡 = 𝑛, the XOR secret sharing scheme
proposed by Ishai et al. [27] is widely used. The details are as
follows.

Participants. The participants are secret publisher 𝐷 and 𝑛
participants 𝑃1, 𝑃2, . . . , 𝑃𝑛.
Input. The input is secret 𝑠 that secret publisher𝐷 inputs.

Secret Sharing. (1) Secret publisher generates 𝑛 − 1 random
numbers 𝑟1, 𝑟2, . . . , 𝑟𝑛−1, and the length of each is |𝑠|.(2) Secret publisher calculates the 𝑛th secret:

𝑟𝑛 = 𝑟1 ⊕ 𝑟2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛−1 ⊕ 𝑠. (3)

{𝑟1, 𝑟2, . . . , 𝑟𝑛} compose subsecrets of 𝑠.(3) As for 𝑖 = 1, 2, . . . , 𝑛, the secret publisher sends
subsecret 𝑟𝑖 to 𝑃𝑖.
Secret Recovery. When it is necessary to recover the secret 𝑠,𝑛 participants 𝑃1, 𝑃2, . . . , 𝑃𝑛 contribute their own subsecrets
and do the following operation:

𝑠 = 𝑟1 ⊕ 𝑟2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛. (4)
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Figure 1: Secure Multiparty Computation model.

2.4. Bloom Filter. The Bloom filter [28] set is a data structure
used to judge whether an element is in a set. A Bloom filter
contains several hash functions hash𝑖 (𝑖 = 1, 2, . . . , 𝑘) and a
Bloom filter set BF. When building a Bloom filter set, use the
hash function first to map the data 𝑥 which is to be inserted
to the 𝑘th position of BF, and then set the data on those
positions to 1. When all the data is inserted, the Bloom filter
set is completed. When verifying whether a data 𝑦 is in a set,
use the hash function first to map 𝑦 to the 𝑘th position of
BF. If the values of these 𝑘 data bits are all 1, there is a great
possibility that 𝑦 is in the set; otherwise it is not in for sure.

3. System Model

A trusted third party is a model that solves the privacy-
preserving problem in distributed computation, as shown
in Figure 1(a). However, it is difficult to find a completely
credible third party in real life, so this system model is rarely
used at present. Currently in the field of Secure Multiparty
Computation, a widely used system model is shown in
Figure 1(b). It needs a number of participants to complete the
secure computation of a certain function through informa-
tion interaction instead of a trusted third party. To achieve
the privacy-preserving outsourcing computation, we can not
use the model of Figure 1(a) directly because a completely
trusted third party does not exist; nor can we use Figure 1(b)

model directly, because a lot of computation is consigned to
the server.

The system model we use is shown in Figure 1(c).
Although a completely trusted third party does not exist,
the authority (for example, an authoritative digital certificate
authority) does exist. Before the protocol is formally con-
ducted, the participant will be authenticated by the authority
first. If the audit passes, the authority sends the system key
to participants. In the process of the protocol, participants
use the public key to encrypt their own secret sets and
consign the ciphertexts to the server. The server computes
all the ciphertexts it takes over and saves them. Then every
participantmay request to verify whether one or some of data
is in the intersection of the sets at any time.

Then we describe the behavior pattern of all participants
and the server after the authentication in the system model
applied in cloud computing shown in Figure 1(c). In this
system model, the problem to be solved can be described
as follows: 𝑚 participants 𝑃1, 𝑃2, . . . , 𝑃𝑚 hold secret mes-
sages separately, and the participant completes the operation𝑓(𝑠1, 𝑠2, . . . , 𝑠𝑚) by leasing a server with powerful computing
resources. In terms of security, the participant wishes others
not to be informed of other useful information except the
results after completing the computation; the server is unable
to know the participants’ secret messages 𝑠1, 𝑠2, . . . , 𝑠𝑚, and
the server can not know the result 𝑓(𝑠1, 𝑠2, . . . , 𝑠𝑚).
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We divide the information interaction between partici-
pants and servers into three stages: preprocessing, outsourc-
ing computation, and results query. In the preprocessing
stage, behavior of participants and servers is as follows:

𝑃𝑖 : 𝑆𝑖 𝜋󳨀→ 𝜋 (𝑆𝑖)
𝑃𝑖 𝜋(𝑆𝑖)󳨀󳨀󳨀→ Server. (5)

As for each participant 𝑃𝑖, the first step is converting 𝑆𝑖 to𝜋(𝑆𝑖) through a certain operation 𝜋 locally and then sending𝜋(𝑆𝑖) to the server. The operation 𝜋 should be unidirectional;
otherwise the server will be informed of the participant’s
secret message.

In the outsourcing computation stage, the server con-
verts all the outsourced data of participants to data sources𝐹(𝜋(𝑆1), 𝜋(𝑆2), . . .) of the results query stage through a certain
operation 𝐹. We can use the following equation to represent
the server’s behavior pattern:

Server : {𝜋 (𝑆1) , 𝜋 (𝑆2) , . . .}
𝐹󳨀→ 𝐹 (𝜋 (𝑆1) , 𝜋 (𝑆2) , . . .) . (6)

In the results query stage, the behavior pattern of the inquirer𝑃𝑖 and the server is as follows:

𝑃𝑖 𝑄𝑖󳨀󳨀→ Server

Server : {𝐹 (𝜋 (𝑆1) , 𝜋 (𝑆2) , . . .) , 𝑄𝑖} Δ󳨀→ 𝑅𝑖
Server

𝑅𝑖󳨀→ 𝑃𝑖
𝑃𝑖 : 𝑅𝑖 Φ󳨀→ Φ(𝑅𝑖) .

(7)

It means that the participant constructs query data 𝑄𝑖 and
sends it to the server first. The server conducts operationΔ using the result 𝐹(𝜋(𝑆1), 𝜋(𝑆2), . . .) of the previous stage
and 𝑄𝑖 as input and then gets the result 𝑅𝑖 and sends it to𝑃𝑖. Participants 𝑃𝑖 conduct a certain decryption Φ to 𝑅𝑖 and
gets the final resultΦ(𝑅𝑖).The correctness requirement of this
model is Φ(𝑅𝑖) = 𝑓(𝑠1, 𝑠2, . . . , 𝑠𝑚).
4. Privacy-Preserving Set Intersection
Outsourcing Computation Protocol

In this section, we design the set intersection secure outsourc-
ing protocol in accordancewith three stages of preprocessing,
outsourcing computation, and results query. We state in
this section that participants and authorities have completed
authentication and key distribution in Figure 1(c).

The protocol uses the following symbols: 𝑃 represents
all participants, 𝑃𝑖 represents the 𝑖th participant, and 𝑚
represents the number of participants. The secret set of
participant 𝑃𝑖 is 𝑆𝑖, and its size is represented by |𝑆𝑖|. GF𝑖
represents the Bloom filter set of participant 𝑃𝑖 and GF𝑖(𝑗)
represents the 𝑗th element in the Bloomfilter set.The number
of elements in Bloom filter is 𝑡 while the number of hash

functions used in the process of forming Bloom filters is 𝑘.
CGF𝑖 represents ciphertexts corresponding to Bloomfilter set
of𝑃𝑖.The length of ciphertexts in XOR secret sharing is 𝑛, and
the length of ciphertexts in GM encryption algorithm is 𝑙.
4.1. Preprocessing. In the preprocessing stage, the participant
generates Bloom filter set corresponding to his private secret
set. In order to reduce the probability of false positives,
participants share data of secret sets to the 𝑘 elements of
Bloom filter, using XOR secret sharing. We can get the
positions of the 𝑘 elements by hashing. In order to achieve
privacy preservation, participants use the GM algorithm to
do encryption operations on their respective Bloom filter sets
and send them to server. The preprocessing protocol process
is as shown in Algorithm 1.

After the previous computation, participant 𝑃𝑖 gets
encrypted Bloom filter set CBF𝑖, and 𝑃𝑖 needs to send CBF𝑖
to server to complete the data outsourcing.

4.2. Outsourcing Computation. After the previous stage ends,
server receives the encrypted Bloom filter sets CBF𝑖 (𝑖 =0, 1, . . . , 𝑚) that all the participants send. Server does the
following operations in the outsourcing computation stage:

for (𝑗 = 0; 𝑗 < 𝑡𝑛; 𝑗 + +)
{

CBF(𝑗) = ∏𝑚𝑖=0CBF𝑖(𝑗)
}

4.3. Results Query. In the results query stage as shown in
Algorithm 2, participants query whether one of more data is
in the intersection.

5. Theoretical Analysis

In this section, we analyze the correctness, error probability,
security, and performance of the protocol and compare the
results with the existing ones.

5.1. Correctness

Theorem 2. When the participant is able to construct the
Bloom filter successfully, the proposed set intersection secure
outsourcing protocol is correct.

Proof. ∀𝑞 ∈ 𝐼, then, for 𝑖 = 1, 2, . . . , 𝑚, there is
𝑞 ∈ 𝑆𝑖 as well as 𝑘−1⨁

𝑗=0

BF𝑖 (hash𝑗 (𝑞)) = 𝑞. (8)

Because GM algorithm has a characteristic of XOR homo-
morphies, for 𝑗 = 0, 1, . . . , 𝑘 − 1, there is

CBF (hash𝑗 (𝑞)) = Enc( 𝑚⨁
𝑖=1

BF𝑖 (hash𝑗 (𝑞))) . (9)
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Participants: 𝑃𝑖
Input: the input sets of 𝑃𝑖: 𝑆𝑖
System parameters: 𝑘 hash functions hash𝑖 (𝑖 = 1, 2, . . . , 𝑘)
for (𝑗 = 0; 𝑗 < 𝑡; 𝑗 + +)

BF𝑖(𝑗) = NULL;//In the initial state, the Bloom filter set//of participants is empty
for (𝑗 = 0; 𝑗 < |𝑆𝑖|; 𝑗 + +){ 𝜋 = NULL;

for (𝛿 = 0; 𝛿 < 𝑘; 𝛿 + +){
if (BF𝑖(hash𝛿(𝑆𝑖(𝑗))) == NULL){ 𝜋 = hash𝛿(𝑆𝑖(𝑗));

BF𝑖(hash𝛿(𝑆𝑖(𝑗))) = Random(0, 1)𝑛;//generate random numbers//with the length of 𝑛;}
if (𝜋 == NULL)

Return error1; //error
else

BF𝑖(𝜋) = 𝑆𝑖(𝑗) ⊕ BF𝑖(hash1(𝑆𝑖(𝑗))) ⊕
BF𝑖(hash2(𝑆𝑖(𝑗))) ⊕⋅ ⋅ ⋅ ⊕ BF𝑖(hash𝑘(𝑆𝑖(𝑗)))}}𝜀 = 0;

for (𝑗 = 0; 𝑗 < 𝑡; 𝑗 + +){
if (BF𝑖(𝑗) == NULL)

BF𝑖(𝑗) = Random(0, 1)𝑛;
for (𝜇 = 0; 𝜇 < 𝑛; 𝜇 + +){ 𝜀 = 𝜀 + 1;

CBF𝑖(𝜀) = Enc(BF𝑖(𝑗)𝜇);//BF𝑖(𝑗)𝜇 represents the 𝜇th//bit in BF𝑖(𝑗);}}
Algorithm 1: Preprocessing protocol.

When participants query whether 𝑞 is in the set intersection,
for 𝑗 = 0, 1, . . . , 𝑘 − 1, there is

QBF (hash𝑗 (𝑞)) = 1. (10)

So participants use extended oblivious transfer protocol to get
the set ABF, and there is

ABF (hash𝑗 (𝑞)) = CBF (hash𝑗 (𝑞)) . (11)

We can know from (9) and (11) that

Dec (ABF (hash𝑗 (𝑞))) = 𝑚⨁
𝑖=1

BF𝑖 (hash𝑗 (𝑞)) . (12)

So

𝜋 = 𝑘−1⨁
𝛿=0

Dec (ABF (hash𝛿 (𝑞)))
= 𝑘−1⨁
𝛿=0

( 𝑚⨁
𝑖=1

BF𝑖 (hash𝛿 (𝑞)))
= 𝑚⨁
𝑖=1

( 𝑘−1⨁
𝛿=0

BF𝑖 (hash𝛿 (𝑞))) = 𝑚⨁
1

𝑞.
(13)

So when𝑚 is even, 𝜋 = {0}𝑛; when𝑚 is odd, 𝜋 = 𝑞.
Similarly, if 𝑞 ∉ 𝐼, when 𝑚 is even, 𝜋 ̸= {0}𝑛; when 𝑚 is

odd, 𝜋 ̸= 𝑞.
The proof is finished.
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Participants: 𝑃𝑖, Server
Input: 𝑃𝑖 inputs query set 𝑄 ={𝑞1, 𝑞2, . . . , 𝑞𝜏}; Server inputs the Bloom filter
set CBF of intersection 𝐼.
Output: 𝑃𝑖 gets query results 𝑅 ={𝑟1, 𝑟2, . . . , 𝑟𝜏}, if 𝑟𝑖 = 1, then data 𝑞𝑖 ∈ 𝐼;
otherwise 𝑞𝑖 ∉ 𝐼.
Step 1. Server generates random Bloom filter
set RBF and Bloom filter set pair PBF
following the steps below.
for (𝑗 = 0; 𝑗 < 𝑡𝑛; 𝑗 + +){

RBF(𝑗) = Random(0, 1)𝑙;
PBF(𝑖) = (RBF(𝑗),CBF(𝑗));}

Step 2. 𝑃𝑖 generates query Bloom filter set
QBF according to query set 𝑄.
for (𝑗 = 0; 𝑗 < 𝑡𝑛; 𝑗 + +)

QBF(𝑗) = 0;
for (𝑗 = 0; 𝑗 < 𝑄; 𝑗 + +){

for (𝛿 = 0; 𝛿 < 𝑘; 𝛿 + +){
QBF(hash𝛿(𝑞𝑗)) = 1;}}

Step 3. 𝑃𝑖 and Server implement oblivious
transfer protocol OT𝑡𝑙 . 𝑃𝑖 is set to be a
Receiver and Server is set to be a Sender. The
input of 𝑃𝑖 is QBF while the input of Server
is PBF. After the oblivious transfer protocol
is completed, 𝑃𝑖 gets the set ABF. When
QBF(𝑗) = 0, ABF(𝑗) = RBF(𝑗); when
QBF(𝑗) = 1, ABF(𝑗) = CBF(𝑗).
Step 4. 𝑃𝑖 checks whether each element of𝑄 is in the intersection following the steps
below.
for (𝑗 = 0; 𝑗 < 𝜏; 𝑗 + +){ 𝜋 = {0}𝑛;

for (𝛿 = 0; 𝛿 < 𝑘; 𝛿 + +){ 𝜋 = 𝜋 ⊕ Dec(ABF(hash𝛿(𝑞𝑗)))}
if (𝑚(mod2) == 0){

if (𝜋 == {0}𝑛)𝑟𝑗 = 1;
else 𝑟𝑗 = 0;}

else{
if (𝜋 == 𝑞𝑗)𝑟𝑗 = 1;
else 𝑟𝑗 = 0;}}

Algorithm 2: Results query stage.

5.2. Error Probability

Theorem 3. The probability that participant 𝑃𝑖 constructs
Bloom filter set based on XOR secret sharing successfully is

𝑃 = 1 − 𝑝ℎ1 × (1 + 𝑂( ℎ𝑝1√
ln 𝑡 − ℎ ln𝑝1𝑡 )) (14)

in which 𝑝1 = 1 − (1 − 1/𝑡)ℎ(|𝑆𝑖|−1).
Proof. The necessary and sufficient condition that partici-
pants 𝑃𝑖 are unable to map their data 𝑥 of their secret sets to
the Bloom filter set when building a Bloom filter set based
on XOR secret sharing is that the 𝑘 positions in Bloom
filter data 𝑥 gets after being mapped by 𝑘 hash functions
are occupied. And the necessary and sufficient condition of
general Bloom filters with false positive authentication is that
all the 𝑘 positions data 𝑦 gets after being mapped by 𝑘 hash
functions are all set to one.Thus, the probability of participant𝑃𝑖 being unable to construct a Bloom filter set based on XOR
secret sharing is the same as the probability of a generic
Bloom filter set with false positive. From [29] we can see that
the probability is 𝑝󸀠 = 𝑝ℎ1 ×(1+𝑂((ℎ/𝑝1)√(ln 𝑡 − ℎ ln𝑝1)/𝑡)),
in which 𝑝1 = 1 − (1 − 1/𝑡)ℎ(|𝑆𝑖|−1). Thus, the probability
of participant 𝑃𝑖 successfully constructing a Bloom filter
set based on XOR secret sharing is 𝑃 = 1 − 𝑝ℎ1 × (1 +𝑂((ℎ/𝑝1)√(ln 𝑡 − ℎ ln𝑝1)/𝑡)).

The proof is finished.

Theorem 4. After the participant constructs Bloom filter
successfully, the false positive error probability is (1/2)𝑛.
Proof. ∀𝑥 ∉ 𝐼, when the result is 𝑥 ∈ 𝐼, then there will be false
positive verification. Consider the following matrix:

𝑍 =
[[[[[[[
[

BF 𝑥11 BF 𝑥21 ⋅ ⋅ ⋅ BF 𝑥𝑘1
BF 𝑥12 BF 𝑥22 ⋅ ⋅ ⋅ BF 𝑥𝑘2... ... d

...
BF 𝑥1𝑚 BF 𝑥2𝑚 ⋅ ⋅ ⋅ BF 𝑥𝑘𝑚

]]]]]]]
]

(15)

in which BF 𝑥𝑗𝑖 = BF𝑖(hash𝑗(𝑥)).
If the number of participants 𝑚 is even,⨁𝑚𝑖=1(⨁𝑘𝑗=1BF 𝑥𝑗𝑖 ) = {0}𝑛. We can know from the process

of construction that the probability is (1/2)𝑛; if it is odd,⨁𝑚𝑖=1(⨁𝑘𝑗=1BF 𝑥𝑗𝑖 ) = 𝑥; the probability is also (1/2)𝑛.
In conclusion, the probability of false positive error

is (1/2)𝑛 after the participant constructs the Bloom filter
successfully in this scheme.

The proof is finished.

5.3. Security

Theorem 5. Assuming that the underlying GM homomorphic
encryption scheme and the OT protocol are secure under
the semihonest model, the proposed set intersection security
outsourcing protocol safely implements the outsourcing compu-
tation of the participant’s secret set under the semihonestmodel.
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Proof. The protocol proposed in this paper is asymmetric,
which means only the participant is informed of the result.
So

𝑓 (𝑆1, 𝑆2, . . . , 𝑆𝑚, 𝑄)
def= (𝑓𝑃 (𝑆1, 𝑆2, . . . , 𝑆𝑚, 𝑄) , 𝑓𝑆 (𝑆1, 𝑆2, . . . , 𝑆𝑚))
def= (𝑓𝑃 (𝑆1, 𝑆2, . . . , 𝑆𝑚, 𝑄) , Λ)

(16)

in which Λ means empty strings and 𝜋 means the pro-
posed security outsourcing protocol. The security analysis is
performed from the server view and the participant view,
respectively, as follows.

Server View. First analyze the situation where the serve is
attacked. During the execution of the protocol 𝜋, the server’s
view is

view𝜋𝑠 (𝑆1, 𝑆2, . . . , 𝑆𝑚, 𝑄)
= {Λ, 𝑟𝑠,CBF1,CBF2, . . . ,CBF𝑚,CBF,PBF, viewOT

𝑠 } (17)

in which Λ means output of the server and {CBF1,CBF2,. . . ,CBF𝑚,CBF,PBF, viewOT
𝑠 }means the view of the server in

the protocol.
Create the simulator Sim𝑆 as follows. Sim𝑆 receives the

outputΛ of the server and simulates behavior of the server in
the protocol. First, Sim𝑆 generates even-distributed random
toss 𝑟Sim and generates CBF󸀠1,CBF󸀠2, . . . ,CBF󸀠𝑚 in accordance
with the following rules:

for (𝑖 = 0; 𝑗 < 𝑚; 𝑖 + +)
for (𝑗 = 0; 𝑗 < 𝑡; 𝑗 + +)

CBF󸀠𝑖 (𝑗) ← Enc(Random(0, 1)𝑛)
Then Sim𝑆 calculates CBF

󸀠 according to the following rules:

for (𝑗 = 0; 𝑗 < 𝑡; 𝑗 + +)
CBF󸀠(𝑗) = ∏𝑚𝑖=0CBF󸀠𝑖 (𝑗)

Then Sim𝑆 generates intermediate information PBF󸀠 of the
results query stage:

for (𝑗 = 0; 𝑗 < 𝑡; 𝑗 + +)
PBF󸀠(𝑖) = (Random(0, 1)𝑙,CBF󸀠(𝑗))

Finally, Sim𝑆 simulates the oblivious transfer protocol of
results query stage, using PBF󸀠 as input and Λ as output, and
generates the view viewOT

Sim.
After the whole simulation completes, Sim𝑆 outputs the

simulation view:

view𝜋sim𝑆 = {Λ, 𝑟Sim,CBF󸀠1,CBF󸀠2, . . . ,CBF󸀠𝑚,CBF󸀠,PBF󸀠,
viewOT

Sim} . (18)

𝑟Sim and 𝑟𝑠 are distributed uniformly, so

𝑟Sim 𝑐≡ 𝑟𝑠. (19)

It is assumed that theGMencryption scheme is safe under the
semihonest model, and the introduction of random numbers
in the GM scheme makes ciphertexts of the GM encryption
scheme indistinguishable, so

{CBF󸀠1,CBF󸀠2, . . . ,CBF󸀠𝑚,CBF󸀠,PBF󸀠}
𝑐≡ {CBF1,CBF2, . . . ,CBF𝑚,CBF,PBF} . (20)

In the results query stage, as for the oblivious transfer pro-
tocol, the input information PBF󸀠 of Sim𝑆 and the server’s
input information PBF have indistinguishability, and we
assume that the underlying OT protocol in the semihonest
model is safe, so

viewOT
Sim
𝑐≡ viewOT

𝑠 . (21)

In conclusion,

view𝜋sim𝑆 (𝑆𝑠, 𝑆𝑐) 𝑐≡ view𝜋𝑠 . (22)

Participant View. Now we analyze the situation where partic-
ipant 𝑃1 is attacked. The participant view in protocol 𝜋 is

view𝜋𝑃1 (𝑆1, 𝑆2, . . . , 𝑆𝑚, 𝑄)
= {𝑆1, 𝑄, 𝑅, 𝑟𝑃,CBF1,QBF,ABF, viewOT

𝑃 } (23)

in which 𝑆1 and 𝑄 are the input information of 𝑃1, while 𝑅 is
the output information of 𝑃1.

And {𝑟𝑃,CBF1,QBF,ABF, viewOT
𝑃 } is the information

view generated by 𝑃1 in the protocol.
We describe construction of simulator Sim𝑃 as follows.

Sim𝑃 receives the input information 𝑆1 and the output 𝑅
of 𝑃1 and simulates the behavior of the protocol 𝑃1 in the
protocol. First, Sim𝑃 generates a uniform distribution of
random toss 𝑟Sim and generates the encrypted Bloom filter set
CBF󸀠1 following steps of the protocol according to inputs. In
the results query stage, Sim𝑃 generates the query Bloom filter
QBF󸀠 following steps of the protocol using 𝑄 as input. Sim𝑃
simulates and generates ABF󸀠 according to output 𝑅 (see
Algorithm 3).

Finally, Sim𝑃 simulates the oblivious transfer protocol
in the results query stage using QBF󸀠 as input and ABF󸀠 as
output and generates the view viewOT

Sim.
After the whole protocol simulation is completed, Sim𝑃

outputs the simulation view

view𝜋sim𝑃

= {𝑆1, 𝑄, 𝑅, 𝑟Sim,CBF󸀠1,QBF󸀠,ABF󸀠, viewOT
Sim} . (24)

𝑟Sim and 𝑟𝑃 are distributed uniformly, so

𝑟Sim 𝑐≡ 𝑟𝑃. (25)
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for (𝑗 = 0; 𝑗 < 𝑡; 𝑗 + +)
PABF(𝑗) = NULL;

for (𝑗 = 0; 𝑗 < |𝑄|; 𝑗 + +){ 𝜋 = NULL;
if (𝑅(𝑗) == 1){

for (𝛿 = 0; 𝛿 < 𝑘; 𝛿 + +){
if (PABF𝑖(hash𝛿(𝑄(𝑗))) == NULL){ 𝜋 = hash𝛿(𝑄(𝑗));

PABF𝑖(hash𝛿(𝑄(𝑗))) = Random(0, 1)𝑛;}}
PABF𝑖(𝜋) =𝑆𝑖(𝑗) ⊕ (⨁𝑘𝜇=1PABF𝑖(hash𝜇(𝑄(𝑗))))}}
for (𝑗 = 0; 𝑗 < 𝑡; 𝑗 + +){

if (PABF𝑖(𝑗) == NULL)
PABF𝑖(𝑗) = Random(0, 1)𝑛;
ABF󸀠(𝑗) = Enc(PABF𝑖(𝑗));}

Algorithm 3

It is assumed that theGMencryption scheme is safe under the
semihonest model, and the introduction of random numbers
in the GM scheme makes ciphertexts of the GM encryption
scheme indistinguishable, so

{CBF󸀠1,QBF󸀠,ABF󸀠} 𝑐≡ {CBF1,QBF,ABF} . (26)

In the process of generating the query Bloom filter, according
to steps of the protocol, when inputs are the same, there will
be identical query Bloom filter sets, so QBF = QBF󸀠.

In the results query stage, as for the oblivious transfer
protocol, the input informationQBF󸀠 of Sim𝑆 and the server’s
input information QBF are the same. The output ABF󸀠 of
Sim𝑃 and the input ABF of participants are indistinguishable.
We assume that the underlying OT protocol under the
semihonest model is safe, so

viewOT
Sim
𝑐≡ viewOT

𝑃 . (27)

In conclusion,

view𝜋sim𝑃
𝑐≡ view𝜋𝑃1 . (28)

So we can say that the proposed protocol under semihonest
model is safe.

The proof is finished.

5.4. Performance Analysis. Now we analyze the efficiency of
the protocol from two aspects: computational complexity and
communication complexity.

5.4.1. Computational Complexity. As for each participant𝑃𝑖, the hash operation is performed 𝑘|𝑆𝑖| times during the
preprocessing stage, and the GM encryption operates 𝑘𝑛
times; during the results query stage, it is hashed 𝑘|𝑄𝑖| times
and does OT𝑡𝑙 operation once, while the GM decryption
operation is performed atmost 𝑘𝑛|𝑄𝑖| times. As for the server,
the ciphertext multiplication operation is performed 𝑡𝑚𝑛
times in the outsourcing computation stage in all; OT𝑡𝑙 is
performed once in the results query stage.

When implementing OT𝑡𝑙 using extended OT technology
[27], Receiver needs to perform 2𝜆 times of public key
operations and 1.44ℎ𝑠 times of hash operations. Sender needs
to perform 𝜆 times of public key operations and 1.44ℎ𝑠
times of hash operations, in which 𝜆 represents the security
parameter of extended OT protocol. When using the GM
algorithm, the encryption operation needs to perform one
modularmultiplicationwhile the decryption operation needs
to perform one modular multiplication, and the multipli-
cation of ciphertexts requires one modular multiplication.
Therefore, the participant in this scheme needs to implement
the public key algorithm 𝑘𝑛 + 𝑘𝑛|𝑄𝑖| + 2𝜆 times and the hash
algorithm 1.44𝑘𝑠 times; the server needs to implement the
public key algorithm 𝑡𝑚𝑛 + 𝜆 times and the hash algorithm𝑘|𝑆𝑖| + 𝑘|𝑄𝑖| + 1.44𝑘𝑠 times.

5.4.2. Communication Complexity. At the end of preprocess-
ing stage, each participant sends 𝑡𝑙 bits data to the server, and
the server receives 𝑡𝑙𝑚 bits data in all. In the results query
stage, the participant and the server transfer 2𝜆𝑡 bits of data,
respectively.

6. Comparison

There are a number of different parameters due to the fact that
existing privacy-preserving set intersection outsourcing pro-
tocols are different from privacy-preserving set intersection
protocols in principle. Parameters are instantiated in order
to compare efficiency of protocols. Common parameters: the
sizes of the participant sets are all 𝑠. 𝑘 = 8, 𝑡 = 𝑠𝑘/ln22,
and 𝑙 = 100. In the proposed protocol, the query set 𝑄 =𝑆; the Kerschbaum scheme [15] can only achieve security
outsourcing computation of two participants, so 𝑚 = 2 in
this scheme; the length of ciphertexts in XOR secret sharing
is 𝑛 = 8. And, in the Kerschbaum scheme, 𝛽 = 8. Construc-
tion and query of Bloom filter are based on Dong’s open
source experimental model [13], which uses SHA-1 to instan-
tiate hash functions; OT protocol uses classical Naor-Pinkas
scheme [30].

After summarizing and comparing the existing algo-
rithms in Figure 2 and Table 1, we can see the following.(1) The computational complexity and the communication
complexity are lower than that of Huang’s scheme and similar
to that of Dong’s. Also it is slightly lower than Kerschbaum’s.(2) The false positive probability is higher than that of
Huang’s, but the same as Dong’s and Kerschbaum’s scheme.(3) The proposed algorithm solves the problem of privacy
preservation in outsourcing computation considering the
cloud computing environment; in the Kerschbaum scheme,
a participant is needed to be the server, so it is a traditional
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Table 1: Comparison of protocols in applicability.

Comparison of algorithms Number of participants System model Online necessary or not
Dong et al. [13] 2 Traditional Secure Multiparty Computation model Yes
Huang et al. [19] 2 Traditional Secure Multiparty Computation model Yes
Kerschbaum [15] 2 Traditional Secure Multiparty Computation model Yes
The proposed algorithm ≥2 Outsourcing computation model No

O(s) O(s)

Computational complexity 
of symmetric algorithm 

Computational complexity 
of public key algorithm 

Communication complexity

Dong et al. [13]
Huang et al. [19]

Kerschbaum [15]
The proposed algorithm

False positive probability

O() O()O(s) O(s) O(s)O( + s)

( 1
2
)
n

( 1
2
)
k

+ ( 1
2
)


( 1
2
)
n

O(s ＦＩＡ s) O(s ＦＩＡ s)

Figure 2: Comparison of protocols in complexity and false positive probability.

secure computation model; in Huang’s and Dong’s scheme,
traditional secure computation model is used to solve PSI
problem. (4) The proposed algorithm can solve the secure
outsourcing computation with two or more participants,
while the others can only deal with the situation of two. (5)
It does not need all the participants being online at real time
in the proposed algorithm, while the others need them to be
online in order to complete the computation at the same time.

In the comparison, we can know from Figure 2 that our
algorithm can deal with privacy preservation in outsourcing
computation without increasing computational complexity,
communication complexity, and false positive probability.
In addition, as shown in Table 1, it has great advantages
considering the limit of some factors, such as the number of
participants, sizes of inputs, and requirement of being online.
So, to a large extent, the proposed algorithm improves the
solution of privacy preservation in cloud computing.

7. Conclusion

In this paper, we propose a privacy-preserving outsourcing
computation systemmodel which can be used in multimedia
processing based on cloud computing to solve security and
correctness problems. Based on this model, we design a
privacy-preserving set intersection outsourcing computation
protocol based on GM homomorphic encryption scheme

and Bloom filter. The results show that the proposed proto-
col achieves privacy preservation in the outsourcing com-
putation without increasing computational complexity, the
communication complexity, and the false positive probability.
And the protocol does not limit the number of participants,
the input secret sizes, and whether participant is online in
real time.Obviously, not only is themethod proposed suitable
for multimedia processing, but also it can be used for cloud
computing, distributed computing, Internet of things, virtual
property transactions, and so on.

In the next few years, we will continue designing the
privacy-preserving set intersection outsourcing computation
protocol and extending its application in cloud computing.
We will focus on the further improvement of efficiency of
the algorithm, as well as the design of algorithms against
malicious attackers.
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