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Abstract

We formulate and interpret several multi-modal registration methods in the
context of a unified statistical and information theoretic framework. A uni-
fied interpretation clarifies the implicit assumptions of each method yielding a
better understanding of their relative strengths and weaknesses. Additionally,
we discuss a generative statistical model from which we derive a novel analysis
tool, the auto-information function, as a means of assessing and exploiting the
common spatial dependencies inherent in multi-modal imagery. We analytically
derive useful properties of the auto-information as well as verify them empiri-
cally on multi-modal imagery. Among the useful aspects of the auto-information
function is that it can be computed from imaging modalities independently and
it allows one to decompose the search space of registration problems.

This work has been supported by NIH grant #R21CA89449, by NSF ERC grant
(JHU EEC #9731748), by the Whiteman Fellowship and The Harvard Center
for Neurodegeneration and Repair.
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1 Introduction

Registration of multi-modal data sets is the problem of identifying a geometric
transformation (or a set of transformations) which maps the coordinate system
of one data set to that of another (or others). Objective functions or similarity
measures are special functions that evaluate the current quality of alignment.
The goal of a registration problem can be interpreted as the optimization of
such a function. There already exist a variety of registration methods whose
objective functions are based on sound statistical principles. These include vari-
ous maximum likelihood [4, 12], maximum mutual information [6, 13], minimum
Kullback-Leibler divergence [1], minimum joint entropy [11] and maximum cor-
relation ratio [9] methods. However, the relationship of these approaches to each
other from the standpoint of explicit/implicit assumptions, use of prior informa-
tion, performance in a given context, and failure modes has not received a great
deal of attention. (One account on modeling assumptions in uni-modal registra-
tion techniques and a general maximum likelihood framework for a certain set
of multi-modal registration approaches is presented in [10].) Additionally, while
the various objective criteria may be well understood, their relationship to an
underlying generative statistical model is often left unspecified. Our motivation
here is three-fold. First, we formulate and interpret several registration algo-
rithms in the context of a unified statistical and information theoretic framework
which illuminates the similarities and differences between the various methods.
Second, a unified statistical interpretation clarifies the implicit assumptions of
each method yielding a better understanding of their relative strengths and
weaknesses. Third, we discuss a generative statistical model from which we
derive a novel analysis tool, the auto-informaion function, as a means of assess-
ing and exploiting the common spatial dependencies inherent in multi-modal
imagery. Currently, few, if any, of the commonly used registration algorithms
exploit spatial dependencies except perhaps in an indirect way. Consequently,
we devote significant discussion to the auto-information function, providing both
theoretical and empirical analysis.

2 Unified View of Maximum-Likelihood,
Mutual Information, and Kullback-Leibler
Divergence

For simplicity, we consider the case of two registered data sets, u(x) and v(x)
sampled on x ∈ <M . These data sets represent, for example, two imaging
modalities of the same underlying anatomy in an M-dimensional space. In
practice, we observe u(x) and vo(x) in which the latter is related to v(x) by

vo(x) = v(T ∗(x)) or v(x) = vo

(
(T ∗)−1 (x)

)
,

where T ∗ : <M → <M is a bijective mapping corresponding to the unknown
ground truth alignment transformation. The goal of registration is to find a
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transformation estimate T̂ ≈ T ∗ (or equivalently its inverse) which optimizes
some objective function of the observed data sets.1

We now discuss six objective criteria within a common statistical frame-
work: maximum likelihood, approximate maximum likelihood, Kullback-Leibler
divergence, iterated generalized likelihood, correlation ratio, and mutual infor-
mation. We selected these similarity measures to include in our work as they
form (though not completely exhaustively) a solid reference to a large group of
currently used registration algorithms. Throughout our analysis, spatial samples
xi are modeled as random draws of an independent and identically distributed
(i.i.d.) random variable X. Consequently, observed pixel / voxel intensities
vo(xi) and u(xi) are modeled as i.i.d. random variables as well.

2.1 Maximum Likelihood

We begin our discussion with the classical maximum likelihood (ML) method
of parameter estimation. In order to apply this method to image registration
we must presume that we can model the joint densities of pixel intensities as
a function of transformation parameters. Consequently, we can construct the
joint probability density space p(u, v;T ). For the actual observations that we
aim to align, the joint probability density function can be written as

u(xi), vo(xi) ∼ p (u, vo) = p (u, v; T ∗) . (1)

Thus we can write the ML estimate of the registration transformation as

TML = arg max
T

N∑

i=1

log p(u(xi), vo(xi); T ),

where N indicates the number of samples analyzed. It is important to note,
in contrast to subsequent methods, that the joint observations remain static
while the joint density under which we evaluate the observations is varied as a
function of T .

There is a fundamental link between ML estimation and information theo-
retic quantities. Specifically, under the i.i.d. assumption for fixed T and T ∗,

TML ≈ arg max
T

− [D (p (u, v;T ∗) ‖p (u, v;T )) + H (p (u, v; T ∗))]

= arg min
T

[D (p (u, v;T ∗) ‖p (u, v;T ))] , (2)

where H(p) is the entropy of the distribution p and D(p‖q) is the Kullback-
Liebler (KL) divergence [3] between the distributions p and q. A detailed
derivation of this relationship is included in the Appendix. Consequently, the
ML estimate (when it is unique) is the one which minimizes the KL divergence

1Technically speaking, u(x) may have undergone some transformation as well, but without
loss of generality we assume it has not. If there were some canonical coordinate frame (e.g.
an anatomical atlas) by which to register the data sets one might consider transformations on
u(x) as well.
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between the ideal p (u, v; T ∗) and the modeled p (u, v; T ) distributions.

As a practical matter, one generally cannot model the joint density of ob-
servations as a function of all relative transformations T . Furthermore, even if
such a model were available, as the relative transformation becomes “large”
it is reasonable to assume that joint observations become independent (i.e.
p(u, v) = p(u)p(v)). The utility of classical ML decreases greatly for such sit-
uations as a large set of transformations become equally likely. (In contrast,
mutual information-based similarity measures define the solution of the regis-
tration problem to be as far away as possible from the space of such unlikely
settings.)

2.2 Approximate Maximum Likelihood

While obtaining a joint density model over all relative transformations is perhaps
impractical, suppose we have a model of the joint density of our data sets when
they are registered which we will denote p◦ (u, v). Such a density is utilized in
an approximate maximum likelihood registration framework (MLa) [4] which
estimates T ∗ as

TMLa = arg max
T

N∑

i=1

log p◦ (u(xi), vo(T (xi))) .

For practical reasons (e.g. one might be able to obtain reasonable density models
of joint pixel intensities from previously registered data) and in contrast to the
classical ML method, the joint observations are varied as a function of T while
the density, p◦, under which they are evaluated is held static.

Similarly to the relationship presented in the previous section, one can show
that

TMLa ≈ arg min
T

[D (po (u, vo(T )) ‖po (u, v)) + H (po (u, vo(T )))] (3)

= arg min
T

[D (po (u, v(T ∗◦T )) ‖po (u, v)) + H (po (u, v(T ∗◦T )))] .(4)

Contrary to Eq.(2), we see that according to this formulation, both the KL-
divergence and the entropy terms vary as a function of T , thus it is the sum of
the two that needs to be optimized. The implicit assumption of the approxi-
mate maximum likelihood method is that as T ∗◦T approaches TI (the identity
transformation), Eq.(4) is non-increasing.

In general, one cannot guarantee the validity of that hypothesis. The reason
for this argument is related to the information theoretic notion of typicality
[2]. Informally, typicality states that, with probability approaching unity, N
independent draws from a density p with a corresponding entropy H(p) have a
likelihood very close to −NH(p). Furthermore, N independent draws from a
density q with corresponding entropy H(q) evaluated under p have a likelihood
very close to −N(H(q) + D(q‖p)) of which Eq. (4) is an application. Perhaps
counter-intuitively, one can construct a density q such that typical draws from
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q are more likely under p than typical draws from p. The same observation
was empirically demonstrated in [1], which, in part, motivates the registration
method that we introduce in the next section.

2.3 Kullback-Leibler Divergence

While one cannot guarantee that the full expression to be optimized in Eq.(4)
is non-increasing as T ∗ ◦T approaches TI , the KL divergence term in it does
satisfy such a requirement. Chung et al [1] suggest that one estimate T ∗ as

TKL = arg min
T

D (p̂ (u, v(T ∗◦T ); T ) ‖po (u, v)) ,

where po (u, v) is constructed as in [4] from correctly registered data sets and
p̂ (u, v(T ∗◦T ); T ) is estimated from transformed sets of observed joint pixel in-
tensities {u(xi), v(T ∗◦ T (xi))}. The authors demonstrate empirically that this
objective criterion, as expected, did not exhibit some of the undesirable local
extrema encountered in the MLa method.
In relation to the previous methods, both the samples and the evaluation densi-
ties are being varied as a function of the transformation T while the algorithm
is to approach the static joint probability density model constructed prior to
the alignment procedure.

2.4 Iterated Generalized Maximum Likelihood

The objective function of another registration technique, which we refer to as
iterated generalized maximum likelihood (MLit), can also be characterized in our
framework. The alignment measure described in [12] defines an iterated maxi-
mum a posteriori (MAP) approach building on conditional probability densities
and on prior knowledge about the distribution of the candidate transformations.
Although the prior term carries important information about the transforma-
tion space, in this analysis we focus on the likelihood term of the problem
formulation. In this case, the optimization goal of the method can be written
as

TMLit = arg max
T

N∑

i=1

log p(u(xi), vo(xi)|T ; T ).

At this point, this criterion closely resembles the MLa formulation. However,
instead of assuming that the joint probability density function of the input
modalities is available for the correct alignment, the MLit method carries out the
estimation of such a model online. At every iteration the joint probability model
is re-estimated and at time t of such a process, the best alignment transformation
can be defined as:

(TMLit)t = arg max
T

N∑

i=1

log p̂Tt−1(u(xi), vo(xi)|T ;Tt−1),
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or in our unified information theoretic framework as

(TMLit)t = arg min
T

[
D(p̂T (u, vo(T )|T ; T )||p̂Tt−1(u, vo(T )|T ; Tt−1))+

+H(p̂T (u, vo(T )|T ;T ))] . (5)

In Eq.(5), p̂Tt−1 refers to the joint probability function estimated with respect to
the best current estimate (Tt−1) of the aligning transformation. (That estimate
is defined at the previous, (t−1)th iteration.)

Although, experimentally, good registration results have been reported by
applying the MLit technique, we need to investigate the key assumption on
which its performance relies. The algorithm presumes that using the best cur-
rent estimate of the transformation (Tt−1) it is possible to find an even more
likely aligning transformation (given that the optimal alignment setting has not
yet been recovered). Or in other words, the likelihood of samples drawn from
density pT but evaluated under density pTt−1 could be greater than the likelihood
of samples both drawn from and evaluated under density pTt−1 :

LTt−1(T ) =
∫

pT log pTt−1du > LTt−1(Tt−1) =
∫

pTt−1 log pTt−1du (6)

A rigorous description of the model under which this assumption holds is still
under investigation. However, we demonstrate below that if the MLit approach
(maximizing the likelihood criterion with respect to the old transformation esti-
mate) does converge, it converges to the minimum of the joint entropy measure.
For local search scenarios, we support our argument by the fact that the gradi-
ent of the likelihood function evaluated under the old transformation estimate
(Eq.(7)) is equivalent to the negative of the entropy measure gradient evaluated
at Tt−1 (Eq.(8)). In the following equations T i represents the ith component of
transformation T and L denotes the likelihood function.

LTt−1(T ) =
∫

pT log pTt−1du

∂

∂T i
LTt−1(T ) =

∫
∂pT

∂T i
log pTt−1du

∇TLTt−1(T ) =
∫
∇T pT log pTt−1du (7)
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H(T ) = −
∫

pT log pT du

∂

∂T i
H(T ) = −

∫ (
∂pT

∂T i
log pT +

∂pT

∂T i

)
du

∂

∂T i
H(T ) = −

∫ (
∂pT

∂T i
log pT

)
du−

∫ (
∂pT

∂T i

)
du

∂

∂T i
H(T ) = −

∫
∂pT

∂T i
log pT du

∇T H(T ) = −
∫
∇T pT log pT du

∇T H(Tt−1) = −
∫
∇T pT log pTt−1du (8)

More generally, we conjecture that the following conditions are sufficient to
make the assumptions by the MLit method hold globally: the minimum en-
tropy configuration corresponds to the correct alignment of the input images,
the marginal densities of the input images do not vary with respect to the var-
ious transformations applied to them, the joint entropy of the inputs decreases
as the new transformation is applied and finally both of the joint densities can
be written as the convex combination of the same two densities (one being the
ideal joint probability density at the solution and the other corresponding to
the product of marginals, the independent scenario).

The iterated generalized maximum likelihood method applies a non-parametric
approach to best approximate the ideal joint density function while estimating
the best aligning transformation. It successively identifies a transformation
that further maximizes the likelihood criterion. Thus if the conjecture holds,
this method gradually drives towards a moving as opposed to a static model
used in the MLa and the KL-divergence framework.

2.5 Correlation Ratio

When defining correlation ratio [9] as a similarity metric, one makes the as-
sumption that there is a functional relationship between the input images at
the correct registration position. Describing that relationship via an intensity
function f as u(xk) = f(vo(T (xk))) + εk ∀k, where εk refers to additive sta-
tionary Gaussian noise, correlation ratio is defined as

η2(u|vo) = 1− Var(u− f̂(vo))
Var(u)

. (9)

This similarity metric can also be explained in the maximum likelihood frame-
work [10]. The joint probability density function of interest is expressed in a
product form P (u, vo; T ) = P (vo)P (u|vo;T ), and as P (vo) does not depend on
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the transformation, it is the P (u|vo; T ) term that is to be optimized with respect
to T . Instead of experimentally defining (and fixing) the model joint density
function at the correct registration pose, the optimal probability density func-
tion is estimated online. But contrary to the MLit method, here, a parametric
model is used. For a particular transformation T , the metric to be optimized
with respect to parameters Θ is then P (u|vo; T, Θ).
Finding the correct alignment of the input images is formulated as a coupled op-
timization task: P (u|vo;T, Θ) is to be maximized both with respect to T and Θ.
The necessary alternating optimization steps are equivalent to the optimization
of Eq.(9), due the following exponential relationship ([10]):

η2(u|vo(T )) = 1− 1
k

e2U(T )/N , k = 2πVar(u).

In our unified statistical framework, we can define the correlation ratio function
as:

TCR = arg min
T

[D(p̂Θ(u|vo(T ))||p̂Θ∗(u|vo(T ))) + H(p̂Θ(u|vo(T )))] , (10)

where Θ∗ = arg max
Θ

p(u|vo, Tt−1, Θ) for a particular transformation Tt−1.

The objective function formulation using correlation ratio (Eq.(10)) is also
closely related to MLa (Eq.(3)), however, they are distinctly different. While in
the former we face two separate, in the latter we address a single optimization
task. The approximate maximum likelihood method also makes the assumption
that a static model of the joint density function of the input modalities is ade-
quate to describe all input data sets (of corresponding modalities); in contrast,
according to the correlation ratio approach, the joint density function is not the
same for all registered data sets and it needs to be estimated separately for each
alignment scenario. In fact, with the re-estimation requirement, it is possible
to obtain a more accurate density model per case, but the sequential optimiza-
tion of two individual functions could also get attracted to less favorable local
solutions. Similarly to the MLit method, correlation ratio is also attracted to a
moving point in the solution space. It, however, applies a parametric framework.

2.6 Maximum Mutual Information and Joint Entropy

As has been amply documented in the literature [6, 7, 8, 13], mutual information
(MI) is a popular information theoretic objective criterion which estimates the
transformation parameter T as

TMI = arg max
T

I (u; vo(T )) = arg max
T

I (u; v(T ∗◦T )) ,

where MI is defined to be a function of marginal and joint entropy terms

I(u; v (T ∗◦T )) = H(p(u)) + H(p(v (T ∗◦T )))−H(p(u, v (T ∗◦T ))). (11)

If T is restricted to the class of symplectic transformations (i.e. volume pre-
serving), then H(p(u)) and H(p(v(T ∗ ◦T ))) are invariant to T . In that case,
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maximization of MI is equivalent to minimization of the joint entropy term,
H(p(u, v (T ∗◦T ))), the presumption being that this quantity is minimized when
TMI = (T ∗)−1.

MI can also be expressed as a KL divergence measure [3]

I (u, v (T ∗◦T )) = D (p(u, v (T ∗◦T ))‖p(u)p(v (T ∗◦T ))) ,

that is, mutual information is the KL divergence between the observed joint
density term and the product of the marginals. Accordingly, the implicit as-
sumption of MI methods is that as T ∗◦T diverges from TI or in other words as
we are getting farther away from the ideal registration pose, the joint intensi-
ties look increasingly independent. This allows us to write the MI optimization
problem as maximizing the distance from the scenario when the input images
are completely independent:

TMI = arg max
T

D (p̂(u, v(T ∗◦T ); T )‖p̂(u)p̂(v(T ∗◦T ); T )) .

As in the KL divergence alignment approach, both the samples and the evalua-
tion densities are being simultaneously varied as a function of the transformation
T . However, instead of approaching a model point in the solution space, the
aim is to move farthest away from the worst case scenario.

Recently, numerous variations on the mutual information metric have been
introduced; for instance, one making it invariant to image overlap (normalized
mutual information [11]) and another enhancing its robustness using additional
image gradient information (gradient-augmented mutual information [7]). In
this report, we do not list and analyze all of these given that they operate with
similar underlying principles.

Considering the collection of approaches discussed, we see that the MLa and
KL divergence methods exploit prior information in the form of joint density
estimates over previously registered data. Subsequently, both make similar im-
plicit assumptions regarding the behavior of joint intensity statistics as T ∗◦T
approaches TI closer to the ideal alignment. In contrast, the correlation ratio,
the iterated generalized maximum likelihood method and the MI approaches
make no use of prior joint statistics – estimating these instead during the search
process. While the former two still try to model the correct density function
at alignment, the MI approach just assumes (implicitly) that as T ∗ ◦T ap-
proaches TI , the joint intensity statistics become increasingly dependent, again,
as measured by a KL divergence term. In light of this, we now define the auto-
information function as an empirical analysis tool for exploring aspects of these
assumptions.
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3 Auto-, Cross-Information Functions

We define the auto- and cross-information functions. The functions measure
statistical dependence, indexed over transformation parameters, much as the
well-known auto-correlation function measures the degree of second-order cor-
relation as a function of displacement. Given two different image modalities, u
and v, we simply define the auto- and cross-information functions as:

RI
u(T ) = I(u(x); u(T (x))) and

RI
u,v(T ) = I(u(x); v(T (x))),

where I(u; v) is the mutual information measure already introduced in Eq.(11).
Analysis of such functions, in particular the auto-information metric (which can
be computed prior to registration on the individual input images), may provide
guidance for commonly used coarse-to-fine search strategies. Additionally, fur-
ther spatial properties might also be inferred from the auto-information function
which lead to better and faster converging registration algorithms.

This new approach can be described in the context of the following latent
variable model

p (u, v, l) = pl (l1, · · · , lN )
∏

i

pu|l (ui|li) pv|l (vi|li) ,

where the sets {u1, · · · , uN} and {v1, · · · , vN} represent observations (e.g. pixels
or voxels) of two different image modalities at corresponding coordinate system
locations and {l1, · · · , lN} a set of latent variables which describe tissue prop-
erties (e.g. label types). The model simply asserts the independence of the
observations conditioned on the latent variables and it does not specify the joint
properties of {l1, · · · , lN}. A partial or a full description of the latter could also
be incorporated. A graphical model2 depicting the same problem formulation
is shown on Fig. 1. Each of the algorithms cited in the previous sections corre-
sponds to a hypothesis over this statistical model differing only in which aspects
of the graph are specified or assumed a priori.

The proposed approach has two notable consequences. First, spatial de-
pendencies in the observations arise directly from known or assumed spatial
dependencies in the latent variables. Second, bounds on the spatial dependen-
cies (modulo the unknown transformation) can be estimated from the individual
imaging modalities. In particular, it is easily derived that the auto-information
functions of induced images lower bound that of the underlying latent anatomy
and the cross-information values for the pairs of corresponding image elements
is always greater than or equal to that of non-corresponding ones. For proofs of
these claims, see the Appendix.

I(uj ; uk), I(vj ; vk) ≤ I(lj ; lk) and I(uj ; vj) ≥ I(uj ; vk) ∀ j, k = 1, ..., N. (12)
2A similar representation incorporating voxel positions has been recently introduced for

elastic image registration via conditional probability computations [5].
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Figure 1: Example of a latent anatomy model

With such inequalities we guarantee local extrema for the MI objective function.
More importantly, Eq. 12 shows that under the latent variable model, MI as an
objective criterion is guaranteed to have a local maximum about the point of
correct registration. To our knowledge, while this property has been empirically
observed and exploited, no sets of conditions have been established such that it
could be rigorously proven.

3.1 Function properties

We introduce two key properties of the auto-information function: an identity
equation and the transformation decoupling. They describe how transforma-
tions as a whole and their components individually influence the autoinforma-
tion function map if applied to the input image prior to the processing. Their
utility is then demonstrated in the experiments section, in a uni- and a multi-
modal framework.

Auto-Information Identity
We can define the following identity between the auto-information functions
of two datasets (v and vo) that are related via transformation T ∗ as vo(x) =
v(T ∗(x)):

RI
v0

(T ) = I(v0(x); v0(T (x))) = I(v(T ∗(x)); v(T ∗◦T (x)))

= I(v(y); v(T ∗◦T ◦(T ∗)−1 (y))) = RI
v(T ∗◦T ◦(T ∗)−1)

= RI
v(T ′), (13)

where T ′ is a similarity transformation of T by T ∗. In other words, the auto-
information function of a transformed image (vo) can be computed from the
auto-information function of its non-perturbed counterpart. This property is po-
tentially very useful when examining how the auto-information function changes
with respect to an initial transformation applied to the input image and we show
an example of it in our experiments section.
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Decoupling the transformation components
We demonstrate a way to decouple transformation components when searching
for alignment between the input images (or similarity between their autoinfor-
mation function maps). This means, that the components of a transformation
T ∗ relating the input images can be searched for separately, reducing the pa-
rameter space that needs to be traversed at any given time. In the realm of
shearless affine transformations, each operation is composed of a scaling, a ro-
tation and a displacement component. After adopting a convention for the
composition order of these operations, we can write any such transformation as
t(s, r, d) = D(d) ◦ R(r) ◦ S(s). Then the transformation T ′ = T ∗◦T ◦(T ∗)−1 in
identity Eq.(13) can be rewritten as:

T ′ = D(d∗) ◦R(r∗) ◦ S(s∗) ◦D(d) ◦R(r) ◦ S(s) ◦ S(s∗)−1 ◦R(r∗)−1 ◦D(d∗)−1.

If we now investigate the different subspaces of the auto-information map, we
notice their unique dependence on certain components of the transformation.
First, take a look at the displacement-only subspace, where T (s, r, d) = D(d) at
the map creation step. Then

T ′ = T ∗ ◦ T ◦ (T ∗)−1

= D(d∗) ◦R(r∗) ◦ S(s∗) ◦D(d) ◦ S(s∗)−1

︸ ︷︷ ︸
D(d′)

◦R(r∗)−1 ◦D(d∗)−1 (14)

= D(d∗) ◦R(r∗) ◦D(d′) ◦R(r∗)−1

︸ ︷︷ ︸
D(d′′)

◦D(d∗)−1 (15)

= D(d∗) ◦D(d′′) ◦D(d∗)−1 (16)
= D(d′′)
= R(r∗) ◦D(d′) ◦R(r∗)−1

= R(r∗) ◦ S(s∗) ◦D(d) ◦ S(s∗)−1 ◦R(r∗)−1

= (R(r∗) ◦ S(s∗)) ◦D(d) ◦ (R(r∗) ◦ S(s∗))−1
. (17)

In Eq. (14) the composition of a scaling, displacement and the inverse of the scal-
ing operation corresponds to a simple displacement, D(d′). As the composition
of a rotation, displacement and the inverse of the rotation operation is just an-
other displacement, D(d′′) in Eq. (15), and displacement operations commute,
the D(d∗) terms cancel out in step Eq. (16). Thus the displacement-only sub-
space of the auto-information map (Eq.(17)) is invariant to displacement D(d∗)
component of T ∗. Accordingly, we can search for the unknown (R(r∗) ◦ S(s∗))
composition, by comparing the observed and modeled subspace maps, without
considering any potential displacement element of the aligning transformation.

Similarly, let’s consider the rotation-only subspace of the map, where T (s, r, d) =
R(r),

T ′ = T ∗ ◦ T ◦ (T ∗)−1

= D(d∗) ◦R(r∗) ◦ S(s∗) ◦R(r) ◦ S(s∗)−1 ◦R(r∗)−1 ◦D(d∗)−1.
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By using the (R(r∗) ◦ S(s∗)) estimate from the previous analysis, we can recover
D(d∗).

Finally, in the scaling-only subspace of the auto-information function map,
where T (s, r, d) = S(s), is

T ′ = T ∗ ◦ T ◦ (T ∗)−1

= D(d∗) ◦R(r∗) ◦ S(s∗) ◦ S(s) ◦ S(s∗)−1 ◦R(r∗)−1 ◦D(d∗)−1

= D(d∗) ◦R(r∗) ◦ S(s) ◦R(r∗)−1 ◦D(d∗)−1.

Thus the search strategy can be completed in the following way. Knowing the
D(d∗) estimate, compute R(r∗) and then from (R(r∗) ◦ S(s∗)) and R(r∗), ex-
press S(s∗). Such a sequential reduction in search space can facilitate a reduced
computational cost in optimization. For a more restricted class of transfor-
mations, for example for 2D rigid-body motion, the parameter search could
even be done in parallel. However, in general (for higher dimensions and for
affine transformations), the individual searches have to be executed one after
the other.

3.2 Experiments

In this section, we describe a set of experiments that were constructed to demon-
strate the nature of the auto-information function and to give some insight for
what kind of applications it might be useful.

We carried out experiments using both simulated and medical image datasets.
For the below evaluation, we worked with images in 2D and defined the rotation
to be carried out around the center point of the target image. Note also, that
prior to running our experiments, we introduced a preprocessing step. We in-
creased and zero-padded the background region of the images in order to ensure
that no transformations result in cropped datasets. (This property is required
to fully satisfy our theoretical assumptions when defining, for example, the iden-
tity relationship. In the future, we intend to investigate how this step restricts
our experimental results and whether in the case of higher dimensional data sets
it is still a reasonable criterion.)

The two pairs of medical images that we used for our experiments consisted
of a pair of corresponding Proton Density (PD) and T2-weighted (T2) acquisi-
tions and a pair of corresponding MRI and CT images of the head. (See these
images on Fig. 2.)
Smoothing

We aimed to demonstrate how a smoothing operation would affect the nature of
the auto-information function map. Thus we computed the 3D auto-information
map for both an image and a smoothed version of it (created by a Gaussian filter
with window size 5). As expected, after the smoothing operator was applied to
the data, the auto-information map became significantly flatter and less peaky.
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PD Image T2−weighted Image CT Image MR Image

Figure 2: Medical image slices used for our experiments. Left-to-right: Corre-
sponding Proton Density and T2-weighted images; Corresponding CT and MRI
acquisitions.

While the initial map has a sharp peak at the zero offset pose and quickly de-
creasing lobes, in the case of the smoothed image that transition is much more
gradual. An example showing the auto-information map slices, in the case of
the original and the smoothed PD images is shown on Fig. (3). We plan to
further analyze the relationship of such maps to identify parameters for hierar-
chical search mechanisms.

Changes due to an Initial Pose Difference
Just examining the auto-information map of the input images does not reveal

much in the way of underlying structure embedded in the images. (See Fig.
3 (a), (b)). Therefore, we also examined the changes in the auto-information
function maps due to an initial transformation applied to the input images. We
created a map of the input images and a map of their transformed versions. (The
transformation that we applied was the same in the case of both of the input im-
ages and it was comprised of both a displacement and a rotational component.)
Comparing Fig. 3 (c)-(e) and (d)-(f), we note that there is a distinctive pattern
of difference in the maps of one modality due to the initial transformation (the
effect of the rotation, for example, is well visible on the slices). Although the
delicate changes in the structure of these maps could be predicted/approximated
by using the identity formula in Eq. (13), they are difficult to interpret at the
first sight. Therefore, we display the difference images of the maps of the input
with no initial transformation and that of the transformed image for both of
the modalities. The results, (Fig. 3 (g) and (h)), computed on both the CT
and MRI images, convey more information about the effects resulting from the
transformation. This type of display also allows us to note that the difference
maps of the two image modalities are almost identical. This is an essential
observation which allows us to conclude that a fixed transformation applied to
multi-modal images of the same underlying anatomy results in the same type
of changes in the auto-information surfaces. This empirical observation gives
indication of the utility of the auto-information function in the context of multi-
modal registration and it encouraged us to apply the predictions established by
the identity equation Eq.(13) not only in a uni- but also in a multi-modal setting.
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Figure 3: Auto-Information map slices of the (a) PD, (b) smoothed PD, (c) CT,
(d) MR, (e) the transformed CT and (f) the transformed MR images. Squared
difference maps between the auto-information map of the (g) CT and the trans-
formed CT images and of the (h) MRI and the transformed MRI images. Note
the similarities between the image slices of (g) and (h). The slices, each a map
of translation, in all cases correspond to various rotational offsets in the auto-
information map volume. (Top-to-bottom, left-to-right: the rotational offset is
0,2,...,30 degrees)
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Figure 4: Rotation angle search in the displacement-only subspace: (a) Uni-
modal search using the PD image – minimizing sum of squared errors (b) Multi-
modal search using the MRI and CT images – maximizing cross-correlation co-
efficient. The ground truth solution in both figures is indicated by a vertical
line.

Simple registration examples
In a set of preliminary 2D experiments we examined the displacement-only sub-
space of the auto-information map. We were interested in determining how
accurately we could recover a rotational component of a rigid-body transfor-
mation applied to one of the input images both in a uni- and a multi-modal
scenario. In the former, we were to align a PD image to a transformed ver-
sion of itself, while in the latter an MRI slice to a similarly perturbed CT
image. In both cases we used the identity relationship from Eq.(13) to model
the subspaces of interest. We optimized the sum of squared differences and
the cross-correlation coefficient, respectively, between the true and the modeled
auto-information subspace maps. We decided to apply such simple similarity
metrics for the optimization task as the subspaces to be compared were both
composed of the same type of information, the autoinformation values (as op-
posed to, for example, intensities of different modalities). In Fig. 4, we show
the results of these experiments. In the uni-modal scenario, the registration
result closely matches the ground truth rotation angle (indicated by a vertical
line on the graph). In the CT-MRI experiment the search solution was slightly
off. This can be explained by the fact that the identity relationship used for
modeling the zero rotational subspace in both sets of experiments is accurate
only for the uni-modal setup. In the case of multiple modalities it is merely
a close approximation. However, the results could still provide valuable global
initialization for subsequent local searches.

4 Conclusion

We provided a unified statistical and information theoretic framework for com-
paring several well known multi-modal image registration methods. The conse-
quence of which was to illustrate the underlying assumptions which distinguish
them. Specifically, our investigation served to clarify the assumed behavior of
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joint intensity statistics as a function of transformation parameters. This moti-
vated the introduction of a latent variable generative model from which we were
able to derive several interesting properties of the statistical dependencies across
modalities. Significantly, we provided the first rigorous proof, to our knowledge,
of the existence of a local maxima for the mutual information criterion about
the point of correct registration in the context of the latent variable model.

We also introduced the auto- and cross-information functions which charac-
terize the joint intensity statistics as a function of the relative transformation
between images within and across modalities. Several properties of the auto-
information function, which can be computed from each modality independently,
were derived analytically and verified empirically. A significant aspect of the
auto-information function is that it facilitates decoupling of the transformation
parameters in the search space. Furthermore, our empirical results on anatom-
ical data shows that the auto-information functions across modalities exhibit
striking similarities. We conjecture that this property can be exploited in multi-
modal registration methods currently in development. Further theoretical and
empirical analysis of the properties of the auto- and cross-information functions
are the subject of future research.
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A Maximum Likelihood and Information
Theory

In this section we will demonstrate how the relationship between the Maxi-
mum Likelihood (ML) formulation and information theoretic quantities can be
obtained (Eq. (2)):

TML ≈ arg min
T

[D (p (u, v;T ∗) ‖p (u, v;T )) + H (p (u, v; T ∗))] .

The information theoretic Kullback-Leibler (KL) divergence [3] is a nonnegative
quantity which can be defined as

D(p||q) = Ep {log (p/q)} =
∫

p(x) log (p(x)/q(x)) dx,

where p and q stand for probability densities. If we now apply this definition
to determine the KL-divergence between the observed and the modeled joint
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density functions,

D (p (u, v; T ∗) ‖p (u, v; T )) =

=
∫

p(u, v; T ∗) log
p(u, v; T ∗)
p(u, v; T )

dudv

=
∫

p(u, v; T ∗) log p(u, v; T ∗)dudv −
∫

p(u, v; T ∗) log p(u, v;T ) dudv

= −H (p (u, v; T ∗))−
∫

p(u, v; T ∗) log p(u, v; T ) dudv, (18)

where H(p) is the entropy of the distribution p.
On the other hand, maximizing the sum of likelihood functions is equivalent

to maximizing the normalized version of the same sum. Thus given Eq.(1) and
the fact that the observations are i.i.d. draws, we can apply the weak law of
large numbers

max
N∑

i=1

log p(u(xi), v(T ∗(xi));T ) = max
1
N

N∑

i=1

log p(u(xi), v(T ∗(xi));T )

≈ max E [log p(u, vo;T )] . (19)

From Eq. (18),

− [D (p (u, v;T ∗) ‖p (u, v;T )) + H (p (u, v;T ∗))] =

=
∫

p(u, v; T ∗) log p(u, v;T ) dudv = E [log p(u, vo; T )] . (20)

Equations (19) and (20) finally allow us to conclude that

TML ≈ arg max
T

− [D (p (u, v; T ∗) ‖p (u, v; T )) + H (p (u, v; T ∗))]

= arg min
T

[D (p (u, v; T ∗) ‖p (u, v; T )) + H (p (u, v; T ∗))] .

B Bounds on Spatial Dependencies

Both of the relationships presented in (12)

I(uj ;uk), I(vj ; vk) ≤ I(lj ; lk) (21)
I(uj ; vj) ≥ I(uj ; vk) ∀ j, k = 1, ..., N, (22)

can be derived from the Data Processing Inequality theorem [2]. Accordingly,
if X, Y and Z are random variables forming a Markov chain (X → Y → Z),
then I(X; Y ) ≥ I(X;Z), i.e. no processing of Y can increase the information
that Y contains about X.
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Proof I

The relationship between the random variables appearing in inequality (21),
vj ← lj − lk → vk (see Fig. 1), can be rewritten in two different forms using
Bayes rule: vj ← lj ← lk ← vk and vj → lj → lk → vk. Using these formulations
and applying the Data Processing Inequality theorem, we obtain:

I(vk; lk) ≥ I(vk; lj) ≥ I(vk; vj) and I(lk; lj) ≥ I(lk; vj)
I(vj ; lj) ≥ I(vj ; lk) ≥ I(vj ; vk) and I(lj ; lk) ≥ I(lj ; vk)

Given I(X; Y ) = I(Y ; X), we can establish I(lj ; lk) ≥ I(vj ; vk) ∀ j, k.

Proof II

In a similar manner as above, we can obtain the following inequalities for
uj , vj , lj , lk, vk (see again Fig. 1):

I(vj ; lj) ≥ I(uj ; vj) and I(vk; lk) ≥ I(vk; lj) ≥ I(vk;uj).

Applying Bayes rule, we can establish the following relationships:
vj ← lj ← lk ← uk and vj ← lj ← uj . As we assume that I(vk; lk) = I(vj ; lj),
we need to consider two scenarios: (a) lk → lj indicates a lossless relationship
and (b) lk → lj indicates a lossy connection. In the former case, I(uj ; vk) =
I(uj ; vj), and in the latter I(uj ; vk) < I(uj ; vj). Therefore, we can conclude
that I(uj ; vj) ≥ I(uj ; vk), which was stated in inequality (22).


