
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 5, MAY 2016 1039

A Framework for the Analysis and Evaluation
of Algebraic Fault Attacks on

Lightweight Block Ciphers
Fan Zhang, Shize Guo, Xinjie Zhao, Tao Wang, Jian Yang, Francois-Xavier Standaert, and Dawu Gu

Abstract— Algebraic fault analysis (AFA), which combines
algebraic cryptanalysis with fault attacks, has represented serious
threats to the security of lightweight block ciphers. Inspired by
an earlier framework for the analysis of side-channel attacks
presented at EUROCRYPT 2009, a new generic framework is
proposed to analyze and evaluate algebraic fault attacks on
lightweight block ciphers. We interpret AFA at three levels: 1) the
target; 2) the adversary; and 3) the evaluator. We describe the
capability of an adversary in four parts: 1) the fault injector; 2)
the fault model describer; 3) the cipher describer; and 4) the
machine solver. A formal fault model is provided to cover
most of current fault attacks. Different strategies of building
optimal equation set are also provided to accelerate the solving
process. At the evaluator level, we consider the approximate
information metric and the actual security metric. These metrics
can be used to guide adversaries, cipher designers, and industrial
engineers. To verify the feasibility of the proposed framework,
we make a comprehensive study of AFA on an ultra-lightweight
block cipher called LBlock. Three scenarios are exploited, which
include injecting a fault to encryption, to key scheduling, or
modifying the round number or counter. Our best results show
that a single fault injection is enough to recover the master key
of LBlock within the affordable complexity in each scenario.
To verify the generic feature of the proposed framework, we

Manuscript received June 8, 2015; revised October 13, 2015 and
December 14, 2015; accepted December 17, 2015. Date of publication
January 11, 2016; date of current version February 24, 2016. This work was
supported in part by the Major State Basic Research Development Program
(973 Plan) of China under Grant 2013CB338004, in part by the Zhejiang
University Fundamental Research Funds for the Central Universities under
Grant 2015QNA5005, in part by the European Commission through the
ERC Project under Grant 280141, in part by the Science and Technology on
Communication Security Laboratory under Grant 9140C110602150C11053,
and in part by the National Natural Science Foundation of China under
Grant 61173191, Grant 61202386, Grant 61272491, Grant 61309021,
Grant 61472357, and Grant 61571063. The associate editor coordinat-
ing the review of this manuscript and approving it for publication was
Prof. Ozgur Sinanoglu.

F. Zhang is with the College of Information Science and Electrical
Engineering, Zhejiang University, Hangzhou, 310027, China, and also
with the Science and Technology on Communication Security Laboratory,
Chengdu, 610041, China (e-mail: fanzhang@zju.edu.cn).

S. Guo and X. Zhao are with the Institute of North Electronic Equipment,
Beijing, 100191, China (e-mail: nsfgsz@126.com; zhaoxinjieem@163.com).

T. Wang is with the Department of Information Engineering, Ordnance
Engineering College, Hebei, 050003, China (e-mail: twangdrsjz@aliyun.com).

J. Yang is with the Department of Computer Science and Engineer-
ing, University of Notre Dame, Notre Dame, IN, 46556, USA (e-mail:
jyang9@nd.edu).

F.-X. Standaert is with the UCL Crypto Group, B-1348 Louvain-la-Neuve,
Belgium (e-mail: fstandae@uclouvain.be).

D. Gu is with the Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University, Shanghai, 200240, China (e-mail:
dwgu@sjtu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2016.2516905

apply AFA to three other block ciphers, i.e., Data Encryption
Standard, PRESENT, and Twofish. The results demonstrate that
our framework can be used for different ciphers with different
structures.

Index Terms— Algebraic fault analysis (AFA), lightweight
block cipher, LBlock, CryptoMiniSAT, security evaluation.

I. INTRODUCTION

A. Background

DATA security gets more demanding under resource-
constrained environments. Lightweight block ciphers are

a cutting-edge technology to provide an efficient and power-
saving solution. Frequently used lightweight block ciphers
include PRESENT, Piccolo, LED, and LBlock. Most of these
ciphers can be implemented with less than 3000 gate equiv-
alents. The complexity of traditional cryptanalysis increases
exponentially with the number of rounds. From a theoretical
point of view, these ciphers are deemed secure if the number
of rounds is sufficiently high.

Fault attack can retrieve secret information by actively
injecting faults into the cryptosystem. Faults can be generated
by changing the power supply voltage, changing the frequency
of the external clock, varying the temperature or exposing the
circuits to lasers during the computation [1]. The idea was
first reported on RSA-CRT by Boneh et al. in 1996 [2]. Later,
Biham and Shamir proposed a differential fault analysis (DFA)
attack on the block cipher DES, which combines a fault attack
with differential cryptanalysis [3]. Since then, DFA has been
used to break various block ciphers. Traditionally, DFA on
block ciphers is mostly conducted through manual analysis.
When facing fault injection in a deep round, the fault prop-
agation paths will overlap. The complexity of the analysis
among overlapping paths increases exponentially, which is
very difficult for the further manual analysis. This also happens
when the number of flipped bits is large. A large size is easy
for the injections, but it increases the difficulty of the analysis.

To overcome the difficulty of DFA, recent work [4] shows
that algebraic cryptanalysis [5] can be combined with fault
analysis. A machine solver can be used to automatically
recover the secret key. This technique is referred to as
algebraic fault analysis (AFA). AFA was proposed by
Courtois et al. [4] in 2010. They showed that if 24 key bits are
known and two bits in the 13-th round are altered, DES can
be broken with a single fault injection in 0.01 hour. The full
attack requires about 219 hours and works 10 times as fast
as the brute force attack. Considering their design principles,

1556-6013 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1040 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 5, MAY 2016

cryptographic devices with lightweight block ciphers are more
vulnerable to fault attacks. Moreover, it is less complicated to
solve the algebraic equations for lightweight block ciphers due
to their relatively simple structure, making fault exploitations
much easier. Zhao et al. [6] and Jovanovic et al. [7] extended
AFA to lightweight block ciphers, such as LED. In [6], they
used only one fault injection to recover the master key of LED
in one minute with a PC. In 2013, Zhang et al. [8] proposed an
improved AFA, which showed that the secret key of Piccolo
can be recovered with only one fault injection. Zhao et al. [9]
also got a more precise estimation of the LED key search
space using AFA.

B. Motivation

Previous AFA mostly focused on one particular block
cipher. The motivation of this paper is to standardize the
process of AFA and provide a generic framework to analyze
fault attacks on different block ciphers, especially on the light-
weight ones. In practice, many situations are more challenging.
Usually, faults are injected into a state before the linear layer
that will bring the diffusion. For example in AES, a fault can
be injected into the output of the key addition or substitution,
as long as the place for the injection is before the MixColumn
layer. However from the adversary’s point of view, it is
straightforward to ask the question: where else can I inject
a fault during the encryption? A smart attacker may jump
out of the box at a specific state and focus on a local index
variable referred to as the round counter. Lightweight ciphers
have a simple structure for efficiency reasons, but require more
rounds to guarantee security. We aim to investigate how fault
injections can modify the number of rounds, and how leakages
could be used in algebraic fault attacks. The extended case of
injecting faults both inside and outside the encryption module
therefore requires a thorough study.

C. Our Work

In this paper, we make a comprehensive study on algebraic
fault attacks on block ciphers.

In Section 2, we first give the formal description of algebraic
fault analysis on block ciphers. We can describe AFA from
three levels: the target, the adversary and the evaluator. At the
target level, the design and implementation of cryptographic
schemes are considered from three aspects. At the adversary
level, we describe the capability of an adversary in four parts.
At the evaluator level, we consider two metrics: the approxi-
mate information metric and the actual security metric. These
metrics can help us to answer two types of questions: for
adversaries, What faults should I inject and how? For cipher
designers and industrial engineers, How secure is my design?
and How secure is my implementation?

To verify the feasibility of the proposed framework,
we make a comprehensive study of AFA on an
ultra-lightweight block cipher called LBlock [10]. In Section 3,
we first describe LBlock and related fault attacks. Then,
we present how to build the algebraic equation set and provide
the strategies on how to solve the equation set. Different
fault models are considered. In Section 4, we evaluate

LBlock against fault injections in the encryption procedure.
In Section 5, we conduct fault attacks on the key scheduling
of LBlock. Inspired by previous work [11], [12], in Section 6
we finally investigate four cases where faults are injected to a
round number or a round counter. Under each case, our best
results show that we can recover the key with only one fault
injection.

To verify the generic feature of the proposed framework,
we apply AFA to evaluate some other block ciphers against
fault attacks in Section 7. The first target is DES [13],
a standard cipher selected by NIST. The result shows that,
under the single bit fault model, the attack efficiency is quite
different when the fault location varies. If a single fault is
injected into a certain bit in the 12-th round or any bit in
the 11-th round of DES, the remaining entropy of the master
key can be reduced to 5 or 0, respectively. The second one is
PRESENT [14]. It has become a standard lightweight block
cipher and has been deployed in many applications. The results
show that, if single fault is injected in the 28-th round of
PRESENT with 80-bit key length, the remaining entropy of
the master key can be reduced to less than 30 with 35%
probabilities. For most of the instances, two injections can
recover the master key within three minutes. The third one
is Twofish [15], a very complicated cipher and one of the
AES candidates. The results show that if a single byte fault
is injected into the last round of Twofish, about 280 fault
injections can recover the key within 24 hours.

In Section 8, we conclude the paper and list some future
work.

II. PROPOSED AFA FRAMEWORK

In order to overcome the disadvantage of DFA, we propose a
generic framework for AFA, which considers three levels: the
target, the adversary and the evaluator. The framework tries to
standardize the process of AFA and provides a unified solution
which could evaluate different targets and adversaries.

A. The Target Level

The target level covers two aspects: design and
implementation. The cryptographic design refers to the cipher
which utilizes some ideal functions to solve cryptographic
problems. For example, LBlock [10] is a cipher. The
cryptographic implementation includes two parts: code and
device. The cryptographic device refers to the hardware
platform to implement the encryption/decryption functions
of the cipher. For example, a smart card running the
LBlock algorithm can be a target device. The cryptographic
code comprehends the engineering effort of converting the
theoretical cipher into practical programming code running
on the device. For example, LBlock has size-optimized and
speed-optimized versions in terms of programming code. The
target level depicts how a cryptographic code is implemented
on a specific device.

Possible targets include block ciphers, stream ciphers, hash
functions, message authentication codes (MACs) etc. For this
paper, we carefully chose four block ciphers: LBlock [10],
DES [13], PRESENT [14] and Twofish [15]. LBlock, DES

ZHANG et al.: FRAMEWORK FOR THE ANALYSIS AND EVALUATION OF ALGEBRAIC FAULT ATTACKS 1041

Fig. 1. The proposed framework for AFA.

Fig. 2. The adversary level of AFA framework.

and Twofish have a Feistel structure while PRESENT has
an SPN structure. LBlock is quite new but efficient. There
is not much work known about it. DES is quite old but
well-known. Twofish requires some complicated operations
such as modulo addition, key-dependent S-Boxes, and the
Pseudo-Hadamard Transform (PHT), which make fault attacks
difficult. PRESENT is one of the most famous lightweight
block ciphers with an SPN structure. Both LBlock and
PRESENT are lightweight. The large number of applications
to the aforementioned ciphers demonstrates the universality of
our framework.

B. The Adversary Level

In our framework, an adversary’s capability is character-
ized by four factors: the cipher describer, the fault model
describer, the fault injector and the machine solver. The cipher
describer refers to its capability of giving the formalizations
of the cryptographic codes. The fault model describer depicts

the attributes of faults to be injected. Both describers are
implemented as public interfaces and supported by equation
builders which automatically transfer those from describers
into algebraic equations. The fault injector is in charge of
injecting the fault into the device [1]. Finally, the machine
solver takes the equations as inputs and solves them using
mathematical automata.

There are three important stages at this level: ➀ Fault
Injection, ➁ Equation Building and ➂ Equation Solving,
which are performed by the fault injector, the describer/builder,
and the machine solver in Figure 1, respectively. Figure 2
shows the details of how the adversary level works.

1) The Fault Injector: In Figure 2, Stage ➀, i.e., Fault
Injection, indicates where the fault is injected. Previous work
focused on the injections in encryptions. It is possible to
extend the scenarios. Inside the encryption, the fault, denoted
as f, could be injected into an intermediate state for different
linear or non-linear operations, or a state for storing the total
number of rounds, or an instant state called round counter.

1042 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 5, MAY 2016

Outside the encryption, f might also be induced to other
components such as key scheduling.

There are many practical methods to inject faults, such as
optical radiation, clock glitch, critical temperature change, and
electromagnetic emission. How to inject faults is discussed
in [1], which is out of the scope of this paper. We focus here
on three fault models (bit-based, nibble-based and byte-based)
and conduct injections with simulations.

2) The Fault Model Describer and Its Equation Builder:
In Stage ➁, i.e., Equations Building, the adversary needs to
build the equations for the faults.

A formal model F describes what the fault is and how
it is related to the cipher. Here, X is an intermediate state.
Xi is a unit of X , which determines how X is organized.
f is the injected fault. w is the width of f . The fault width
w is the maximal number of bits affected by one fault. The
value of w might be 1, 4, 8, which refers to bit-based,
nibble-based, and byte-based fault models, respectively. X∗ is
a faulty state where faults are injected. r is the index for a
specific round. rmax is the round number, i.e., the total number
of rounds. X has different meanings. It can be a state in
r -th round of the key scheduling or encryption, thus X is
written as Xks

r or Xen
r . It can also be a state referred to as

the round counter, thus X can be depicted as Xks
rc or Xen

rc
respectively.

Two terms are used throughout this paper. Position, denoted
by X , is the state where the fault is situated. It refers to the
round in most of cases. Location, denoted by t , is the place
where the fault is located inside a state. As in most previous
fault attacks [3], we assume that only one unit of X , i.e., Xt ,
is erroneous with a single fault injection in this paper. This
usually happens in fault attacks to the software implementa-
tions of block ciphers. For hardware implementations, multiple
units of X might become faulty after a single fault injection.
In general, λ, the size of the state, is larger than w. Thus there
are m possible locations for f where m = λ/w. m denotes
the maximal value for the number of possible locations for
fault injection. t can be known or unknown depending on the
scenarios.

A formal fault model can be described as a tuple of five
elements F(X, λ,w, t, f). Basically, it tells us that a fault with
value f and width w is injected at location t with respect to
a state (or position) X having λ bits.

The injected faults are also represented with algebraic
equations. Different parameters such as width w and location t
should be considered. The equation set for the faults can
be merged with the one for the entire encryption, which
can significantly reduce the computation complexity. There is
an option to build an additional equation set for verification
purposes. It is based on the correct full round encryption of
a known plaintext Pv , resulting in a corresponding cipher-
text Cv . This equation set enforces the number of solutions to
be one.

3) The Cipher Describer and Its Equation Builder:
Stage ➁, i.e., Equations Building, specifies how to construct
the equation sets for the cipher. Enc stands for the encryption
function. The plaintext, the ciphertext, the master key and the
state are denoted by P,C, K , X respectively. On the one hand,

the building work has to include all the major components
in both encryption and key scheduling. On the other hand,
it should represent every operation. The most difficult part is
how to represent the non-linear operations such as S-Box and
modulo addition. More details can be found in [16]. In order to
accelerate the solving speed, different strategies can be applied
to the solver. For example, as to AFA on block ciphers with
SPN structure, it is better to use the pair of correct and faulty
ciphertexts to build the equations reversely [9]. In Figure 2,
a fault is injected to X in the r -th round. The equation set is
built for the last (rmax − r + 1) rounds.

4) The Machine Solver: Stage ➂, i.e., Equation Solving,
specifies how to solve the entire equation set. Many automatic
tools, such as Grobner basis-based [19] and SAT-based [18]
solver, can be leveraged. The adversary could choose his own
according to his skill set.

C. The Evaluator Level

The evaluator level takes the output of machine solvers and
evaluates two metrics: the approximate information metric and
the actual security metric. The evaluator answers two types
of questions: for adversaries, What faults should I inject and
how? For cipher designers and industrial engineers, How
secure is my design? and How secure is my implementation?

1) Actual Security Metric: There are two types of security
metrics. One is the computational restrictions. The possible
criteria of the restrictions can be time complexity (such as the
threshold for the timeout and the entire solving time, denote
by tout and tsol respectively), the data complexity (such as
the number of fault injections, denoted by N), and the space
complexity (such as the memory cost). The other is the success
rate (denoted by S R) for extracting the master key. All these
objective metrics are either measurable or computable, thus
they can be used to evaluate and compare different factors
that may affect algebraic fault attacks.

2) Approximate Information Metric: The information metric
refers to the conditional entropy of the secret key after N fault
injections. It is denoted by φ(K). In traditional DFAs, the
adversary cannot analyze deeper rounds due to the overlap
among propagation paths. The full utilization of all faults
can be easily done in our AFA framework. The remaining
key search space (denoted by 2φ(K)) is equivalent to the
number of satisfiable solutions if the multiple solution output
is supported. Note that if the number of fault injections is small
or the fault position is deep, the number of solutions might be
too big to search them all. In this case, we can feed κ guessed
bits of the secret key into the equation set. As opposed to [17],
our information metric actually calculates an approximation to
the theoretical complexity of the key search, which can serve
as an additional criterion to conduct the evaluations.

III. PRELIMINARIES OF AFA ON LBLOCK

LBlock [10] is an ultra-lightweight block cipher presented
by Wu et al. in CANS 2011. It uses a 32-round Feistel structure
with a block size of 64 bits and a key size of 80 bits. The
design of LBlock well balances the trade-off between security
and performance. On the one hand, only 1320 gate equiva-
lents and 3955 clock cycles are required for hardware and

ZHANG et al.: FRAMEWORK FOR THE ANALYSIS AND EVALUATION OF ALGEBRAIC FAULT ATTACKS 1043

Algorithm 1: The Encryption of LBlock

1 rmax = 32;
2 P = X1‖X0;
3 for rc = 0; rc < rmax ; rc + + do
4 Xrc+2 = F (Xrc+1, Krc+1)+ (Xrc <<< 8);
5 end
6 C = X32‖X33;

Algorithm 2: The Key Scheduling of LBlock

1 rmax = 32;
2 L = K ;
3 K1 = Left32(L);
4 for rc = 1; rc < rmax ; rc + + do
5 L <<< 29;
6 [l79‖l78‖l77‖l76] = s9[l79‖l78‖l77‖l76];
7 [l75‖l74‖l73‖l72] = s8[l75‖l74‖l73‖l72];
8 [k50‖k49‖k48‖k47‖k46] ⊕ [rc];
9 Krc+1 = Left32(L);

10 end

software implementation respectively, which is outperforming
many proposed lightweight block ciphers under mainstream
architectures [18], [19]. The good efficiency makes it very
suitable for resource constrained environments. On the other
hand, LBlock remains still secure under modern cryptanalysis.
It is worth taking a comprehensive investigation to its security
features. We are interested in its resilience against fault attacks.

In this section, we first provide the design of LBlock and
list related cryptanalysis. Then, the general representations of
the equation set for both LBlock and the faults are described.

A. The Cipher of LBlock

Algorithm 1 shows the encryption of LBlock. Let
P = X1‖X0 denote the 64-bit plaintext and C = X32‖X33
denote the ciphertext, where Xi is 32 bits. rmax = 32 is the
total number of rounds. rc is the round counter.

The round function F is a non-linear function with a
32-bit input. It consists of Key Addition (AK),
Substitution (SB) and Linear Permutation (P M).
F = P M(SB(AK (X, Ki))).

• AK: the leftmost 32 bits of F function input are bitwise
exclusive-ORed with a round key

• SB: the substitution uses every 4 bits of the exclusive-
OR results as index for eight different 4-bit S-Boxes,
s0, s1, . . . , s7

• PM: a permutation of eight 4-bit words Z (Z = Z7
||Z6|| . . . ||Z0) to U (U = U7||U6|| . . . ||U0), and it can
be illustrated as the following equations:

U7 = Z6, U6 = Z4, U5 = Z7, U4 = Z5,

U3 = Z2, U2 = Z0, U1 = Z3, U0 = Z1 (1)

Algorithm 2 shows the key scheduling of LBlock. The
master key is denoted by K = k79||k78|| . . . ||k0. The leftmost
32 bits of K are used as the first round key K1. Left32(L)
denotes a function to get the leftmost 32 bits of L, where L is

a state register of 80 bits. li is one bit of L. The other
round keys Ki+1 (i = 1, 2 . . . 31) are generated according
to Algorithm 2.

LBlock has two software implementations [10]. In the
size-optimized implementation, eight 4-bit S-Boxes and 4-bit
word permutations are used. In the speed-optimized implemen-
tation, the eight S-Boxes and the permutations can be imple-
mented as four 8-bit lookup tables. No additional permutation
is required. In the rest of this paper, we mainly focus on fault
attacks on the software implementation of LBlock.

B. Related Fault Attacks on LBlock

Regarding the fault attacks, Zhao et al. [20] proposed the
first fault attack on LBlock with DFA. Their best results
showed that if a single-bit fault is injected into any round
between the 24th and the 31st round, at least 8 fault injections
are required to extract the master key. In 2013, Jeong et al. [21]
presented an improved DFA on LBlock under nibble-based
fault model. It requires 5 fault injections into the left input
register of the 29th round, or 7 injections into the one of the
30th round. Chen and Fan [22] built eight 8-round integral
distinguishers of LBlock and proposed several integral based
fault attacks. When faults are induced into the right part at
the end of the 24th round under random nibble fault model,
24 fault injections are required to recover the master key of
LBlock. When faults are induced into the right part at the end
of the 23rd round under semi-random nibble model, 32 fault
injections are required. Li et al. [23] presented the first AFA
on LBlock. Under nibble-based fault model in the 27th round,
two fault injections are enough to recover the 80-bit
master key.

C. Building the Equation Set for LBlock

1) Representing the Overall Encryption: The equations for
the overall encryption have already been listed in Algorithm 1
(Line 4) where 0 ≤ i ≤ 31.

Xi+2 = F (Xi+1, Ki+1)+ (Xi <<< 8) (2)

2) Representing AK : Suppose X = (x1, x2, . . . , x32) and
Y = (y1, y2, . . . , y32) are the two 32-bit inputs to the AK
of LBlock. Z = (z1, z2, . . . , z32) is the output. AK can be
represented as

xi + yi + zi = 0, 1 ≤ i ≤ 32 (3)

Note that the XOR operation in key scheduling
(Line 8 in Algorithm 2) can also be represented with
Equation 3. rc can be considered as one input whose value
is known.

3) Representing SB: In LBlock, eight S-Boxes
s0, s1, · · · , s7 are used in encryption and the other
two s8, s9 are used in key scheduling. Let the input of
S-Box be (x1‖x2‖x3‖x4) and the output be (y1‖y2‖y3‖y4).
We adopt the method in [24] and represent each S-Box with
four equations. For example, the equations for s0 can be

1044 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 5, MAY 2016

TABLE I

PERMUTATION SECTOR M

represented as:

1 + x1x2x4 + x1 + x1x3 + x3x4 + x2x4 + y1 = 0

1 + x1x2x4 + x1x2x3 + x1 + x4 + x1x2

+x2x3 + x2x4 + x1x4 + y2 = 0

1 + x1 + x2 + x4 + x2x3 + x2x4 + y3 = 0

x1 + x2 + x3 + x4 + x1x2 + y4 = 0 (4)

4) Representing P M: Let the input and output of P M
be (x1‖x2‖ . . . ‖x32) and (y1‖y2‖ . . . ‖y32) respectively. The
i -th bit of the input can be mapped to the i -th bit of the
vector M using Table I.

The P M function can be expressed as

xi + yM[i] = 0, 1 ≤ i ≤ 32 (5)

5) Representing l-Bit Left Cyclic Shift: Suppose there is an
l-bit left cyclic shift to a state register of m bits. LBlock adopts
one 8-bit left cyclic shift in encryption (l = 8,m = 32) and
one 29-bit left cyclic shift in key scheduling (l = 29,m = 80).
Both can be written as the following equation when the input is
(x1‖x2‖ . . . ‖xm) and the output is (y1‖y2‖ . . . ‖ym). % stands
for a modulo operation.

x(l+i−1) % m+1 + yi = 0, 1 ≤ i ≤ m (6)

Using Equations 2 to 6, each round of key scheduling can
be represented with 196 variables and 244 CNF equations;
while each round of encryption can be represented with
304 variables and 496 CNF equations. The script size of one
full LBlock encryption is 449KB.

D. Building the Equation Set for Faults

Let X denote the λ-bit correct data unit of LBlock.
X = x1‖x2‖ . . . ‖xλ. X might represent a 32-bit left state
register in the encryption (λ = 32), or an 80-bit key register
in the key scheduling (λ = 80). Let Y denote the faulty value
of X . Y = y1‖y2‖ . . . ‖yλ. There are m possible locations for
the injected faults where m = λ/w. Let Z denote the fault
difference of X and Y :

Z = z1‖z2‖ · · · ‖zλ, zi = xi + yi , 1 ≤ i ≤ λ (7)

Then, Z can be divided into m parts: Z1‖Z2‖ . . . ‖Zm

Zi = zw×(i−1)+1‖zw×(i−1)+2‖ · · · ‖zw×i , 1 ≤ i ≤ m (8)

According to whether the adversary knows the exact loca-
tion t (1 ≤ t ≤ m) or not, the algebraic equation representation
of Z may have different formats.

1) Representing the Fault With Known t: Suppose t is
known. Then Z can be denoted as

Zi = 0, 1 ≤ i ≤ m, i �= t (9)

Zt has a nonzero value of w-bits. We introduce a single bit
variable ut to represent that Zt is faulty.

ut = (1 ⊕ zw×(t−1)+1)(1 ⊕ zw×(t−1)+2) · · · (1 ⊕ zw×t) = 0

(10)

Using Equations 9 and 10, Z can be represented with
w + 1 variables and w(m + 1)+ 2 CNF equations.

2) Representing the Fault With Unknown t: In practical
attacks, the fault location t may be unknown. We introduce
a variable ui of m bits to represent whether Zi is faulty or
not.

ui = (
1 ⊕ zw×(i−1)+1

) (
1 ⊕ zw×(i−1)+2

) · · ·
(1 ⊕ zw×i) , 1 ≤ i ≤ m (11)

If ui = 0, Zi will be the variable that is associated with the
w-bit fault. Assuming that one and only one fault is injected,
there should be only one zero among u1, u2, . . . , um . This
constraint can be represented as:

(1 − u1) ∨ (1 − u2) ∨ · · · ∨ (1 − um) = 1,

ui ∨ u j = 1, 1 ≤ i < j ≤ m (12)

Using Equations 11 and 12, Z can be represented with
m(w+2) variables and m(2w+0.5m+1.5)+1 CNF equations.
These equations can also be represented when different values
of w, m and λ are given.

E. Equation Solving Strategies

In this paper, we choose CryptoMiniSAT v2.9.6 as our
equation solver. It has two modes. Mode A works with a
pair of known plaintext Pv and corresponding ciphertext Cv ,
which enforces the number of solutions to be one all the time.
The purpose of this mode is to get the statistics of differ-
ent solving times with different numbers of fault injections,
which is one type of the actual security metrics mentioned
in Section 2.3.1. Mode B works without (Pv ,Cv). The solver
is running a multiple solution mode to estimate φ(K), the
remaining entropy of the master key. It is the approximate
information metric mentioned in Section 2.3.2.

Next we describe how to use CryptoMiniSAT to roughly
estimate φ(K) given N fault injections under Mode B. Let
len denote the key length and κ denote the number of
guessed secret bits fed into the solver. To estimate φ(K),
κ is usually chosen from a larger value to a smaller one.
Let η(κ) denote the number of solutions for given κ . When
the number of solution for one AFA is larger than 218, it is
difficult for CryptoMiniSAT to find out all possible solutions
within affordable time. In this case, a threshold τ for the
maximal number of solutions can be set as τ = 218. The
detailed algorithm is shown in Algorithm 3.

In Algorithm 3, GenerateAFAES generates the equa-
tion set of the last few rounds after the fault is injected.
GenKnownKeySet generates the value of the known key

ZHANG et al.: FRAMEWORK FOR THE ANALYSIS AND EVALUATION OF ALGEBRAIC FAULT ATTACKS 1045

Algorithm 3: Estimate φ(K) Under Mode B
input : len, N, τ
output: φ(K)

1 GenerateAFAES(N);
2 GenKnownKeySet (Sk);
3 for κ=len; κ >-1; κ − − do
4 FeedRandKeyBits(Sk);
5 RemoveRandKeyBit(Sk);
6 RunAFAModeB();
7 CalcSolutionCount(η(κ));
8 if η(κ) ≥ τ and κ > 0 then
9 φ(K)=κ + log2(η(κ));

10 break;
11 end
12 if η(κ) ≤ τ and κ==0 then
13 φ(K)=log2(η(κ));
14 end
15 end

Algorithm 4: Fault Injection to Encryption

1 rmax = 32;
2 P = X1‖X0;
3 for rc = 0; rc < rmax ; rc + + do

4 Xrc+2 = F(f � Xrc+1 , Krc+1)+ (Xrc <<< 8);

5 end
6 C = X32‖X33;

bits into set Sk . Sk is initialized to len (80 for LBlock) bits
of the secret key. FedRandKeyBits feeds the value of κ
key bits in Sk to the equation set. RemoveRandKeyBit
removes one random key bit from Sk . RunAFAModeB means
using CryptoMiniSAT to solve for all possible solutions.
CalcSolutionCount represents counting the solutions of
the secret key from the output file of CryptoMiniSAT. From
Algorithm 3, we can see that when η(κ) ≥ τ and κ > 0,
φ(K) can be roughly estimated as κ+ log2η(κ). If κ = 0 and
η(κ) ≤ τ , the accurate value of φ(K) is log2η(κ).

IV. APPLICATION TO LBLOCK: FAULT INJECTION

TO ENCRYPTION (SCENARIO 1)

A. Fault Model

In this scenario, the fault f is injected into Xrc+1 in
LBlock encryption which is marked with a red double
box in Algorithm 4. The fault model can be described as
F(Xen

r , λ,w, t, f). More specifically, a fault is injected into
the left 32-bit register of the encryption (λ = 32), whose
value f is unknown. We consider three cases for the fault
width (w = 1, 4, 8) and two cases for the location (t is known
or unknown).

B. AFA Procedure

The attack is described in Algorithm 5. Both Mode A
and Mode B of CryptoMiniSAT are considered. We define
an instance as one run of our algorithm under one specific

Algorithm 5: The AFA Procedure of Scenario 1
input : N, r, w, bt

output: tsol in Mode A, φ(K) in Mode B

1 RandomPT(P);
2 K=KS (K , L);
3 for rc = 1; rc < rmax ; rc + + do
4 GenKSRdES(rc, Krc+1); // #1
5 end
6 for i = 0; i < N; i + + do
7 Ci =Enc(Pi , K);
8 for rc = r − 1; rc < rmax ; rc + + do
9 GenEnRdES(Xrc+1, Xrc, Krc+1); // #2

10 end
11 GenInputES(Ci);
12 C∗

i =InjectFault(Enc(Pi, K), Xr);
13 for rc = r − 1; rc < rmax ; rc + + do
14 GenEnRdES(Xrc+1, Xrc, Krc+1); // #3
15 end
16 GenInputES(C∗

i);
17 GenFaultyES(f = Xr + X∗

r); // #4
18 end
19 RandomPT(Pv);
20 Cv=Enc(Pv , K);
21 for rc = 0; rc < rmax ; rc + + do
22 GenEnRdES(Xrc+1, Xrc, Krc+1); // #5
23 end
24 GenInputES(Pv,Cv); // #6
25 (Tsol, φ(K)) = RunAFA(); // #7

fault model. In one instance, the algorithm may be repeated
many times, each of which requires one pair of plaintext and
ciphertext, and one fault injection. We define N as the number
of fault injections. For these N fault injections, the fault model
F is the same. As for the inputs of Algorithm 5, bt is a flag
to indicate whether the location t is known or not. r is the
specific round of Xen

r . If the fault is induced into a deeper
round, the value of r is smaller. If the solver is under Mode A,
the output is the solving time tsol if it is successful. Otherwise
the algorithm stops at a time out tout . We define a success
rate S R for extracting the master key, which is the number
of instances with a successful solving within tout over the
number of all instances. If it is under Mode B, the output is
the remaining key entropy φ(K).

In Algorithm 5, P and K denote the sets for plaintexts
and round keys respectively. KS and Enc denote the key
scheduling and encryption function respectively. RandomPT
generates one or more random plaintexts. InjectFault
induces one fault. A function in Algorithm 5 will generate
an equation set if its name is prefixed with Gen and suf-
fixed with ES. The attack can be described as follows. The
adversary A generates N pairs of plaintext/ciphertext and
starts constructing equations. First, he builds the equations
for key scheduling (GenKSRdES in Line #1). For each Pi ,
he will build the equation set for the correct encryption
(Rr to R32) using Ci (GenEnRdES in Line #2). For each
injection, he needs to build the equation set for the faulty

1046 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 5, MAY 2016

Fig. 3. Distribution of solving time under bit-based fault model, t is unknown
(Mode A). (a) r = 30, N = 10. (b) r = 29, N = 5. (c) r = 28, N = 3.
(d) r = 27, N = 2.

encryption (Rr to R32) using C∗
i (in Line #3) together with the

one for the fault itself (GenFaultyES in Line #4). Besides
that, A has to generate the equation set for a full round
encryption (in Line #5). The equation set based on a pair
of (Pv ,Cv) in Line #6 is for the verification purpose under
Mode A. Finally, these combined equation sets are fed into
the solver for key recovery (RunAFA in Line #7).

C. Case Study 1: Bit-Based Fault Model

Under bit-based fault model, we consider different fault
positions and known/unknown locations.

1) The Location t Is Unknown: For a specific state Xen
r ,

we decrease r from 30 to 24. For each r , 100 instances of
AFA are conducted under Mode A. For each instance, there are
N fault injections. The statistics of different values of (r, N)
are shown in Figure 3. The horizontal axis is the solving time
in seconds. The vertical axis is the percentage.

In Figure 3, the statistics seem to follow an exponential
distribution. N can be reduced when r is smaller, which means
that an injection to a deeper round could reduce the number
of faults that are required. When (r, N) = (30, 10) or (29, 5),
the 80-bit master key of LBlock can be recovered within
five minutes, S R = 100%. If (r, N) = (28, 3) or (27, 2),
it can be extracted in one minute, S R = 100%.

Note that the single-bit fault model in [20] can be converted
to our fault model in this paper. The work in [20] assumed
that a single-bit fault is randomly injected into the internal
state at the end of the (r − 1)-th round. This is equivalent to
our bit-based fault model in the r -th round, where single-bit
fault is randomly injected into the left input register of the
r -th round. The comparison with [20] is shown in Table II.
With our framework, we first verify the result in previous work
for specific rounds. In contrast, the efficiency and effectiveness
of our work are demonstrated when the fault is injected into
the same round. Our attack requires only a few injections.
For example, two injections are enough for our AFA in R27,

TABLE II

THE NUMBER OF INJECTIONS IN COMPARISON WITH PREVIOUS
WORK UNDER RANDOM BIT-BASED FAULT MODEL

TABLE III

BIT-BASED FAULT MODEL, t IS KNOWN (Mode A)

while about 8 injections or more are required for most cases
in [20].

2) The Location t Is Known: If t is known, we first
conduct 100 AFA instances for each r under Mode A,
tout = 3600 seconds. The results in Table III show that N
becomes smaller compared to that for the same r when t is
unknown. For example, (r, N) = (29, 5) in Figure 3 while
(r, N) = (29, 4) in Table III. Moreover, fault injections in
deeper rounds can help retrieve the key. For instance, when r is
decreased from 28 to 27, N can also be reduced from 3 to 2.

In particular, when a single bit fault is injected into the left
register in R26, it might be possible to recover the master key.
In this special case, we first try to solve for the secret key
directly under Mode A. When tout = 2 hours, S R is only
18% for most instances, which indicates that it is difficult
for CryptoMiniSAT to find the solution. To overcome this,
we guess an 8-bit value of the master key and feed this
value into the solver. The attack stops when the solver finds
out a satisfiable solution for one key guess. Since there are
256 possible values, we can conduct at least 1, at most 256
(on average 128) guesses for each instance. When more
guessed key variables are fed into the solver, CryptoMiniSAT
can either find a satisfiable solution or output “unsatisfiable”.
The statistics of the solving time of 100 AFA instances are
listed in Figure 4. The master key can be recovered within
1997 seconds on average and S R = 92% when tout = 2 hours.
To the best of our knowledge, this is the first time LBlock has
been attacked with only one injection under bit-based fault
model.

To interpret the results in Table IV, we evaluate φ(K) for
one fault injection (N = 1) under Mode B. Let ψ denote
the number of the faulty nibbles in the ciphertext for one
injection. Let ψ̄ denote the average of ψ where 10000 random
instances are collected. Results of ψ , ψ̄ and φ(K) are listed
in Table IV.

ZHANG et al.: FRAMEWORK FOR THE ANALYSIS AND EVALUATION OF ALGEBRAIC FAULT ATTACKS 1047

Fig. 4. Distribution of solving time with one injection to R26 under bit-based
fault model (Mode A).

TABLE IV

ψ , ψ̄ AND φ(K) UNDER BIT-BASED FAULT MODEL

From Table IV, we can see that when 28 ≤ r ≤ 30, only
a few nibbles in the ciphertext become faulty. Since r = 26,
all 16 nibbles in the ciphertext are faulty. When
(r, ψ) = (26, 16), our best result of AFA shows that
φ(K) can be reduced to 17.3. Note that in Table IV, N = 1.
When (r, N) = (30, 1), φ(K) can be reduced to about 70.2,
which means that 9.8 key bits can be recovered with a
single injection. Then, when (r, N) = (30, 10), φ(K) can
be reduced to a smaller value. This can also explain why
CryptoMiniSAT can output the correct solution within a few
seconds for (r, N) = (30, 10) in Table III. In particular, when
(r, N) = (26, 1), φ(K) can be reduced to about 17.3 in
Table IV. It explains why CryptoMiniSAT can find the secret
key within affordable time under Mode A in Table III.

D. Case Study 2: Nibble-Based Fault Model

In [21] and [22], the adversary has to build the distinguishers
manually and deduce the fault position. Specific algorithms
must be customized for each fault position. We conduct
AFA under nibble-based fault model as in [21] and [22].
However, with our framework, the solver can automatically
deduce the fault position and solve for the key. The workload
for customizations can be saved.

We extend the faults into deeper rounds and calculate φ(K)
for a given amount of fault injections. The comparison with
previous work [21], [22] under Mode B is shown in Table V.
Under the same fault model, our AFA can use less injections.
For example, when r = 30, we can reduce N from 7 to 5 as
compared to [21].

Our AFA can further reduce φ(K). In [21], φ(K) is
30 and 25 when (r, N) = (30, 7) and (29, 5) respectively.

TABLE V

COMPARISON WITH PREVIOUS WORK UNDER
NIBBLE-BASED FAULT MODEL

TABLE VI

AFA UNDER RANDOM BYTE-BASED FAULT MODEL

As for (r, N) = (29, 5), φ(K) is 13 in our AFA, compared
to 25 in [21]. The estimation on φ(K) in [21] might not be
accurate. This is because the manual analysis may miss some
faulty states in the propagation path, while the solver fully
utilizes all the faults along all paths. Each faulty state can
contribute his own entropy to reducing φ(K). As a result, our
AFA can achieve better efficiency.

Significant enhancements are achieved when the injections
are to R24 or R25. In Table V, our attack requires only
3 and 5 injections, compared with 24 injections for R25 and
32 injections for R24 in [22], respectively.

E. Case Study 3: Byte-Based Fault Model

Previous fault attacks on LBlock [20]–[22] are mainly
under bit-based or nibble-based model. As aforementioned
in Section 3, LBlock usually adopts the size-optimized or
speed-optimized implementation on 8-bit microcontrollers. For
speed-optimized implementation, the fault width is one byte.
Under byte-based fault model, the fault propagation becomes
more complicated.

We are concentrating on challenging AFA on LBlock under
byte-based fault model. We implement the speed-optimized
version of LBlock. One single byte fault is injected into the
input of the big S-Box. The results under Mode B are listed
in Table VI where our AFA can still reduce φ(K) to a smaller
value. For example, when (r, N) = (26, 2), φ(K) can be
further reduced to 0.

F. Comparisons With Previous Work

Compared with previous fault attacks on LBlock [20]–[23],
our work demonstrates that the data complexity of previous
work is not optimal and AFA can work at much deeper
rounds. Meanwhile, under different fault models, AFA can
automatically evaluate the remaining key search space. For
the first time, only one fault injection is required to recover

1048 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 5, MAY 2016

Algorithm 6: Fault Injection to Key Scheduling

1 rmax = 32;
2 L = K ;
3 K1 = Left32(L);
4 for rc = 1; rc < rmax ; rc + + do

5 f � L <<< 29;

6 [l79‖l78‖l77‖l76] = s9[l79‖l78‖l77‖l76];
7 [l75‖l74‖l73‖l72] = s8[l75‖l74‖l73‖l72];
8 [k50‖k49‖k48‖k47‖k46] ⊕ [rc];
9 Krc+1 = Left32(L);

10 end

the master key. To the best of our knowledge, this is the best
result for fault attacks on LBlock in terms of data complexity.

V. APPLICATION TO LBLOCK: FAULT INJECTION

TO KEY SCHEDULING (SCENARIO 2)

A. Fault Model

In this scenario, a state register for round keys is altered
due to the injected fault. The fault will be propagated to
the remaining rounds of key scheduling. This case is equiv-
alent to injecting multiple faults simultaneously into multiple
rounds. The manual analysis is difficult due to the complexity.
In contrast, the automatic analysis by CryptoMiniSAT is
expected to be much more efficient. This is because the more
equations that are generated, the more entropies are utilized
in the same problem solving.

In this model F(Xks
r , λ,w, t, f), a fault is injected into the

left 32-bit of the 80-bit key register L in the r -th round key
scheduling (λ = 32), as shown in Algorithm 6. The round key
Kr , Kr+1, . . . , K32 are faulty. We consider three cases for the
fault width (w = 1, 4, 8) and the location t is known.

B. AFA Procedure

The detailed procedure is depicted by Algorithm 7 where
there are only two slight differences with Algorithm 5.
In Line #3, the adversary has to build the equation set for
the faulty key scheduling (Rr to R31). In Line #4, he has to
build the equation set for the faulty encryption (Rr to R32)
using the faulty round keys.

C. Case Study 1: Bit-Based Fault Model

First, we evaluate φ(K) for different r under bit-based
fault model under Mode B. ψ , and ψ̄ are collected from
10000 instances with single fault injection. φ(K) is calculated
from 100 full AFA attacks. Results of ψ , ψ̄ and φ(K) are
listed in Table VII.

From Table VII, we can see that when 27 ≤ r ≤ 30,
only a few nibbles in the ciphertext become faulty. Since
r = 25, all 16 nibbles in the ciphertext are faulty. When
(r, ψ) = (24, 16), our best result of AFA shows that φ(K)
can be reduced to 16.

It is interesting to see that if r ≥ 23, φ(K) increases when r
decreases. For instance, φ(K) changes from 16 to less than 30

Algorithm 7: The AFA Procedure of Scenario 2
input : N, r, w, bt

output: tsol in Mode A, φ(K) in Mode B

1 RandomPT(P);
2 K=KS (K , L);
3 for rc = 1; rc < rmax ; rc + + do
4 GenKSRdES(rc, Krc+1); // #1
5 end
6 for i = 0; i < N; i + + do
7 Ci =Enc(Pi , K);
8 for rc = r − 1; rc < rmax ; rc + + do
9 GenEnRdES(Xrc+1, Xrc, Krc+1); // #2

10 end
11 GenInputES(Ci);
12 K

∗=InjectFault(KS(K , L)) ;
13 for rc = r; rc < rmax ; rc + + do
14 GenKSRdES(rc, K ∗

rc+1); // #3
15 end
16 C∗

i =Enc(Pi ,K
∗);

17 for rc = r; rc < rmax ; rc + + do
18 GenEnRdES(Xrc+1, Xrc, K ∗

rc+1); // #4
19 end
20 GenInputES(C∗

i);
21 GenFaultyES(f = L + L∗); // #5
22 end
23 RandomPT(Pv);
24 Cv=Enc(Pv , K);
25 for rc = 0; rc < rmax ; rc + + do
26 GenEnRdES(Xrc+1, Xrc, Krc+1); // #6
27 end
28 GenInputES(Pv,Cv); // #7
29 (Tsol, φ(K)) = RunAFA(); // #8

TABLE VII

ψ̄ AND φ(K) UNDER BIT-BASED FAULT MODEL

if the injection changes from R24 to R23 in key scheduling.
Meanwhile, ψ̄ is approximately 15 for r = 23, which is even
slightly smaller than ψ̄ = 15.09 for r = 24. The reason behind
is the overlap of the faults in the last few rounds.

Note that Table VII can be used to determine the optimal
round position for the injection and estimate the total number
of injections that is required. From Table VII, we can deduce
that it is into R24 where we should inject a bit-based fault in
order to minimize φ(K).

In our attack, when r = 24, 25, 26, two single-bit
fault injections (N = 2) can reduce φ(K) to 0 under
Mode B. In particular, we also conducted AFA with only

ZHANG et al.: FRAMEWORK FOR THE ANALYSIS AND EVALUATION OF ALGEBRAIC FAULT ATTACKS 1049

TABLE VIII

ψ̄ AND φ(K) UNDER NIBBLE-BASED FAULT MODEL

TABLE IX

φ(K) AND ψ UNDER BYTE-BASED FAULT MODEL

one single-bit fault injection under Mode A for r = 24, 25.
As in Section 4.3, we guess an 8-bit value of the master
key and feed this value into the solver. The results show that
the full key can be recovered within two hours where S R is
about 85%.

D. Case Study 2: Nibble-Based Fault Model

The results under nibble-based fault model are shown in
Table VIII, where 10000 random instances are collected.
We can see that the fault propagation is faster under this model
than under bit-based model. For example, for the same r = 27,
ψ̄ = 10.09 in Table VIII while ψ̄ = 9.52 in Table VII. Note
that φ(K) ≤ 40 when 23 ≤ r ≤ 27. Our best results show
that two fault injections can recover the master key of LBlock
when 24 ≤ r ≤ 26. Similarly, it is in R25 where we should
inject a nibble-based fault in order to minimize φ(K), which
could be used as an empirical parameter to guide the physical
injections if possible.

E. Case Study 3: Byte-Based Fault Model

The results under byte-based fault model are shown in
Table IX. We can observe that the fault propagation under
byte-based model is very fast. ψ̄ is close to 4 when r = 30.
φ(K) ≤ 40 when 23 ≤ r ≤ 28. Our best results show that
when 24 ≤ r ≤ 28, two fault injections can recover the full
key of LBlock.

VI. APPLICATION TO LBLOCK: FAULT INJECTION

FOR ROUND MODIFICATION (SCENARIO 3)

A. Fault Model

During a typical implementation, round number, denoted
by rmax , is the total number of rounds to be executed.

Algorithm 8: Fault Injection to rmax or rc

1 P = X1‖X0;

2 f � rmax = 32;

3 for f � rc = 0 to rmax − 1 do

4 Xrc+2 = F(Xrc+1, Krc+1)+ (Xrc <<< 8);
5 end
6 C = X32‖X33;

round counter, denoted by rc, is a variable that specifies which
round it is executing. In this section, we evaluate the security
of LBlock against round modification attack (RMA). RMA can
induce the misbehavior of round operations by fault injections.
A fault could be injected either into rmax or rc. The new values
are denoted by r ′

max or rc′. The change in the execution of
LBlock can facilitate subsequent cryptanalysis.

In LBlock, there are 31 rounds in key scheduling. The round
keys generated from key scheduling will be further utilized
in the 32-round encryption. Two round counters are actually
used for key scheduling and encryption. rmax = 32 before the
fault injection. Due to page limitation, we mainly discuss the
scenario when a fault is injected to modify the round during
encryptions.

In this model F(Xen
rc , λ,w, t, f), a fault is injected into Xen

rc
in encryption. As in previous RMA work [11], [12], we assume
that both the fault value f and the fault location t are known.
λ = w = 8. We consider two cases for the fault position,
as shown in Algorithm 8.

B. AFA Procedure

The detailed procedure is depicted by Algorithm 9, where
there are only three slight differences with Algorithm 5.
Line #3 and Line #4 show how the adversary can build the
equation set for the faulty encryption (Rr to R31) if the fault
is injected into rmax or rc (determined by b) respectively.
Line #4 in Algorithm 5 is discarded here.

C. Case Study 1: Injecting Faults to Modify rmax

In this case, a fault is injected into rmax in Line 2
of Algorithm 8. rmax could be accessed at the beginning
of each instance where the fault may cause an increase or
decrease in the total number of rounds.

1) Case 1: r ′
max ≥ 32: In this case, LBlock will proceed

(r ′
max − 32) additional rounds after the normal encryption.

These extra rounds use invalid values of round keys (for
instance, four 0xcc bytes observed from physical experiments)
which are known to the adversary. This case does not provide
the adversary with any useful information.

2) Case 2: r ′
max < 32: In this case, LBlock will only

proceed with the first r ′
max rounds and skip the remaining

(32 − r ′
max) rounds. As for the adversary, the key recovery is

a reduced (32 − r ′
max) round cryptanalysis. We are interested

in the cases r ′
max = 28 or 29 which are difficult for previous

work.
We first run 100 random AFA instances under Mode A.

Time statistics for r ′
max = 28 and r ′

max = 29 are shown

1050 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 5, MAY 2016

Algorithm 9: The AFA Procedure of Scenario 3
input : N, b, r, rc′, r ′

max
output: tsol in Mode A, φ(K) in Mode B

1 RandomPT(P);
2 K=KS (K , L);
3 for rc = 1; rc < rmax ; rc + + do
4 GenKSRdES(rc, Krc+1); // #1
5 end
6 for i = 0; i < N; i + + do
7 Ci =Enc (Pi ,K);
8 for rc = 0; rc < rmax ; rc + + do
9 GenEnRdES(Xrc+1, Xrc, Krc+1); // #2

10 end
11 GenInputES(Ci);
12 switch b do
13 case 0
14 C∗

i =InjectFault(r ′
max, Enc(Pi ,K))

// #3 for rc = 0; rc < r ′
max; rc + + do

15 GenEnRdES(Xrc+1, Xrc, Krc+1)
16 end
17 GenInputES(C∗

i);
18 endsw
19 case 1
20 C∗

i =InjectFault(r ,rc′,Enc(Pi ,K)) // #4
btag = 0;

21 for rc = 0; rc < rmax ; rc + + do
22 GenEnRdES(Xrc+1, Xrc, Krc+1);
23 if rc = r − 2 and btag = 0 then
24 btag + +;
25 rc = rc′;
26 if rc > 31 then
27 break;
28 end
29 end
30 end
31 GenInputES(C∗

i);
32 endsw
33 endsw
34 end
35 RandomPT(Pv);
36 Cv=Enc (Pv ,K);
37 for rc = 0; rc < rmax ; rc + + do
38 GenEnRdES(Xrc+1, Xrc, Krc+1); // #5
39 end
40 GenInputES(Pv ,Cv); // #6
41 (Tsol, φ(K)) = RunAFA(); // #7

in Figure 5. The solver can output the correct solution within
one minute for r ′

max = 28 and two minutes for r ′
max = 29.

Under Mode B, we also run 100 random AFA instances and
calculate φ(K) for r ′

max = 28 and 29. The results show that
φ(K) can be reduced to 16 ∼ 17 which could be done with a
brute force. This can also explain why the solver can recover
the master key within a limited time under Mode A.

Meanwhile, we conduct AFA on LBlock for r ′
max = 3 or 4.

Under unknown plaintext scenario, since the key recovery is

Fig. 5. Distribution of solving time for AFA when modifying rmax .
(a) r ′

max = 28. (b) r ′
max = 29.

equivalent to analyzing the (32−r ′
max) round LBlock, it is diffi-

cult for the solver to recover the secret key within limited time.
However, under known plaintext/ciphertext scenario, it can
be converted into the algebraic analysis of a reduced r ′

max
round LBlock. Under Mode A, the solver can always solve
the problem within one minute.

D. Case Study 2: Injecting Faults to Modify rc

In this case, a fault is injected to rc in Line 3 of Algorithm 8
at the beginning of Rr , the r -th round. Depending on the
instant value of rc and the faulty value rc′, various changes
may occur during encryption, such as adding, reducing or even
repetitively executing several rounds.

1) Case 1 (rc′ < rc < rmax): In this case, (rc − rc′)
intermediate encryption rounds can be repeated. We illustrate
a simple case where rc = 30 and rc′ = 29. The sequence of
rounds during encryption is shown as below.

R1, R2, · · · , R29, R30, R30, R31, R32 (13)

We can see that R30 is repeated twice. During the
key recovery, two types of equation sets are built: those
for R1, · · · , R29, R30, R31, R32 with a correct ciphertext,
and those for R1, · · · , R29, R30, R30, R31, R32 with a faulty
ciphertext.

Under known ciphertext scenario, we conduct 100 AFA
instances. The results show that under Mode A, the solver can
finish in two minutes with 100% success rate; under Mode B,
φ(K) can be reduced to 16 ∼ 17.

2) Case 2 (rc < rc′ < rmax): In this case, (rc′ − rc)
intermediate encryption rounds can be skipped. We investigate
the case when rc = 29 and rc′ = 31. The sequence of those
rounds during encryption is shown as below. R30 and R31 are
skipped. The total number of rounds actually executed is 30.

R1, R2, · · · , R29, R32 (14)

Then the key recovery is converted into the
algebraic analysis with two equation sets: one for
R1, R2, · · · , R29, R30, R31, R32 with a correct ciphertext, and
one for R1, R2, · · · , R29, R32 with a faulty ciphertext. Results
achieved are similar to the ones in Case 1. One fault injection
is enough to recover the master key of LBlock within two
minutes.

3) Case 3 (rc < rmax < rc′): In this case, (33 − rc)
intermediate encryption rounds can be skipped. One more
example can be given for rc = 30 and rc′ = 35. The sequence
is R1, R2, · · · , R29. Note that R30, R31, R32 are skipped.

ZHANG et al.: FRAMEWORK FOR THE ANALYSIS AND EVALUATION OF ALGEBRAIC FAULT ATTACKS 1051

This case is equivalent to our Case Study 1 when rmax = 29.
The result is similar to Case 1. One fault injection is enough
to recover the full key within one minute.

It should be noted that AFA can also be used to recover
the master key when a fault is injected to modify the round
during key scheduling. Since only the number of rounds in
key scheduling has been modified and that in the encryption
is always 32, the equation sets to be built are slightly different
from those in this section. Our experiment results show that,
if a single fault could be injected into either rmax or rc in key
scheduling of LBlock, φ(K) can also be reduced to 16 ∼ 17.

VII. EXTENSIONS TO OTHER BLOCK CIPHERS

The work on LBlock demonstrated the generic feature of
our framework on lightweight block ciphers which typically
have simple structures but many iterative rounds. That is
why we chose lightweight block ciphers such as LBlock as
an appropriate starting point to check how to represent the
internal structure with equations and how AFA is affected by
the number of rounds or other factors such as fault models.
In fact the work in this paper can be extended to other well
known block ciphers. Some new and interesting results are
achieved.

A. Application to DES

DES is a block cipher that uses a 56-bit master key and
operates on 64-bit blocks. It has 16 rounds preceded and
followed by two bit-permutation layers I P and I P−1. The
round transformation F follows a Feistel scheme. The 64-bit
block is split into two 32-bit parts L and R. F is defined
as FKr = (R, L ⊕ fKr (R)). The function f first applies an
expansion layer E that expands the 32 input bits into 48 output
bits by duplicating 16 of them. The 48-bit round key Kr is
then introduced by bitwise addition. Afterward the block is
split into eight 6-bit blocks, each entering into a different
S-Box Si with a 4-bit output. Finally, the 32 bits from the
eight S-Boxes are permuted by a bit-permutation P which
yields the 32-bit block.

For simplicity reasons, we assume that a single-bit fault is
injected into the left part of the DES state at the end of one
round, as in the previous work [3], [8], [25]. The fault model
can be described as F(Xen

r , λ = 32, w = 1, t, f). In practice,
the single-bit fault can be injected by high precision techniques
such as lasers when both the location t and the value f are
known. We conduct both AFA on DES under Mode A and
Mode B.

Under Mode A, for each r in the range of [1, 16], we fix
the number of fault injection N = 1 and randomly choose the
fault location t in the range of [0, 31]. When 1 ≤ r ≤ 10,
or 13 ≤ r ≤ 16, 10 simulations were conducted for each
round and the solver could not output the solution within
24 hours. When (r, N) = (12, 1), the solver can recover the
secret key within one hour. When (r, N) = (11, 1), the solver
can succeed in one minute.

When (r, N) = (11, 1) or (r, N) = (12, 1), we observe
a very interesting experimental result. The solving time
is different when t varies. The statistical results are

Fig. 6. The average solving time and the success rate on different bit locations
for DES, (r, N) = (11, 1).

Fig. 7. The average solving time and the success rate on different bit locations
for DES, (r, N) = (12, 1).

shown in Figure 6 and 7 where 640 AFAs are con-
ducted and each value of t is tested for 20 times. When
t ∈ {0, 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28, 31}, the
solving time is smaller. We guess that this might be caused
by different entropy of the remaining key search space and
then conduct the attack under Mode B. The statistical results
are shown in Figure 8 and 9 which are consistent to those
in Figure 6 and 7. When t ∈ {0, 3, 4, 7, 8, 11, 12, 15, 16, 19,
20, 23, 24, 27, 28, 31}, φ(K) is smaller than in other locations.
When (r, N) = (12, 1), φ(K) ≈ 5. When (r, N) = (11, 1),
φ(K) ≈ 0. The reason behind lies on the fact that, since the
expansion layer E duplicates some bits, the single bit fault on
those locations propagates to two S-Boxes instead of one.

Compared with the first DFA work on the last three rounds
of DES [3], [25] and the middle rounds of DES [25], our
AFA demands less data complexity and only one fault injection
is required. Compared with the first AFA work on DES [4],
the time complexity of our work is optimal and our best results
show that the master key of DES can be recovered within a few
seconds. Contrary to the recent AFA on DES [8], we evaluate
the remaining key entropy of faults attacks on DES and find
out that the key recovery efficiency is not the same for the
various bits of fault locations.

B. Application to PRESENT

PRESENT is a 31-round block cipher with an
SPN structure. The block size is 64 bits. Each round consists
of three major operations. The first one is addRoundKey (AK)
where the 64-bit input is XORed with the round key. The

1052 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 5, MAY 2016

Fig. 8. φ(K) with different w for DES, (r, N) = (11, 1).

Fig. 9. φ(K) with different w for DES, (r, N) = (12, 1).

second one is sBoxlayer (SL) where 16 identical 4 × 4
S-Boxes are used in parallel. The third operation is the
pLayer (PL) where the 64-bit input is permuted according
to a table P . PRESENT has two versions. In this paper,
we mainly focus on PRESENT-80. Its key scheduling uses
simple bit rotation, S-Box lookup and round-counter XOR
operations. More details can be found in [14].

Extensive AFAs are conducted on PRESENT under different
fault models. We assume that the input of AK layer in the
29th or 28th round is injected with faults. The fault width w
can be 1, 4, 8, 16, 32. 100 instances are performed for each w.
The statistical results of AFA on PRESENT under Mode B
are shown in Figure 10 and 11. Considering the fault position,
the injection in the 28th round is more efficient than in the
29th round. The average value of φ(K) is much smaller.
Considering the fault width, the single-bit fault model is the
optimal one and the word-based fault model is the worst.
Our best results show that when w = 1 and (r, N) = (28, 1),
for some attack instances, one fault injection can reduce φ(K)
to less than 30 with 35% probabilities. For most instances,
two injections can recover K within three minutes.

Previous fault attacks on PRESENT [26], [27] are DFAs to
the 29th round (r = 29) under nibble-based fault model. Their
results show that 8 fault injections can reduce φ(K) to 14.7.
As to faults injected into a deep round, e.g., r = 28, the
fault propagation paths get overlapped and the techniques
in [26] and [27] are difficult to work. The AFA in this paper is
very generic and the solver can automatically analyze all the
faults along the propagation path. Only one to two injections
are required for key recovery.

Fig. 10. φ(K) with different t for PRESENT, (r, N) = (29, 1).

Fig. 11. φ(K) with different t for PRESENT, (r, N) = (28, 1).

C. Application to Twofish

Twofish is a 128-bit Feistel structure block cipher, which
was one of the five AES finalists [15]. In this paper we
only consider Twofish with a key length of 128 bits. The
plaintext is split into four 32-bit words and XORed with
four words of the whitening key (one rotated by 1 bit towards
the left) and followed by 16 rounds. In each round, two most
significant input words (one rotated by 8 bits towards the left)
are fed into the F function. F has a g function followed by
Pseudo-Hadamard Transform (PHT) and key word addition
(modulo 232). The g function consists of four byte-wide key-
dependent S-Boxes followed by linear mixing operation with
the 4 × 4 MDS matrix. The two output words (one rotated
by 1 bit towards the right) of the F function are then XORed
with the two least significant words of the round input. More
details can be found in [15].

Some features of Twofish are different from traditional
Feistel block ciphers (e.g., DES), which makes DFA difficult
to work. The first one is the P H T operation. Due to modulo
addition in P H T , it is impossible to obtain a clear differential
characteristic for DFA. The second one is round key addition.
Unlike other Feistel ciphers, the round key addition in Twofish
is not to the input of S-Box. Even if the attacker retrieves the
input-output difference pair of an S-Box, he cannot retrieve
the key. The third one is key dependent S-Boxes. Each S-Box
uses two bytes that are associated with the key instead of one
byte in other block ciphers.

There is only one DFA work on Twofish [28]. As in [28],
we assume that one single byte fault is induced into the last
round input of Twofish. Then in ciphertext, one byte in the
left 64 bits and four bytes in the right become faulty. For the

ZHANG et al.: FRAMEWORK FOR THE ANALYSIS AND EVALUATION OF ALGEBRAIC FAULT ATTACKS 1053

key scheduling, we only build the equation set of generating
the key dependent S-Boxes, eight words of the whitening key
and the two words of the last round key (2375KB script size,
26600 variables and 100863 CNF equations). For the encryp-
tion, we only build the equation set of the last round (each
round requires 9608 variables and 33704 CNF equations).
100 AFA executions were distributed on ten computers with
the same configuration. Our results show that under Mode A,
280 fault injections (about 280MB script size) can recover
the secret key of Twofish in 24 hours with 95% probabilities.
Compared with the 320 fault injections and 8 hours offline
analysis in [28], our AFA requires less fault injections at
the cost of time complexity. In our attack, with 320 fault
injections, the solving time remains the same as the one with
280 fault injections. We infer that it was caused by the increase
in the script size.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes a generic framework for algebraic fault
analysis on block ciphers. The framework could be used to
analyze the efficiency of different fault attacks, to compare
different scenarios, and to evaluate the factors that may deter-
mine the solving time and the success rate.

First, we highlight a conceptual overview of the framework.
The important levels and roles are clarified, and four functional
parts and three workflow stages are depicted. Second, we select
LBlock as a start point to illustrate how our framework
can work on a specific cipher, especially a lightweight one.
To demonstrate the flexibility of the framework, three scenar-
ios are exploited, which include injecting a fault to encryption,
to key scheduling, or to modify the rounds. Third, to demon-
strate the generic feature of our framework, more fault attacks
are conducted on different block ciphers which are well known
and have some typical structures.

Future work can be derived in different directions.
One possible area is to further improve the efficiency of the
framework. The current version still meets some difficulties
in AFA on deep round of extremely complicated ciphers such
as Twofish. With an enhanced solver, more compact equation
builders and other advanced techniques, the AFA framework
might work with more rounds of Twofish.

REFERENCES

[1] H. B.-E. Hamid, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan,
“The sorcerer’s apprentice guide to fault attacks,” Proc. IEEE, vol. 94,
no. 2, pp. 370–382, 2016.

[2] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of
checking cryptographic protocols for faults,” in Proc. EUROCRYPT,
1997, pp. 37–51.

[3] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Proc. CRYPTO, 1997, pp. 513–525.

[4] N. T. Courtois, D. Ware, and K. Jackson, “Fault-algebraic attacks on
inner rounds of DES,” in Proc. eSmart, 2010.

[5] N. T. Courtois and J. Pieprzyk, “Cryptanalysis of block ciphers
with overdefined systems of equations,” in Proc. ASIACRYPT, 2002,
pp. 267–287.

[6] X. Zhao, S. Guo, F. Zhang, T. Wang, Z. Shi, and K. Ji, “Algebraic
differential fault attacks on LED using a single fault injection,” in Proc.
IACR Cryptol. ePrint Arch., 2012, p. 347.

[7] P. Jovanovic, M. Kreuzer, and I. Polian, “An algebraic fault attack on the
LED block cipher,” in Proc. IACR Cryptol. ePrint Arch., 2012, p. 400.

[8] F. Zhang, X. Zhao, S. Guo, T. Wang, and Z. Shi, “Improved algebraic
fault analysis: A case study on piccolo and applications to other
lightweight block ciphers,” in Proc. COSADE, 2014, pp. 62–79.

[9] X. Zhao, S. Guo, F. Zhang, Z. Shi, C. Ma, and T. Wang, “Improving and
evaluating differential fault analysis on LED with algebraic techniques,”
in Proc. FDTC, 2013, pp. 41–51.

[10] W. Wu and L. Zhang, “LBlock: A lightweight block cipher,” in Proc.
ACNS, 2011, pp. 327–344.

[11] H. Choukri and M. Tunstall, “Round reduction using faults,” in Proc.
FDTC, 2015, pp. 13–24.

[12] A. Dehbaoui, A.-P. Mirbaha, N. Moro, J.-M. Dutertre, and A. Tria,
“Electromagnetic glitch on the AES round counter,” in Proc. COSADE,
2013, pp. 17–31.

[13] U.S. Department of Commerce/National Institute of Standards and
Technology, “Data encryption standard (DES),” in Federal Information
Processing Standards Publication. Washington, DC, USA: National
Institute of Standards and Technology (NIST), Jul. 1977.

[14] A. Bogdanov et al., “PRESENT: An ultra-lightweight block cipher,” in
Proc. CHES, Vienna, Austria, 2007, pp. 450–466.

[15] B. Schneier and J. Kelsey. Twofish: A 128-Bit Block Cipher. [Online].
Available: http://www.schneier.com/paper-twofish-paper.pdf, accessed
May 3, 2014.

[16] X. Zhao et al., “Algebraic fault analysis on GOST for key recovery and
reverse engineering,” in Proc. FDTC, 2014, pp. 29–39.

[17] F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified frame-
work for the analysis of side-channel key recovery attacks,” in Proc.
EUROCRYPT, 2009, pp. 443–461.

[18] M. Cazorla, K. Marquet, and M. Minier, “Survey and benchmark
of lightweight block ciphers for wireless sensor networks,” in Proc.
SECRYPT, 2013, pp. 543–548.

[19] D. Dinu, Y. Le Corre, D. Khovratovich, L. Perrin, J. Großschädl, and
A. Biryukov, “Triathlon of lightweight block ciphers for the Internet of
Things,” in Proc. IACR Cryptol. ePrint Arch., 2015, pp. 1–18.

[20] L. Zhao, T. Nishide, and K. Sakurai, “Differential fault analysis of full
LBlock,” in Proc. COSADE, 2012, pp. 135–150.

[21] K. Jeong, C. Lee, and J. I. Lim, “Improved differential fault analysis
on lightweight block cipher LBlock for wireless sensor networks,”
EURASIP J. Wireless Commun. Netw., vol. 2013, no. 151, pp. 1–9, 2013.

[22] H. Chen and L. Fan, “Integral based fault attack on LBlock,” in Proc.
ICISC, 2014, pp. 227–240.

[23] W. Li, J. Zhao, X. Zhao, J. Zhu, and W. Bing, “Algebraic fault analysis
on LBlock under nibble-based fault model,” in Proc. 3rd IMCCC, 2013,
pp. 1525–1529.

[24] L. R. Knudsen and C. V. Miolane, “Counting equations in algebraic
attacks on block ciphers,” Int. J. Inf. Secur., vol. 9, no. 2, pp. 127–135,
2010.

[25] M. Rivain, “Differential fault analysis on DES middle rounds,” in Proc.
CHES, 2009, pp. 457–469.

[26] J. Li and D. Gu, “Differential fault analysis on PRESENT,” in Proc.
CHINACRYPT, 2009, pp. 3–13.

[27] X. Zhao, S. Guo, T. Wang, F. Zhang, and Z. Shi, “Fault-propagate pattern
based DFA on PRESENT and PRINTcipher,” Wuhan Univ. J. Natural
Sci., vol. 17, no. 6, pp. 485–493, 2012.

[28] S. S. Ali and D. Mukhopadhyay, “Differential fault analysis of Twofish,”
in Proc. 8th Inscrypt, 2013, pp. 10–28.

Fan Zhang was born in 1978. He received the
Ph.D. degree from the Department of Computer
Science and Engineering, University of Connecti-
cut, in 2012. He is currently with the College
of Information Science and Electrical Engineering,
Zhejiang University. He is also with the Science and
Technology on Communication Security Laboratory.
His research interests include side channel analysis
and fault analysis in cryptography, cyber security,
computer architecture, and sensor network.

Shize Guo was born in 1969. He received the
Ph.D. degree from the Harbin Institute of Tech-
nology, in 1989, and the M.S. and B.S. degrees
from Ordnance Engineering College, China, in 1991
and 1988, respectively. He is currently a Researcher
with the Institute of North Electronic Equipment and
also a Professor with the Beijing University of Post
and Telecommunications. His main research interest
includes information technology and information
security.

1054 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 5, MAY 2016

Xinjie Zhao was born in 1986. He received the B.S.,
M.S., and Ph.D. degrees from Ordnance Engineer-
ing College, in 2006, 2009, and 2012, respectively.
He is currently with the Institute of North Electronic
Equipment. His main research interest includes side
channel analysis, fault analysis, and combined analy-
sis in cryptography. He won the best paper award
in COSADE 2012 and the Outstanding Doctoral
Dissertation Award in the province of Hebei.

Tao Wang was born in 1964. He received the mas-
ter’s degree in computer application from Ordnance
Engineering College, in 1990, and the Ph.D. degree
in computer application from the Institute of Com-
puting Technology, Chinese Academy of Sciences,
in 1996. He is currently a Professor with Ordnance
Engineering College. His research interests include
information security and cryptography.

Jian Yang received the bachelor’s degree in engi-
neering from the College of Information Science and
Electrical Engineering, Zhejiang University. He is
currently pursuing the Ph.D. degree in computer
science and engineering with the University of Notre
Dame. His research interests focus on hardware
security and mobile computing.

Francois-Xavier Standaert was born in Brus-
sels, Belgium, in 1978. He received the Electri-
cal Engineering and Ph.D. degrees from the Uni-
versite catholique de Louvain, in 2001 and 2004,
respectively. His research interests include digital
electronics, field-programmable gate arrays, crypto-
graphic hardware, low-power implementations for
constrained environments, the design and crypt-
analysis of symmetric cryptographic primitives, in
general, physical security issues, and in particular,
side-channel analysis.

Dawu Gu received the B.S. degree in applied mathe-
matics from Xidian University, China, in 1992, and
the M.S. and Ph.D. degrees in cryptography from
Xidian University, in 1995 and 1998, respectively.
He is currently a Full Professor with the Computer
Science and Engineering Department, Shanghai Jiao
Tong University (SJTU). He leads the Laboratory
of Cryptology and Computer Security at SJTU. His
current research interests include cryptography, side
channel attack, and software security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

