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Data science applications to connected vehicles 

 

The connected vehicles will generate huge amount of pervasive and real time data, at very high frequencies. 

This poses new challenges for Data science. How to analyse these data and how to address short-term and 

long-term storage are some of the key barriers to overcome. 
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Executive summary 

As our environments become more connected in general, Intelligent Transportation 

Systems will play a central role in our cities and across borders, forming part of a new 

vision of “mobility as a service.” Connected vehicle technology, with a prominent role in 

Intelligent Transportation Systems, will be capable of generating huge amounts of 

pervasive and real time data, at very high frequencies. These streaming data are the 

common type of data produced by Connected vehicles, and their analysis is of paramount 

importance for applications improving road safety, effective service delivery, eco-driving, 

traffic regulation and pollution reduction. This study aims to characterize this type of data 

from an analytical perspective, as well as to pose the challenges Data science faces in 

extracting knowledge from them in real time. Data generated by sensors and actuators in 

Connected vehicles include noisy, anomalous, redundant, rapidly changing, correlated 

and heterogeneous data. In such a context, numerous techniques have been proposed to 

adapt the data analytics in batch learning to these new dynamic and evolving streaming 

data, which are produced in huge volumes and transmitted at high velocity. The Internet 

of Vehicles has the potential to provide a pervasive network of Connected vehicles, smart 

sensors and road infrastructures, and big data has the potential to process and store that 

amount of data and information. Modelling, predicting, and extracting meaningful 

information in reasonable and efficient ways from big data represent a challenge for Data 

science in Connected vehicles. 

Policy context 

This report analyses the current technology context for Connected vehicles in the Data 

science domain. Seven years ago, the Intelligent Transportation Systems Directive 

(Directive 2010/40/EC) considered the processing and use of road, traffic and travel data 

as a part of the necessary steps for the deployment and use of Intelligent Transportation 

Systems applications. Most recently, in the Declaration of Amsterdam in 2016, European 

transport ministers urged the European Commission to develop a European strategy on 

cooperative, connected and automated vehicles. The European Strategy for Low-Emission 

Mobility (COM/2016/501 final) adopted in July 2016, highlighted the potential of these 

cooperative, connected and automated vehicles to reduce energy consumption and 

emission from transport. Data science plays an important role to develop a layer of 

innovative services and applications in Connected vehicle technology. In this study, an 

exploratory approach to identify key barriers for the correct implementation of Data 

science in Connected vehicles is presented, that stakeholders may want to consider as a 

scenario for an eventual full realisation of a safe an efficient deployment of Connected 

vehicles. 

Key conclusions 

Implementation of Connected vehicles in Intelligent Transportation Systems will 

revolutionize the way we drive. The key to the success of Connected vehicle lies in how 

well connectivity of vehicles and infrastructure works in real life. Correct analyses of the 

volume of data generated by Connected vehicle technology and meaningful knowledge 

being generated by such vast amounts of information will be among the critical success 

factors. Therefore, the potential of Data science to transform our ability to deliver 

solutions to the Connected vehicle technology is clearly envisaged. However, there are 

many issues that need to be resolved in order to achieve this opportunity’s maximum 

potential. Mining pervasive data streams requires new and efficient algorithms executed 

in dynamic and changing environments under time and memory constraints. Also, the 

selection of the data pre-processing methods, data reduction and data fusion operations 

becomes a challenge due to their variant complexity. The faster training and improved 

generalization capabilities in the learning algorithms, but also, how to storage the 

amount of data generated by Connected vehicles, are among the issues that need to be 

resolved for the correct implementation of Data science in Connected vehicle technology. 
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Main findings 

Data streams from Connected vehicles pose new challenges for machine learning and 

data mining as the traditional algorithmic methods have been designed for static datasets 

and are not capable of efficiently analyzing a fast-growing amount of data. The main 

issue is that Connected vehicles data are characterized by a large number of features 

producing a continuous and transient flow of data, in a dynamic, non-stationary 

environment. The following are the main limitations and characteristics that should be 

taken into consideration to achieve maximum potential in the application of Data science 

to Connected vehicles: 

— Data generated by Connected vehicles are characterized by a multitude of formats 

and data types and therefore have a pronounced volume and variety dimensions. To 

deal with data size and heterogeneity, the following must be addressed: how to 

improve the quality of data in real time (filtering), how to summarize and sketch 

them, how to unify data (fusion methodologies) and processing models, how to 

implement knowledge creation and reasoning, and how to address short-term and 

long-term storage. 

— The application of data mining techniques to streaming data generated by sensors in 

Connected vehicles may deliver approximate results. There are many sources of 

uncertainty that must be considered carefully in decision making. The assessment, 

representation and propagation of uncertainty must be understood, as well as the 

development of robust optimization methods and the design of optimal sequential 

decision making.   

— Data in Connected vehicles are generated and collected at high speed. Algorithms 

that process data streams must face limited computational resources like memory 

and time, as well as constraints to make predictions within a reasonable time. This 

poses the need for efficient resource-aware algorithms providing fast answers, using 

few memory resources. 

— Presumably, static data mining and machine learning models built from fixed training 

sets are not prepared to process the highly-detailed data available, neither are they 

able to continuously maintain a predictive model consistent with the actual state of 

the nature surrounding a Connected vehicle, nor to react quickly to changes. Since 

the nature of data in a Connected vehicle environment is changing and evolving 

continuously over time, advancements in adaptive algorithms should be taken into 

account: 

● The stability-plasticity dilemma, which asks how a learning system can be 

designed to remain stable and unchanged by irrelevant events while being plastic 

to new, important data in the Connected vehicle environment. This is related to 

the continuous adaptations of the decision models, and therefore it is important to 

ascertain which data to remember or forget, and how and when to do the model 

upgrade. 

● Data mining and machine learning require continuous processing of the incoming 

data monitoring trends, and detecting changes. The phenomenon called concept 

drift is related to changes in the distribution of data, which occur in the streams 

over time. This concept might deteriorate the performance of built models. 

— In dynamic streaming data like those generated in Connected vehicles, the concept of 

irrelevant or redundant features is now restricted to a certain period of time. Features 

previously considered irrelevant might become relevant, and vice-versa, to reflect the 

dynamic of the process generating data. 

— Although there are an increasing number of streaming learning algorithms, the 

metrics and the design of experiments for assessing the quality of learning models is 

still an open issue. The design of experimental studies is of paramount importance. 

The continuous evolution of the decision models and the non-stationary nature of 

data streams are two important aspects in the evaluation methodologies. Discussions 
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on best practices for performance assessment and differences in performance when 

learning dynamic models that evolve over time should be addressed. 

Related and future JRC work 

This work was carried out in the context of JRC's exploratory research project ART 

(Autonomous Road Transport). Next steps will concern the application of Data science 

methodologies in a Connected vehicle's real data scenario, from a modelling and 

simulation perspective. A JRC Science Policy Report dealing with the Connected vehicle 

topic is the one entitled "The r-evolution of driving: from Connected Vehicles to 

Coordinated Automated Road Transport (C-ART)" which was released on May 2017 and 

presented on the "Challenge & Opportunities of Coordinated Automated Road Transport 

(C-ART)" in Brussels (12th June, 2017). 

Quick guide 

This study examines the analytical lifecycle of streaming data generated in Connected 

vehicles by means of a selected literature analysis. The scope of the different studies 

(articles, monographs, reports, books, conference proceedings and web sites) collected 

covers the following topics: 

— Data analytics in Intelligent Transportation Systems. 

— Intelligent Transportation Systems sensors for traffic management and Connected 

vehicles. 

— Data mining techniques in sensor networks. 

— Machine learning and Knowledge discovery databases in streaming data. 

— Data science and big data computing. 

— Data quality and data lifecycles in Intelligent Transportation Systems. 

— Data visualization.  

Although they are interesting topics, aspects such as image processing and recognition, 

the ownership, privacy and security of data, large data storage, and communication 

technologies in Connected vehicles have not been discussed in this document. These 

aspects cover a wide range of areas that can be analyzed from multiple points of view, 

representing disciplines in their own rite. These issues are considered to be tangential to 

the scope of this document. Besides, addressing their proper analysis would have implied 

extending considerably its length beyond an exploratory nature. 
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1 Introduction 

The term Connected vehicle (CV) refers to applications, services, and technologies that 

connect a vehicle to its surroundings (e.g., other vehicles, roadside infrastructure, traffic 

management centres). CV enables us to instrument our physical environment with 

complex sensor and actuators and creating a connected world that generates huge 

volumes of interconnected data. The importance of this trend can be seen in the growing 

momentum of exemplars such as the Internet of Things, smart environment and smart 

cities. CV has recently been further enhanced by the concept of Internet of Vehicles 

(IoV), where the smart car is envisaged. 

CVs are elements of Intelligent Transportation Systems (ITS). ITS are an innovative 

technology, which has emerged for improving the safety, operation and environmental 

impact of transportation networks. ITS promise to be one of the most dynamic and 

innovative specialization fields with a large expected industrial and business growth over 

the next decade. 

There are, however, many issues that need to be resolved to achieve maximum 

potential, including privacy and security issues, data processing and storage, 

development of standards and regulation across all platforms, establishing new 

communications protocols and systems architectures, and the creation of new services 

and applications. At the level of technology, they are summarized in two: (i) an adequate 

infrastructure for mobility (including sensor and communication infrastructure), and (ii), 

an adequate information processing infrastructure that includes data management and 

analysis capacity (e.g., software, tools, models) to extract and process relevant and 

timely mobility intelligence. 

Data science (DS) is an emerging field, in industry and academia, which groups multiple 

perspectives. Although the terms Big Data and DS are often used interchangeably, the 

two concepts have fundamentally different roles to play. While Big Data refers to 

collection and management of large amounts of varied datasets from diverse sources, DS 

looks to creating models and providing tools, techniques and scientific approaches to 

capture the underlying patterns and trends embedded in these datasets, mainly for the 

purposes of strategic decision making.  

CVs generate huge volume of data at very high frequencies from a variety of sources, on 

a real time-basis. From a single source, a typical example is the basic security message, 

that is emitted 10 times per second and forms the basic data stream which other vehicles 

analyse to determine when a potential conflict exists. This huge volume of real-time data 

must be communicated, aggregated, analysed and managed. Cloud datacentres imply a 

large average separation between the CVs and their clouds, lack of context awareness 

and increasing the average network latency. New paradigms have emerged to bring the 

cloud services and resources closer to the user proximity by leveraging the available 

resources in the edge networks. These new paradigms and the data stream processing 

suppose standard DS must face a new context. 

Some authors claim that current Artificial Intelligence concept is not suitable to manage 

the challenges IoV will bring in a near future. In fact, the beginning of the Ambient 

Intelligence (Carbone et al., 2016) as an upgraded level of such concept could emerge in 

coming years to face the new IoV ecosystem. The application of DS to CVs demands a 

new focus on how we capture, process, and use data in pervasive environments. This 

new field of research has been called pervasive DS (Davies and Clinch, 2017) which 

exists at the intersection of pervasive computing and DS, characterized by a focus on the 

collection, analysis (inference) and use of data in pursuit of the vision of ubiquitous 

computing.  

The next sections aim to provide a general overview of the application of DS to CVs. They 

are organized as follow. The contributions to DS to CVs are presented in Section 2. The 

properties of the CVs data are given in Section 3, and in Section 4, the data streams, as 

the basic representation of CVs data, are analysed. The Knowledge Discovery Databases 
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(KDD) in data streams is described in Section 5, and Section 6 presents some basic 

machine learning algorithms. Finally, in Sections 7 and 8, the concepts of Data lifecycle 

and Visual analytics are briefly commented, respectively. 
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2 Applications of Data science to Connected vehicles 

The impacts and potential operational benefits of the application of DS to CVs may be 

classified on mobility of people and goods, safety, environmental benefits and driver 

support. The following aspects may become feasible by the intelligence derived from DS. 

Most of them are based on descriptive, diagnostic or predictive analytics: 

— Mobility 

● Detect and understand patterns and trends in mobility data. 

● Adjusting traffic signals for dynamically managing transit operations, or for 

emergency routing.  

● Reduce main city roads' congestion (and therefore air pollution1) by predicting 

traffic flow. 

● Traffic management during planned or unplanned events. 

● Provide shortest or alternative routes (re-routing) between origin-destination pairs 

considering different factors (e.g., distance, time, energy consumption, air 

pollution). 

● Carpooling recommendations.  

— Safety 

● Variable speed limit systems for ensuring traffic safety. 

● Driver behaviour and performance analysis, to detect improper driving events by 

different causes (e.g. various environmental, vehicle and roadway, traffic and 

physical and psychological conditions).  

● Assist the driver in optimum CV operation, and therefore, increasing resource 

economy and vehicle lifetime (also in different weather scenarios). 

● Detect critical elements of the CV. 

● Predict the effect of environmental conditions sensed by the CV on vehicle 

occupants (especially to those with known chronic affections). 

● Infer real-time environmental conditions according to CVs collected data. 

● Lane-changing assistance. 

● Identification of drivable road surface and road boundaries. 

● Understand interactions between drivers and pedestrian at signalized 

intersections. 

— Environmental benefits 

● Reduce supply chain waste and air pollution by associating deliveries and 

optimizing shipping movements. 

— Support 

● Cooperative adaptive cruise control. 

● En-route guidance to parking spaces. 

● Ability of CVs users to find location-based information of interest. 

● Driver behaviour analysis (e.g., in the insurance domain, for calculating a safety 

score for the driver: pay-how-you-drive instead of insurance premiums based on 

population groups). 

                                           
1 After deploying intelligent decision systems based on DS and smart transportation technologies across the city 

of Pittsburgh (Pennsylvania, USA), Traffic21 pilot project reduced traffic jams and waiting times resulting in 
emissions dropped by over 20 %. 
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● Qualitative assessment of text-based content from traffic information 

dissemination in social media (e.g., drivers posting on events affecting traffic 

conditions) or others. 

● Vehicle predictive maintenance. 
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3 Properties of the Connected vehicle data  

The characterization of data in a CV environment may be done from different points of 

view. According to the data source, the origin of data can be from roadways, vehicle-

based data, traveller-based data or wide area data (photogrammetry). MDOT (2014) 

distinguishes between digitally generated, passively produced, automatically collected, 

geographically or temporally trackable, or continuously analysed data. 

In this section, the selected properties of the CVs data will be used to provide a first 

insight of the application of DS to CVs technology, and pose some of the challenges this 

application is facing. The first three properties are inspired from the V's defining big data. 

While some of the properties might be considered present everywhere, others are not 

general and depend on the context of the monitored phenomena; besides, some of the 

given properties are closely functional-related each other. Below is a summary of these 

properties: 

1. The high Volume of data transmitted by a CV is determined by its grade of the 

connectivity and how this is implemented. This volume cannot be accurately 

calculated since the connectivity may work at the level of the vehicle, the 

transportation system, or both. A fully CV should support the interactions with their 

internal and external environments. The amount of data generated by a CV has been 

estimated upwards of 560 GB/day (Google, 2017). 

At the vehicular-internal level, the number of sensors is projected to reach the 

number of 200 per vehicle by 2020 (ASEE, 2017). The sampling rate and the density 

of the sensor network deployed in a CV will determine the amount of monitored data 

which will be generated. In real-time mobility data, to sample an accelerometer 

sensor at the rate of 100 times per second (Hz) may generate about 5MB/h of data 

(Kargupta, 2017).  

Other example is GPS data. The minimum size of a GPS record is 20 bytes (2 8-byte 

values of type double for latitude and longitude, and 1 4-byte value for time stamp), 

and data are collected at most once every 10 second. For a city with 20000 GPS-

enabled ITS devices, daily 3219 GB of data can be generated which it is needed 

further be processed to extract relevant localization information (Khan et al., 2017). 

On a vehicle-external level, the amount of data a CV may transmit to other vehicle 

(V2V) or to infrastructure (V2I) depends on many factors, including the amount of 

information transmitted, its temporal resolution and the span of interaction. Wireless 

access technologies can provide services to both V2V and V2I up to 1 km and 

supports data rate up to 27 MB/sec. Haroun et al. (2016) estimated in 5 KB/sec a 

feasible amount of data in V2I communications.  

2. Velocity refers to the data acquisition rate, with an emphasis on real-time 

(streaming) analytics. Based on the context, the transmitted data may be static or 

dynamic and change over time. The first are also referred as data at rest, and the 

latter, data in motion or in transit. 

Given that most of the data are acquired in real time and field settings, several 

issues arise about missing values and noise. The concepts of snapshot vs continuous 

or send vs receive are useful to explain velocity on mobile data communications. One 

issue related to velocity in CVs is the data latency or the time between when the 

data are collected and the time data can be shared with others.  
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The Society of Automotive Engineers (SAE) has classified the automotive applications 

into Classes A, B, and C with increasing order of criticality on real-time and reliability 

constraints (Wang et al., 2017): 

● Class A, low speed (<10 kbps) for convenience features (e.g. door locks, 

opening/closing windows, seat position motors, occupancy control). 

● Class B, medium speed (between 10 kbps and 125 kbps) for general information 

transfer, such as emission data and instrumentation, and typically supports the 

vast majority of non-diagnostic, noncritical communications. 

● Class C, high speed (>125 kbps) for real-time control, such as suspension, 

traction, engine, brake and transmission controls. Higher performance 

communication classification in the range of 1 Mbps to 10 Mbps is expected in the 

future devoted to multimedia data. 

3. Variety refers to the fact data are acquired from a diversity of sources. Data 

generated on-board (vehicle data) or off-board (from transport infrastructures, other 

CVs or society) are dissimilar in formats (image, audios, server logs, etc.), types 

(structured, semi-structured, unstructured or all the previous mixed), scales (sizes) 

and obtained at varied frequencies. Most of types of data in connected transport 

systems are of unstructured nature. Integrating these multiple data representation 

into useful, homogenous and structured data sets is a challenge on its own. 

4. Distributed. There is no universal way to retrieve and transform the data 

automatically and universally into a unified data source for useful analysis. In a full-

scale and mature IoV scenario, centralized real-time processing of large and 

heterogeneous set of data streams is not feasible. This motivates the need for 

alternative edge paradigms that aim to bring cloud-computing capabilities and 

services closer geographically to the CVs sensors (the edge of the network) than to 

the clouds. Any device with computing, storage, control and network connectivity 

services can be an element of the edge network, including CVs and infrastructure by 

the roads. Edge computing enables each edge device to play its own role of 

determining what information should be stored or processed locally and what needs 

to be sent to the cloud for further use. This technology provides a trustworthy and 

geographically localized application environment that is aware of the true network 

conditions of different CVs equipment in its proximity (network context awareness).  

5. Data generated in CVs exhibit either temporal correlation, spatial correlation or both, 

since they may be obtained at different time points and positions. In the time series 

framework, CVs data exhibit Markovian behaviour, since the sensor value at a 

timestamp is only function of the previous sensor value at the previous timestamp. 

Correlation in time series must be considered when the aim is not describe the state 

of the system at a specific point in time. In the spatial context, CVs characterize for 

generating data with a position, dimension and orientation. To be able to spatially 

analyse data from the CVs for realizing time-spatial decision-making, the data has to 

be geo-referenced to create spatial big data.  

Spatial big data poses statistical and computational challenges due to spatial 

characteristics, including spatial autocorrelation, anisotropy, heterogeneity, and 

multi-scale and resolutions. In spatial statistics, the spatial dependence is called 

spatial autocorrelation, in that near things are more related than distant things. DS 

techniques that ignore spatial autocorrelation mistakenly assume independent and 

identical distribution (i.i.d) of data and therefore often generate inaccurate 

hypothesis or models. The spatial anisotropy extents the concept of spatial 

dependence considering this dependence varies across different directions (not 

isotropic). This is often due to irregular geographical terrains, topographic features 

and political boundaries. The heterogeneity in spatial statistics takes into account 

that spatial data samples do not follow an identical distribution across the entire 

space. This causes that a global models learned from samples in the entire study 

area may not be effective in different local regions. The last challenges in spatial big 
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data are that data often exists in multiple spatial scales (e.g., local, regional, global) 

and resolutions (e.g., sub-meter to kilometres), but also, the temporal coverage of 

these data can be different.  

A stream is a sequence of data elements ordered by time. The structure of a stream 

could consist of discrete signals, event logs, or any combination of time series data. In 

terms of representation, a data stream has an explicit timestamp associated with each 

element, which serves as a measurement of data order. This type of data, due to its 

importance in the context of CVs, is presented next. 
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4 Data streams in Connected vehicles 

Most machine learning and data mining approaches assume that examples (records, 

cases, observations or instances) are independent, identically distributed and generated 

from a stationary distribution. In that context, standard data mining techniques use finite 

training sets and generate static models. Although further discussed later, sensor 

networks may be geographically distributed and produce high-speed data streams. They 

act in dynamic environments and are influenced by adverse conditions. Data collected 

from a sensor network are correlated and the distribution is non-stationary. Therefore, 

models should change with time (Ganguly et al., 2009). From a data mining perspective, 

sensor network problems are characterized by a large number of variables (sensors), 

producing a continuous flow of data, in a dynamic non-stationary environment. In 

streaming scenarios, recent data are generally considered more important than older 

data (this conception is later discussed in Section 7, Data Lifecycle). This is because the 

data generating process may change over time, and the older data are often considered 

obsolete from the perspective of analytical insights (Aggarwal, 2015). 

The main characteristics of data stream are now discussed. The differences between data 

stream and data stream in sensor networks are afterwards commented. However, in 

these sections, since data streams from sensor networks are also a representation of 

data streams, these terms will be used interchangeably for the sake of simplicity. 

4.1 Characteristic of data streams  

A data stream can be read only once, or rarely a small number of times, using limited 

computing and storage capabilities. In the data stream model the data arrive (transiently 

and automatically) at high speed so the algorithms used for mining the data streams 

must process them with constraints of space and time (“resource aware algorithms”). 

Some other relevant differences between traditional data and data streams are shown in 

Table 1 and include: 

— Data elements in the stream arrive online, in a multiple, continuous, time-varying 

manner. 

— Data stream is time ordered data, either explicit with a time stamp or implicit based 

on arrival order. 

— The system has no control over the order in which data elements arrive, either within 

a data stream or across data streams. 

— Changing probability distributions of the data instead of i.i.d data. 

— Data streams are potentially unbounded in size. 

— Once an element from a data stream has been processed it is discarded or archived. 

It cannot be retrieved easily unless it is explicitly stored in memory, which is small 

relative to the size of the data streams. 

— The algorithm processing the stream must update its model incrementally as each 

data is inspected. An additional desirable property is the "anytime property", by which 

it is required that the model is ready to be applied at any point between data (real-

time response).  

Table 1. Comparison between traditional and stream data processing. 

Characteristics Traditional data mining Data stream mining 

Number of passes Multiple Single 

Processing time Unlimited Restricted 

Memory usage Unlimited Restricted 
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Distributed No Yes 

Data size Finite data set Continuous flow 

Data distribution i.i.d Non-i.i.d 

Data evolution Static Non-stationary 

Order of observations Independent Dependent 

Model stability Static Evolving 

Data labelling Non-costly Costly 

Type of results Accurate Approximate 

Source: Own elaboration (adapted from Gama, 2013, Nguyen et al., 2015, and Krawcyk et al., 2017). 

The changes in the physical world are reflected in terms of the changes in data or model 

built from data. Change detection in stream data aims to identifying differences in the 

data by observing it at different times and/or different locations in space. The ability to 

identify trends, patterns, and changes in the underlying process generating data 

contributes to the success of processing and mining massive high-speed data streams.  

In recent years many change detection methods have been proposed for streaming data. 

Machine Learning algorithms learn from observations described by a finite set of 

attributes. In real world problems, there can be important properties of the domain that 

are not observed. There could be hidden variables that influence the behaviour 

(properties) of nature. The reasons of change in streaming data is diverse and abundant, 

although it is identified two dimensions for analysis, namely, the causes of change, and 

the rate of change. The causes of change are influenced by modifications in the context 

of learning (because of changes over time in hidden variables), but also, from changes in 

the characteristic properties of the observed variables. As a result, concepts (target 

variables) learned at one time can become inaccurate. The second dimension is related 

to the rate of change. The term Concept Drift is more associated to gradual changes in 

the target concept, while the term Concept Shift refers to abrupt changes. Usually, 

detection of abrupt changes is easier and requires few examples for detection. Gradual 

changes are more difficult to detect. The latter is one of the biggest challenges for data 

stream mining, as the data are dynamic and depend on many factors that can keep 

changing fast. Figure 1 shows, adopting a two-classes classification view, six basic 

structural types of changes that may occur over time:  

Figure 1. Types of drift.  

 

Source: Own elaboration (adapted from Ramírez-Gallego et al., 2017). 
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Some of these changes, in a continuous approach, are reproduced in Figure 2: 

Figure 2. Types of drift in a continuous scheme. 

 

Source: Own elaboration (adapted from Hoens et al., 2012). 

By adding some notation, data streams can be considered infinite sequences of (x,y) 

pairs, where x if the feature vector and y the class label. Zhang et al. (2008) observed 

that p(x|y) = p(x|t) p(y|x), with t a given time stamp, and categorized concept drift in 

two types: 

— Loose concept drifting when concept drift is caused only by the change of the class 

prior probability p(y|x) as time elapse. 

— Rigorous concept drifting when concept drift is caused by the change of class prior 

probability p(y|x) and the conditional probability p(x|t). 

In Table 1, the type of results in data stream mining is defined as approximate. With new 

data constantly arriving even as old data are being processed, the amount of 

computation time per data element must be low. Furthermore, since the amount of 

memory is bounded, it may not be possible to produce exact answers. High-quality 

approximate answers can be an acceptable solution.  

All these data stream characteristics pose the need for other algorithms than ones 

previously developed for batch learning, where data are stored in finite, persistent data 

repositories. In non-stationary data streams, data from the past can become irrelevant or 

even harmful for current situations, deteriorating predictions of the algorithms used. 

Data management approaches can play the role of a forgetting mechanism when old data 

instances are discarded. 

4.2 Data Stream in sensor networks  

A sensor network consists of spatially distributed autonomous sensors that cooperatively 

monitor an environment. Each of these computational devices may be equipped with 

sensing, processing and communication facilities. The processing part is able to do 

computation on the sensed values and/or other received values from the neighbours. The 

communication part is able to listen and send to other sensor nodes. 

The distinction between traditional data stream processing and sensory data stream 

processing is important because sensory data streams have their own features. 

Elnahrawy (2003) distinguished sensor streaming from traditional streaming in the 

following way: 
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— The sensor data are a sample of the entire population. On the other hand, traditional 

streaming data represent the entire population of the data. 

— The sensor data streams are considered noisy and faulty by comparison with other 

traditional streaming data. 

— The sizes of sensor data streams are usually less than traditional streaming data. 

Other set of differences can be addressed considering the intrinsic nature of sensor data: 

— Spatial, temporal, and spatio-temporal attributes play a major role in sensor 

networks. Sensor data are usually meaningless unless it is associated with the time 

and location of the information. 

— Redundancy in sensor networks is common due to the strong spatial and temporal 

correlations. 

— Existence of missing data (absent readings). Redundancy can be used to impute 

missing values. 

— Real-time data cleaning is required to build an accurate model. 

— Sensor nodes have limited availability of computational resources. 

Information extraction methods that translate raw output from sensors are as numerous 

as the sensors themselves. In most cases, raw information from sensors has little 

meaningful end-use value and needs to be processed in various ways for different 

purposes. The term KDD became popular at the first KDD workshop in 1995 in Montreal 

(Fayyad et al., 1996) and refers to the overall process of discovering useful knowledge 

from data. The application of KDD to streaming data, as those produced in CVs, is 

described next. 
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5 Knowledge discovery from data streams 

The data mining process for classical knowledge discovery is commonly partitioned into 

several stages. In the data stream context, the KDD process must be thought anew to 

process data from sensor networks in (near) real time (Figure 3, adapted from Rehman 

et al., 2017). These new KDD systems are constrained by three main limited sources: 

time, memory and sample size (Domingos and Hulten, 2000). These constraints have 

resulted in the development of different kinds of windowing techniques, sampling and 

other summarization approaches. But also, in the development of several algorithms for 

data mining which are modified versions of clustering, regression, and anomaly detection 

techniques from the field of multidimensional data series analysis in other scientific fields 

(Appice et al., 2014). 

Figure 3. KDD in data streams. 

 

Source: Own elaboration (adapted from Rehman et al., 2017). 

Ideally, we would like to have KDD systems that operate continuously and indefinitely, 

incorporating examples as they arrive, and never losing potentially valuable information. 

Such desiderata are fulfilled by incremental learning (aka online, successive or sequential 

methods), on which a substantial literature exists.  

The new KDD stages are not completely disjoint from each other, and there are 

techniques that perform functions common to different stages. Additionally, there are 

also interactions between the techniques used in the different stages that can affect end-

to-end results. A simplified KDD approach for data streams is described next in a 

stepwise fashion (modified from Rehman et al., 2017): 

1. Data acquisition and selection, and in particular stream processing, are challenging 

tasks because of massive heterogeneity. Once stream data are obtained from multiple 

sensors in a CV, complexity reduction is a mandatory step. This reduction tries to 

maintain the original structure and meaning of the inputs, but at the same time 

obtaining a much more manageable size. Faster training and improved generalization 

capabilities of learning algorithms, as well as better understanding and interpretability 

of results, are among the many benefits of data reduction (Ramírez-Gallego et al., 

2017). This approach requires controlling a trade-off between accuracy and the 

amount of memory used to store the reduced data. 

Several techniques have been developed for storing summaries or synopsis 

information about previously seen data (e.g. sketching algorithms, element-counting 

data structures). Quite often, the interest is to compute some statistical property of 

the streaming data. The recursive version of the sample mean, or the incremental 

version of the standard deviation can be used, to cite a few, to obtain simple statistics 

of data streams. Also, Hoeffding bounds provide confidence bounds on the mean of a 

distribution (given enough independent observations, the true mean of a random 

variable will not differ from the estimated mean by more than a certain amount). The 

main interest of these statistics is that they allow maintaining their exact values over 

an eventually infinite sequence of data without storing them in memory. Many 

different kinds of synopsis can be constructed depending upon the application at hand. 

The nature of the synopsis highly influences the type of insights that can be mined 

from it. 

Sampling at periodic intervals a data stream is a common technique for reducing its 

data. To obtain an unbiased sampling is basic in data streams. In statistics, most 

sampling techniques require to know the length of the stream. The key problems are 
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the sample size and sampling method. The reservoir sampling technique is the classic 

algorithm to maintain an online random sample. The basic idea consists of maintaining 

a sample of fixed size, called the reservoir. As the stream flows, every new element 

has a certain probability of replacing an old element in the reservoir. Other sampling 

strategies can be found in literature (e.g., Min-Wise sampling, load shedding). 

Most of the time, there is no interest in computing statistics over all the past, but only 

over the recent past in the data stream. Data windows are a way of looking at 

relevant slices of a data stream. Windowing models can be used to limit the amount of 

processed data based on different characteristics. Some of most common of these 

models are the landmark, tilted, sliding and damped windows. The simplest approach 

is the sliding windows, based on first in, first out data structure.  

(a) Sliding Window. Given a window with width w and current time point t, the 

interest is in the frequent patterns occurring in the window [t − w + 1, t]. As time 

advances, the window will keep its width and move along with the current time 

point. In this model, there are no interest in the data that arrived before the time 

point t −w+1. 

(b) Landmark Window identifies relevant points (the landmark) in the data stream 

and the aggregate operator uses all records seen so far after the landmark. 

(c) Time-Tilted Window. In this model, the interest is in frequent item sets over a set 

of windows of varying width. Each window corresponds to different time 

granularity based on their novelty. 

(d) Damped Window Model. This model assigns greater weight to more recently 

arrived transactions. A simple way to do that is to define a decay rate δ, 0 < δ ≤ 

1. As each new data transaction arrives, the support levels of the previously 

recorded patterns are multiplied by δ to reduce their significance. 

2. Data pre-processing is the stage that includes operations to prepares the data for 

further analysis and improve the quality of the data stream. The heterogeneity in 

pre-processing operations arise when mobile data stream mining methods need to 

handle missing values, remove noise, and detect anomalies and outliers from the 

data stream (Rehman et al., 2017).  

(a) Noise filtration. Noise refers to the inclusion of extraneous and irrelevant 

information in mobile data streams. The data streams become noisy due to 

multiple reasons such as improper placement of sensors, wrong sensor 

configurations, and inducement of environmental noise among others. 

(b) Outliers detection. Outliers (in an univariate or multivariate scheme) refer to 

misreported data points in the acquired data streams. Numerous classification and 

clustering methods are used to detect and remove the outliers. 

(c) Anomaly detection. Anomaly detection refers to the presence of anomalous data 

points in acquired data streams. The anomaly detection helps in improving the 

quality of knowledge patterns. 

(d) Feature extraction. Massive data streams need to handle efficiently. The feature 

extraction methods help in extracting features (attributes) from incoming data. 

Feature extraction methods convert data streams from unstructured and semi-

structured formats into structured data formats. 

(e) Sparsity handling. Highly sparse data may hamper the performance of far-edge 

mobile devices in some cases. Similarly, low sparsity also degrades the 

performance of data stream mining methods. Therefore, handling sparsity and 

maintaining an adequate level sparsity in data stream mining applications help in 

improving the quality of knowledge patterns. 

A survey on data pre-processing techniques for data stream mining can be found in 

Ramírez-Gallego et al. (2017). 
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3. Data fusion is required since CVs sensors generate data streams with different 

sampling frequencies. Besides, sensor or data fusion is a principled way of combining 

data from multiple sensors to yield better results than any single sensor could 

produce on its own (Castanedo, 2013). In general, a sensor model will include an 

error distribution which is essentially a formalization of how good the sensor is. 

Several criteria to classify data fusion techniques are possible. Based on the relations 

of the input data sources, the following data fusion techniques were proposed by 

Durrant-Whyte (1988) (Figure 4): 

Figure 4. Data fusion techniques. 

 

Source: Own elaboration (adapted from Castanedo, 2013). 

Other terms associated with data fusion that typically appear in the literature include 

decision fusion, data combination, data aggregation, multi-sensor data fusion, and 

sensor fusion. In this sense, the term information fusion implies a higher semantic 

level than data fusion.  

4. Modelling (or learning) is the stage that includes knowledge discovery algorithms and 

is regarded as one of the main steps in KDD from data streams. The heterogeneity in 

learning arises in terms of learning types and learning models. The learning type 

varies in terms of supervised, unsupervised and semi-supervised models, and 

learning models are summarized in Section 6. Domingos and Hulten (2001) identify 

desirable properties of learning systems for efficient mining continuous, high-volume, 

open-ended data streams: 

(a) Require small constant time per data example. 

(b) Use fix amount of main memory, irrespective to the total number of examples. 

(c) Built a decision model using a single scan (pass) over the training data. Ideally, it 

should produce a model that is equivalent (or nearly identical) to the one that 

would be obtained by the corresponding ordinary database mining algorithm. 

(d) Generating an anytime model independent from the order of the examples. 

(e) Ability to deal with concept drift. The model, at any time, should be up-to-date, 

but also include all information from the past that has not become outdated. 

Learning systems process examples at the rate they arrive using a single scan of 

data and fixed memory. They maintain a decision model at any time and are able to 

adapt the model to the most recent data. In Figure 5 is adapted the general model 

for data stream mining proposed by Nguyen et al. (2015): 
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Figure 5. A general model for data stream mining in CVs.  

 

Source: Own elaboration (adapted from Nguyen et al., 2015). 

When a data stream arrives, a buffer is used to store the most recent data. The 

stream mining engine reads the buffer to create a synopsis of the data in memory. 

In order to maintain the synopsis, the system may apply different time window and 

computational approaches. When certain criteria are triggered, for example, a user’s 

request or after a certain time lapse, the stream mining engine will process the 

synopsis and output approximate results. In general, most data stream algorithms 

are derived and adapted from traditional mining algorithms. Lastly, stream validation 

methods (later described) are applied to evaluate the performance of data stream 

algorithms. 

Broadly speaking, there are two computational approaches to process the data 

streams: incremental learnings and two phases learning (aka online-offline learning): 

● In the incremental learning the model evolves to adapt to changes in incoming 

data: the learning process takes place whenever new examples emerge, and then 

adjusts to what has been learned from the new examples. There are two schemes 

to update the model: by data instance and by window. It has the advantage of 

providing mining results instantly, but requires more computational resources. 

Figure 6 illustrates the incremental learning approach following three steps in a 

repeating cycle, adapted from Bifet and Kirby (2009): (i) the algorithm is passed 

the next available example from the stream (requirement 1), (ii) the algorithm 

processes the example, updating its data structures -it does so without exceeding 

the memory bounds set on it (requirement 2), and as quickly as possible 

(requirement 3)-, and (iii) the algorithm is ready to accept the next example. On 

request it is able to supply a model that can be used to generate looking-ahead 

predictions (requirement 4). 
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Figure 6. Incremental learning. 

 

Source: Own elaboration (adapted from Bifet and Kirby, 2009). 

● Two-phase learning is a common computational approach in data streams. In the 

first phase (online phase), a synopsis of data is updated in a real-time manner. In 

the second phase (offline phase), the mining process is performed on the stored 

synopsis whenever a user sends a request.  

Figure 7. Online-offline learning for continuous data analysis  

 

Source: Own elaboration (adapted from Andrade et al., 2014). 

Figure 7 illustrates how offline model learning and online scoring can be 

performed. In this figure, it is shown historical data being processed offline by 

traditional data mining tools (as proposed by these authors) producing the data 

mining model. Subsequently the model is imported to score the new, incoming 

data. In this diagram, it is also seen that (some of the) newly arrived data is 

stored, thereby allowing the periodic recreation of the model by re-running the 

modelling step. 
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In the data stream mining literature, most algorithms incorporate one or more of 

the following ingredients: windows to remember recent examples; methods for 

detecting distribution change in the input, and methods for keeping updated 

estimations for some statistics of the input. Either both in the incremental learning 

or two-phases learning approaches, it is important to set (i) what data to 

remember or forget, (ii) when to do the model upgrade, and (iii) how to do the 

model upgrade. 

The competing motivations of these goals give rise to the stability–plasticity 

dilemma, which asks how a learning system can be designed to remain stable and 

unchanged to irrelevant events (e.g., outliers), while plastic (i.e., adaptive) to 

new, important data (e.g., changes in concepts) (Hoens et al., 2012). 

5. Knowledge management. This stage includes consolidating discovered knowledge 

and incorporating this knowledge to another system for further action. Integration, 

storage, and utilization of knowledge patterns in mobile data stream applications 

take place at various places (Rehman et al., 2017): 

(a) On-device. The on-board storage refers to the storage capabilities of far-edge 

devices that are used to store locally uncovered knowledge patterns. In addition, 

the synchronized knowledge patterns for personalized user experience are also 

stored on-board far-edge mobile devices. 

(b) On-edge. The service provision from edge servers enables data reduction. The 

location-aware aggregations of knowledge patterns facilitate in reduced data 

transfer in remote environments and minimize bandwidth utilization. 

(c) Remote. Conventionally knowledge patterns are integrated and stored in remote 

data stores, which include cloud data centre, clusters, grids, and application 

servers. Remote knowledge aggregation is useful for global knowledge discovery. 

6. Evaluation is the stage that includes operations for the use of a mining model and for 

the interpretation of the results produced by the modelling process. The two mains 

aspects that make the difference with respect the evaluation in batch learning, in 

which the learning process is made from a single batch of examples, are the 

continuous evolution of decision models and the non-stationary nature of data 

streams, and therefore, the evaluation based on large test or validation streaming 

data sets could not be viable. Several approaches have been proposed to deal with 

this problem, and currently, evaluation of algorithms in streaming data represents an 

active field of research. Most of the evaluation methods and metrics were designed 

for the static case and provide a single measurement about the quality of the applied 

models. Many methods and metrics are possible and can be found in literature to 

perform evaluation on classification and regression tasks in streaming data 

(Muthukrishnan, 2005). Other considerations to evaluate algorithms in a data stream 

context are not just based on the accuracy of their predictions, but also, on their 

memory requirements and runtime.  
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6 Basic learning algorithms 

There is a wide array of applications to which machine learning in stream data can be 

applied. Broadly speaking, in all these applications it can be identified several types of 

learning-related issues, which are: 

— Classification – to assign each item from a data set to a specific category. 

— Regression and time series analysis – to predict a real value for each item. 

— Ranking – to return an ordered set of features based on some user-defined criterion. 

— Dimensionality reduction – to use for transforming initial large feature spaces into a 

lower-dimensional representation so that it preserves the properties of the initial 

representation. 

— Clustering – to group items based on some predefined distance measure.  

— Anomaly detection – to conduct observation or series of observations which do not 

resemble any pattern or data item in a data set. 

One crucial question is how to select an appropriate machine learning algorithm in the 

context of CVs. The answer indeed depends on the size, quality, the nature of the data 

and the intended use of the solution. Although in Section 5.4 were described the 

desirable properties of a learning systems for streaming data, it is worth to add the 

following factors to be considered when choosing the right learning algorithm (Akerkar 

and Sajja, 2016): 

— Accuracy. Whether obtaining the best score is the aim or an approximate solution 

while trading off overfitting.  

— Training time. The amount of time available to train the model. Some algorithms are 

more sensitive to the number of data points than others. When time is limited and 

the data set is large, it can drive the choice of algorithm.  

— Linearity. Linear classification algorithms assume that classes can be separated by a 

straight line. Though these assumptions are good for certain problems, they bring 

accuracy down on some.  

— Number of parameters. Parameters, such as error tolerance or number of iterations, 

or options between variants of how the algorithm performs, affect an algorithm’s 

behaviour. The training time and accuracy of the algorithm can occasionally be rather 

sensitive to getting just the right settings.  

— Number of features. For certain types of data, the number of features can be very 

large compared to the number of data points. The large number of features can 

overload some learning algorithms, making training speed rather slow.  

Many streaming applications contain multidimensional discrete attributes with very high 

cardinality. In such cases, it becomes difficult to use conventional data learning 

algorithms because of memory limitations. It is not the purpose of this section to 

extensively cover the machine learning techniques and theories to derive intelligence 

from data streams produced in CVs beyond the very basics. A review of these techniques 

can be found in Gama and Gaber (2007), Gama (2010, 2013), Hoens et al. (2012), 

Aggarval (2015), and Anand et al. (2017). The next first three algorithms are solely 

devoted to classification.  

— Nearest neighbour classifiers are defined by their characteristic of classifying 

unlabelled examples by assigning them the class of similar labelled examples. The 

nearest neighbours approach to classification is exemplified by the k-nearest 

neighbours algorithm (k-NN). k-NN is a simple algorithm that stores all available 

cases and classifies new cases by a majority vote of its k neighbours.  

— Bayes classification. The Bayes classifier is based on the Bayes theorem for 

conditional probabilities. This theorem quantifies the conditional probability of a 
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random variable (class variable), given known observations about the value of 

another set of random variables (feature variables).  It is assumed that the data 

points within a class are generated from a specific probability distribution such as the 

Bernoulli distribution or the multinomial distribution. A naïve Bayes assumption of 

class-conditioned feature independence is often (but not always) used to simplify the 

modelling. Naïve Bayes is a rare example of an algorithm that needs no adaptation to 

deal with data streams (Bifet and Kirby, 2009).  

— Support vector machines (SVMs) are naturally defined for binary classification of 

numeric data. The binary-class problem can be generalized to the multiclass case. 

Categorical feature variables can also be addressed by transforming categorical 

attributes to binary data with the binarization approach. It is assumed that the class 

labels are drawn from {−1, 1}. SVMs use separating hyperplanes as the decision 

boundary between the two classes. In the case of SVMs, the optimization problem of 

determining these hyperplanes is set up with the notion of margin.  

It is worth to mention that in classification, a challenge arises when it is assumed that 

the prevalence of each class in the dataset is, and will remain, equivalent. While class 

prevalence in traditional data mining problems remains constant, such an assumption 

is particularly impractical in streaming data applications, where the class distributions 

can become severely imbalanced. Thus the positive (rare) events, which are 

underrepresented in a static dataset, can become even more severely 

underrepresented in streaming data. Hence, when combined with potential concept 

drift, class imbalance poses a significant challenge that needs to be addressed by any 

algorithm that proposes to deal with learning from streaming data.  

— Decision trees are supervised learning methods that gather powerful and popular 

tools for classification and prediction. In tree-based methods the decision trees 

represent rules. In these algorithms, it is split the population into two or more 

homogeneous sets. This is done based on most significant attributes/independent 

variables to make as distinct groups as possible. Hoeffding trees (which borrows the 

Hoeffding bound) build models that can be proven equivalent to standard decision 

trees if the number of examples is large enough. Very fast decision trees are based 

on the principle of Hoeffding trees. 

— Linear regression. Regression is concerned with specifying the relationship between a 

single numeric dependent variable (the value to be predicted) and one or more 

numeric independent variables (the predictors). The simplest forms of regression 

assume that the relationship between the independent and dependent variables 

follows a straight line. In the case of two or more independent variables, this is 

known as multiple linear regression. Both of these techniques assume that the 

dependent variable is measured on a continuous scale. Regression can also be used 

for other types of dependent variables and even for some classification tasks. For 

instance, logistic regression is used to model a binary categorical outcome, while 

Poisson regression models integer count data. The method known as multinomial 

logistic regression models a categorical outcome; thus, it can be used for 

classification. The same basic principles apply across all the regression methods. 

— An Artificial neural network is a predictive model inspired by the way the brain 

operates (neurons). To train a neuron, along with a sample data set, the learning 

strategy also must be determined. That is, the neuron must know when to send an 

output and when not. Such a large number of neurons are interconnected through 

weighted connections between individual neurons. These neurons work in a very 

simple way, but all together, in a parallel fashion. The abilities of making intelligent 

decision-making and learning come from their parallel working. Each neuron 

calculates an output at its local level, which at the end is summed up as a global 

solution. Neural networks may consist of multiple layers of neurons. Deep learning is 

a technique of machine learning that consists of many hierarchical layers to process 

the information. This technique is its extremely computationally intensive and slow to 

train, particularly if the network topology is complex. 
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— Random Forest (RF) is a hallmark phrase for an ensemble of decision trees. RF is a 

collection of decision trees known as “Forest”. RF is well suited to small sample size 

and large number of attributes problems. RF comes at the expense of some loss of 

interpretability, but obtain high performance on classification and predictions 

problems.  

Several algorithms devote to clustering data streams. Two examples are the Stream and 

CluStream algorithms (Aggarwal, 2015). In both cases, they are based on the k-medians 

clustering methodology. Beringer and Hüllermeier (2006) proposed an online version of 

k-means for clustering parallel data streams (online k-means), using a Discrete Fourier 

Transform approximation of the original data. Clustering On Demand is another 

framework for clustering streaming series which performs one data scan for online 

statistics collection, designed to address the time and the space constraints in a data 

stream environment (Ganguly et al., 2009). In Figure 8, the relation between some 

traditional clustering algorithms and those used to deal with stream data is presented.  

Figure 8. Relationship between traditional and stream clustering algorithms. 

 

Source: Own elaboration (adapted from Nguyen et al., 2014). 

The term ensemble methods refers basically to combine the output (numeric or 

categorical) of others learner models. All the ensemble methods are based on the idea 

that by combining multiple weaker learners, a stronger learner is created. A number of 

techniques have evolved to support ensemble learning, the best known being bagging 

(bootstrap aggregating) and boosting. A number of differences exist between bagging 

and boosting. Bagging uses a majority-voting scheme, while boosting uses weighted 

majority voting during decision-making. Predictions generated by boosting are 

independent of each other, while those of bagging are dependent on each other. Stacking 

approaches will not be discussed. A survey on ensemble learning for data stream analysis 

can be found in Krawcyz et al. (2017). Zang et al. (2014) performed a comparative study 

about incremental and ensemble learning on data streams. 
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7 Data lifecycle 

The data lifecycle is an abstract view which describes the various processes the data goes 

through from its inception to end of life. In and ITS-enables technology, DS can provide 

adaptable and dynamic intelligence to make decisions on real time. However, making 

decisions based solely on data that was created in the recent past (e.g. hours) can 

impede such decisions because lacks the historical context needed to see and verify 

trends (e.g., slow-changing phenomena). In fact, old data can be more valuable than 

new data because it has survived the test of both time and use (Plale and Kouper, 2017). 

To appreciate historical and recent data as similarly valuable is not a trivial task. Knowing 

what data to use, and how to compare past and present measurement is essential in 

assessing changes in ITS, but also how to use data for accurate predictions. All these 

aspects require considering data and knowledge derived from them within a lifecycle 

(Cavanillas et al., 2016). Therefore, the KDD approach described earlier is just one stage 

(broadly speaking, the one related to data analysis) within the ITS data lifecycle. 

Many lifecycle models exist, including domain-specific, regional and industry-specific 

models. Next are included four data generic lifecycle (U.S. Geological Survey –USGS-, UK 

Digital Curation Centre –DCC-, Higgins -2008-, DataOne and SEAD -Myers et al., 2015-) 

and its comparison (Plale and Kouper, 2017), indicating the stages composing each of 

them: 

Table 2. Comparison of data lifecycle models. 

Characteristics USGS DCC DataOne SEAD 

Sequential stages Plan Conceptualize Plan  

 Acquire Create Collect Create 

  Appraise & select Assure  

 Process Ingest Describe  

 Analyze   Analyze 

 Preserve Preservation action Preserve  

 Publish/share Store Discover Publish 

  Access, use & resuse Integrate  

  Transform Analyze Reuse 

Cross-cutting or 
complementary aspects 

Metadata Metadata Metadata Metadata 

 

 Quality Preservation Quality Provenance 

 

 Security Community Preservation Curation 

  Curation   

Source: Own elaboration (adapted from Plale and Kouper, 2017). 

These models encompass the whole data lifecycle, but it does not require all activities to 

be represented in every project. Some ITS projects might use only parts of these 

lifecycles, although quality, assurance, description and preservation activities are crucial 

to any project.  
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8 Visual analytics 

Ideally, it could be created systems that automatically discover knowledge from data 

using data mining algorithms that require no human input. However, the questions 

typically asked of data are often too exploratory for a completely automated solution and 

there may be trust issues (Steed, 2017). Visual Analytics (VA) is a new interdisciplinary 

field which stems from the field of information visualization. They are techniques that 

seek to support in the analysis and understanding of large datasets using statistical 

techniques and data mining, aided by visualization techniques and interaction techniques. 

The VA process adapted from Blytt (2013) is shown in Figure 9. As in the previous 

section, the KDD approach is one of the items that integrate the VA process. 

Figure 9. The visual analytic process. 

 

Source: Own elaboration (adapted from Blytt, 2013). 

To select the right type of visual representation and the visual literacy that is required to 

extract value from data analytics are topics of research on their own within the field of 

information visualization (Yau, 2011). The US Federal Highway Administration's Research 

Data Environment (RDE) contains a vast amount of collected, measured, and simulated 

data about the highway systems of the United States. From this source, in Figure 10 it is 

shown six prototype visualization elements that explore the real-time interpretability of 

multidimensional data related to ITS and CV technologies.  
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Figure 10. Visualization of selected data in RDE (U.S. Department of Transportation). 

 

Source: Own elaborations (adapted from https://www.its-rde.net/RDE-Visualizations). 

Other visualization techniques applied to CVs and other referenced material available can 

be found in Steed (2017). 
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9 Conclusions 

This study aims to characterize data stream from CVs from an analytical perspective and 

examines the analytical lifecycle of streaming data generated in CVs by means of a 

selected literature analysis. But also, to detect the issues that need to be resolved for the 

correct implementation of DS in CV technology. 

Data streams pose new challenges for machine learning and data mining as the 

traditional algorithmic methods have been designed for static datasets and are not 

capable of efficiently analysing fast growing amount of data. The next are the main 

limitations and characteristics that should be taken in consideration to achieve maximum 

potential in the application of DS to CVs: 

— Data generated by a CV are characterized by a multitude of formats and data types 

and have therefore, a pronounced volume and variety dimensions. It must be 

addressed how to improve the quality of data in real time (filtering), how to 

summarize and sketch them, how to unify data (fusion methodologies) and 

processing models, how to implement knowledge creation and reasoning, and how to 

conduct short-term and long-term storage. 

— The application of data mining techniques to streaming data generated by sensors in 

CV may deliver approximate results. It must be understood the assessment, 

representation and propagation of uncertainty, but also, the developing robust-

optimization methods and design of optimal sequential decision-making.  

— Algorithms that process data streams must face limited computational resources as 

memory and time, as well as constraints to make predictions in reasonable time.  

— Since the nature of data in a CV environment is changing and evolving continuously 

over time, advancements on adaptive algorithms should take into account the next 

two key aspects: 

● The stability-plasticity dilemma, that asks how a learning system can be designed 

to remain stable and unchanged to irrelevant events, while plastic to new, 

important data in the CV environment. 

● The phenomenon called concept drift is related to changes in the distribution of 

data, which occur in the streams over time. This concept might deteriorate the 

performance of built models. 

— Features previously considered irrelevant might become relevant, and vice-versa, to 

reflect the dynamic of the process generating data. 

— Although there are an increasing number of streaming learning algorithms, the 

metrics and the design of experiments for assessing the quality of learning models is 

still an open issue. Discussions on best practices for performance assessment and 

differences in performance when learning dynamic models that evolve over time 

should be addressed. 

Mining pervasive data streams requires new and efficient algorithms executed in dynamic 

and changing environments under time and memory constraints. Also, the selection of 

the data pre-processing methods, data reduction and data fusion operations becomes a 

challenge due to the variant complexity of the algorithms involved. The faster training 

and improved generalization capabilities in the learning algorithms are among the issues 

that need to be resolved for the correct implementation of DS in CV technology. 
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