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ABSTRACT

Hashing methods play an important role in large scale image re-

trieval. Traditional hashing methods use hand-crafted features to

learn hash functions, which can not capture the high level semantic

information. Deep hashing algorithms use deep neural networks

to learn feature representation and hash functions simultaneously.

Most of these algorithms exploit supervised information to train

the deep network. However, supervised information is expensive

to obtain. In this paper, we propose a pseudo label based unsuper-

vised deep discriminative hashing algorithm. First, we cluster im-

ages via K-means and the cluster labels are treated as pseudo labels.

Then we train a deep hashing network with pseudo labels by min-

imizing the classification loss and quantization loss. Experiments

on two datasets demonstrate that our unsupervised deep discrimi-

native hashing method outperforms the state-of-art unsupervised

hashing methods.
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• Computing methodologies → Visual content-based index-

ing and retrieval; Image representations; Neural networks;
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1 INTRODUCTION

With the rapid development of mobile Internet, people share thou-

sands of images every day using popular photo sharing applica-

tions. As a result, the amount of images on the web is experienc-

ing an explosive growth. How to retrieve interesting images from

a large scale image collection efficiently has attracted lots of atten-

tion.

In general, nearest neighbour search is a straightforward way to

accomplish this task. However, exact nearest neighbour search usu-

ally consumes much timewhen retrieving from a large scale image
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database. To improve the search speed, various approximate near-

est neighbour (ANN) search methods have been proposed. Among

these algorithms, tree-based methods and hashing-based methods

are two main streams. The tree-based algorithms usually partition

the search space and build an efficient tree data structure which

enables fast ANN search. One of the typical tree-based methods

is the KD-tree algorithm [2] and it provides logarithmic search

time O (loд n). Nevertheless, the key problem of tree-based meth-

ods is the curse of dimensionality i.e. the search performance de-

grades quickly for high dimensions. Hashing-based algorithms, on

the other hand, try to map the high dimensional data to a low-

dimensional Hamming spacewhile still preserving the relative sim-

ilarities with high probabilities. Since the Hamming distance be-

tween binary hash codes can be calculated extremely fast, ANN

search can be conducted simply by calculating Hamming distance

between binary hash codes. Roughly speaking, hashing algorithms

can be categorized into two classes: data-independent and data-

dependent hashing algorithms. Locality sensitive hashing (LSH)

[3] is one representative algorithm of data-independent hashing

methods,which doesn’t require the training data. For data-dependent

hashing methods, on the other hand, hashing functions are learned

based on a set of training samples. These algorithms can be further

divided into supervised hashing methods and unsupervised hash-

ing methods. Supervised hashing methods utilize semantic labels

or other supervised information to guide the training procedure

of hashing functions. Various supervised hashing algorithms have

been proposed, such as Binary Reconstruction Embedding (BRE)

[10],Minimal Loss Hashing (MLH) [19] , Supervised Discrete Hash-

ing (SDH)[21] and so on. On the other hand, unsupervised hashing

methods, such as Iterative Quantization(ITQ) [4], Spectral Hashing

[23], and Inductive Manifold Hashing(IMH) [22], learn the hashing

functions only by utilizing the unlabeled training data. In general,

supervised hashing methods usually achieve better performance

than unsupervised methods, but it’s quite expensive to obtain se-

mantic labels, especially for large-scale datasets. Thus in this paper,

we focus on the unsupervised hashing methods.

Recent years have witnessed the success of deep learning in

various computer vision tasks such as image classification [9], ob-

ject detection [20], image segmentation [17] and so on. Attracted

by the powerful feature representation of deep learning, a lot of

deep learning based hashing algorithms have been proposed [1,

11, 14, 24, 25]. These algorithms showed that feature learning

and hash function learning can be accomplished simultanously via

∗The corresponding author.
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deep neural networks. However, most of the deep learning based

hashing methods utilized the supervised information such as se-

mantic labels [25], pair-wise similarity labels [15, 24, 26], triplet la-

bels [11]. Considering the unsupervised learning scenarios, Liong

et al. [1] proposed an unsupervised deep hashing algorithm via a

multi-layer neural network. Lin et al. [14] proposed to utilize the

transfer learning ability of deep learning via using the pretrained

VGG16 network. Nevertheless, the performance of these two un-

supervised algorithms is not good enough.

In this paper, we propose a novel pseudo label based unsuper-

vised discriminative hashing method. First, we extract deep fea-

tures for each image using a convolutional neural network (CNN).

Since images with similar features are more likely to be closely re-

lated, we generate pseudo labels via K-means clustering. Based on

the pseudo labels, we train a deep hashing network with classifica-

tion loss and quantization loss. The pseudo label based classifica-

tion loss enables learning more discriminative hash codes. Exten-

sive experiments are conducted on two publicly available bench-

marks. The experimental results demonstrate that our proposed

algorithm outperforms the state-of-art unsupervised algorithms.

2 RELATED WORK

In the past decade, a lot of unsupervised hashing methods have

been proposed. Weiss et al. built a connection between hashing

and balanced graph partitioning problem and proposed the Spec-

tral Hashing [23] algorithmwhich obtained an eigenvetor solution

by using a spectral relaxation. Since the cost of building a graph is

O
(
n2
)
, it’s unaffordable for large n. To overcome this problem, Liu

et al. [16] used a set of anchor points to approximate the data neigh-

borhood structure. The similarity between database points and an-

chor points are calculated, and the adjacency matrix then can be

approxiamted based on these similarities. The cost of building the

anchor graph is nearly linear in n, which is far more efficient than

the Spectral Hashing algorithm. Following this line, Jiang et al. pro-

posed Scalable Graph Hashing (SGH) [7], which can effectively ap-

proximate the whole graph without explicitly computing the sim-

ilarity graph matrix. Gong et al. proposed the ITQ [4] algorithm.

They first projected data into a low-dimentional space via principal

component analysis (PCA), then the quantization loss of mapping

this low-dimentional data to the vertices of binary hypercube is

minimized. An alternating method was adopted to solve the prob-

lem, which tended to find a rotation to balance the variance of

different dimensions of data. Following this line, Kong et al. pro-

posed the Isotropic Hashing (IsoH) [8]. Isotropic Hashing aimed

to learn projection functions which can produce projected dimen-

sions with equal variances. While many hashing algorithms use

hyperplane based hashing functions, a hypersphere based hashing

functions called Spherical Hashing(SpH) was proposed [5]. Com-

pared to hyperplane-based hashing functions, spherical hashing

maps more spatially coherent data points into a binary code. Shen

et al. proposed the Inductive Manifold Hashing (IMH) algorithm

[22], which built a connection between manifold learning meth-

ods and hashing algorithms.

In recent years, deep learning has attracted lots of attentions

due to its powerful feature representation [12]. Xia et al. [24] in-

corporated deep convolutional neural networks with hashing algo-

rithms. They first learned the hash codes using the pairwise sim-

ilarities, followed by a stage which learned the image representa-

tion and hash function together. The learned hash codes can guide

the image representation and feature hashing, but the learned im-

age representation can not give any feedback to the learning of

hash codes [11] . To solve this problem, Lai et al. proposed a triplet

ranking loss based deep hashing algorithm. Their proposed algo-

rithm enabled simultaneous feature learning and hash function

learning. Later works such as [15], [26] used simlar framework but

with different loss functions. Liu et al. proposed a supervised deep

hashing algorithm byminimizing Hamming distance between sim-

ilar images and enlarging hamming distance between dissimilar

images. Besides, they imposed regularization on the network’s out-

puts to approximate the binary hash codes. Zhu et al. linked the

pairwise Hamming distances with pair-wise similarities by using

maximumaposterior (MAP) [26]. They proposed the bimodal Lapla-

cian prior for the network’s output to regularize the output’s value.

Most of deep hashing algorithms exploited supervised information,

few unsupervised deep hashing have been proposed. One of the

difficulties for unsupervised deep hashing is designing proper loss

function. Liong et al. proposed the DH [1] algorithm which used

a multi-layer neural network to learn the hashing functions. Inde-

pendent loss, quantization loss and balanced loss were introduced

to guide the training procedure of deep network. Lin et al. [14]

used the pretrained VGG16 network to utilize the transfer learning

power of deep networks. In addition to the quantization loss, they

also incorporated rotation invariant loss tominimize theHamming

distance between image and their rotated images. However, the

performance of unsupervised deep hashing is not satisfying and

more effort are required to be devoted to unsupervised deep hash-

ing.

3 THE PROPOSED APPROACH

Given a set of imagesX = {xi}
N
i=1, we denote the corresponding set

of hash codes as B = {bi}
N
i=1. Our goal is to learn a deep hashing

function which maps an image xi to M-bit hash codes bi.

In this section, we propose a novel pseudo label based unsu-

pervised deep hashing algorithm. First, we extract the deep fea-

tures of each image using pretrained CNN models. Here we uti-

lize the VGG16 network due to its powerful feature representation

ability. Afterwards, a clustering procedure is conducted on these

features and the resulting cluster labels of images are regarded as

pseudo labels for the later training stage. Given pseudo labels, a

convolutional neural network is trained for simultaneous feature

representation and hash encoding. The overall framework of our

proposed algorithm is depicted in Fig.1. The following subsections

shall present technical details of our proposed algorithm .

3.1 Pseudo Label Generation

Using supervised information in deep hashing has two-fold bene-

fits. One is that supervised information can improve the discrimi-

native power of hash codes. The other one is that the loss function

can be easily designed with supervised information. However, in
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Figure 1: The framework of our proposed unsupervised deep discriminative hashing algorithm. In stage 1, a pretrained VGG16

network is used to extract features from each image. Then we use the K-means algorithm to cluster the images. The cluster

label of an image is treated as its pseudo label. In stage 2, we use a deep hashing neural network to learn features and hash

functions simultaneously. A hash encoding layer is added on the top of VGG16 network to generate hash codes. Quantization

loss and classification loss are used to guide the training procedure of network. Best viewed in color.

the scenario of unsupervised hashing algorithms, the labels of im-

ages or other supervised information are not available. To solve

this, our goal is to generate pseudo labels which have similar prop-

erties with semantic category labels. The generated pseudo labels

are supposed to help improve the discriminative power of hash

codes. Sincedeep features extracted by CNN can capture high level

semantic information, we assume that, if two images are semanti-

cally similar, their deep features are closely related. Based on this

assumption, we propose to generate pseudo labels via K-means

clustering. First, a pretrained VGG16 network is adopted to extract

features from each image. Specifically, the activations of fc7 layer

of VGG16 network are treated as the 4096-dimensional feature for

each image. The pretrained model enables us to utilize the transfer

learning power of deep networks. Then we cluster the images via

K-means algorithm. By assuming that images in the same cluster

are likely to have the same label, we treat the cluster label (cluster

id) as the pseudo label of an image. For the image set X, the corre-

sponding pseudo labels are denoted as Y =
{
yi
}N
i=1. Fig. 2 shows

some images from clusters after K-means clustering. For each row

of Fig. 2, we randomly pick 5 images from one cluster. The left col-

umn of each row shows the top three most frequent concepts of

images from the cluster.

Figure 2: The clustering result of K-means. For each cluster,

the top three most concepts of images are shown at the left

column in each row. Best viewed in color.

3.2 Training Deep hashing networks with

Pseudo Labels

Network architecture Following [14], we adopt the VGG16 net-

work as our base network architecture. The f c8 layer is replaced

by a hash encoding layer which is designed tomap deep features to

M-bit binary codes. The hash encoding layer is a fully-connected

layer which consists of M output nodes. Here we denote the hash
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encoding layer’s activations as H (x;θ ), where θ is the parameters

of all the precedent layers. Thus the hash codes is given by

b = sдn(H (x;θ )) (1)

where sдn denotes the sign function, and sдn (x )=1 for x > 0 and

-1 otherwise.

Loss function To improve the discriminative power of hash codes,

we use a softmax classification loss to guide the training of deep

hashing model. Suppose that we cluster images into K clusters in

the pseudo label generation stage, a softmax layer with K output

nodes is added on the top of hash encoding layer. Given images X

and pseudo labels Y , the problem can be formulated as :

min L(X,Y ) = Lc (B,Y )

= Lc (sдn (H (X;θ )) ,Y )
(2)

where Lc (·, ·) denotes the softmax classification loss. And Lc (·, ·)

is formulated as:

Lc (B,Y ) = −

N∑

i=1

K∑

j=1

1 (yi = j) loд

������
�

e
wT
j bi+vj

K∑
j=1

e
wT
j bi+vj

������
�

(3)

where wj ∈ R
M and vj ∈ R are the weights and bias of softmax

layer respectively. The motivation is that the learned hash codes

should be capable of predicting the pseudo label of each image.

Since the sдn function is not differentiable, the problem defined

in (2) cannot be optimized via back-propagation (BP) directly. Fol-

lowing [13], we reformulate the problem (2) as:

min Lc (H (X;θ ) ,Y )

s .t . bi = H (xi ;θ ) ∀i = 1, 2, · · ·N

bi ∈ {−1, 1}
M ∀i = 1, 2, · · ·N

(4)

Due to the binary constraint on bi and equality constraint, the

problem (4) is equivalent to the problem (2). By adding a penalty

term to the loss, we remove the equality constraint:

min Lc (H (X;θ ) ,Y ) + λ

N∑

i=1

‖bi − H (xi ;θ ) ‖
2
2

s .t . bi ∈ {−1, 1}
M ∀i = 1, 2, · · ·N

(5)

The first term in Eq.(5) is the classification loss defined by pseudo

labels, which improves the discriminative power of hash codes.

The second term in Eq. (5) can be regarded as the quantization loss

of hash encoding layer. It helps to reduce the quantization error

during binarization.

Eq.(5) can be easily solved by an alternating optimizationmethod,

i.e. update binary codes with network parameters fixed, and vice

versa.

Update B Given parameters θ is fixed, H (X;θ ) can be updated

using forward propagation. Then the following equation offer the

optimal solution of B:

bi = sдn(H (xi ;θ )) ∀i = 1, 2, · · ·N (6)

Update network parameters Given B is fixed, the derivatives

of loss L(X,Y ) wrt. H (xi ;θ ) can be calculated as follows:

∂L(X,Y )

∂H (xi ;θ )
=

∂Lc (H (xi ;θ ) , yi ))

∂H (xi ;θ )
+ 2λ (H (xi ;θ ) − bi ) (7)

The first term in (7) can be obtained by back-propagation. Thus the

whole network can be trained directly by standard back-propagation.

We summarize the overall training algorithm in Algorithm 1.

Algorithm 1: Pseudo label based unsupervised deep discrim-

inative hashing

Input: Training set X = [x1, x2, · · · xn] and pseudo labels

Y = [y1, y2, · · · yn ]

Output: θ

Initialize deep hashing network with pretrained VGG16

model

while iter ≤ max_iters do
Sampling a mini-batch x from data X

Forward propagation

Update H (x;θ )

Update b using Eq.(6);

Calculate the loss L using the Eq. (5)

Calculate gradients using Eq.(7)

Update θ via backward propagation

end

return θ ;

4 EXPERIMENTS

4.1 Datasets and Setting

To evaluate our proposed method, we conduct extensive experi-

ments on two public benchmark datasets, CIFAR10 and Flickr

• CIFAR101 dataset consists of 60,000 colour images in 10

classes. Each class contains 6000 images in size 32× 32.

• Flickr2 dataset contains 25,000 images collected from Flickr.

Each image is labelled with one of the 38 concepts.

For CIFAR10 dataset, we randomly select 100 images per class as

the test set and the rest of images are treated as the training set. For

Flickr dataset, we randomly select 1000 images as test set and the

rest of dataset images are taken as training set, following [26]. For

CIFAR10 and Flickr, we resize all images to size 256×256 in order

to use the VGG16 network.

We compare our proposedmethodwith eight unsupervised hash-

ing methods including LSH [3], Spectral Hashing(SH) [23], ITQ [4],

AGH [16], Spherical Hashing(SpH) [5], IsotropicHashing(IsoH) [8],

IMH [22] and Scalable Graph Hashing (SGH) [7]. Besides, we also

compare our method with two unsupervised deep hashing method

i.e. DH [1] and DeepBit [14]. For deep learning based methods,

raw image pixels are directly used as input. For traditional un-

supervised hashing methods, 512-dimensional GIST features are

extracted from each image, following [1]. We implement our pro-

posed method using the open source Caffe [6] framework. As men-

tioned above, we use the VGG16 network and initialize the conv1−

1https://www.cs.toronto.edu/ kriz/cifar.html
2http://press.liacs.nl/mirflickr/

Session: Fast Forward 6 MM’17, October 23-27, 2017, Mountain View, CA, USA

1587



Table 1: mAP of different hashing algorithms on CIFAR10 and Flickr benchmark.

Method
CIFAR10 (mAP) Flickr (mAP)

16-bit 32-bit 64-bit 16-bit 32-bit 64-bit

LSH [3] 0.1252 0.1317 0.1451 0.5532 0.5593 0.5637

SH [23] 0.1265 0.1252 0.1254 0.5524 0.5541 0.5531

ITQ [4] 0.1599 0.1680 0.1750 0.5623 0.5636 0.5642

AGH [16] 0.1495 0.1517 0.1431 0.5619 0.5580 0.5537

SpH [5] 0.1424 0.1538 0.1624 0.5619 0.5604 0.5635

IsoH [8] 0.1550 0.1584 0.1639 0.5638 0.5603 0.5626

IMH [22] 0.1752 0.1930 0.1974 0.5684 0.5722 0.5741

SGH [7] 0.1579 0.1660 0.1743 0.5647 0.5649 0.5662

DH [1] 0.1617 0.1662 0.1669 – – –

DeepBit [14] 0.1943 0.2486 0.2773 0.5789 0.5810 0.5892

Our Method 0.5165 0.5720 0.5956 0.8266 0.8411 0.853

conv5 and f c6− f c7 layer with pretrained model. We use the mini-

batch stochastic gradient descent (SGD) with 0.9 momentum . And

the weight decay parameters are fixed as 0.0005.

4.2 Results on CIFAR10 and Flickr Benchmark

We compare our proposed method with traditional unsupervised

hashing methods on CIFAR10 and Flickr benchmark. Following

[14], we evaluated our methods based on the mean Average Preci-

sion(mAP) of top 1,000 retrieved images. Table. 1 shows the mAP

result of different hashing algorithmswith respect to different hash

bits. From Table. 1, it’s clear that our method outperforms other

state-of-art algorithms by a large margin consistently on both CI-

FAR10 and Flickr benchmark. In terms of deep-learning based hash-

ing algorithm, DeepBit [14] and our proposed algorithm demon-

strate superior performance over non-deep unsupervised hashing

methods, showing the powerful feature representation of VGG16

network. However, DH [1] algorithm surprisingly fails to outper-

form ITQ sometimes. It may be caused by the shallow neural net-

work used by DH [1]. DeepBit [14] and our proposed algorithm

both use VGG16 network, but we use different loss functions with

DeepBit. Our proposed algorithm benefits from pseudo label based

classification loss which can help generate more discriminative

hash codes.

Asmentioned above, our proposed algorithm enables simultane-

ous feature learning and hash encoding. To show the effectiveness

of our algorithm, we also compare our method to non-deep unsu-

pervised hashing algorithm using pre-trained deep features. In de-

tail, for these non-deep hashing algorithms, we represent each im-

age as a 4096-dimensional feature vector which is extracted from

f c7 layer by using a pre-trained VGG16 network. The mAP result

is reported in Table 2. The performance of traditional unsupervised

hashing methods have improved by a large margin on both CI-

FAR10 and Flickr benchmark by using deep features, which shows

the powerful feature representation of deep neural networks. We

also noticed that, by using deep features, ITQ or IMH is superior

than DeepBit and DH on CIFAR10 benchmark. On Flikcr bench-

mark, most of traditional hashing algorithms using deep features

are superior than DeepBit and DH. However, even using the deep

features, these hashing methods are still inferior to our proposed

method, which demonstrates that our proposed method generates

more discriminative hash codes.

0 0.01 0.05 0.1
0.4

0.45

0.5

0.55

0.6

0.65

m
A

P

λ

Figure 3: mAP with respect to different hyper-parameter λ

on CIFAR10 benchmark.

4.3 Sensitivity to the hyper-parameters

In this subsection, we explored the influence of different hyper-

parameters to the proposed algorithm. In the procedure of pseudo

labels generation, we used the K-means algorithm to cluster the im-

ages. We conducted a series of experiments on CIFAR10 and Flickr

benchmark by varying the value of K and leaving other setting

unchanged. Figure 4 reports the mAP of varying K value. While

the value of K increases from 10 to 100, the mAP first gradually in-

creases and then degrades. One reason for this phenomenon is that

the purity of a cluster will increase with the value of K increasing.

The higher the purity is, the higher the probability of that images

in the same cluster belong to the same class is. Thus the pseudo

labels will be more convincing. However, images in the same cat-

egory may be divided into different clusters when the value of K

gets vary large, which makes the mAP degrade. Anyway, the mAP

is not sensitive to K in a wide range of K . And the performance is
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Table 2: mAP of different hashing algorithms using Deep features on CIFAR10 and Flickr benchmark.

Method
CIFAR10 (mAP) Flickr (mAP)

16 32 64 16 32 64

LSH+CNN [3] 0.1640 0.1903 0.2390 0.5834 0.5729 0.6115

SH+CNN [23] 0.2210 0.1975 0.1805 0.6013 0.5899 0.5807

ITQ+CNN [4] 0.3308 0.3416 0.3589 0.6816 0.6784 0.6785

AGH+CNN [16] 0.3057 0.2621 0.2272 0.6745 0.6500 0.6459

SpH+CNN [5] 0.2148 0.2517 0.2816 0.6816 0.6784 0.6785

IsoH+CNN [8] 0.2647 0.3019 0.3183 0.6195 0.6364 0.6490

IMH+CNN [22] 0.4272 0.4126 0.4463 0.7066 0.7161 0.7241

SGH+CNN [7] 0.2642 0.2866 0.3228 0.6242 0.6319 0.6391

DH [1] 0.1617 0.1662 0.1669 – – –

DeepBit [14] 0.1943 0.2486 0.2773 0.5789 0.5810 0.5892

Our Method 0.5165 0.5720 0.5956 0.8266 0.8411 0.853

0 20 40 60 80 100
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0.55

0.6

0.65

0.7

0.75

0.8
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1

m
A
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mAP on CIFAR10
mAP on Flickr

Figure 4: mAP with different hyper-parameter K on CI-

FAR10 and Flickr benchmark.

still superior than other state-of-art algorithms even the optimal

K is not chosen.

We also explored the effect of hyper-parameter λ. Fig. 3 reports

the mAP of our proposed algorithm on CIFAR10 with varying λ.

λ equals to zero means that we drop the quantization loss. The

mAp drops about 4 percentage when λ equals to zero, showing the

necessity of quantization loss.

To show that our algorithm enables features learning and hash

coding together, we conduct another series of experiments with

fixed VGG16 network. In detail, we fixed the parameters of conv1−

f c7 layers unchanged during training procedure, which means the

feature learning is disabled. Fig.5 shows the mAP with or without

fixed VGG16 on CIFAR10 benchmark. It can be figured out that the

mAP of algorithm with fixed VGG16 is about 5 percentage lower.

16 32 64
0.4

0.45

0.5

0.55

0.6

0.65

m
A

P

hash bits length

Proposed Method with Fixed VGG
Proposed Method

Figure 5: mAP with or without fixed VGG16 on CIFAR10

benchmark.

4.4 Experiments on Classification

Following the setting in [14], we trained a multi-class SVM clas-

sifier on Oxford 17 Category Flower Dataset [18] using the hash

codes generated by our method. The categorization accuracy of

our method is 88.2% which outperforms 75.2% in DeepBit [14] by

a large margin.

5 CONCLUSION

Hashing algorithms have been widely used in large scale image

retrieval task. Traditional hashing methods encode hand-crafted

features into hash codes, resulting in unsatisfying performance. Re-

cent years has witnessed the success of deep learning. Deep learn-

ing based hashing algorithms have attracted a lot of attentions.

However, most of them used supervised information, which is usu-

ally hard to obtain. In this paper, we proposed a pseudo label based

unsupervised deep discriminative hashing algorithm. We first gen-

erate pseudo labels via K-means clustering, then train a deep con-

volution neural network to generate hash codes. Classification loss
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and quantization loss is introduced to optimize the network. Ex-

tensive experiments on CIFAR10 and Flickr demonstrate that our

algorithm outperforms the state-of-art unsupervised hashing algo-

rithms.
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