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ABSTRACT 

Worms and their variants are widely believed to be one of the most serious 

challenges in network security research. In recent years, propagation mechanisms used 

by worms have evolved with the proliferation of data transmission, instant messages 

and other communication technologies. However, automatically scanning 

vulnerabilities and sending malicious email attachments (human involvement) are still 

the two main means for spreading worms. 

 In order to prevent worms from propagating, as well as to mitigate the impact of an 

outbreak, we need to have a detailed and quantitative understanding of how a worm 

spreads. However, previous models mainly focus on analyzing the trends of worm 

propagation and fail to describe the spreading of worms between different individual 

nodes. This leads to difficulties in providing a set of optimized and economical patch 

strategies that deal with the problems of when, where and how many nodes we need to 

patch. In this thesis, we present a microcosmic analysis of the propagation procedure 

for scanning worms. It is different from traditional models and can accurately reflect 

the distribution of nodes in the network in terms of the propagation probabilities. 

Moreover, from the microcosmic model, we can provide defenders with useful 

information to answer above three questions and generate a set of optimized patch 

strategies that minimize the number of infected nodes. The results we obtained can 

benefit the security industry by allowing them to save significant money in the 

deployment of their security patching schemes. 

The propagation of topology-based worms is a complex procedure as it is closely 

allied to the topology of the network and requires human interference to spread. Few 

previous researches have accurately modeled the propagation dynamics of topological 

worms in an analytical way. Either the spreading speed is overestimated due to the 

implicit homogeneous mixing assumption or the propagation is investigated through 

simulation rather than in terms of an analytical model. In this thesis, we propose two 

methods for modeling the propagation mechanism of typical topology-based worms. 

In the first method, we use a novel probability matrix to examine the propagation deep 

inside the spreading procedure among nodes and work out an effective scheme against 

topology-based worms. In the second method, we derive an accurate propagation 
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model of email worms by investigating the individual steps and state transitions from 

an analytical point of view. This not only provides an accurate representation on the 

propagation of worms with different checking time, but also can reflect the repetitious 

email sending process. Analysis of experiments demonstrates that the two models are 

accurate and can aid a better and more realistic understanding of the propagation of 

topology-based worms. 

The thesis is organized as follows. Chapter 1 presents an introduction to the 

characteristics of worms and their propagation mechanisms, and also describes 

research objectives and the major contributions of this thesis. Chapter 2 provides a 

detailed survey of related work carried out in the target discovery techniques of 

worms and the modeling of worm propagation is also presented. Chapters 3 to 6 

present our major contributions for modeling the spreading procedure of scanning 

worms and topology-based worms. Chapter 3 proposes a microcosmic model of worm 

propagation by concentrating on the propagation probability and time delay described 

by a complex matrix. In Chapter 4, we evaluate the microcosmic model for scanning 

worms and provide a set of optimized and economic patch strategies. In Chapter 5, we 

propose a novel probability matrix to model the propagation mechanism of a typical 

topology-based worm, and derive a series of effective defense schemes against it. 

Chapter 6 presents an analytical model of the propagation dynamics of email worms. 

Finally, Chapter 7 summarizes the contributions of this thesis and discusses future 

work. 

 

 

 

 

 

 

 



 

 

IX 

 

IX 

Table of Contents 

Acknowledgements ................................................................................ IV 

Publications ............................................................................................. V 

ABSTRACT .......................................................................................... VII 

Table of Contents ................................................................................... IX 

List of Figures ...................................................................................... XIV 

List of Tables ..................................................................................... XVII 

Chapter 1  Introduction .......................................................................... 1 

1.1 Background .................................................................................................... 1 

1.1.1 Definition of a Worm ............................................................................. 2 

1.1.2 Worm Categorization ............................................................................. 2 

1.1.3 The Propagation of Worms .................................................................... 4 

1.2 Research Objectives ....................................................................................... 5 

1.3 Contributions of the Thesis ............................................................................ 6 

1.3.1 A Microcosmic Model of Worm Propagation ....................................... 6 

1.3.2 Defense Study against Scanning Worms ............................................... 7 

1.3.3 Defense Study against Topology-based Worms .................................... 8 

1.3.4 Modeling the Propagation Dynamics of Email Worms ......................... 8 

1.4 Organization of the Thesis ............................................................................. 9 

Chapter 2  Related Works .................................................................... 11 

2.1 Target Discovery Techniques of Worms ..................................................... 11 

2.1.1 Scan-based Techniques ........................................................................ 11 

2.1.2 Topology-based Techniques ................................................................ 17 

2.2 Topologies for Modeling the Propagation of Worms .................................. 18 



 

 

X 

 

X 

2.2.1 Homogenous Networks ....................................................................... 19 

2.2.2 Random Networks ............................................................................... 20 

2.2.3 Small-World Networks ........................................................................ 20 

2.2.4 Power-Law Networks .......................................................................... 21 

2.2.5 Examples of Real World Topologies ................................................... 22 

2.3 Worm Propagation Models .......................................................................... 23 

2.3.1 Homogenous Scan-based Model ......................................................... 23 

2.3.2 Localized Scan-based Model ............................................................... 32 

2.3.3 Topology-based Model ........................................................................ 35 

2.3.4 Comparison of Worm Propagation Models ......................................... 44 

2.4 Summary ...................................................................................................... 48 

Chapter 3 A Microcosmic Worm Propagation Model ....................... 50 

3.1 Introduction .................................................................................................. 51 

3.2 Macroscopic and Microcosmic Worm Propagation Models ....................... 54 

3.2.1 Macroscopic Worm Propagation Models ............................................ 55 

3.2.2 Microcosmic Worm Propagation Models ............................................ 57 

3.3 Propagation Model ....................................................................................... 58 

3.3.1 Propagation Matrix .............................................................................. 58 

3.3.2 Propagation Function ........................................................................... 60 

3.3.3 Three Key Factors ................................................................................ 61 

3.3.4 Error Calibration Vector ...................................................................... 65 

3.3.5 Propagation Ability .............................................................................. 68 

3.4 Summary ...................................................................................................... 69 



 

 

XI 

 

XI 

Chapter 4  Microcosmic Modeling of the Propagation and Defense 

Study of Scanning Worms ............................................................... 70 

4.1 Introduction .................................................................................................. 71 

4.2 Design of Experiments ................................................................................ 73 

4.3 Effect of Three Key Factors ........................................................................ 75 

4.3.1 Effect of the Propagation Source Vector ............................................. 75 

4.3.2 Effect of the Vulnerable Distribution Vector ...................................... 86 

4.3.3 Effect of the Patch Strategy Vector ..................................................... 91 

4.4 Effect of the Impact Factor .......................................................................... 96 

4.5 Discussion of the Overestimation in the Macroscopic Model ..................... 99 

4.6 Discussion and Open Issues ....................................................................... 102 

4.7 Summary .................................................................................................... 104 

Chapter 5  Modeling of the Propagation and Defense Study of 

Topology-based Worms ................................................................. 105 

5.1 Introduction ................................................................................................ 106 

5.2 Related Work ............................................................................................. 107 

5.3 Propagation Model ..................................................................................... 109 

5.3.1 Propagation Matrix ............................................................................ 109 

5.3.2 Propagation Probability ..................................................................... 110 

5.3.3 Propagation Time ............................................................................... 111 

5.3.4 Propagation Source Vector ................................................................ 112 

5.3.5 Patch Strategy Vector ........................................................................ 113 

5.3.6 Accumulative Infected State .............................................................. 114 

5.4 Model Analysis .......................................................................................... 114 



 

 

XII 

 

XII 

5.4.1 The Experimental Environment ......................................................... 114 

5.4.2 Effect of the Propagation Source Vector ........................................... 117 

5.4.3 Effect of the Patch Strategy Vector ................................................... 121 

5.5 Propagation Errors ..................................................................................... 122 

5.6 Summary .................................................................................................... 125 

Chapter 6  Modeling Propagation Dynamics of Email Worms ...... 127 

6.1 Introduction ................................................................................................ 128 

6.2 Related Work ............................................................................................. 132 

6.3 Generality of the Propagation Model ........................................................ 134 

6.3.1 Propagation Parameters ..................................................................... 134 

6.3.2 Basic Analytical Model of the Propagation of Email Worms ........... 138 

6.4 Modeling of Non-reinfection Email Worms .............................................. 142 

6.4.1 How Non-reinfection Worms Work .................................................. 142 

6.4.2 The Model .......................................................................................... 143 

6.4.3 Evaluation of the Non-reinfection Email Worms Model .................. 145 

6.5 Modeling of Reinfection Email Worms .................................................... 149 

6.5.1 How Reinfection Worms Work ......................................................... 149 

6.5.2 Underestimation in the Traditional Wimulation Model .................... 150 

6.5.3 Virtual User ....................................................................................... 152 

6.5.4 The Model .......................................................................................... 155 

6.5.5 Evaluation of the Reinfection Email Worms Model ......................... 158 

6.6 Modeling of Self-start Reinfection Worms ............................................... 161 

6.6.1 How Self-start Reinfection Worms Work ......................................... 161 

6.6.2 The Model .......................................................................................... 161 



 

 

XIII 

 

XIII 

6.6.3 Evaluation of the Self-start Reinfection Worms Model .................... 163 

6.6.4 Comparison of the Spreading Speed of Different Email Worms ...... 164 

6.7 Summary .................................................................................................... 166 

Chapter 7  Conclusions and Future Work .......................................  167  

7.1 Conclusions................................................................................................ 167 

7.1.1 A Microcosmic Model of Worm Propagation ................................... 167 

7.1.2 Defense Study against Scanning Worms ........................................... 168 

7.1.3 Defense Study against Topology-based Worms ................................ 169 

7.1.4 Modeling the Propagation Dynamics of Email Worms ..................... 170 

7.2 Future Work ............................................................................................... 171 

Bibliography ......................................................................................... 174 

 



XIV 

 

 

List of Figures 

 

Figure 2.1. Graphical representation of random scanning .......................................... 12 

Figure 2.2. Graphical representation of localized scanning ........................................ 15 

Figure 2.3. Graphical representation of selective scanning ........................................ 16 

Figure 2.4. Graphical representation of topological scanning .................................... 18 

Figure 2.5. Worm propagation of Code Red, BGP routable, hit-list, and flash worm 28 

Figure 2.6. Propagation on a power-law network: reinfection vs. non-reinfection .... 39 

Figure 3.1. Worm propagation computation ............................................................... 58 

Figure 3.2. Worm propagation between two peers ..................................................... 59 

Figure 3.3. Propagation cycles .................................................................................... 66 

Figure 4.1. Code Red II probability propagation matrix ............................................ 74 

Figure 4.2. Propagation probability in scenario 1 (the first 81 nodes in 5000 nodes) 77 

Figure 4.3. Propagation time delay in scenario 1 (the first 81 nodes in 5000 nodes) . 78 

Figure 4.4. Propagation probability in scenario 2 (the first 81 nodes in 5000 nodes) 78 

Figure 4.5. Propagation time delay in scenario 2 (the first 81 nodes in 5000 nodes) . 80 

Figure 4.6. Propagation probability in scenario 2 and scenario 3 (the first 81 nodes in 

5000 nodes) .................................................................................................................. 81 

Figure 4.7. Propagation time delay (scenario 2 vs. scenario 3) (the first 81 nodes in 

5000 nodes) .................................................................................................................. 82 

Figure 4.8. Propagation probability in scenario 4 (the first 81 nodes in 5000 nodes) 83 



 

 

XV 

 

XV 

Figure 4.9. Propagation time delay in scenario 4 (the first 81 nodes in 5000 nodes) . 84 

Figure 4.10. Vulnerability in Uniform distribution (scenario 1) ................................ 88 

Figure 4.11. Vulnerability in Gaussian distribution (scenario 2 & 3) ........................ 89 

Figure 4.12. Patch strategy (scenario 1) ..................................................................... 92 

Figure 4.13. Patch strategy (scenario 2) ..................................................................... 94 

Figure 4.14. Effect of impact factor β on worm propagation (the first 81 nodes in 

5000 nodes) .................................................................................................................. 97 

Figure 4.15. Effect of impact factor β on propagation probability in each time unit 

(the first 81 nodes in 5000 nodes)................................................................................ 98 

Figure 4.16. Errors analysis (the first 81 nodes in 5000 nodes) ............................... 101 

Figure 5.1. Power law exponent n ............................................................................ 117 

Figure 5.2. Propagation probability in scenario 1 ..................................................... 119 

Figure 5.3. Patching strategy in email worms .......................................................... 121 

Figure 5.4. Errors analysis of non-reinfection email worms .................................... 124 

Figure 6.1. State transition graphs of an email user .................................................. 135 

Figure 6.2. Different cases of the parameter t’ ......................................................... 141 

Figure 6.3. Example of email worms spreading between nodes in the network ...... 143 

Figure 6.4. Two cases in the iteration of s(i,t) .......................................................... 144 

Figure 6.5. The propagation of non-reinfection worms with different infection 

probability p ............................................................................................................... 146 

Figure 6.6. The propagation of non-reinfection worms with different email checking 

time CT ...................................................................................................................... 149 

Figure 6.7. Snowball effect and vigilance effect ...................................................... 151 

Figure 6.8. Underestimation in traditional simulation model ................................... 152 



 

 

XVI 

 

XVI 

Figure 6.9. The propagation of reinfection and self-start reinfection worms. .......... 153 

Figure 6.10. The propagation of reinfection worms with different infection probability 

p ................................................................................................................................. 159 

Figure 6.11. The propagation of reinfection worms with different infection probability 

p ................................................................................................................................. 159 

Figure 6.12. Reinfection worms‟ propagation with β ............................................... 160 

Figure 6.13. The propagation of self-start reinfection worms in an uncorrelated 

network with RT ........................................................................................................ 164 

Figure 6.14. The propagation of non-reinfection, reinfection and self-start reinfection 

worms propagation in an uncorrelated network ........................................................ 165 

 



 

 

XVII 

 

XVII 

List of Tables 

Table 2.1. A Comparison of Worm Propagation Models ........................................... 46 

Table 3.1. Truth Table for New Logic And Operation ............................................... 65 

Table 4.1. Scenarios for Analysing Propagation Source (S) ....................................... 75 

Table 4.2. Results from Different Scenarios of Propagation Source (S) .................... 76 

Table 4.3. Scenarios for Analyzing Vulnerability Distribution (V) ............................ 87 

Table 4.4. Scenarios for Analyzing Patching Strategy (Q) ......................................... 91 

Table 5.1. Scenarios for Analyzing Infectious Source (S) in Email Worms ............ 118 

Table 5.2. Scenario 1: A list of AI (α = 2.2) ............................................................. 118 

Table 5.3. Scenario 2: A list of the AI (α = 1.6) ....................................................... 120 

  

 



Chapter 1 Introduction 

 

1 

Chapter 1  

Introduction 

In this chapter, we begin by introducing the background and basic concepts relevant to this 

thesis. We then describe the research objectives and highlight the major contributions of the 

research in our study. Finally, we outline the organization of this thesis. 

1.1 Background  

Worms and their variants have been a persistent security threat in the Internet from the late 

1980s, especially during the past decade. For example, the Code Red worm [15] in 2001 

infected at least 359,000 hosts in 24 hours and had already cost an estimated $2.6 billion in 

damage to networks previous to the 2001 attack [86]. The Blaster worm [66] of 2003 infected 

at least 100,000 Microsoft Windows systems and cost each of the 19 research universities an 

average of US$299,579 to recover from the worm attacks [87]. Conficker worm [88, 92] was 

the fifth-ranking global malicious threat observed by Symantec in 2009 and infected nearly 

6.5 million computers by attacking Microsoft vulnerabilities. These worms not only lead to 

large parts of the Internet becoming temporarily inaccessible, but also caused a huge amount 

of financial loss and social disruption around the world. According to the official Internet 
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threat report of the Symantec Corporation [59], worms made up the second highest 

percentage of the top 50 potential malicious code infections for 2009, which rose from 29 

percent in 2008 to 43 percent in 2009.  

1.1.1 Definition of a Worm 

A computer worm is a program that self-propagates across a network exploiting security or 

policy flaws in widely-used services [14]. Worms and viruses are often placed together in the 

same category, however there is a technical distinction. A virus is a piece of computer code 

that attaches itself to a computer program, such as an executable file. The spreading of 

viruses is triggered when the infected program is launched by human action. A worm is 

similar to a virus by design and is considered to be a sub-class of viruses. It differs from a 

virus in that it exists as a separate entity that contains all the code needed to carry out its 

purposes and does not attach itself to other files or programs. Therefore, we distinguish 

between worms and viruses in that the former searches for new targets to transmit themselves, 

whereas the latter searches for files in a computer system to attach themselves to and which 

requires some sort of user action to abet their propagation [89].  

1.1.2 Worm Categorization 

A worm compromises a victim by searching through an existing vulnerable host. There are 

a number of techniques by which a worm can discover new hosts to exploit. According to the 

target-search process, we can divide worms into two categories: scan-based worms and 

topology-based worms.   

A. Scan-based Worms 
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A scan-based worm (scanning worm) propagates by probing the entire IPv4 space or a set 

of IP addresses and directly compromises vulnerable target hosts without human interference, 

such as Code Red I v2 (2001), Code Red II (2001), Slammer/Sapphire (2003), Blaster (2003), 

Witty (2004) [41], Sasser (2004) [42] and Conficker (2009) [88, 92]. A key characteristic of a 

scan-based worm is that it can propagate without dependence on the topology. This means 

that an infectious host is able to infect an arbitrary vulnerable computer.  

Scan-based worms employ various scanning strategies, such as random scanning and 

localized scanning, to find victims when they have no knowledge of where vulnerable hosts 

reside in the Internet. Random scanning selects target IP addresses randomly, whereas worms 

using the localized scanning strategy scan IP addresses close to their addresses with a higher 

probability compared to addresses that are further away.  

B. Topology-based Worms 

A topology-based worm, such as an email worm and a social network worm, relies on the 

information contained in the victim machine to locate new targets. This intelligent 

mechanism allows for a far more efficient propagation than scan-based worms that make a 

large number of wild guesses for every successful infection. Instead, they can infect on 

almost every attempt and thus, achieve a rapid spreading speed. Secondly, by using social 

engineering techniques on modern topological worms, most internet users can possibly fail to 

recognize malicious codes and become infected, therefore resulting in a wide range of 

propagation. 

A key characteristic of a topology-based worm is that it spreads through topological 

neighbors. For example, email worms, such as Melissa (1999) [70], Love Letter (2000) [71, 

90], Sircam (2001)[91], MyDoom (2004) and Here you have (2010), infect the system 

immediately when a user opens a malicious email attachment and sends out worm email 
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copies to all email addresses in the email book of the compromised receiver. For social 

network worms such as Koobface, the infected account will automatically send the malicious 

file or link to the people in the contact list of this user.  

1.1.3 The Propagation of Worms 

Worms have attracted widespread attention because they have the ability to travel from 

host to host and from network to network. Before a worm can be widely spread, it must first 

explore the vulnerabilities in the network by employing various target discovery techniques. 

Subsequently, it infects computer systems and uses infected computers to spread itself 

automatically (as with scan-based worms) or through human activation (as with topology-

based worms).   

During the propagation of worms, hosts in the network have three different states: 

susceptible, infectious and removed. A susceptible host is a host that is vulnerable to 

infection; an infectious host means one which has been infected and can infect others; a 

removed host is immune or dead so cannot be infected by worms again. According to 

whether infected hosts can become susceptible again after recovery, researchers model the 

propagation of worms based on three major models: SI models (if no infected hosts can 

recover), SIS models (if infected hosts can become susceptible again) and SIR models (if 

infected hosts can recover). Researchers have also and then presented various defense 

mechanisms against the propagation of worms. 

Although a great deal of research has been done to prevent worms from spreading, worm 

attacks still pose a serious security threat to networks for the following reasons. Firstly, 

worms can propagate through the network very quickly by various means, such as file 

downloading, email, exploiting security holes in software, etc. Some worms can potentially 
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establish themselves on all vulnerable machines in only a few seconds [7]. Secondly, the 

rapid advances of computer and network technologies allow modern computer worms to 

propagate at a speed much faster than human-mediated responses. Thirdly, in order to 

propagate successfully, worms are becoming more complicated and increasingly efficient. It 

is therefore of great importance to characterize worm attack behaviors, analyze propagation 

procedures and efficiently provide patch strategies for protecting networks from worm 

attacks.  

1.2 Research Objectives 

The objective of this thesis is to model and defend against worm attacks that employ 

different target discovery techniques. Specifically, we investigate the propagation procedure 

of worms and aim to provide a set of optimized and economical patch strategies that deal 

with the following important problems: 1) Where do we patch? 2) How many nodes do we 

need to patch? 3) When do we patch? In order to address these three questions, we need to 

model the characteristics of worm propagation that can examine the spreading deep inside the 

propagation procedure among hosts in the network, ensuring we can accurately understand 

the spreading and work out effective schemes that minimize the number of infected nodes 

against the propagation of worms. The results of this research can benefit the security 

industry by allowing them to save significant money in the deployment of their security 

patching schemes. 

Our research also includes modeling of the propagation dynamics of email worms as they 

constitute one of the major Internet security problems. We aim to present an analytical model 

to investigate the details of the propagation mechanisms and characterize the spreading of 

real-world email worms based on their infection strategies. This model should reflect a 
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realistic understanding of email worm spreading and provide an accurate representation of the 

propagation procedure. This analytical model can benefit the creation of new tactics against 

email worms. 

1.3 Contributions of the Thesis 

In this thesis, we firstly present a microcosmic worm propagation model to accurately 

access the spreading process and investigate errors which are usually concealed in the 

traditional macroscopic analytical models. We then apply the proposed microcosmic model to 

observe the propagation of scan-based worms and provide a series of recommendations and 

advice for patch strategies to counter worm propagation. We also present a novel process 

modeling the propagation of topology-based worms to examine the spreading deep inside the 

propagation procedure and address effective schemes to deal with the problems of where and 

how many nodes we need to patch. We further model the propagation dynamics of email 

worms analytically, thus helping us to understand real-world worms based on their different 

infection methods, which, in turn can benefit the deployment of new defense strategies. The 

main contributions of our research in this thesis are listed as follows. 

1.3.1 A Microcosmic Model of Worm Propagation 

Existing macroscopic models focus on analyzing the trends of worm propagation and 

identify very little information within the propagation procedure. These lead to difficulties in 

dealing with the problems of when, where and how many nodes we need to patch. Therefore, 

we present a propagation model from a microcosmic view, which is used to examine the 

spreading deep inside the propagation process of worms between each pair of nodes and can 

answer the proposed three problems by estimating an optimized patch strategy. We introduce 
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a complex matrix to represent the propagation probabilities and time delay between each pair 

of nodes. These two factors result in accurate exploration of the propagation procedure and 

estimation of both infection scale and the effectiveness of defense. The extension from the 

real field of the matrix to the complex field of the matrix reflects the mutual effect between 

these two factors and matches the real case well. This microcosmic model can help evaluate 

the mutual effect of initial infectious states and patch strategies, and analyze the impact that 

different distributions of vulnerable hosts have on worm propagation. We create a 

microcosmic landscape on worm propagation which can provide useful information for a 

defense against worms. 

1.3.2 Defense Study against Scanning Worms 

We apply the proposed microcosmic model to investigate the propagation procedures of 

scanning worms. We carry out extensive simulation studies of worm propagation and 

successfully provide useful information for the proposed problems of where, when and how 

many nodes we need to patch. According to the results, for high risk vulnerabilities, it is 

critical that networks reduce the number of vulnerable nodes to below a certain threshold, e.g., 

80% in this analysis. We believe the results can benefit the security industry by allowing 

them to save significant money in the deployment of their security patching schemes. 

Moreover, through the deployment of different scenarios, we can find how propagation 

source states, vulnerabilities distributions and patch strategies impact the spreading of worms. 

In addition, we derive a better understanding of dynamic infection procedures in each step of 

matrix iteration. These procedures include: 1) What is the propagation probability and time 

delay between each pair of nodes? 2) How does one node infect another node directly? 3) 

How does one node infect another node through a group of intermediate nodes? We also 

discuss the overestimation caused by errors in macroscopic models. Through the analysis of 
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the propagation procedure, we observe that the error is mainly caused by propagation cycles 

in the propagation path, which are usually ignored by traditional macroscopic models. 

1.3.3 Defense Study against Topology-based Worms 

An accurate and realistic model of topology-based worms can help us devise effective 

strategies of defense and reduce expenses for controlling the impact of their outbreak each 

year. We develop a modeling framework that can characterize the spread of topology-based 

worms. We first construct the propagation mechanism of topology-based worms by 

concentrating on the propagation probability and model the propagation procedure through k-

hops. With the help of the model, we then evaluate the mutual effect of initially infectious 

states and address effective schemes to deal with the problems of where and how many nodes 

we need to patch. We take advantage of the propagation probability between each pair of 

nodes to explore the propagation procedure of worms and estimate both infection scale and 

defense effectiveness. Through model analysis, we derive a better understanding of dynamic 

infection procedures in each step rather than recapitulative analysis on propagation tendency. 

Specifically, we aim to understand: 1) the propagation probability between each pair of nodes; 

and 2) how one node infects another node through a group of intermediate nodes. From the 

results, the network administrators can make decisions on how to immunize the highly-

connected node to prevent topology-based worm propagation.   

1.3.4 Modeling the Propagation Dynamics of Email Worms 

Modeling the propagation dynamics of email worms not only benefits the development of 

defense strategies to prevent them from spreading but can also help us investigate the 

propagation of those isomorphic worms such as Koobface. However, it is hard to provide 
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mathematical analysis instead of simulation modeling for analyzing the spreading of email 

worms. The difficulty lies in two aspects: how to characterize the propagation dynamics with 

different mailbox checking time between email users in a large scale network and how to 

model the repetitious email sending process for reinfection and self-start reinfection worms. 

Therefore, an analytical model for observing the spreading procedure of email worms is 

proposed. We examine the individual spreading steps and every state transition on each node 

in the network so that our analytical model can reflect the propagation dynamics with the 

different mailbox checking habits of users. We also propose the concept of virtual users to 

represent the process of sending repetitive emails so that our analytical model can accurately 

reflect the propagation of reinfection worms. In addition, our model analyzes the spreading of 

self-start reinfection worms that most modern email worms belong to and models the 

repetitious email sending process in self-start reinfection worms. Our evaluation results 

indicate that our modeling is accurate and can aid a better and more realistic understanding of 

the propagation of worms. This has potential benefits for devising new tactics against email 

worms. 

1.4 Organization of the Thesis  

The rest of this thesis is organized as follows. Chapter 2 surveys related work. Chapter 3 

presents a new microcosmic worm propagation model that examines deep inside the 

propagation procedure among individual nodes and is able to provide a series of effective 

patch strategies against worm propagation. We then apply the proposed microcosmic model 

to observe the propagation of scan-based worms through the design of different experiments 

in Chapter 4. Chapter 5 presents a novel process modeling the propagation of topology-based 

worms by concentrating on the propagation probability. We also analyze the formation of 
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propagation errors and examine the impact of eliminating errors on the propagation procedure 

of topology-based worms. In Chapter 6, we focus on modeling the propagation dynamics of 

email worms analytically. This model studies the propagation procedure of three classes of 

real-world email worms: non-reinfection, reinfection and self-start reinfection worms. 

Chapter 7 summarizes the main research contributions and innovations and identifies several 

possible avenues for future work. 
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Chapter 2  

Related Works 

This chapter provides an overview of the background and related research on worm 

propagation. Firstly, we investigate different target discovery mechanisms for two types of 

worms: scan-based worms and topology-based worms. Then, we study four common 

topologies of networks for worm spreading. Finally, based on the different spreading 

strategies and topology information, we provide an analysis and comparison of the current 

mathematical models typically used to describe worms. 

2.1 Target Discovery Techniques of Worms 

Worms employ distinct propagation strategies such as random, localized, selective and 

topological scanning to spread. In this subsection, we discuss these target discovery 

techniques and some of their different sub-classes.   

2.1.1 Scan-based Techniques 
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Scanning is a very common propagation strategy due to its simplicity and is the most 

widely employed technique by some well-known scan-based worms such as Code Red, Code 

Red II, Slammer, Blaster, Sapphire, and Witty worm. Scan-based techniques probe a set of 

addresses to randomly identify vulnerable hosts or work through an address block using an 

ordered set of addresses [14].  

2.1.1.1 Random Scanning 

Random scanning selects target IP addresses randomly, which leads to a fully-connected 

topology with identical infection probability β for every edge (shown in Fig. 2.1). Several 

types of scanning strategies, such as uniform, hit-list, and routable scanning, are implemented 

on the basis of random scanning.  

A. Uniform Scanning 

Uniform scanning is the simplest strategy to compromise targets when a worm has no 

knowledge of where vulnerable hosts reside. It picks IP addresses to scan from the whole 

IPv4 address space with equal probability. This means a worm selects a victim from its 

scanning space without any preference. Thus, it needs a perfect random number generator to 

generate target IP addresses at random. Some famous worms, such as Code Red I v1 and v2 
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Figure 2.1: Graphical representation of random scanning 
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[15], and Slammer [12] employed this scanning approach to spread themselves. However, 

Code-Red I v1 used a static seed in its random number generator and thus generated identical 

lists of IP addresses on each infected machine. This meant the targets probed by each infected 

machine were either already infected or impregnable. Consequently, Code-Red I v1 spread 

slowly and was never able to compromise a high number of hosts. Code-Red I v2 used a 

random seed in its pseudo-random number generator and thus, each infected computer tried 

to infect a different list of randomly generated IP addresses. This minor change resulted in 

more than 359,000 machines being infected with Code-Red I v2 in just fourteen hours [16]. 

B. Hit-list Scanning 

Hit-list scanning was introduced by Staniford et al. [7], which can effectively reduce the 

infection time at the early stage of worm propagation. A hit-list scanning worm first scans 

and infects all vulnerable hosts on the hit-list, then continues to spread through random 

scanning. The vulnerable hosts in the hit-list can be infected in a very short period because no 

scans are wasted on other potential victims. Hit-list scanning hence effectively accelerates the 

propagation of worms at the early stage. If the hit-list contains IP address of all vulnerable 

hosts, (called a complete hit-list), it can be used to speed the propagation of worms from 

beginning to end with the probability of hitting vulnerable or infected hosts equal to 100%. 

Flash worm [7] is one such worm. It knows the IP addresses of all vulnerable hosts in the 

Internet and scans from this list. When the worm infects a target, it passes half of its scanning 

space to the target, and then continues to scan the remaining half of its original scanning 

space. If no IP address is scanned more than once, then a flash worm is the fastest spreading 

worm in terms of its worm scanning strategy [5]. Due to bandwidth limitation, however, flash 

worms cannot reach their full propagation speed. Furthermore, in the real world it is very 

hard to know all vulnerable hosts‟ IP addresses. Therefore, complete hit-list scanning is 

difficult for attackers to implement considering the global scale of the Internet. 
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C. Routable Scanning 

The routable scanning approach probes each IP address from within the routable address 

space in place of the whole IPv4 address space. Therefore, it needs to determine which IP 

addresses are routable. Zou et al. [4] presented a BGP routable worm as BGP routing tables 

contain all routable IP addresses. Through scanning the BGP routing table, the scanning 

address space Ω of BGP routable worms can be effectively reduced without missing any 

targets. Currently about 28.6% of the IPv4 address has been allocated and is routable. 

However, worms based on BGP prefixes have a large payload, which leads to a decrease in 

the propagation speed. Consequently, a Class A routing worm was presented by Zou et al. [4], 

which uses IPv4 Class A address allocation data. The worm only needs to scan 116 out of 

256 Class A address space, which contributes 45.3% of the entire IPv4 space. Routable 

scanning therefore, improves the spreading speed of worms by reducing the overall scanning 

space.  

2.1.1.2 Localized Scanning 

Instead of selecting targets at random, worms prefer to infect IP addresses that are closer 

by. Localized scanning strategies choose hosts in the local address space for probing. This 

leads to a fully-connected topology as shown in Fig. 2.2, where nodes within the same group 

(group 1 or group 2) infect each other with the same infection probability β1, while nodes 

from different groups infect each other with infection probability β2. 

A. Local Preference Scanning 
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Since vulnerable nodes are not uniformly distributed in the real world, a worm can spread 

itself quickly when it scans vulnerability dense IP areas more intensively. For this reason, the 

local preference scanning approach is implemented by attackers, which selects target IP 

addresses close to a propagation source with a higher probability than addresses farther away. 

Some localized scanning worms (Code Red II [2,8,9,36] and Blaster worm [10]) propagate 

themselves with a high probability in certain IP addresses for the purpose of increasing their 

spreading speed. Taking Code Red II as an example, the probability of the virus propagating 

to the same Class A IP address is 3/8; to the same Class A and B IP address is 1/2; and to a 

random IP address is 1/8.  

B. Local Preference Sequential Scanning 

Different from random scanning, the sequential scanning approach scans IP addresses in 

order from a starting IP address selected by a worm [5]. Blaster [17] is a typical sequential 

scan worm because it chooses its starting point locally as the first address of its Class C /24 

network with a probability of 0.4 and a random IP address with a probability of 0.6. In 

selecting the starting point of a sequence, if a close IP address is chosen with higher 

probability than an address far away, we use the term „local preference sequential scanning‟.  

β2

β1

β2

β2

β2

β1

β2

β1 β

Localized Scanning

β1

β1

β1 β2

β1

β2

β2

β

β1

β1

ββ1

β2β2

β1

β2

β2

β2

β1

1

8

7

6 5

4

3

2

Group 1 Group 2

 

Figure 2.2: Graphical representation of localized scanning 
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According to an analysis in [5], a worm employing a local preference sequential scanning 

strategy is more likely to repeat the same propagation sequence, which results in wasting 

most of the infection power of infected hosts. Consequently, the local preference sequential 

scanning approach slows down the spreading speed in the propagation of worms. 

C. Selective Scanning 

Selective scanning is implemented by attackers when they plan to intentionally destroy a 

certain IP address area rather than the entire Internet, that is, the scanning space is reduced to 

those selected IP addresses. The selective scanning strategy can lead to an arbitrary topology 

as shown in Fig. 2.3, where node 4 scans nodes 1, 2 and 3 with infection probability β1 and 

node 5 scans nodes 4, 6, 7 and 8 with infection probability β2. If a worm only scans and 

infects vulnerable hosts in the target domain, it is referred to as Target-only scanning. In 

selective scanning, attackers care more about the spreading speed of a worm in the target 

domain than the scale of the infected network. According to the analysis in [5], target-only 

scanning can accelerate the propagation speed if vulnerable hosts are more densely 

distributed in the target domain.   
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Figure 2.3: Graphical representation of selective scanning 
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2.1.2 Topology-based Techniques 

Topology-based (or topological scanning) techniques are mainly used by worms spreading 

through topological neighbors. This strategy can lead to an arbitrary topology, as shown in 

Fig. 2.4, where node Ni (i=1,2,…,8) scans its neighbors with a different infection probability 

βi (i=1,2,…,10). A typical example of worms that employ topology-based techniques to 

launch attacks are email worms. When an email user receives an email message and opens 

the malicious attachment, the worm program will infect the user‟s computer and send copies 

of itself to all email addresses that can be found in the recipient‟s machine. The addresses in 

the recipient‟s machine disclose the neighborhood relationship. Melissa [28] is a typical 

email worm which appeared in 1999. It looks through all Outlook address books and sends a 

copy of itself to the first 50 individuals when an infected file is opened for the first time. 

After Melissa, email worms have become annoyingly common, completed with toolkits and 

improved by social engineering, such as Love letter in 2000, Mydoom in 2004 and 

W32.Imsolk in 2010. Recently, topology-based techniques have been used by some 

isomorphic worms such as Bluetooth worms [21], p2p worms [18-19], and social networks 

worms [20]. For example, Koobface [27] spreads primarily through social networking sites. It 

searches the friend list of a user and posts itself as links to videos on their friend‟s website. 

When a user is tricked into visiting the website that hosts the video, they are prompted to 

download a video codec or other necessary update, which is actually a copy of the worm. 

Users may have difficulty determining if a link was posted by a friend or the worm.   
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Topology-based techniques utilize the information contained in the victim‟s machine to 

locate new targets. This intelligent mechanism allows for a far more efficient propagation 

than scan-based techniques that make a large number of wild guesses for every successful 

infection. Instead, they can infect on almost every attempt and thus, achieve a rapid spreading 

speed. A common feature of topology-based techniques is to involve human interference in 

the propagation of worms. Taking email worms as an example, the worm program can infect 

the user‟s machine and become widespread only when an email user opens the worm email 

attachment. Thus, whether or not a computer can be infected by malicious emails is 

determined by human factors including the user's personal habits of checking emails and the 

user's security consciousness.  

2.2 Topologies for Modeling the Propagation of Worms  

The topology of a network plays a critical role in determining the propagation dynamics of 

a worm. In the research of epidemic modeling, many types of networks (for example, [6, 10, 

33-35, 47, 57]) are adopted to study the effect of epidemic propagation. In this subsection, we 
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Figure 2.4: Graphical representation of topological scanning 



Chapter 2 Related Works 

 

19 

will introduce four typical topologies of networks that are widely used in modeling the 

propagation of worms.  

2.2.1 Homogenous Networks  

In a homogenous network, each node has roughly the same degree. A fully-connected 

topology, a standard hypercubic lattice, and an Erdös-Renyi (ER) random network are three 

typical examples of homogeneous networks [35]. The propagation of worms on homogenous 

networks satisfies the homogenous assumption that any infected host has an equal 

opportunity to infect any vulnerable host in the network. In real scenarios, most scan-based 

worms, such as Code Red I, Code Red II, and Slammer, can propagate without any 

dependence on the properties of the underlying topology. Thus, homogeneous networks are 

more suitable for modeling the spreading of scan-based worms.  

Recently, many researches [2, 5, 7, 10] studied random scanning worms on homogenous 

networks using differential equation models. These models assume all hosts in the network 

can contact each other directly and thus, their topologies are treated as fully-connected graphs. 

Chen et al. [10] proposed an analytical active worm propagation (AAWP) model for 

randomly scanning worms on the basis of homogenous networks. Yan and Eidenbenz [21] 

present a detailed analytical model that characterizes the propagation dynamics of Bluetooth 

worms. It assumes all individual devices are homogenously mixed. Zou et al. [2] proposed a 

two-factor worm model to characterize the propagation of the Code Red worm. This model 

adopts the homogeneous network, that is, they consider worms that propagate without the 

topology constraint. 
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2.2.2 Random Networks 

A random network is a theoretical construct which contains links that are chosen 

completely at random with equal probability. Using a random number generator, one assigns 

links from one node to a second node. Random links typically result in shortcuts to remote 

nodes, thus shortening the path length to otherwise distant nodes [37]. Recent work [38, 39] 

provided mechanisms to specify the degree distribution when constructing random graphs 

and further characterize the size of the large connected component. Fan and Xiang [19] 

investigated the impact of worm propagation over a simple random graph topology. It 

assumes each host has the same out-degree. Hosts to which each host has an outbound link 

are randomly selected from all hosts except the host itself. Of course, the degrees of nodes in 

a random graph may not be all equal. Zou et al. [6] studied the email worm propagation on a 

random graph. The random graph network was constructed with n vertices and an average 

degree E[k] ≥ 2. From the analysis of Zou‟s model, a random graph cannot reflect a heavy-

tailed degree distribution and thus, it is not suitable for modeling topology-based worms.  

2.2.3 Small-World Networks  

A small-world network is a type of mathematical graph where most nodes are not 

neighbors of one another, but can be reached from every other node by a small number of 

hops or steps. Small-world networks are highly clustered and have a small characteristic path 

[51]. Some researchers have observed the dynamic propagation of worms on small-world 

networks. G. Yan et al. [22] considered the BrightKite graph to investigate the impact of 

malware propagation over online social networks. Compared with the random graph, the 

BrightKite graph [48] has a similar average shortest path length and a smaller clustering 

coefficient, and thus, it closely reflects a small-world network structure. Zou et al. [6] 
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modeled email worm propagation on a small-world network that has an average degree 

E[k]>4. It firstly constructs a regular two-dimensional grid network and then connects two 

randomly-chosen vertices repeatedly until the total number of edges reaches E[k] • n/4. From 

the analysis of Zou‟s model, a small-world network still cannot provide a heavy-tailed degree 

distribution and thus, is not suitable for modeling topology-based worms. 

2.2.4 Power-Law Networks  

Power-law networks are networks where the frequency fd of the out-degree d is 

proportional to the out-degree to the power of a constant α: fd∝d
α
 [40]. The constant α is 

called the power-law exponent. In a power-law network, nodes with the maximum topology 

degree are rare and most nodes have the minimum topology degree. Recent works have 

shown that many real-world networks are power-law networks such as social networks [33, 

46, 49-50], neural networks [45], and the Web [43-44].   

Zou et al. [6] and Ebel et al. [47] investigated email groups and found that they exhibited 

characteristics of a power-law distribution. The simulation model proposed by Zou et al. [6] 

studied the dynamic propagation of an email worm over a power-law topology. Although 

email worms spread slower on a power-law topology than small world topology or random 

topology, the immunization density is more effective on a power-law topology. Fan and 

Xiang [19] presented a logic 0-1 matrix model and observed the propagation of worms on a 

pseudo power law topology. Z. Chen and C. Ji [32] constructed a spatial-temporal model and 

analyzed the impact of malware propagation on a BA (Bárabási-Albert) network [44], which 

is a type of power-law network. W. Fan et al. [20] assumed that the node degree of Facebook 

users exhibits the power-law distribution and constructed the network using two models: the 

BA (Bárabási-Albert) model and the GLP (Generalized Linear Preference) model.  
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2.2.5 Examples of Real World Topologies 

Topology properties affect the spread of topology-based worms, which can either impede 

or facilitate their propagation and maintenance. Existing works [6, 32, 34] show that 

structures and characters of the network have strong impact on the spreading speed and scale 

of worms.  

The characters of social networks and the impacting of social structures on the propagation 

of worms have been intensively investigated in many works [22, 33, 102]. Adamic et al. [102] 

found that the network exhibits small-world behavior through studying an early online social 

network. Mislove et al. [33] presented a large-scale measurement study and analysis of the 

structure of four popular online social networks: Flickr, Orkut, YouTube and LiveJournal. 

Their results confirm the power-law, small-world and scale-free properties of online social 

networks. Yan et al. [22] studied the BrightKite network and found that the highly skewed 

degree distributions and highly clustered structures shown in many social networks are 

instrumental in spreading the malware quickly at its early stage.  

The topology of an email network plays a critical role in determining the propagation 

dynamics of an email worm [6, 47]. Zou et al. [6] examined more than 800,000 email groups 

in Yahoo! and found that it is heavy-tailed distributed, which exhibits the character of power-

law networks. Ebel et al. [47] studied the topology of email network that constructed from 

log files of the email server at Kiel University and found that it exhibits a scale-free link 

distribution and pronounced small-world behavior.   
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2.3 Worm Propagation Models 

In the area of network security, worms have been studied for a long time [1, 93-94]. Early 

works mainly refer to the academic thought on epidemic propagation and thus, models are 

constructed according to the state transition of each host including Susceptible-Infectious 

(denoted by „SI‟) models [26], Susceptible-Infectious-Susceptible (denoted by „SIS‟) models 

[53], and Susceptible-Infectious-Recovered (denoted by „SIR‟) models [34, 54-55]. In the SI 

framework, all hosts stay in one of only two possible discrete states at any time: susceptible 

or infectious, which ignores the recovery process. The difference between SIS models and 

SIR models depends on whether infected hosts can become susceptible again after recovery. 

If this is the case, we use the term SIS model. Otherwise, if a host cannot become susceptible 

again once it is cured, we use the SIR model, where all hosts stay in one of only three states at 

any time: susceptible (denoted by „S‟), infectious (denoted by „I‟), removed (denoted by „R‟).  

Currently, many mathematical models [6-7, 10, 19, 21, 24, 95-101] have been proposed for 

investigating the propagation of scan-based and topology-based worms on the basis of 

different state transition models. In this subsection, we mainly focus on these mathematical 

models and analyze their respective advantages and disadvantages.  

2.3.1 Homogenous Scan-based Model 

The homogenous worm propagation model relies on the homogeneous assumption that 

each infectious host has an equal probability of spreading the worm to any vulnerable peer in 

a network. Hence, the homogenous model is based on the concept of a fully connected graph 

and is an unstructured worm model that ignores the network topology. It can accurately 

characterize the propagation of worms using scan-based techniques to discover vulnerable 
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targets, such as Code Red [29-30], Code Red II [2], and Slammer [12]. Scan-based worms 

scan the entire network and infect targets without regard to topological constraints which 

means that an infectious host is able to infect an arbitrary vulnerable peer. Up to now, many 

researchers have modeled the propagation procedure of different types of scan-based worms 

on the basis of the homogenous assumption. The homogenous model can be further divided 

into two categories: continuous time and discrete time. A continuous time model is expressed 

by a set of differential equations, while a discrete time model is expressed by a set of 

difference equations. 

2.3.1.1 Continuous-time Model 

A. Classical Simple Epidemic Model  

The Classical Simple Epidemic Model [13, 23-26] is a SI model. In this model, the state 

transition of any host can only be S→I, and it is assumed a host will remain in the „infectious‟ 

state forever once it has been infected by a worm. Denote by I(t) the number of infectious 

hosts at time t; N the total number of susceptible hosts in the network before a worm spreads 

out. Thus, the number of susceptible hosts at time t is equal to [N-I(t)]. The classical simple 

epidemic model for a finite population can be represented by the differential equation below:  

 )()(
)(

tINtI
dt

tdI
                 (2.1) 

where, β stands for the pair-wise rate of infection in epidemiology studies [13]. It 

represents a ratio of infection from infectious hosts to susceptible hosts. At the beginning, t=0, 

I(0) hosts are infectious, and in the other [N-I(0)] all hosts are susceptible.  

The Classical Simple Epidemic Model is the most simple and popular differential equation 

model. It has been used in many papers (for example, [2, 5, 7, 10]) to model random scanning 

worms, such as Code Red [2] and Slammer [12]. 
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B. Uniform Scan Worm Model 

If a worm (i.e. Code Red, Slammer) has no knowledge of the distribution of vulnerable 

hosts in the network, uniformly scanning all IP addresses is the simplest method to spread 

itself. Once a host is infected by a worm, it is assumed to remain in the infectious state 

forever. The uniform scan worm model specifies the abstract parameter β in the classical 

simple epidemic model based on information pertaining to the scanning rate and IP space of 

the network. Denote by I(t) the number of infectious hosts at time t; N the total number of 

susceptible hosts in the network before a worm spreads out. Thus [N-I(t)] is the number of 

susceptible hosts at time t. Suppose an average scan rate η of a uniform scan worm is the 

average number of scans an infected host sends out per unit of time. Denote by δ the length of 

a small time interval. Thus, an infected host sends out an average of ηδ scans during a time 

interval δ. Suppose the worm uniformly scans the IP space that has Ω addresses, every scan 

then has a probability of 1/Ω (1/Ω <<1) to hit any one IP address in this scanning space. 

Therefore, on average, an infected host has probability q to hit a specific IP address in the 

scanning space during a small time interval δ.  

  11/Ω,//111  


q              (2.2) 

Here, during the time interval δ, the probability that two scans sent out by an infected host 

will hit the same vulnerable host is negligible when δ is sufficiently small. Consequently, the 

number of infected hosts at time t+δ will be: 

   /)()()()(  tINtItItI                      (2.3) 

Taking δ→0, according to the epidemic model (2.1), the uniform scan worm model can be 

represented by (2.4): 

 )()(
)(

tINtI
dt

tdI






                       (2.4) 
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At time t=0, I(0) represents the number of initially infected hosts and [N-I(0)] is the number 

of all susceptible hosts. 

Some variants of random scanning worms (hit-list worms [7], flash worms [5, 7], and 

routable worms [11]) cannot be directly modeled by (2.4). However, through the extension of 

the uniform scan worm model, the propagation of these variants of worms can be accurately 

modeled. 

Staniford et al. [7] introduced a variant of random scanning worms, called the hit-list worm. 

It first scans and infects all vulnerable hosts on the hit-list, then randomly scans the entire 

Internet to infect others just like an ordinary uniform scan worm. We can assume the 

vulnerable hosts on the hit-list to be the initially infected hosts I(0) and ignore the 

compromising time since they can be infected in a very short time [7]. As a result, a hit-list 

worm can be modeled by (2.4) along with a large number of initially infected hosts 

determined by the size of the worm‟s hit-list.  

A flash worm is a variant of the hit-list strategy, introduced by Staniford et al. [7]. When a 

flash worm infects a target, it simply scans half of its scanning space as the other half has 

been passed to the target including the target host. Since it knows the IP addresses of all 

vulnerable hosts, that is, the size of scanning space Ω = N, which is much smaller than the 

entire IPv4 address space (Ω =2
32

), and because no IP address is scanned more than once, the 

flash worm could possibly infect most vulnerable hosts in the Internet in tens of seconds. For 

this reason, the time delay caused by the infection process of a vulnerable host cannot be 

ignored in modeling the spreading of flash worms. Denote by ε the time delay, which is the 

time interval from the time when a worm scan is sent out to the time when the vulnerable host 

infected by the scan begins to send out worm scans. We assume a flash worm uniformly 

scans the address list of all vulnerable hosts. Then, based on the uniform scan model (2.4), 

the flash worm (uniform scanning) can be modeled by (2.5):  
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 ttItINtI
Ndt

tdI
,0)(,)()(

)(
           (2.5) 

Another variant of random scanning worms is a routable worm. Zou et al. [4] found that 

currently around 28.6% of IPv4 addresses are routable and thus, they presented a BGP 

routing worm. It uses BGP routing prefixes to reduce the worm‟s scanning space Ω. When a 

BGP routing worm uniformly scans the BGP routable space, it can be modeled by (2.4), 

where Ω equals 28.6% of all IP addresses.  

Zou et al. [5] investigated and compared the propagation performance of random scanning 

worms and their variants (for example, Code Red, a hit-list worm, a flash worm and a BGP 

routable worm). Assume the number of vulnerable hosts (N) is 360 000, and worms have the 

same scan rate, i.e., η = 358/min. Suppose the size of a worm‟s hit-list is 10 000, that is, 

I(0)=10 000, while Code Red, the flash worm and the BGP routable worm have 10 initially 

infected hosts, that is, I(0)=10. The scanning space for the BGP routable worm is 28.6% of 

the entire IP address space, while the Code Red worm and the hit-list worm scan all IP 

addresses Ω =2
32

. For the flash worm, the scanning space Ω = N. From the results of the 

experiment shown in Fig. 2.5, the flash worm is the fastest spreading worm, which finishes 

infection within 20 seconds, while Code Red finishes infection after around 500 minutes. At 

the early stage of propagation, because of a large number size of the hit-list, the hit-list worm 

can infect more vulnerable hosts than Code Red and the BGP routable worm. Compared with 

Code Red and the hit-list worm, the BGP routable worm has a smaller scanning space and 

thus, the infection speed of the routable worm is faster. 
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C. RCS Model  

Staniford et al. [7] presented a RCS (Random Constant Spread) model to simulate the 

propagation of the Code Red I v2 worm, which is almost identical to the classical simple 

epidemic model. Let a(t) = I(t)/N be the fraction of the population that is infectious at time t. 

Substituting I(t) in equation (2.1) with a(t), and then deriving the differential equation (2.6) 

below, yields the equation used in [7]: 
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where, k = β N, and T is a constant of integration that fixes the time position of the incident. 

Differential equation (2.6) is a logistic equation. For early t, a(t) grows exponentially, that is, 

the number of infectious hosts is nearly exponentially increased at the early stage of worm 

propagation. For large t, a(t)  goes to 1 (all susceptible hosts are infected).    

D. Classical General Epidemic Model: Kermack-McKendrick Model 
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Figure 2.5: Worm propagation of Code Red, BGP routable, hit-list, and flash worm. 
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Different from the classical simple epidemic model, the Kermack-McKendrick model 

considered the removal process of infectious hosts [26]. In the Kermack-McKendrick model, 

all hosts stay in one of only three states at any time: susceptible (denoted by „S‟), infectious 

(denoted by „I‟), removed (denoted by „R‟). Once a host recovers from the disease, it will be 

immune to the disease and stay in the „removed‟ state forever. The removed hosts can no 

longer be infected and they do not try to infect others. Therefore, the Kermack-McKendrick 

model is in the framework of a SIR model.   

Let I(t) denote the number of infectious hosts at time t and use R(t) to denote the number of 

removed hosts from previously infectious hosts at time t. Denote β as the pair-wise rate of 

infection and γ as the rate of removal of infectious hosts. Then, based on the classical simple 

epidemic model (2.1), the Kermack-McKendrick model can be represented by (2.8): 
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          (2.8) 

where, N is the size of the finite population. The Kermack-McKendrick model improves the 

classical simple model by introducing a „removed‟ state for each host which means some 

infectious hosts either recover or die after some time.   

E. Two-factor Model  

The Kermack-McKendrick model includes the removal of infectious hosts in the 

propagation of worms, but it ignores the fact that susceptible hosts can also be removed due 

to patching or filtering countermeasures. Furthermore, in the real world, the pair-wise rate of 

infection β decreases with the time elapsed in the spreading procedure due to the limitation of 

network bandwidth and Internet infrastructure, while the Kermack-McKendrick model 

assumes β is constant. Therefore, Zou et al. [2] introduced a two-factor model, which extends 
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the Kermack-McKendrick model by considering human countermeasures and network 

congestion.   

In the two-factor model, the removal process consists of two parts: removal of infectious 

hosts and removal of susceptible hosts. Denote R(t) as the number of removed hosts from the 

infectious population and Q(t) as the number of removed hosts from the susceptible 

population. R(t) and Q(t) involve people‟s security awareness against the propagation of 

worms. Moreover, in consideration of the slowed down worm scan rate, the pair-wise 

infection rate β is modeled as a function of time t, β(t), which is determined by the impact of 

worm traffic on Internet infrastructure and the spreading efficiency of the worm code. Then, 

the two-factor model can be represented by (2.9):  
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         (2.9) 

where, N is the finite population size; I(t) denotes the number of infectious hosts at time t; β(t) 

is the pair-wise rate of infection at time t; and γ stands for the rate of removal of infectious 

hosts. The two-factor model improves the Kermack-McKendrick model through 

consideration of two major factors that affect worm propagation: human countermeasures 

like cleaning, patching or filtering and the slowing down of the worm infection rate.    

2.3.1.2 Discrete-time Model 

A. AAWP Model  

Chen, Gao and Kwiat [10] presented an AAWP (Analytical Active Worm Propagation) 

model to take into account the characteristics of random scanning worms spreading according 

to the homogenous assumption. It assumes that worms can simultaneously scan many 

machines in a fully-connected network and no hosts can be repeatedly infected. In this model, 
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active worms scan the whole IPv4 address (Ω = 2
32

) with equal likelihood, therefore, the 

probability any computer is hit by one scan is 1/2
32

.  Denote mt as the total number of 

vulnerable hosts (including the infected hosts); denote nt as the number of infected hosts at 

time tick t (t ≥ 0). At time tick t = 0, the number of initially vulnerable hosts m0 is equal to N 

and the number of initially infected hosts n0 is equal to h. We suppose s is the scanning rate, 

and the number of newly infected hosts in each time tick t is equal 

to ])2/11(1)[( 32 tsn

tt nm  . Assume that d represents the death rate and p denotes the 

patching rate. Then, in each time tick the number of vulnerable hosts without being infected 

and the number of healthy hosts will be (d + p)nt. Therefore, on average in the next time tick 

t+1, the number of total infected hosts can be represented by (2.10):  
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In each time tick, the total number of vulnerable hosts including infected hosts is (1-p)mt, and 

thus, at time tick t, mt=(1-p)
t
m0=(1-p)

t
N. Therefore, we can derive (2.11) as follows: 
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where t ≥ 0 and n0=h. Formula (2.11) models the propagation of random scanning worms 

analytically, and the iteration procedure will stop when all vulnerable hosts are infected or the 

number of infected hosts remains the same when worms spread.        

B. Bluetooth Worm Model 

G. Yan and S. Eidenbenz [21] presented a detailed analytical model that characterizes the 

propagation dynamics of Bluetooth worms. It captures not only the behavior of the Bluetooth 

protocol but also the impact of mobility patterns on the propagation of Bluetooth worms. This 

model assumes all individual Bluetooth devices are homogeneously mixed and advances time 
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in a discrete fashion. Through analyzing a single infection cycle, it derives the duration of an 

infection cycle Tcycle(t) and the number of new infections out of the infection cycle α(t). 

According to the pair-wise infection rate β(t) derived from α(t) and new average density of 

infected devices at time t, this model can estimate the Bluetooth worm propagation curve. 

From this model, the average density of infected devices in the network at time tk+1 is defined 

by (2.12):  
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where i′ (tk) is the maximum value between i(t) and 1/Sinq(t) to ensure at least one infected 

device in the radio signal covers. ρ(tk) is the average device density at time tk. Since the worm 

growth rate can change, and in order to avoid overestimating the number of new infections 

out of the infection cycle, it uses α′ to achieve a better estimation of worm propagation, 

which is defined by (2.13):  

)(
)(

)(
)(

)(

)()(
' x

k

k
k

k

kk t
t

ti
t

t

tit








 


                                          (2.13) 

At the early phase, α′ is close to α(tk) and at the late state of the worm propagation, α′ is close 

to α(tx). Here, tx is the latest time when an infected device starts their infection cycle after 

time t but before time tk+1. This model predicts that the Bluetooth worm spreads quickly once 

the density of the infected devices reach 10 percent, although it propagates very slowly at the 

early stage.     

2.3.2 Localized Scan-based Model  

Since vulnerable nodes are not uniformly distributed, some localized scanning worms 

(Code Red II [2, 8-9] and Blaster worm [10]) propagate the virus with a high probability in 

certain IP addresses for the purpose of increasing their spreading speed. Taking Code Red II 
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as an example, the probability of the virus propagating to the same Class A IP address is 3/8; 

to the same Class A and B IP address is 1/2; and to a random IP address is 1/8. Therefore, the 

localized scanning worm employs a non-homogenous pattern to spread itself in the network. 

The localized scan-based model can be further divided into two categories: continuous time 

and discrete time. A continuous time model is expressed by a set of differential equations, 

while a discrete time model is expressed by a set of difference equations. 

2.3.2.1 Continuous-time Model 

A. Local Preference Model  

Zou et al. [5] took advantage of a continuous time model to describe the spread of 

localized scanning worms. In this local preference model, it is assumed that a worm has 

probability p of uniformly scanning IP addresses that have the same first n bits and 

probability (1-p) of uniformly scanning other addresses. Suppose that the worm scanning 

space contains K networks where all IP addresses have the same first n bits and each network 

has Nk (k=1, 2… K) initially vulnerable hosts. Denote by Ik(t) the number of infected hosts in 

the k-th network at time t; and denote by β' and β" the pair-wise rates of infection in local 

scan and remote scan, respectively. Then we have:  
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where η represents the average number of scans an infected host sends out per unit of time. 

Since hosts are not uniformly distributed over the whole Internet, this model supposes only 

the first m networks (m<K) have uniformly distributed vulnerable hosts, i.e., N1=…= Nm=N/m, 

Nm+1=…=Nk=0. Thus, the worm propagation on each network follows (2.15):  
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Suppose Ik (0) = I1(0)>0, k=2,3,…,m. We then have:  

   )()(
"1')(

tINtI
m

m

dt

tdI








 



                                          (2.16)  

(2.14) describes the number of newly infected hosts at time tick t with respect to the entire 

Internet. This local preference model uses differential equations to reflect the propagation of 

localized worms that probe different IP addresses with their own preference probabilities.   

2.3.2.2 Discrete-time Model 

A. LAAWP Model  

LAAWP (Local Analytical Active Worm Propagation) model is a discrete time model 

extended from the AAWP model [10]. It characterizes the propagation of worms employing 

the localized scanning strategy to probe subnets. The worm scans a random address with a 

probability of p0. For an address with the same first octet, the probability is given by p1, while 

an address with the same first two octets is scanned with probability p2. In order to simplify 

the model, both the death rate and patching rate are ignored in the AAWP model. This model 

assumes localized worms scan a subnet containing 2
16

 IP addresses instead of the whole 

Internet. This subnet is divided into three parts according to the first two octets. Subnet 1 is a 

special subnet, which has a larger hit-list size. The average number of infected hosts in subnet 

1 is denoted b1 and the average number of scans hitting subnet 1 is represented by k1. Subnet 

2 contains 2
8
-1 subnets which have the same first octet as subnet 1. The average number of 

infected hosts in subnet 2 is denoted by b2 and the average number of scans hitting subnet 2 is 

represented by k2. The other 2
16

-2
8
 subnets belong to subnet 3, which has b3 infected hosts 
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and k3 scans on average. Therefore, the number of infected hosts in the next time tick is 

represented by (2.17):  
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where i =1, 2, or 3. ki (i=1, 2 or 3) indicates the total number of scans in different subnets 

coming from the local subnet, the same first octet subnets and the global subnets. The 

calculation of ki (i=1, 2 or 3) is as follows:  
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The LAAWP model adopts deterministic approximation to reflect the spreading of worms 

that preferentially scans targets close to their addresses with a higher probability. 

2.3.3 Topology-based Model  

Both homogenous scan-based models and localized scan-based models reflect unstructured 

worms‟ propagation without regard to topological constraints. However, a topology-based 

model describes a structure dependent propagation of worms, which relies on the topology 

for the spreading of viruses such as email worms [6], p2p worms [18-19], and social network 

worms [20, 22, 33]. In this subsection, we introduce some typical topology-based discrete-

time models.  

A. Email Worms Simulation Model  

Zou et al. [6] presented a simulation model on the propagation of email worms. It 

considered the probability of opening an email attachment and email checking frequency, and 

then compared internet email worm propagation on power law topologies, small world 
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topologies and random graph topologies. In the proposed model, the probability of each user 

opening a worm attachment can be treated as an infected probability and the distribution of 

email checking times can represent the propagation probability.  

Due to the high likelihood that email users will also receive email from those they send 

email to, the Internet‟s email network is modeled as an undirected graph. According to the 

distribution of Yahoo! Email groups, authors believe the Internet email network conforms to 

a heavy-tailed distribution and model the email network topology as a power law network, 

which follows F(α)∝K
-α

.  The constant α is the power law exponent that determines the 

degrees of nodes in the network. A larger maximum topology degree requires a larger power 

law exponent, and a larger expected value of topology degree demands a smaller power law 

exponent. This model uses α =1.7 to generate the power law network with the total number of 

hosts |V|=100 000 and an average degree of 8. The highest degree for this power law network 

is 1 833 and the lowest degree is 3.   

Email worms depend on email users‟ interaction to spread. When a user checks an email 

with a malicious attachment, this user may discard it or open the worm attachment without 

any security awareness. This user‟s behavior is represented by an opening probability C~N 

(0.5, 0.3
2
) in this model. Then, when a malicious email attachment is opened, the email worm 

immediately infects the user and sends out a worm email to all email addresses found on this 

user‟s computer. Thus, the email checking time is an important parameter that contributes to 

the propagation speed of the email worm. In this simulation model, the email checking time T 

follows a Gaussian distribution: T~N (40,20
2
). This model discusses two cases under different 

infection assumptions: non-reinfection and reinfection. The main difference is whether a user 

in the infectious state can be infected again. If the victims can be infected each time they are 

visited by worms, it is assumed to be a reinfection scenario. Otherwise, infected users send 

out worm copies only once even if they open a worm attachment again. We refer to this as a 
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non-reinfection scenario. This email simulation model only considers the propagation of 

reinfection email worms, which is described as follows.  

Simulation Model: The discrete-time email worm simulator 

/* step 1: Initialize parameters */ 
1. initialize the number of infected nodes infectednum 
2. initialize the email checking time CheckingTime and opening probability OpeningProb 

(both follow Gaussian distribution) 
3. initialize the number of worm emails: VirusNum, NextVirusNum 
4. timetick =1; 

 

/* step 2: Sending worm emails*/ 

timetick=timetick+1; 

for i=1 to the number of total email users do 

    if (user i is not HEALTHY or timetick==2) 

        if (user i is checking emails) 

             if (user i is DANGER) 

                user i is INFECTED; 

                infectednum=infectednum+1; 

             end 

            for sendnum=1 to the number of worm emails do 

                    for link=1 to all the links of user i do 

                        if (user i opens a worm attachment) 

                            sending worm emails 

                        end 

                    end 

            end 

            the number of user i's worm email is reset as 0 

        end 

    end 

end 

 

/* step 3: Update Current Node Status */ 

for i=1 to the number of total email users do 

        if (the number of worm emails is not 0) 

            if(user i doesn't check the email) 

                if(user i is not INFECTED)  

                    user i is DANGER;  

                end          

                record the number of worm attachements user i received newly 

                reset user i's CheckingTime(i); 

            end 

        else  

     record the total number of worm attachements user i received 

        end 

        user i's CheckingTime-1; 

    end 

    Re_InfectedNum(timetick)=infectednum; 
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end  

 

 

According to the discrete-time email worm simulator, the propagation of email worms on a 

power-law network under the non-reinfection and reinfection scenarios, as shown in Fig. 2.6, 

illustrate that the spreading speed in the reinfection case is faster and the number of infected 

hosts at the end of propagation is higher than the non-reinfection case. Based on this 

simulation model, Zou et al. studied the selective immunization defense against email worms. 

According to their analysis, in a power law topology, if the top 29% of the most-connected 

nodes are removed from the network, the email network will be broken into separated 

fragments and no worm outbreak will occur.  

B. Logic 0-1 Matrix Model  

Fan and Xiang [19] used a logic matrix approach to model the spreading of P2P worms. 

They presented two different topologies: a simple random graph topology and a pseudo 

power law topology. The research studied their impacts on a P2P worm‟s attack performance 

and analyzed related quarantine strategies for these two topologies.  

This model uses a logic matrix (denoted by matrix T) to represent the topology of a P2P 

overlay network. It adopts two constants of logic type (True or 1, False or 0) as the value of 

matrix variables. The logic constant „T‟ indicates the existence of a directed link between two 

nodes in the network, and the logic constant „F‟ is used to indicate there is no directed link. 

The i-th row of a topology logic matrix represents all outbound links of node i; and the j-th 

column of the topology logic matrix represents all inbound links of node j. This 0-1 matrix 

stands for the propagation ability of nodes, i.e. whether they can allow the virus to spread or 

not.  
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This logic 0-1 matrix model is a discrete-time deterministic propagation model of P2P 

worms under three different distributions: infectious state (denoted by logic vector S), 

vulnerability status (denoted by logic vector V) and quarantine status (denoted by logic vector 

Q). Where the logic vector Sg represents the current state g of the logical P2P overlay 

network and the logic vector Sg+1 represents the next state of the logical P2P overlay network, 

we have:  

new

ggg SSS 1
                                                    (2.18)   

Here, 1-entries in the vector Sg
new

 represent the transition to infectious at state g+1. Sg
new 

varies in consideration of different distributions of S, V, and Q. If all nodes are vulnerable to 

the worm and no nodes are quarantined, then we have (2.19):  

TSSS ggg 1
                                                  (2.19)   

If all nodes are not vulnerable to the worm and no nodes are quarantined, then we have (2.20): 

TVSSS ggg 1
                                        (2.20)   

If all nodes are vulnerable and some nodes are quarantined, then we have (2.21):  
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Figure 2.6: Propagation on a power-law network: reinfection vs. non-reinfection. 
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QTSSS ggg 1
                                        (2.21) 

where Q bar stands for the distribution of those unquarantined nodes.   

This logic 0-1 matrix model translates the propagation processes of P2P worms into a 

sequence of logic matrix operations. According to the analysis of this model, authors 

discovered the relation between out-degree, vulnerability and coverage rate in power law 

topologies and simple random graph topologies respectively, and then proposed quarantine 

strategies against P2P worms.            

C. OSN (Online Social Networks) Worms Model 

Fan and Yeung [20] proposed two virus propagation models based on the application 

network of Facebook, which is the most popular among social network service providers. The 

difference between email worms and Facebook worms, as the authors highlight, is that people 

only check if there are any new emails and then log out, while people spend more time on 

Facebook. In Facebook, two users‟ accounts appear in each other‟s friends list if they have 

confirmed their status to be friends. Thus, the topology of this network is treated as an 

undirected graph and is constructed by a power-law distribution in the models. 

Facebook application platform based model: since Facebook provides an application 

platform that can be utilized by attackers to publish malicious applications, one of the worm 

propagation models is based on the Facebook application platform. Users of Facebook can 

install applications to their accounts through this platform. If a user added a malicious 

application, their account is infected and an invited message is sent to all their friends to 

persuade them to install the same application, which leads to the spreading of the worm 

application. The probability of installing one application for user i is:  
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where Appsi(t) is the number of applications that user i has installed at time step t. The 

parameter ρ reflects the effect of preferential installation. inituser is used to show the initial 

probability Puser(i,t) of a user who does not install any application. Since there are many new 

installations every day, the probability of one application selected by user i from the 

application list is:  
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where initapp defines the initial probability Papp(k,t) of an application without any installation. 

When a malicious application is installed, invitation messages are sent to all the friends of 

this infected user. Assuming each user has received c invitations at time step t. Then the 

probability the user is infected is:  
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where ζ is the percentage of users who accepted the invitations. The infected number I(t) is 

changed when a malicious application is installed.  

Sending messages based model: this model investigates the propagation of worms through 

the sending of messages to friends, which is similar to email worm propagation. When users 

of Facebook receive malicious emails and click them, these users are infected and worm 

email copies are sent to their friends. At each time tick, a user can log-in to Facebook with a 

log-in time Tlogin(i), which follows an exponential distribution. The mean value of Tlogin(i) 

follows a Gaussian distribution N(μTl(t),ζTl
2
). The online time that users spend on Facebook is 
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Tonline(i), which follows a Gaussian distribution N(μTo(t),ζTo
2
). All of the online users may 

open the malicious email with a probability of Pclick, which follows a Gaussian distribution 

N(μp(t),ζp
2
). The worm propagates until no more new users are infected in the online social 

network.   

D. Spatial-temporal Model  

In the work of Chen and Ji [32], a spatial-temporal random process was used to describe 

the statistical dependence of malware propagation in arbitrary topologies. This spatial-

temporal model is a stochastic discrete time model that reflects the temporal dependence and 

the spatial dependence in the propagation of malware. The temporal dependence means that 

the status of node i (infected or susceptible) at time t+1 depends on the status of node i at 

time t and the status of its neighbors at time t. The temporal dependence of node i can be 

shown as (2.25) and (2.26):  

  iii tXtXP  0)(|0)1(                                      (2.25)    

  )()(x)(,0)(|1)1( ttttXtXP iNii
iNi

                                (2.26)   

where Xi(t) denotes the status of a network node i at time t (t represents discrete time): if node 

i is infected at time, Xi(t)=1; if node i is susceptible at time t, Xi(t)=0. XNi(t) is used to denote 

the status of all neighbors of node i at time t and the vector xNi(t) is the realization of XNi(t). If 

node i is susceptible at time t, it can be compromised by any of its infected neighbors and 

become infected at the next time step t+1 with a birth rate βi(t). Otherwise, node i is infected 

and has a death rate δi to recover at the next time step t+1. The transition probabilities 

characterize the temporal evolution due to infection and recovery.  

Denoting by Ri(t), the probability that node i recovers from infected to susceptible status at 

time t+1, is:  
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If node i is susceptible at time t, the probability that node i remains susceptible at the next 

time step can be defined as:  
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where a joint probability P(XNi(t)=xNi(t)|Xi(t)=0) representing the status of all neighbors of 

node i at time t  characterizes the spatial dependence according to the network topology and 

the interaction between nodes. Based on (2.27) and (2.28), the probability that node i is 

infected at time t+1 can be represented by (2.29).  

   0)()()(11)1(  tXPtStRtXP iiii                             (2.29)   

Formula (2.24) reflects an iteration process of malware propagation according to the status of 

a node at time t and the status of all neighbors of this node i at time t, which characterizes the 

spatial and temporal statistical dependencies. Consequently, the expected number of infected 

nodes at time t, n(t), can be computed:  
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Though (2.24) can be used to study the behavior of malware propagation, the cost of 

computing Si(t) is large especially when a node has a great number of neighbors.  Therefore, 

authors presented two models to simplify the challenge posed by the spatial dependence: the 

Independent Model and the Markov Model.  

The Independent Model assumes that the status of all nodes at time t is spatially 

independent. This means no propagation cycles are formed when worms propagate via some 

intermediate nodes because the infected probability of a node is not influenced by its 

neighbors. Thus, the independent model neglects the spatial dependence. However, the status 
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of a node at a given time is related to its status at the last time tick and thus, it still remains 

temporally dependent. The state evolution of node i in the independent model can be 

represented by (2.31): 

   0)()()(11)1(  tXPtStRtXP i

ind

iii
                            (2.31)  

where 
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The Markov Model assumes that the status of a node is related to its neighbors, but its 

neighbors cannot be influenced by each other at the same time. This assumption can result in 

propagation cycles via a single intermediate node, however this can be solved with 

conditional independence in the network space. If the status of node i‟s neighbors at the same 

time step is spatially independent give the status of node i, then the state evolution of a node 

in the Markov model can be represented by (2.32):  

   0)()()(11)1(  tXPtStRtXP i

mar

iii
                            (2.32)  

where 
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2.3.4 Comparison of Worm Propagation Models 

A comparison of the various mathematical models of worms discussed above is 

summarized in Table 2.1. The classical simple epidemic model is the most widely used model 

for investigating the propagation of scan-based worms using a continuous-time differential 

equation. Some previous works, such as the uniform scan worm model and the RCS model, 

are derived from the classical simple epidemic model, which assumes two states for all hosts: 
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susceptible and infectious, and will stay in the infectious state forever when a host is infected. 

However, these models are not suitable for cases where the infected and infectious nodes are 

patched or removed. Consequently, the classical general epidemic model (Kermack-

McKendrick model) has been proposed to extend simple epidemic models by introducing a 

removal process of infectious peers. Continued improvements [2, 56] on modeling worm 

propagation have considered immunization defense. Zou et al. [2] proposed a two-factor 

worm model, which developed the general epidemic model by taking into account both the 

effect of human countermeasures and decreases in the infection rate.  

The above models adopt a continuous-time differential equation to observe and predict 

worm spreading in the network. As scanning IP addresses or logical neighbors is usually 

performed in discrete time [52], a host cannot infect other hosts before it is infected 

completely. Thus, strictly speaking, the propagation of worms is a discrete event process. A 

continuous-time model can possibly result in a different spreading speed and infected scale 

because a host begins devoting itself to infecting other hosts even though only a “small part” 

of it is infected. Consequently, modeling worm propagation at each discrete time tick is more 

accurate than using continuous time. The AAWP model, the LAAWP model and the 

Bluetooth worm model are constructed according to a discrete event process. The AAWP 

model characterizes the spread of active worms that employ random scanning. LAAWP is 

extended from the AAWP model and takes into account the characteristics of local subnet 

scanning worms spreading. The Bluetooth worm model analyzes the propagation dynamics of 

Bluetooth worms. It captures not only the behavior of the Bluetooth protocol but also the 

impact of mobility patterns on the propagation of Bluetooth worms.  
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All of the above models including continuous-time and discrete-time rely on the 

homogenous mixing assumption that any infected host has equal opportunity to infect any 

vulnerable host in the network. However, worms that use a localized scanning strategy, such 

as Code Red II, require non-homogenous consideration of population locality [7]. 

Consequently, the local preference model assumes a local preference scanning worm has 

probability p to uniformly scan addresses which share its first n bits in the network and 

probability (1-p) to uniformly scan other addresses. Besides, Zou et al. [6] analyzed the 

propagation of email worms and pointed out that models based on the homogenous mixing 

assumption overestimate the propagation speed of an epidemic in a topological network, 

especially in the early stages when a small number of nodes are infected and clustered with 

Table 2.1 A Comparison of Worm Propagation Models 

Worm 

Propagation 

Models 

Network 

Topology 

Graphical 

Representation of 

Topology 

Modeling 

Method 

Propagation 

Process 

Model 

Type 

Infection 

Type 

Classical Simple 

Epidemic Model 
H UG A C SI 

Not 

considered 

Uniform Scan 

Worm Model 
H UG A C SI 

Not 

considered 

RCS Model H UG A C SI 
Not 

considered 

Classical General 

Epidemic Model 
H UG A C SIR 

Not 

considered 

Two-factor 

Model 
H UG A C SIR 

Not 

considered 

AAWP Model H UG A D SIR 
Non-

reinfection 

Bluetooth Worm 

Model 
H UG A D SI 

Not 

considered 

Local Preference 

Model 
Non-H UG A C SI 

Not 

considered 

LAAWP Model Non-H UG A D SIR 
Non-

reinfection 

Email Worms 

Simulation Model 
R/SW/PL UG S D SI Reinfection 

Logic 0-1 Matrix 

Model 
R/PL DG A D SIR 

Non-

reinfection 

OSN Worms 

Model 
PL UG S D SI 

Non-

reinfection 

Spatial-temporal 

Model 
H/PL DG A D SIS 

Non-

reinfection 

  H: homogenous mixing; R: random network; SW: small-world network; PL: power-law network;  

  UG: undirected graph; DG: directed graph;  

  C: continuous-time event; D: discrete-time event 

  A: analytical; S: simulation; 

  SI: susceptible-infected model; SIR: susceptible-infected-recovered model; SIS: susceptible-infected-susceptible model; 



Chapter 2 Related Works 

 

47 

each other. In order to avoid overestimation, the researchers provide a discrete-time 

simulation model and mainly study the email worm propagation over a power-law topology. 

This simulation model can more accurately simulate the propagation of email worms than 

previous homogenous mixing differential equation models. However, this model describes 

the email worm propagation tendency instead of modeling the dynamic spreading procedure 

between each pair of nodes. Secondly, they discussed the lower bound for the non-reinfection 

case, but their model is not capable of accurately eliminating the errors caused by reinfection. 

Moreover, some assumptions are not realistic. For example, the authors believe that just one 

malicious email copy will be sent to recipients even if an infected user checks multiple emails 

containing worms. In reality, a malicious copy is sent whenever the infected user opens a re-

infection worm email.  

This logic 0-1 matrix model employs a logic matrix to represent links between each pair of 

hosts and models the spreading of peer-to-peer worms over a pseudo power-law topology. 

This model can examine the spreading of worms deep inside the propagation procedure 

among nodes in the network. The model cannot avoid propagation cycles formed among 

intermediate nodes although it does not allow peers to have outbound links to themselves. 

These propagation cycles lead to the overestimation in the scale of the infected network. 

Besides this, their logic matrix is weak regarding an email resembling network because the 

weight of each link is a probability value ranging from zero to one instead of constant zero or 

one. The model does not consider the propagation probability and infected probability of each 

node, which has significant impacts on the infection procedure.  

Social networks have become attractive targets for worms. Fan and Yeung [20] proposed 

the OSN worm model to characterize the behavior of a worm spreading on the application 

network of Facebook. However, these two models assume a user starts infecting others at 

every moment once the user is infected. In practice however, infected users spread worms 
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only as they periodically accept invitations and install malicious applications or check newly 

received messages and open malicious links. As a result, they have neglected a realistic 

temporal delay process. Furthermore, the second model simulates the scenario of non-

reinfection worm propagation, however non-reinfection worms mainly appear in the early 

worm cases and are not appropriate for modeling modern email worms that spread over social 

networks.  

The above models assume computer users behave independently, that is, the status of all 

hosts at the same time step is spatially independent. In real scenarios, however, the 

propagation of topology-based worms needs human activation and thus the spreading 

procedure is spatial and temporally dependent. Chen et al. [32] used a spatial-temporal 

random process to describe the statistical dependence of worm propagation in arbitrary 

topologies. Although this model can outperform the previous models through capturing 

temporal dependence and detailed topology information, there are also some weak 

assumptions made. Firstly, this model adopts a SIS model, even though infected users are not 

likely to be infected again after they clean their computers by patching vulnerabilities or 

updating anti-virus software. Secondly, their model assumes that an infected computer cannot 

be reinfected. However, recent email worms often reinfect users, and are far more aggressive 

in spreading throughout the network. Thirdly, the authors ignore an important consideration 

regarding human behavior; the email checking time, which has been shown to greatly affect 

the propagation of email worms. 

2.4 Summary 

Worms and their variants are widely believed to be one of the most serious challenges in 

network security research. Although in recent years propagation mechanisms used by worms 
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have evolved with the proliferation of data transmission, instant messages and other 

communication technologies, scan-based techniques and topology-based techniques are still 

the two main means for the spreading of worms. Modeling the propagation of worms can 

help us understand how worms spread and enable us to devise effective defense strategies. 

Therefore, a variety of models have been proposed for modeling the propagation mechanism. 

This chapter firstly introduced the target discovery techniques for scan-based worms and 

topology-based worms respectively, illustrating their scanning methods with graphical 

representations. Secondly, it analyzed the characteristics of four common topologies for 

modeling worm propagation. Finally, this chapter has described some typical mathematical 

models of worms that are the analytical tools for investigating dynamics and measuring the 

propagation of worms. We compared these modes and discussed the pros and cons of each 

model.   
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Chapter 3  

A Microcosmic Worm Propagation Model  

Worms and their variants are critical threats to the Internet. Each year, large amounts of 

money and labor are spent on patching the vulnerabilities in operating systems and various 

popular software to prevent exploitation by worms. Modeling the propagation process can 

help us to devise effective strategies against the spread of worms. Most traditional models 

simulate the overall scale of an infected network for each time tick, making them invalid for 

examining deep inside the propagation procedure among individual nodes. For this reason, 

this chapter presents a microcosmic model to analyze worm propagation procedures. Our 

proposed model can go deep inside the propagation process between each pair of nodes in the 

network by concentrating on the propagation probability and time delay described by a 

complex matrix. Moreover, since the analysis gives a microcosmic insight into a worm‟s 

propagation, the proposed model can investigate errors which are usually concealed in the 

traditional macroscopic analytical models. The objectives of this model are to accurately 

access the spreading and work out an effective scheme against the propagation of worms so 

the problems of when, where and how many nodes we need to patch can be dealt with. 
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3.1 Introduction 

Worms and their variants are widely believed to be one of the most serious challenges in 

network security research. According to the Symantec Global Internet Security Threat Report 

[64], the second highest percentage of the top 50 potential malicious code infections for 2009 

belonged to worms, which increased from 29 percent in 2008 to 43 percent in 2009. Six of 

the top 10 threats in 2009 had worm components, compared to only four in 2008. In recent 

years, propagation mechanisms used by worms have evolved with the proliferation of data 

transmission, instant messages and other communication technologies.   

In order to prevent worms propagating, as well as to mitigate the impact of an outbreak, we 

need to have a detailed and quantitative understanding of how a worm spreads. Currently, a 

variety of models have been proposed for modeling the propagation mechanism. Previous 

work has adopted the classical simple epidemic model [7, 23-25] which simulates two states 

for all hosts: susceptible and infectious. This is known as the SI model. However, this 

approach is not suitable for cases where the infected and infectious nodes are patched or 

removed. Consequently, the classical general epidemic model [26, 60], also called the 

susceptible-infected-recovered (SIR) model, has been proposed to extend simple epidemic 

models by introducing a removal process of infectious peers. Continued improvements [2, 6, 

56] on modeling worm propagation have considered the immunization defense. Zou et al. [2] 

proposed a two-factor worm model, which developed the general epidemic model by taking 

into account both the effect of human countermeasures and decreases in the infection rate. 

They also studied the propagation model for internet email worms [6] by comparing three 

different types of topology and summarized the immunization strategies. Although these 

propagation models perform well in predicting the tendency of worms to spread in the 

network, macroscopic models identify very little information within the propagation 
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procedure. This leads to difficulties in dealing with the problems of when, where and how 

many nodes we need to patch. In fact, there are five parameters involved in modeling worm 

propagation: 1) propagation probability; 2) infectious nodes’ distribution; 3) vulnerable 

nodes’ distribution; 4) patch strategy; 5) time delay. Previous models of worm propagation 

have failed to address the following issues: 

 Propagation probability between each pair of nodes so they cannot locate which set 

of nodes are more easily infected (Section 3.3.1 and 3.3.2); 

 Propagation time delay between each pair of nodes so they cannot estimate the time 

for each node to be infected from the propagation source (Section 3.3.1 and 3.3.2); 

 Worms‟ propagation procedure from node to node so they have weak information to 

decide an appropriate position and time for the patching of each node (Section 3.3.3); 

 Errors caused by reinfection in traditional models so they cannot avoid overestimation 

of patching budget (Section 3.3.4); 

 The mutual impact between propagation probability and time delay (Section 3.3.1) 

A recent improvement was proposed in [19] which used a logic matrix approach to model 

the spreading of peer-to-peer worms between each pair of all peers. It adopted two constants 

of logic type (True or 1, False or 0) as the value of matrix variables. This 0-1 matrix 

represents the propagation ability of nodes, that is, whether they allow the worms to spread or 

not. Nevertheless, a significant limitation of this model is that it cannot describe the 

propagation process of some worms, such as local preference worms, as these worms have 

different spreading probabilities for specific IP address spaces. More importantly, the model 

does not include temporal factors, which means it cannot model dynamic worm propagation 

procedures.  
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Compared with a macrocosmic propagation model, a microcosmic model can accurately 

reflect the distribution of nodes in the network, which is beneficial for describing the 

propagation procedure. We can examine the propagation of worms deep inside the spreading 

procedure and are able to understand how the current infected states impact on the worm‟s 

propagation in the next step. Modeling a microcosmic propagation procedure can provide 

defenders with useful information to answer the questions of where to patch, how many 

nodes to patch, and when to patch. Moreover, there is little research in microcosmic 

propagation models from the view of probability. Therefore, we are motivated to present a 

microcosmic propagation model for simulating the spreading of worms. Our model has 

several important components: 

 Probability matrixes (PM) are proposed to construct propagation models for worms; 

 A Propagation Source vector (S) is introduced for describing the distribution of initial 

infectious nodes; 

 A vulnerable distribution vector (V); 

 A patching strategy vector (Q) accounts for a special deployment of patching nodes; 

 Propagation abilities (PA). 

To the best of our knowledge, there is little research that refers to the microcosmic 

procedure of worm propagation between nodes in a network. Although research such as [19] 

analyzed worm propagation from the view of the microcosm, it adopted a simplified logic 

matrix to indicate the infected states of the network. This simple logic does not effectively 

describe the propagation procedure between each pair of nodes, nor does it reflect the 

spreading effect in each step of a worm‟s propagation.  

In order to find an effective and efficient countermeasure against the propagation of worms, 

we must fully understand their propagation mechanisms. This chapter presents a microcosmic 
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study on modeling the propagation of worms. The major contributions of this chapter are as 

follows: firstly, we introduce a complex matrix to represent the propagation probabilities and 

time delay between each pair of nodes. These two factors lead to accurate exploration of the 

propagation procedure and estimation of both infection scale and the effectiveness of defense. 

The extension from the real field of the matrix to the complex field of the matrix reflects the 

mutual effect between these two factors, which matches the real case well. Secondly, 

associated with S, V, Q, our model can also help to evaluate: 1) the mutual effect of initial 

infectious states and patch strategies; 2) the impact different distributions of vulnerable hosts 

have on worm propagation. Thirdly, we create a microcosmic landscape on worm 

propagation which can provide useful information for a defense against worms. 

We apply our proposed microcosmic model to study the propagation of scanning worms in 

Chapter 4. Through simulation results, we can derive a set of optimized patch strategies to 

minimize the number of infected peers and provide economic benefits to industry by 

selectively deploying security patches.   

The rest of this chapter is organized as follows. In Section 3.2, we provide a comparison 

between macroscopic worm propagation models and microcosmic worm propagation models. 

In Section 3.3, we model the microcosmic propagation procedure of worms and introduce 

each component of the proposed model. Finally, we conclude this chapter in Section 3.4 with 

a brief summary. 

3.2 Macroscopic and Microcosmic Worm Propagation Models  

In the area of network security, both macroscopic [2-10, 15, 29-30, 65-66] and 

microcosmic [19] models exist for simulating different worm propagation. Most worm 

propagation models are based on a macroscopic view, such as the homogenous worms‟ 
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model, the local preference worms‟ model and the topological worms‟ model, which mainly 

describe the overall spreading tendency of worms. In contrast, microcosm models prefer to 

study the propagation procedure between nodes according to different scenarios of infectious 

states, vulnerable states and quarantine states.  

3.2.1 Macroscopic Worm Propagation Models  

3.2.1.1 Homogenous Worms’ Model 

The homogenous worm propagation model is a simple epidemic model which is used in a 

lot of research [2, 5, 7-10] to model worm propagation for random scanning worms (Code 

Red [2], Slammer [12]). Variants of random scanning worms (hit-list worms [7], routable 

worms [11]) are modeled using extensions of this simple epidemic model. The homogenous 

model is based on the concept of a fully connected graph and is an unstructured worm model 

that ignores the network topology. The model assumes each infectious host has an equal 

probability in spreading the worm to any vulnerable peer in a network. Staniford et al. [7] 

presented an RCS (Random Constant Spread) model to simulate the propagation of the Code-

Red I v2 worm, which is almost identical to the homogenous model. Zou et al. [2] introduced 

a two-factor model, which extended the homogenous model by considering human 

countermeasures and network congestion. These models focus on analyzing the trends of 

worm propagation. However, they do not describe the worm propagation from node to node 

or the infection process when disrupted by patching or immunizing nodes. Thus, they are not 

suitable for modeling the dynamic process of infection and patching between each pair of 

nodes. Furthermore, the models are significantly limited for modeling worms that scan IP 

addresses with differing probabilities and are unable to simulate topology-based worm 

propagation. Additionally, they do not discuss the different impact of reinfection and non-
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reinfection on worm propagation. Rohloff and Basar [8] presented a stochastic density-

dependent Markov jump process propagation model. Sellke et al. [9] provided a stochastic 

Galton-Watson Markov branching process model. These two models are also limited in 

simulating the propagation tendency, which is unable to describe the spreading procedure.  

3.2.1.2 Local Preference Worms’ Model 

Since vulnerable nodes are not uniformly distributed, some localized scanning worms 

(Code Red II [15, 29-30], Blaster worm [66]) propagate the virus with a high probability in 

certain IP addresses for the purpose of increasing their spreading speed. Taking Code Red II 

as an example, the probability of the virus propagating to the same class A IP address is 3/8; 

to the same class A and B IP address is 1/2; and to the random IP address is 1/8. Thus, the 

local preference model employs a non-homogenous pattern to simulate worm propagation. 

Chen et al. [10] presented a LAAWP (Local Analytical Active Worm Propagation) model to 

take into account the characteristics of the spread of local subnet scanning worms. However, 

this model assumes the distribution of vulnerable hosts is uniform in every subnet. They did 

not consider the impact of vulnerable distribution on worm propagation, which is one of the 

important parameters on modeling worms spreading. Zou et al. [5] considered the distribution 

of vulnerable hosts in the IPv4 address space and provided a more accurate method to model 

the propagation of local preference scanning worms. In this model, they suppose only the first 

m networks have vulnerable hosts. However, they still assume vulnerability distribution is 

uniform in each subnet. Moreover, although their model introduced the pair-wise rates of 

infection in local scanning and remote scanning, it is still derived from the homogenous 

model. Therefore, these models cannot reflect non-uniform vulnerability distribution on 

worm propagation and the dynamic process of infection and immunization between each pair 

of nodes.  
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3.2.1.3 Topological Worms’ Model 

Both the homogenous model and the local preference model reflect the propagation of 

unstructured worms without regard to topological constraints. However, a topological model 

describes a structure-dependent propagation of worms, which relies on the topology for the 

spreading of viruses. Zou et al. [6] considered these two probabilities and compared internet 

email worm propagation on power law topologies, small world topologies and random graph 

topologies. In the proposed model, the probability of each user opening a worm attachment 

can be treated as an infected probability and the distribution of email checking times can 

represent the propagation probability. However, this model still describes the email worm 

propagation tendency instead of modeling the dynamic spreading procedure between each 

pair of nodes. In addition, they discussed the lower bound for a non-reinfection case, but their 

model is not capable of accurately eliminating the errors caused by reinfection. 

3.2.2 Microcosmic Worm Propagation Models  

Microcosmic worm propagation models focus on the infection procedure between each 

pair of nodes. Fan and Xiang [19] employed a logic matrix approach to model the spreading 

of peer-to-peer worms between each pair of peers. They discovered the relation between out-

degree, vulnerability and coverage rate in power law topologies and simple random graph 

topologies respectively. However, they did not consider the propagation probability and 

infected probability of each node, which has significant impacts on the infection procedure. 

Additionally, although they do not allow peers‟ outbound links to themselves, they cannot 

avoid propagation cycles formed among intermediate nodes.   

We propose a novel complex matrix that models worm propagation, and simulates the 

microcosmic spreading procedure of worms. Using this complex matrix in the propagation 
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simulation of worms forms the major difference between this work and existing work. In our 

model, we focus on investigating the procedure of worms spreading and providing effective 

patching strategies, which will benefit IT industries and security best practice.  

3.3 Propagation Model  

In this section we present the propagation model from a microcosmic view, which is used 

to simulate the propagation process of worms between each pair of nodes and to estimate an 

optimized patch strategy. We assume that all nodes are vulnerable at the beginning and thus 

there is no need to scan the whole network.   

3.3.1 Propagation Matrix (PM) 

We propose employing an n by n square complex matrix PM with elements cxy to describe 

a network consisting of n peers. We consider that two peers in the network are connected 

even if the probability of the connection‟s existence is very small, thereby making node x and 

y immediate neighbors. In this matrix, the real component of each element cxy represents the 

propagation probability of the worm spreading from node x to node y under the condition that 

node x is infected. The imaginary component represents the propagation delay from node x to 

node y. Worms propagating to a target need a certain time delay. If the time delay tends 

Node x

a+bi

Node y

(ac-βbd)+(ad+bc)i

Node k

c+di

 

 
Figure 3.1: Worm propagation computation 
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towards infinity, the target cannot be infected by infectious nodes. Hence, the effect of time 

delay on a worm‟s spreading cannot be ignored. The calculation rules of complex can be of 

benefit to reflect the mutual impact between the propagation probability and time delay (see 

Section 3.2.2 and Fig. 3.1). However, adopting other means such as two tuples to represent 

the propagation matrix cannot describe the relation between the above two parameters as 

each element in the two tuples is separate. We call this complex matrix the propagation 

matrix (PM) of the network, as shown in (3.1).  
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Each row of the PM represents the propagation probability (pxy) and propagation delay 

(dxy) from one infectious peer to all other peers. Each column represents pxy and dxy from 

infectious peers to a target peer. We assume a peer cannot propagate the worm to itself, so the 

self-propagation pxx and dxx are zero. 

Generally, worms scan an IP address space or a hit-list for propagation. Thus, propagation 

time delay includes time costs of scanning targets and network latency. Compared with time 

costs of scanning targets, network latency can be ignored. We assume the imaginary number i 

as the maximum time cost of scanning the entire IP address space or the hit-list.  

Node x Node y

K=1 K=2 K=k

 

 
Figure 3.2: Worm propagation between two peers 
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3.3.2 Propagation Function (γ) 

In real-world conditions, worms could be spread between peers from node x to node y via 

one or more intermediate nodes, as shown in Fig. 3.2. In existing worms it is observed that an 

infectious peer can propagate worms and a vulnerable peer can also be infected and become a 

new infectious node for future propagation. In this scenario, we assume that initially every 

peer in the PM is vulnerable to the worm. 

We assume that worm propagation from node x (Nx) to node y (Ny) is via and only via k 

intermediate nodes in a network consisting of n peers. According to the rule of complex 

multiplication, as shown in Fig. 3.1, the first component (ac-βbd) of the result indicates 

propagation probability from Nx to Ny. Here we manually insert an impact factor (β) to 

describe the decrease in the propagation probability caused by time delay. It combines the 

characteristic of the worm itself and the network it operates on. The second component 

((ad+bc)i) of the result indicates possible time delay for worm propagation from Nx to Ny. It 

is denoted by cxy 
(k)

 and defined in (3.2):  
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Since Nx self-propagation via k nodes is meaningless in the real world, we define the value 

of this propagation probability as zero; namely cxy
(k)

 =0 when x=y. We introduce a function γ 

to conduct the iterated procedure as in (3.3):  
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Operation × is the traditional matrix multiplication. Subsequently, the PM can be 

represented by the following equation when the worm propagation is via and only via k 

intermediate nodes, as shown in (3.4): 
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3.3.3 Three Key Factors 

In a network, there are three significant factors for worm propagation: infectious state, 

vulnerability distribution, and patch strategy. The infected state represents the state of 

whether the peer has been infected or not. Vulnerability distribution identifies vulnerable 

peers in the network. A patch strategy provides an approach to cure infected peers. Infected 

peers cannot be infected after being patched.  

3.3.3.1 Propagation Source Vector (S) 

An initial propagation source vector (S) is defined as shown in (3.5). An infectious peer 

that can propagate worms is represented with a probability of one. The probability of zero 

means that a peer is healthy and does not have the ability to propagate the worm. 
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The iterated procedure can be represented as function γs in (3.6):  
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We define &L to indicate a new logic AND operation of a column vector A and a matrix B, 

called Left Logic AND. The result of A &L B is a new logic matrix of the same dimension as B. 

This operation is used to eliminate non-infectious nodes. Each element in the new matrix is 

the result of the product of the corresponding elements ax and bxy from each column of matrix 

B. It is defined in (3.7):  
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The PM can be represented by the following equation when a worm‟s propagation is via 

and only via k intermediate nodes, as in (3.8).  
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During the propagation process, each intermediate node can be infected and become 

infectious. We introduce an infected state vector I, as shown in (3.9):  
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where Г function computes each item in infected state vector I using the formula as shown in 

(3.10):  
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Is
 (k)

 reflects the infected possibility and time delay of each node after worm propagation 

via k intermediate nodes under a certain deployment of S.  

3.3.3.2 Vulnerable Distribution Vector (V)  

Under real-world conditions, the vulnerability of a peer is an objective fact. Therefore, a 

healthy peer without any vulnerability cannot become infectious in the worm‟s propagation 

process. On the basis of this fact, we need to consider the vulnerability distribution in the PM. 

The vulnerable distribution vector (V) is defined in (3.11). For an element in V, the value of 

one represents that a peer is vulnerable. Zero means that the peer is healthy and is not 

vulnerable.  

  nxorvvvvvV x

T

nx ....1,10,...... ,,,,2,1                              (3.11) 

Once nodes are vulnerable, they can become infected and have the ability to infect others. 

Therefore, the iterated procedure can be represented as function γsv in (3.12):  

)1()&&()()(

&&)(

1

0






kVPMVPMPM

VPMSPM

T

RL

k

sv

k

sv

T

RLsv




                            (3.12) 

We define &R to indicate a new logic AND operation of a column vector A and a matrix B, 

called Right Logic AND, which is different from Left Logic AND. The result of A &R B is a 

new logic matrix of the same dimension as B. Each element in the new matrix is the result of 

the product of the corresponding elements ay and bxy from each row of matrix B. It is defined 

in (3.13):  
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Considering the vulnerability distribution vector, the PM and infected probability vector I 

can be represented by the following equations respectively when the worm propagates via 

and only via k intermediate nodes, as in (3.14).  

)0(),(

)0()(

)()(

)(





kPMSI

kPMPM

k

sv

Tk

sv

k

sv

k

sv 
                                          (3.14) 

3.3.3.3 Patch Strategy Vector (Q)  

An infected peer can be cured and become a healthy node, unable to spread worms to other 

peers. Therefore, we need to remove these nodes from the propagation process at that time. 

We define a patch vector Q in (3.15). For each element in Q, the value of one represents that 

a peer has been patched and is now a healthy node. A value of zero indicates that a peer is 

still vulnerable. 

  nxorqqqqqQ x

T

nx ....1,10,...... ,,,,2,1                      (3.15) 

Once the nodes have been patched, they will become immune to the worms and lose their 

infectious ability. Thus, we should exclude these patched nodes in the matrix for the 

successive iteration. The iterated procedure can be represented as function γsvq shown in 

(3.16):  
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We define & to indicate a new logic AND operation between two elements. The definition 

for & operation is shown in Table 3.1.    

After considering the patch strategy vector, the PM and infected probability vector I can be 

represented by the following equations respectively when the worm propagates via and only 

via k intermediate nodes, as shown in (3.17):  
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3.3.4 Error Calibration Vector (E) 

We consider two scenarios of infection: reinfection and non-reinfection. Generally, 

reinfection means a node can be infected repeatedly and non-reinfection indicates a node can 

only be infected once [15]. 

Table 3.1. Truth Table for New Logic And Operation 

V
T
 Q

T
 V

T
& Q

T
 

1 1 0 

0 1 0 

1 0 1 

0 0 0 
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If a worm belongs to the reinfection type, the earlier-mentioned propagation mechanism is 

reasonable. However, if a worm belongs to the non-reinfection type, propagation cycles will 

be formed during the spreading procedure, which results in errors in the infected probabilities, 

as shown in Fig. 3.3. There are three types of cycles formed in the propagation procedure. As 

shown in Fig. 3.3(a), an infectious node s could spread the worm to itself (S-S). This is called 

self-propagation, which results in an increase of infected probability infinitely. In the real 

case, however, this infectious node can be infected only once. Thus, in our propagation model, 

we do not allow a self-propagation cycle, that is, each node can be infected by N (N ≥1) 

nodes and no peer has an outbound link to itself. The work completed by [19] also noticed 

this self-propagation characteristic and also avoided it. 

The second type of cycle is shown in Fig. 3.3(b). The initial infectious node s can be 

infected again after worms have spread via some intermediate nodes: S-N1-N2-S, S-N3-N1-N2-

S. These two cycles (①③④ and ②③④) start from the initial infectious nodes and end up at 

④
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②

①

S N1

N2 N3
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②

①

S
N1
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①

③

④

(a)

(c)
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Figure 3.3: Propagation cycles 
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themselves. This self-propagation leads to an infinite increase in the infected probabilities of 

these initial infectious nodes. In order to eliminate the errors caused by this type of cycle, we 

define the infected probability of each node to itself as zero in the procedure of the worm‟s 

propagation. 

Fig. 3.3(c) shows the third type of cycle. N1 can be infected by infectious node s directly or 

via one or more intermediate nodes: S-N4-N1-N2-N1, S-N1-N2-N3-N1. Two cycles (③and④) 

begin from the intermediate nodes (N1) and ends up at itself when the worm propagates via 

some other intermediate nodes (N2, N3). Since two cycles form in the procedure of the 

worm‟s spreading but not from the initial infectious nodes, we cannot eliminate the infinite 

probability cycles by setting the diagonal items in PM to zero. The macroscopic propagation 

models cannot exclude the errors caused by propagation cycles among the intermediate nodes. 

Thus, it is desirable to have a mathematical model quantifying the errors and discussing the 

impact on the worm‟s propagation.  

In order to avoid the errors in non-reinfection worms, we introduce an error calibration 

vector E, as shown in (3.18): 
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where k is the current iteration times. Psi
 (k-x)

 is the propagation probability from node s to 

node i by (k-x) times‟ iteration. Pi
(x)

 is the propagation probability from node i to node i by x 

times‟ iteration. Consequently, in the case of non-reinfection worms, we calibrate Isvq
(k)

 to be 

(3.19):   
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3.3.5 Propagation Ability (PA) 

In real-world scenarios, attackers expect to control a significant proportion of a network to 

enable worm propagation. The worm propagation ability (PA) is related to the number of 

peers that the worm can propagate to with high probability and related time delay. In 

consideration of more than one path for the propagating worm, we adopt an accumulative I 

(AI) to represent the sum of probabilities for the worm propagation between two peers with at 

most k intermediate nodes. It is defined in (3.20):   
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where in function Re(I
(k)

) is used to obtain the real component of I
(k)

, n indicates the number 

of nodes in the network and (n-1) means the maximum number of intermediate nodes. In the 

propagation procedure, it is observed that the infected probability gradually decreases when 

the number of intermediate nodes increases.    

Moreover, we define the accumulative time delay AT to represent the estimated time delay 

for the worm propagation between two peers with at most k intermediate nodes, as shown in 

(3.21).  
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The condition to terminate propagation is when the matrix iteration count reaches N-2 (N 

nodes in a network). Since PA is two-tuples (AI, AT), in order to evaluate the PA, we simply 

inspect the AI and AT for each node in the network after an iteration of propagation.    
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3.4 Summary 

Most macroscopic models simulate the overall scale of an infected network for each time 

tick, making them invalid for examining deep inside the propagation procedure among 

individual nodes. For this reason, this chapter compared the differences between the existing 

macroscopic and microcosmic worm propagation models and proposed a new microcosmic 

exploration for modeling worm propagation processes. Firstly, we presented a complex 

matrix model to construct the propagation of worms from one node to another node. Our 

model involves three indispensible aspects for propagation: infected state, vulnerability 

distribution and patch strategy. Through analyzing different scenarios of these three aspects, 

we can generate a set of optimized patch strategies so that defenders can prevent the worms 

from spreading using a reasonable and economic approach. In the proposed model, we use 

three different vectors to represent these key factors: propagation source vector, vulnerable 

distribution vector and patch strategy vector. We also discussed propagation cycles in the 

propagation path that result in propagation errors. In order to quantify the errors, the proposed 

model introduces an error calibration vector and thus, investigates the impact on the worm‟s 

propagation. This model adopts propagation ability to evaluate the propagation procedure of 

worms. 

The proposed microcosmic worm propagation model is able to provide a series of 

recommendations and advice for patch strategies to counter worm propagation. We apply the 

proposed microcosmic model to observe the propagation of scanning worms through the 

design of different experiments in Chapter 4. According to the results, our microcosmic 

model can successfully provide useful information for the proposed problems of where, when 

and how many nodes we need to patch. 
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Chapter 4  

Microcosmic Modeling of the Propagation and 

Defense Study of Scanning Worms  

Scanning worms scan IP addresses to infect vulnerable computers in the network. This 

chapter applies the proposed microcosmic worm propagation model in Chapter 3 to analyze 

the propagation procedures of scanning worms, such as Code Red II. The objectives of this 

chapter are to address three practical aspects of preventing worm propagation: 1) Where do 

we patch? 2) How many nodes do we need to patch? 3) When do we patch? We implement a 

series of experiments to evaluate the effects of each major component in the microcosmic 

model proposed in Chapter 3 and provide a set of optimized and economical patch strategies 

to prevent scanning worms from spreading. Based on the results drawn from the experiments, 

for high risk vulnerabilities, it is critical that networks reduce the number of vulnerable nodes 

to below a certain threshold, e.g., 80% in this analysis. We believe the results can benefit the 

security industry by allowing them to save significant money in the deployment of their 

security patching schemes. Moreover, we investigate the mutual impact between the 

propagation probability and time delay and discuss the overestimation caused by errors in 

macroscopic models. Through the analysis of the propagation procedure, we observe that the 
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error is mainly caused by propagation cycles in the propagation path, which are usually 

ignored by traditional macroscopic models. 

4.1 Introduction 

Each year, in order to prevent worms from spreading effectively, large amounts of money 

and labor are spent by industry on patching vulnerabilities in operating systems and popular 

software. Wipro Technologies stated in their 2004 patch management costs report [67], 

“Annual per-system patching costs on windows: $297.1(clients), $416.2 (Non-Database 

Servers), $682.1 (Database Servers) and on open source software systems: $343.7 (clients), 

$479.3 (Non-Database Servers), $1020.4 (Database Servers).” We expect the cost to have 

been greater in 2010 because of the enormous increase in sophistication and potential for 

damage caused by worms. Consequently, it is important to provide a set of optimized and 

economic patch strategies to deal with the problems of where and how many nodes we need 

to patch. 

Security experts routinely uncover software vulnerabilities and then issue software patches 

and upgrades. Sometimes, however, it may cause inadvertent and possibly detrimental effects. 

Security researcher Dan Kaminsky uncovered a flaw in the Domain Name System (DNS) and 

published a series of patches before publicly disclosing the specifics of the vulnerability [68]. 

By looking at the patch, others were able to reverse engineer the patch, and shortly afterwards 

code to exploit the newfound weakness had been posted to a website. Some network 

administrators may have initially been reluctant to patch their systems, fearing that the 

upgrade itself might cause problems. However, the result is the potential break out of worms 

before a sufficient number of nodes can be patched. Therefore, we need to quantify an 

appropriate time for patching vulnerabilities. 
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In order to understand and possibly address: 1) where to patch; 2) how many nodes we 

need to patch; 3) when to patch, we characterize the worm propagation through the 

microcosmic model proposed in Chapter 3. We mainly focus on scanning worms in this 

chapter, which scan the entire network and explore the vulnerabilities without regard to 

topological constraints. It is closely related to the logical features of the network rather than 

the physical structure. Therefore, our proposed approach is suitable for modeling networks 

that are susceptible to scanning worms. 

The objective of the research is to generate a set of optimized patch strategies to minimize 

the number of infected peers and provide economic benefits to industry by selectively 

deploying security patches. The major contributions of the chapter are as follows. Firstly, 

according to the microcosmic model proposed in Chapter 3, we carry out extensive 

simulation studies of worm propagation and successfully provide useful information for the 

proposed problems of where, when and how many nodes we need to patch. Secondly, 

through deploying different scenarios, we can find how propagation source states, 

vulnerabilities distributions and patch strategies impact on the spreading of worms. Thirdly, 

we derive a better understanding of dynamic infection procedures in each step of matrix 

iteration. These procedures include: 1) what is the propagation probability and time delay 

between each pair of nodes; 2) how does one node infect another node directly; 3) how does 

one node infect another node through a group of intermediate nodes. 

The rest of this chapter is organized as follows. In Section 4.2, we introduce the design of 

our experiments, including the experiment environment and scanning strategy. In Section 4.3, 

we evaluate three key factors of the proposed model. Then we analyze the effect of the 

impact factor and the overestimation in macroscopic models in Section 4.4 and Section 4.5 

respectively. In Section 4.6, we discuss open issues. Finally, we conclude this chapter in 

Section 4.7 with a brief summary. 
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4.2 Design of Experiments   

Our implementation is in Visual C++ 2008 SP1 and Matlab 7. The random numbers in our 

experiments are produced by the C++ TR1 library extensions. Experiments are carried out by 

a series of simulations: 1) we analyze the effect of the main components in our model 

including S, V, Q; 2) we analyze the mutual effect from the impact factor β between 

propagation probability and time delay; 3) in this chapter we focus on scanning worms that 

primarily belong to the non-reinfection class of worms. Thus, we evaluate the errors caused 

by loops in worm propagation, which are normally ignored by macroscopic propagation 

models.  

Some worms, such as Code Red [2], Code Red II [15, 29-30], and Slammer [12] can 

propagate without a dependency on the topology. This means that an infectious node is able 

to infect an arbitrary vulnerable peer. Up to now, many researchers have modeled this type of 

worm propagation. In our experiments, we choose a typical local preference worm on the 

basis of Code Red II, as shown in Fig.4.1. The time delay between each pair of nodes follows 

the Gaussian Distribution N (0.5, 0.2
2
). 

In practice, there are problems to overcome in the propagation simulation. It often takes a 

significant amount of time to perform the experiments--72 h in our case on an Intel (R) Core 

(TM) i7 CPU 2.67-GHz (4 cores) processor to model 10000 nodes--to simulate a single run 

of matrix iteration for one set of components S, V, Q. To identify trends, many such runs need 

to be performed and the whole simulation process has to be rerun for any parameter changes. 

The simulation overhead can be prohibitively high in some cases when the simulated network 

has a larger scale. This leads to the conclusion that all such experiments are intractable in 

practice. However, according to our practice and observation, we have found two properties 

of our model that can be used in addressing the difficulties stated above: 1) our model is 



Chapter 4 Microcosmic Modeling of the Propagation and Defense of Scanning Worms 

74 

based on matrix computation (See Formula (3.3) in Chapter 3). Matrix multiplication has a 

computational cost, however, the matrix operations all run with a polynomial time 

complexity and can be highly parallelized. Matrix multiplication is the bottleneck in our 

implementation and is an embarrassingly parallel problem which means each resultant matrix 

element can be solved concurrently. Thus, the performance of our system will increase 

significantly with the addition of concurrent computational resources. On a single 

workstation, we performed the evaluation using 2×4 threads (OpenMP threading Library) to 

improve the speed of matrix computation. The theoretical speedup is linear in an 

embarrassingly parallel problem such as matrix multiplication for most realistically sized 

clusters, which means the computational time is reduced linearly as more computational units 

are utilized. Industry and research organizations have access to significant computation 

resources and can mitigate the performance obstacles we have described by employing 

distributed and high performance computing resources such as clusters and clouds; 2) we 

analyze the impact of changing the matrix dimensionality used in the experiments and find 

that a larger dimension will not produce significantly different results. In order to show these 

results clearly, we choose reasonable network sizes (5000 nodes) and examine them under 

different scenarios. 
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Figure 4.1: Code Red II probability propagation matrix  
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4.3 Effect of Three Key Factors   

In this section, we evaluate the effects of three significant factors for scanning worms: 

infected state, vulnerability distribution and patch strategy according to different scenarios. 

Then, based on the results, we derive a series of recommendations and provide advice for 

patch strategies.  

4.3.1 Effect of the Propagation Source Vector  

In this subsection, we assume all nodes in the network are vulnerable and no nodes have 

been patched. According to the Symantec Internet Security Threat Report [59], global 

malicious activities are not evenly distributed in different ranges of IP addresses. 

Consequently, we arrange a group of scenarios with practical meaning in Table 4.1 to 

describe the different origins of worms. The results are represented by the mean value of 

propagation ability (E(AI)), the variation of propagation ability (D(AI)), the mean value of 

propagation time delay (E(AT)) and the variation of propagation time delay (D(AT)). In order 

Table 4.1 Scenarios for Analysing Propagation Source (S) 

Scenario Description (refer to Fig. 4.1) Practical Meaning 

1 
IP address range A1B1 has 

increasing number of initial 

infectious nodes. 

Analyzing the impact of the number of initial 

infectious sources on the propagation probability in 

an IP address range such as a specific region. 

2 
Increasing number of IP address 

ranges A1Bx (x∈ [1, g]) have an 

initial infectious node. 
Analyzing the impact of different geographic 

distribution of initial infectious sources on the 

propagation probability. 
3 

Increasing number of IP address 

ranges AxB1 (x∈ [1, g]) have an 

initial infectious node. 

4 
IP address ranges AxBy (x, y∈ [1, 

g]) have a different number of 

initial infectious nodes. 

Analyzing worm propagation when different 

regions have a different density of initial infectious 

source. 

 



Chapter 4 Microcosmic Modeling of the Propagation and Defense of Scanning Worms 

76 

to describe the differences of each parameter clearly, we cut the first 81 nodes to make 

figures for some experiments. 

4.3.1.1 Scenario 1 

Preparation: 

We deploy 1% to 3% infectious nodes in A1B1 of PM (See Fig.4.1). Based on different 

propagation probabilities, the entire IP space is divided into three ranges: 

 R1: A1B1 

 R2: A1B2→A1Bg 

 R3: A2→Ag 

Result: 

Table 4.2 Results from Different Scenarios of Propagation Source (S) 

Scenario 
Infectious Node 

Propagation 

Probability 
Time Delay 

Quantity Scenario Setting E(AI) 
D(AI) 
(×10

-4
) 

E(AT) 
(× i ) 

D(AT) 
(×10

-2
) 

1 

1% A1B1 has 1% initial infectious nodes 0.0124 0.0729 0.5201 0.3758 

2% A1B1 has 2% initial infectious nodes 0.0124 0.0729 0.2605 0.0941 

3% A1B1 has 3% initial infectious nodes 0.0124 0.0729 0.1735 0.0416 

2 
2% 

A1B1 and A1B2 have 1% initial 

infectious nodes respectively 
0.0124 0.0723 0.2605 0.0938 

3% 
A1B1, A1B2 and A1B3 have 1% 

initial infectious nodes respectively 
0.0124 0.0704 0.1734 0.0418 

3 

2% 
A1B1 and A2B1 have 1% initial 

infectious nodes respectively 
0.0124 0.0320 0.2576 0.0659 

3% 
A1B1, A2B1 and A3B1 have 1% 

initial infectious nodes respectively 
0.0124 0.0183 0.1706 0.0203 

4% 
AxB1 (x∈ [1, 4]) have 1% initial 

infectious nodes respectively 
0.0124 0.0115 0.1275 0.0079 

4 

3% 
A1B1 has 2% infectious nodes and 

A1B2 has 1% infectious nodes 
0.0124 0.0724 0.1732 0.0414 

  3%* 
A1B1 has 2% infectious nodes and 

A2B1 has 1% infectious nodes 
0.0124 0.0365 0.1722 0.0306 
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The result is listed in Table 4.2 Scenario 1. We find that the number of initial infectious 

nodes have no impact on E(AI) and D(AI). As shown in Fig. 4.2, AI in different IP ranges R1, 

R2 and R3 are overlapped respectively when the number of initial infectious nodes increases. 

In Fig. 4.2(a), AI deviates in different IP ranges during the propagation procedure: 

AI(R1)>AI(R2)>>AI(R3). In Fig. 4.2(b), the difference of AI deviates in different IP ranges. 

Within the first 20 iterations, R1 and R2 decline rapidly, while R3 slightly increases. 

Afterwards, the difference of AI tends to be stable. 

In Table 4.2, the result of time delay reflects temporal properties of the worm propagation 

in this scenario; an increasing number of initial infectious nodes results in a decrease in 

E(AT) and D(AT). Fig.4.3 shows the estimated time delay AT in different IP ranges when the 

number of initial infectious nodes increases. During the first nearly 40 iterations, 

AT(R1)>AT(R2)>AT(R3); afterwards, AT in R3 goes up quickly: AT(R3)>AT(R2)>AT(R1).  

Analysis: 

Although the number of initial infectious nodes is increasing, their effects are limited in the 

same IP ranges, which leads to the overall propagation probabilities are not improved. 

Therefore the value of E(AI) and D(AI) stay the same. 
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Figure 4.2: Propagation probability in scenario 1  (the first 81 nodes in 5000 nodes) 
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When more infectious nodes are involved, the E(AT) obviously decreases as the average 

time for searching the targets is reduced. Meanwhile, a decline of D(AT) indicates that an 

increase in the number of initial infected nodes can accelerate the propagation speed to all 

nodes in the network since the time delay is close to the E(AT). In the early propagation stage, 

the infected nodes are mainly in IP ranges R1 and R2. Thus, AT is dominated by the nodes 

with greater propagation probability in R1 and R2. Afterwards, when the number of infected 

nodes in R3 increases, the nodes in R3 have greater contribution to AT.  
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 Figure 4.4: Propagation probability in scenario 2 (the first 81 nodes in 5000 nodes) 
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 Figure 4.3: Propagation time delay in scenario 1 (the first 81 nodes in 5000 nodes) 
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4.3.1.2 Scenario 2 

Preparation: 

We deploy 2% and 3% infectious nodes in PM (See Fig.4.1). Based on different 

propagation probabilities, the entire IP space is divided into three ranges: 

 R1: A1B1→A1B2 (2% infectious nodes)  

      A1B1→A1B3 (3% infectious nodes) 

 R2: A1B3→A1Bg (2% infectious nodes) 

      A1B4→A1Bg (3% infectious nodes) 

 R3: A2→Ag 

Result: 

The result is listed in Table 4.2 Scenario 2. As shown in Fig. 4.4, the basic tendency of the 

curves is similar to scenario 1. However, more infectious nodes (from 2% to 3%) in the 

network result in a decrease in AI of R1 and R2. Additionally, we find that the number of 

initial infectious nodes has no impact on AI in R3. 

In Table 4.2, temporal properties of time delay in scenario 2 stay the same with scenario 1. 

As shown in Fig.4.5, the value of AT decreases when the number of initial infectious nodes 

increases.  

Analysis: 

We analyze the decrease of AI in R1 and R2 when there are more initial infectious nodes 

distributed in adjacent IP ranges of the network. The reason for this is that when a new 

infectious node in A1B3 is involved, compared with two infectious nodes case, the AI in A1B3 

will increase. However, the sum of all probabilities is equal to one, which means an increase 
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of AI in A1B3 results in a mathematical decrease of AI in other infectious ranges such as 

A1B1-A1B2.   

Similar to scenario 1, E(AI) stays the same (0.0124), and only a small decrease D(AI) 

(from 0.0723×10
-4

 to 0.0704×10
-4

) indicates more nodes in the network have higher 

probabilities of being infected. Additionally, scenario 2 has the same acceleration of 

propagation time as scenario 1. 

4.3.1.3 Scenario 3 

Preparation: 

We deploy 2% to 4% infectious nodes in PM (See Fig. 4.1). Based on different 

propagation probabilities, the entire IP space is divided into three ranges: 

 R1: A1B1+A2B1 (2% infectious nodes)  

      A1B1+A2B1 +A3B1 (3% infectious nodes) 

      A1B1+A2B1 +A3B1 +A4B1 (4% infectious nodes) 

 R2: {AxB2→AxBg}x=1,2 (2% infectious nodes) 
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Figure 4.5: Propagation time delay in scenario 2 (the first 81 nodes in 5000 nodes) 
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      {AxB2→AxBg}x=1,2,3 (3% infectious nodes) 

      {AxB2→AxBg}x=1,2,3,4 (4% infectious nodes) 

 R3: A3→Ag(2% infectious nodes) 

      A4→Ag(3% infectious nodes) 

      A5→Ag(4% infectious nodes) 

Result: 

We use 2% infectious nodes case to compare with scenario 2. In Fig. 4.6, when the 

infectious nodes are scattered in the network, the AI of R1 and R2 decreases. AI of R3 stays 

the same. 

In Table 4.2, temporal properties of time delay in scenario 3 stay the same with scenario 2. 

In Fig. 4.7, AT of scenario 2 is almost the same with AT of scenario 3 in IP ranges R1 and R2.  

Analysis: 

We analyze the decrease of AI in R1 and R2 when the initial infectious nodes are scattered 

in different IP ranges of the network. The reason is that when infectious nodes are deployed 
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 Figure 4.6: Propagation probability in scenario 2 and scenario 3  

        (the first 81 nodes in 5000 nodes)  
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loosely, more nodes have a higher probability of being infected. Similar to the exceptional 

decrease of AI in scenario 2, an increase of AI in A2B1→A2Bg results in a mathematical 

decrease of AI in other infectious ranges.   

Additionally, scenario 3 has the same acceleration of propagation time as scenario 2 and 1. 

4.3.1.4 Scenario 4 

Preparation: 

We deploy 3% infectious nodes in PM (See Fig. 4.1). Based on different propagation 

probabilities, the entire IP space is divided into several ranges: 

 R1: A1B1 

 R2: A1B2 (3% infectious nodes) 

      A2B1 (3%* infectious nodes) 

 R3: A1B3→A1Bg (3% infectious nodes) 

      A1B2→A1Bg (3%* infectious nodes) 
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Figure 4.7: Propagation time delay (scenario 2 vs. scenario 3) 

     (the first 81 nodes in 5000 nodes) 
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 R4: A2B2→A2Bg (3%* infectious nodes) 

 R5: A3→Ag 

Result: 

The result is listed in Table 4.2 Scenario 4. In Fig. 4.8(a), two infectious nodes are in A1B1, 

and another infectious node is in A1B2. The result shows four IP address ranges have different 
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Figure 4.8: Propagation probability in scenario 4  (the first 81 nodes in 5000 nodes) 
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AI. In Fig. 4.8(b), two infectious nodes are in A1B1, and another infectious node is in A2B1. 

The result shows five IP address ranges have different AI. 

In Table 4.2, scenario setting in Fig. 4.8(a) spends slightly more time infecting the nodes in 

the network than Fig. 4.8(b) (0.1732 compared with 0.1722). In Fig. 4.9, the value of AT is 

almost the same when the same proportion of initial infectious nodes are deployed in 

different IP ranges.  

Analysis: 

We analyze the reason of four and five different ranges of AI. An infectious node has 

larger effect on its own and adjacent IP ranges. A high density of initial infectious nodes has 

greater effect on its own and adjacent IP ranges than other IP ranges with low density. 

Therefore, in Fig. 4.8(a), R1(2% initial infectious nodes) has higher AI than R2 (1% initial 

infectious nodes). In Fig. 4.8(b), R3 that is adjacent to R1 (2% initial infectious nodes) has 

higher AI than R4 that is adjacent to R2 (1% initial infectious nodes).  
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Figure 4.9: Propagation time delay in scenario 4 (the first 81 nodes in 5000 nodes) 
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4.3.1.5 Conclusion of Propagation Source Effect  

We draw conclusions on the practical meaning from different scenarios of the propagation 

source. 

 In scenario 1, an increasing number of initial infectious nodes in a specific region has 

no impact on propagation probability (AI) in the entire network. However, it does 

accelerate the speed of worm propagation considerably.  

 Within a certain (20 in scenario 1) number of intermediate nodes, the vulnerable 

nodes in adjacent IP ranges of an infectious source have a greater probability of being 

infected. 

 In scenario 2 and 3, different geographic distribution of initial infectious nodes has no 

impact on the overall AI. However, when initial infectious nodes are more scattered in 

the network, they can infect more vulnerable nodes in the adjacent IP address ranges 

and accelerate the speed of worm propagation considerably in the network. 

 In scenario 4, a high density of initial infectious nodes can infect more vulnerable 

nodes, which are mainly in adjacent IP address ranges of an infectious source. 

4.3.1.6 Inspiration for Developing the Patch Strategy 

The experiments on the propagation source vector (S) are mainly used to estimate where 

we need to patch. 

 Where: According to the conclusion in this subsection, the best position for patching 

are similar or adjacent net blocks to the propagation source. In the real world, 

however, it is impractical to locate this position since the initial infectious nodes may 

be scattered and it is difficult to foresee the original propagation sources. On the basis 

of the conclusion from scenario 4, the IP ranges with a high density of vulnerable 



Chapter 4 Microcosmic Modeling of the Propagation and Defense of Scanning Worms 

86 

nodes are essential areas in lieu of adjacent IP ranges of a propagation source for 

patching, since denser ranges have a greater possibility to be chosen as initial 

infectious sources. This may warrant collaboration across administrative boundaries 

when adjacent net blocks are not controlled by the same authority. It may be 

advantageous for network administrators to have a prior relationship with adjacent 

network owners to work together in threat intelligence and help prevent worm 

outbreaks and establish patch priorities in their own networks  

 How many: The number of nodes that require patching is closely related to the 

different vulnerability distributions in the network. We will discuss this in the 

conclusion of the next subsection. 

 When: Here, we will consider the estimated time of worm propagation in scanning 

worms. This is closely related to the propagation probability in the target IP ranges, 

but is unrelated to the geographic distribution of the propagation sources. In our 

experiments, when the percentage of the initial infectious nodes was from 1% to 4%, 

the range of propagation time delay was from 0.13i to 0.52i. i is the scanning time of 

the entire IP address space. 

4.3.2 Effect of the Vulnerable Distribution Vector  

In this subsection, we assume that not all nodes are vulnerable and that no nodes have been 

patched. Symantec examines the types of worms causing potential infections in each region 

[59]. The increasing regionalization of vulnerabilities is observed from one area to the next 

when vulnerabilities concern certain languages or localized events. Information about the 

geographic distribution of vulnerabilities can help network administrators improve their 

security efforts. Consequently, we arrange a group of scenarios with practical meaning in 
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Table 4.3 to describe the different distributions of vulnerabilities. The results are represented 

by the mean value of propagation ability (E(AI)), the variation of propagation ability (D(AI)), 

the mean value of propagation time delay (E(AT)) and the variation of propagation time 

delay (D(AT)).  

4.3.2.1 Scenario 1 

Preparation: 

In Scenario 1, we assume a vulnerability rate from 5% to 100% and its distribution follows 

uniform distribution. We fix the initial infectious nodes to 1. 

Result: 

The result is described in Fig. 4.10. When the vulnerability rate is less than 80%, E(AI), 

D(AI), E(AT) and D(AT) remain at a low level. The change point is when the vulnerability 

rate is 80%. The steady AI occurs when the vulnerability rate is lower than 70%. 

Table 4.3 Scenarios for Analyzing Vulnerability Distribution (V) 

Scenario Description Practical Meaning 

1 

Increasing percentage of vulnerable 

nodes and the vulnerabilities follow 

uniform distribution. 

Analyzing worm propagation when 

most of the nodes are vulnerable 

without the difference of geographic 

distribution. 

2 

Increasing percentage of vulnerable 

nodes and the vulnerabilities follow a 

Gaussian distribution. Initial 

infectious nodes are deployed in an 

IP address range that is rich in 

vulnerable nodes. 

Analyzing the impact of different 

geographic distribution of 

vulnerabilities on worm propagation. 

 

Analyzing the impact of different 

deployment of a propagation source 

under different distribution of 

vulnerabilities. 
3 

Increasing percentage of vulnerable 

nodes and the vulnerabilities follow a 

Gaussian distribution. Attackers 

deploy initial infectious nodes in 

sparse vulnerabilities ranges 
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Analysis: 

We analyze the reason of the change point at 80%. Drawing from the conclusions of 

Section 4.3.1, the nodes in adjacent IP ranges of the propagation origins have greater 

propagation probability to be infected. When the vulnerability follows a Uniform distribution, 

the coverage rate of vulnerable nodes in adjacent IP ranges of the propagation origins is small 

if the entire vulnerability rate is not large enough. Therefore, when the vulnerability rate is 

less than 80%, seldom nodes in adjacent IP ranges are involved in the propagation and the 

nodes in non-adjacent ranges dominate the value of AI. When the vulnerability rate reaches 

80% or more, more vulnerable nodes in adjacent IP ranges may be involved in the 

propagation, which lead to the E(AI) and D(AI) increase in Fig. 4.10.   
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Figure 4.10: Vulnerability in Uniform distribution (scenario 1) 
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When the vulnerability rate is more than 80%, the vulnerable nodes have a large 

probability of being infected. Thus, an increasing size of infected nodes in the network results 

in increasing time expenditure for overall worm propagation. 

4.3.2.2 Scenario 2 and Scenario 3 

Preparation: 

In Scenario 2 and 3, we investigate the impact of different geographic distributions of 

vulnerabilities on worm propagation. We also observe the impact of different deployments of 

the propagation source under different distributions of vulnerabilities. Therefore, we assume 
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Figure 4.11: Vulnerability in Gaussian distribution (scenario 2 & 3) 
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vulnerabilities follow a Gaussian distribution from N(1024, 102
2
) (10% vulnerability rate) to 

N(1024, 819
2
) (80% vulnerability rate). We deploy one initial infectious node in vulnerability 

dense or sparse IP ranges.  

Result: 

The result is described in Fig. 4.11. When more nodes in the network are vulnerable, E(AI) 

and D(AI) gradually increase in different deployments of the initial infectious node. 

Obviously, if one initial infectious node is in vulnerability dense IP ranges, E(AI) and D(AI) 

are larger. 

From Fig. 4.11, E(AT) and D(AT) have similar results to E(AI) and D(AI).  

Analysis: 

More nodes in the network are infected when the vulnerability rate increases, which leads 

to E(AI) smoothly increasing. Since the vulnerabilities follow a Gaussian distribution, there 

are more vulnerable nodes in some specific IP ranges. If the initial infectious nodes are 

deployed in vulnerability dense IP ranges, the vulnerable nodes in adjacent IP ranges of the 

propagation origins are quickly infected, which contributes to E(AI). This is a reason why 

E(AI) and D(AI) are larger when the initial infectious nodes are deployed in vulnerability 

dense IP ranges.  

Similar to scenario 1, an increasing size of infected nodes in the network results in 

increasing time expenditure for overall worm propagation. 

4.3.2.3 Inspiration of the Vulnerable Distribution Effect  

The experiments on the vulnerable distribution vector (V) are mainly used to estimate how 

many nodes we need to patch. 
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 Where: If the threat is from a localized worm that exploits vulnerabilities in a specific 

region, it is of greater value to patch in the areas with a high density of vulnerabilities 

since the propagation is accelerated when more nodes are vulnerable.  

 How many: If the worm propagation is independent of the geographic region, the 

worm can infect a large number of nodes when the vulnerability rate is more than 

80%. Making sure the vulnerability rate is lower than 80% can prevent the worm from 

propagating effectively. When the vulnerability rate is lower than 70%, the 

propagation probability remains stable and is significantly lower. A recommended 

patch strategy is to ensure the vulnerability rate is lower than 70%. 

4.3.3 Effect of the Patch Strategy Vector 

A large amount of money and labor are spent on patching the vulnerabilities each year. In 

order to reduce the cost, we focus on finding the most economic tactics for corporations to 

patch their software vulnerabilities. In this subsection, we analyze the effect of patch strategy 

vector Q, which is used to eliminate the vulnerabilities in the vector V. Two scenarios are 

listed in Table 4.4. The results are represented by the mean value of propagation ability 

Table 4.4 Scenarios for Analyzing Patching Strategy (Q) 

Scenario Description Practical Meaning 

1 

Increasing percentage of 

patching nodes when 

vulnerabilities follow 

Uniform distribution. 

Analyzing the effect of patch strategy 

when most nodes are vulnerable without 

the difference of geographic distribution.  

2 

Increasing percentage of 

patching nodes when 

vulnerabilities follow 

Gaussian distribution.  

Analyzing the effect of patch strategy 

when distribution of vulnerabilities 

depends on geographic region. 
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(E(AI)), the variation of propagation ability (D(AI)), the mean value of propagation time 

delay (E(AT)) and the variation of propagation time delay (D(AT)). 

4.3.3.1 Scenario 1 

Preparation: 

The intention of patching is to decrease the number of potentially vulnerable nodes. When 

the patching rate increases, the vulnerability rate decreases. Initially, we assume all nodes are 

vulnerable and fix one initial infectious node in the network. 

Result: 
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Figure 4.12: Patch strategy (scenario 1) 
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From Fig. 4.12, when the patching rate is higher than 20%, there is no obvious change in 

E(AI). When the patching rate is higher than 30%, D(AI) becomes steady. The change points 

of E(AT) and D(AT) are at a 10% patching rate. 

Analysis: 

Once the patching rate reaches 20%, there are no obvious outcomes for more patching. 

Moreover, the outcomes of the patching strategy become steady when the patching rate is 

more than 30%. 

4.3.3.2 Scenario 2 and Scenario 3 

Preparation: 

When vulnerabilities depend on geographic region, some specific IP ranges have more 

vulnerable nodes. Therefore, we arrange vulnerability to follow a Gaussian distribution. We 

assume the vulnerability rate is 50% or 80% and fix one initial infectious node in the network. 

The patching rate varies between 5% to 40%.  

Result: 

From Fig. 4.13, when the patching rate increases from 5% to 40%, E(AI) and D(AI) in 

vulnerable dense IP ranges decrease. The increasing patching rate has a greater effect on 

E(AI) and D(AT) with 80% vulnerability rate. Additionally, E(AT) and D(AT) have a similar 

tendency. 

Analysis: 

The objective of this scenario is to investigate the impact of the patching rate on the 

specific vulnerable dense region. When the specific region has more vulnerable nodes, the 

patch strategy has more effect. 
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4.3.3.3 Conclusion of the Patch Strategy Effect  

The experiments on the patch strategy vector (Q) are mainly used to estimate when we 

need to patch. In accordance with the conclusions regarding S and V, we can summarize the 

patch strategies. 

 Where: If the propagation sources can be predicted, the best strategy is to patch nodes 

that have the same class IP address as the infectious sources. However, in real-world 

scenarios, the propagation sources are hard to locate. In these situations, the IP ranges 
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Figure 4.13: Patch strategy (scenario 2) 
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with a high density of vulnerable nodes are essential areas for patching because more 

nodes are infected in these specific regions.  

 How many: The most economic patching rate is 20%, however we recommend a 30% 

patching rate because the outcome of this patch strategy is more stable. 

 When: “When do we patch?” is a complicated problem when considering global 

recommendations because it involves many social factors, such as how widely used is 

the target software or the size of company? However, companies employing 

vulnerability management services can be given actionable recommendations for 

when it is critical to patch. For high risk vulnerabilities, it is critical that networks 

reduce the number of vulnerable nodes to below 80%. Another actionable result is 

when to disclose information on the vulnerabilities. Most corporations such as 

Microsoft issue vulnerability patches for software products with some specific 

information on the nature of vulnerabilities. This ensures that users are aware of the 

reason and necessity for deploying the patches. However, this information may be 

utilized by hackers to develop exploits for the vulnerabilities. Therefore, increased 

disclosure of specific vulnerabilities could possibly be delayed until the patching rate 

reaches at least 20%. Otherwise, the worms that target these vulnerabilities can 

propagate quickly to infect a large proportion of the network.  

In the proposed model, the propagation source vector (S) and the vulnerable distribution 

vector (V) describe the distribution of initial infectious nodes and the distribution of 

vulnerable nodes in the network respectively. The patching strategy vector (Q) reflects a 

special deployment of patching nodes. The propagation scale and the spreading speed depend 

on different deployment of S, V and Q. Through the analysis of propagation probability (AI) 

according to different scenarios of S, V, Q, we can estimate the best position for patching, the 

most economic patching rate and the appropriate time for patching.  
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4.4 Effect of the Impact Factor β   

The impact factor β reflects the impact of propagation time delay on the propagation 

probability. We introduced this parameter because the propagation time delay is caused by 

two factors: the worm‟s infection strategy and the network infrastructure information such as 

bandwidth. In 2001, Code Red v1 [29] used a static seed for its random number generator and 

thus generated identical lists of IP addresses on each infected machine. The first version of 

the worm spread slowly, because each infected machine began to spread the worm by 

probing machines that were either infected or impregnable. Then, it was improved in Code 

Red v2 [29] through generating a random seed variant. This second version shared almost all 

of its code with the first version, but spread much more rapidly. Each node with an individual 

IP address may be scanned within a much shorter period of time and consequently the 

probability of each node to become infected is credibly increased. Therefore, a worm‟s 

infection strategy has a significant effect on the spreading time. On the other hand, in 2002, 

the Sapphire worm [69] randomly selected IP addresses to spread and reached its peak 

scanning rate of over 55 million scans per second across the Internet in under 3 minutes, but 

in later stages the rate of growth slowed because networks became saturated with its scans 

and there was not enough bandwidth to allow the worm to operate unhindered. It is therefore 

clear that a network environment with more bandwidth will accelerate the infection.  

Since we do not know the exact value of β for propagation in real worms, we assume β is 

equal to zero, which indicates that the propagation probability cannot be affected by temporal 

properties in our previous simulations. However, in order to see how the impact factor β 

affects the propagation probability in the worm spreading procedure, we compare the changes 

of AI with two different β by assuming β1=0.25×10
-6

, β2=0.5×10
-6

.  

Preparation: 
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We deploy 1% infectious nodes in A1B1 of PM (See Fig. 4.1). We also assume all nodes 

are vulnerable and no nodes are patched. Based on the different propagation probabilities, the 

entire IP space is divided into three ranges:  

 R1: A1B1 

 R2: A1B2→A1Bg 

 R3: A2→Ag 

Result: 

As shown in Fig. 4.14, the propagation probabilities are initially almost the same for both 

β1 and β2 via 28 intermediate nodes. Later, however, the propagation probabilities decrease 

gradually. This matches the real spreading tendency in [2] quite well. 

We also observe the effect of different impact factors step by step. In Fig. 4.15, after 60 

hops the propagation probability approaches zero, which indicates the worm theoretically 

propagates in a limited range of vulnerable nodes. This is in accordance with the real case 

analysis by [2] as the propagation time delay largely increases because of network congestion, 

0 10 20 30 40 50 60 70 80
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Numbers of Intermediate Nodes

P
ro

p
a

g
a

ti
o

n
 P

ro
b

a
b

il
it
y
(A

I)

β
1
, R

1
β

1
, R

2
β

1
, R

3
β

2
, R

1
β

2
, R

2
β

2
, R

3

β
1
=0.25×10-6

β
2
=0.5×10-6

 
Figure 4.14: Effect of impact factor β on worm propagation  

(the first 81 nodes in 5000 nodes)  
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and thus an infectious node cannot spread worms to the target. Therefore, the propagation 

probability is close to zero 

Discussion: 

The impact factor β is to reflect the mutual impact between the propagation probability and 

the time delay. When β increases, from Fig. 4.14, the time delay has a greater impact on the 

spreading of the worm, which results in a decrease of the propagation probability. If the value 

of β increases continuously, the time delay will increase and the worms will not be able to 

propagate to the target, which reflects real scenarios. Moreover, according to Fig. 4.2(b) and 

Fig. 4.15, we find that an increase of β leads to the propagation probability decreasing 

gradually and tending towards zero. This also indicates that an increase in time delay results 

in a small propagation probability of the worm‟s propagation. However, in the real world, 

each well-known worm has its own feature for propagation. How to formulate the value of β 

to accurately reflect the characteristic of propagation is an issue of modeling a worm‟s 

propagation that we will address in the future.  
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(the first 81 nodes in 5000 nodes) 
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4.5 Discussion of the Overestimation in the Macroscopic Model   

Scanning worms infect targets by scanning the entire network and probing for vulnerable 

machines. Many researchers have studied and modeled the propagation of various worms 

using a variety of approaches and a number of different modeling techniques that address 

particular problems being examined. In this chapter, we generalize previous works, such as [2, 

7, 26, 56, 60] as macroscopic models and propose our microscopic modeling method. 

Macroscopic models rely on differential equations to predict worm behavior and can 

effectively identify the spreading tendency of worms and their infection scale along with the 

elapsed time. Our proposed microscopic model adopts matrix computation and focuses on 

presenting the propagation procedure of worms. In the remainder of this section, we will 

analyze the overestimation in traditional macroscopic modeling methods which can be 

avoided in the microscopic point of view, and thus, is a key reason why we chose the 

microscopic modeling approach. 

Macroscopic methods model the propagation of worms through observing the current 

number of infected hosts and identifying the number of possible hosts for immediate and 

subsequent infection. These methods construct differential equations as a function of time t to 

calculate the number of possible hosts that can be infected in each time tick. The propagation 

analysis of macroscopic models starts from a group of infected nodes and this group is 

updated by conducting the propagation from infected nodes to uninfected vulnerable nodes, 

which are used again as initial infected nodes for propagation. This process continues as time 

elapses, ad infinitum. In our proposed microscopic model, we simulate the propagation of 

worms by constructing the spreading path from the initially infectious nodes to the targets via 

some intermediate nodes. According to the microscopic modeling and analysis of the 

propagation procedure, we have found an important source of inaccuracies in macroscopic 
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modeling caused by propagation cycles (Section 3.3.4 in Chapter 3). These propagation 

cycles lead to overestimation in the macroscopic analysis of worms propagation. This is one 

of the reasons why we believe our microscopic model performs better than previous models. 

In this chapter, we focus on scanning worms that primarily belong to the non-reinfection 

class of worms. These types of worms, which include Code Red, can only be infected once in 

a worm outbreak. According to previous analyzes, this leads to overestimation due to 

propagation cycles among the intermediate nodes. In this section, we use a simple scenario to 

analyze the errors.  

Preparation: 

We deploy 1% of infectious nodes in A1B1 of PM (See Fig. 4.1). We also set all nodes as 

vulnerable and set no patched nodes. Based on the different propagation probabilities, the 

entire IP space is divided into three ranges:  

 R1: A1B1 

 R2: A1B2→A1Bg 

 R3: A2→Ag 

Result: 

As shown in Fig. 4.16(a), errors occur in different IP ranges during the propagation 

procedure: Errors (R1) > Errors (R2) ≫ Errors (R3). Within the first 20 iterations, R1 increases 

rapidly, while R3 remains stable. In our microscopic model we remove the errors. Fig. 4.16(b) 

shows the propagation probability AI in different IP ranges before and after the removal of 

errors when the worm‟s propagation is via some intermediate nodes. From the curves, we 

find the noticeable differences. 

Analysis: 
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Fig. 4.16 demonstrates that non trivial differences exist between macroscopic and 

microscopic models. This difference is accounted for by errors introduced by propagation 

cycles in the macroscopic model. According to (Formula (3.18) in Chapter 3), errors are 

mainly composed of two parts: the propagation probability from node s to node i when 

iterated (k - x) times and the propagation probability from node i to node i when iterated x 

times. In Fig. 4.16(a), the errors have curves analogous to AI, but which are two magnitudes 
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smaller (10
-3

 compared with 10
-1

). In the experiments, similar results also exist in other 

scenarios. In Fig. 4.16(b), we show that when a worm starts to propagate, more intermediate 

nodes are involved in the worm's propagation. This results in the continuous and increasing 

formation of propagation. Thus, the errors increase rapidly especially when the worm spreads 

via the first 20 intermediate nodes. Then, when more vulnerable nodes in the network are 

infected, the growth of propagation cycles tends to stabilize. Consequently, the errors 

increase slowly. After eliminating the errors, we find a clear difference in each IP region. 

Through the inspection of these errors, however, we can eliminate this negative effect using 

(Formula (3.19) in Chapter 3). 

Moreover, in Fig. 4.16(b), we can see noticeable differences between the macroscopic 

model and the microscopic model. Although the magnitude of errors is small (10
-3

), we 

cannot regard them trivially when more initial infectious nodes or a larger network is 

involved. Especially for security companies, the errors can possibly mislead analysis on 

predicting the infected scale of the network and even cause a significant economic loss. 

4.6 Discussion and Open Issues 

Several limitations and open issues are worth discussing. First, the microcosmic model is 

not a complete substitute for the traditional macroscopic model of worm propagation. In 

order to provide an insight into the change of propagation probability between nodes, the 

propagation source S in our model has been constructed according to different initial 

scenarios. Thus, S is static. However, in the traditional macroscopic models [2, 6], the 

infectious state is a function of time t allowing that the traditional models dynamically reflect 

the changes during propagation. These two approaches model worm propagation from 

different perspectives and both are useful in worm analysis.   
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Second, our model employs an n by n square complex matrix to describe a network, which 

makes two arbitrary nodes adjacent. Thus, this representation is suitable for worms that scan 

the entire network and spread themselves to the target without regard to topological 

constraints. In the real world, some worms, such as email worms, are dependent on the 

topology of a network in infecting targets. Our model cannot directly simulate these worms, 

however, if we assume the value of propagation probability in our proposed model as being 

either one or zero to indicate the existence or non-existence of a directed link between the 

nodes, then we can extend our model to simulate the topology-dependent worm propagation. 

Third, many corporations prioritize the patching of various vulnerabilities on the basis of 

their own vulnerability ranking system. For example, vulnerabilities in firewalls should be 

patched as soon as possible because firewalls directly face the internet. Our microscopic 

model cannot describe this type of context dependent information. We believe this issue 

requires additional knowledge and is out of scope of this investigation. 

Fourth, in this chapter, we have not thoroughly investigated the impact factor β and the 

effect of errors. In fact, subtle changes in these may result in perceptible variances. This 

particularly happens in large scale worm propagation. However, like the undiscovered 

parameter α in [6], we do not know the exact value of β for real world worm propagation. 

More research and discussion will address these two factors in our future work. 

Finally, in the experiments, we found that the overhead for the simulation is high. Given 

that industry has existing infrastructure in clouds and cluster environments, accuracy in the 

worm propagation model is the key component to be addressed compared to the issue of time 

cost. In future work, we will employ more practical analysis of parallel algorithms to 

implement our model. 
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4.7 Summary 

In this chapter, we used Code Red II as an example to evaluate the vulnerable distribution 

and patch strategy vector in the proposed microcosmic model (in Chapter 3) and presented a 

series of recommendations and advice for immunization defense. Firstly, if the propagation 

sources can be predicted, the best strategy is to patch nodes that have IP addresses in the 

same net block. Otherwise, the IP ranges with a high density of vulnerable nodes are essential 

areas for patching. Secondly, for high risk vulnerabilities, it is critical that networks reduce 

the number of vulnerable nodes to below a certain threshold, e.g., 80% in this analysis. 

Thirdly, increased disclosure of specific vulnerabilities could possibly be delayed until the 

patching rate reaches a certain threshold, e.g., at least 20% in this analysis. Furthermore, we 

discuss the effect of the impact factor that reflects the impact of propagation time delay on 

the propagation probability and the overestimation in macroscopic models caused by 

propagation cycles. 

The proposed theoretical design and experiments are based on typical scanning worms. 

However, there are also topology-based worms that are actively used throughout the internet. 

Thus, our future work will mainly focus on modeling the propagation of topology-based 

worms.  
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Chapter 5  

Modeling of the Propagation and Defense Study 

of Topology-based Worms 

Topology-based worms, such as email worms, pose a critical security threat to the Internet 

and thus, large amounts of money and labor are spent on controlling and reducing the impact 

of their outbreak each year. These worms rely on searching for local information to uncover 

the local communication topology and find new victims. Through an accurate and realistic 

modeling of the propagation process, we may devise effective strategies for defense and 

reduce such expenses. In order to access the propagation accurately and address effective 

schemes to deal with the problems of where and how many nodes we need to patch, we 

particularly focus on the spreading process of topology-based worms between each pair of 

nodes. We implement a series of experiments to evaluate the effects of each major 

component in the proposed model for topology-based worms. From the results, the network 

administrators can make decisions on how to immunize the highly-connected node for 

preventing the propagation of topology-based worms. 
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5.1 Introduction 

Topology-based worms, such as email worms and social network worms, rely on email 

address books or friends lists contained in the victim hosts‟ hard drive to locate new targets 

and further require human interaction to spread. Typical examples are worms such as the 

“Here you are” email worm [58] and Koobface [27], which emerged on Facebook in recent 

years. Spreading can take place rapidly and leads to potential network damages and service 

disruption. According to the official Internet threats report of Symantec Corporation [59], 

topology-based worms and resembling attacks accounted for 1/4 of the total threats in 2009 

and nearly 1/5 of the total threats in 2010.  

Different from the propagation of scanning worms, topology-based worms pose a 

significant threat to the network where topologies play an important role for worms 

propagation. Firstly, worms search for local information to find new targets by trying to 

discover the local communication topology. This allows a topology-based worm to be far 

more efficient than a scanning worm as it does not make a large number of wild guesses for 

every successful infection. Instead, it successfully infects on most attempts. This makes 

topology-based worms less vulnerable to containment defenses based on looking for missed 

connections or too many connections. Secondly, topology-based worms can potentially be 

very fast. They rely on the information contained in the victim machine to locate new targets. 

This self-broadcast mechanism allows for the worm‟s rapid reproduction and spread. Thirdly, 

due to social engineering techniques, most internet users can fail to recognize the malicious 

code, resulting in a wide range of infection. Therefore, in order to take an effective 

countermeasure to prevent the propagation of topology-based worms as much as possible, we 

must understand the propagation mechanism.   
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The goal of this work is to develop a modeling framework that can characterize the spread 

of topology-based worms and provide a series of effective patching strategies which will 

benefit IT industries and security best practice. To this end, we first construct the propagation 

mechanism of topology-based worms by concentrating on the propagation probability and 

model the propagation procedure through k-hops. With the help of the model, we then 

evaluate the mutual effect of initially infectious states and patch strategies. We take 

advantage of the propagation probability between each pair of nodes to explore the 

propagation procedure of worms and estimate both infection scale and defense effectiveness. 

Through model analysis, we derive a better understanding of dynamic infection procedures in 

each step rather than recapitulative analysis on the propagation tendency [6, 23-25, 60].  

Specifically, we aim to understand: 1) the propagation probability between each pair of 

nodes; and 2) how one node infects another node through a group of intermediate nodes.   

The rest of this chapter is organized as follows. We provide related work in Section 5.2. In 

Section 5.3, we propose the propagation model for topology-based worms and introduce each 

component of the model. Then, we conduct an analysis and deduce the result for obtaining an 

optimized patch strategy in Section 5.4. Section 5.5 discusses the formation of propagation 

errors and examines the impact of eliminating errors on the propagation procedure. Finally, 

we conclude the chapter in Section 5.6. 

5.2 Related Work 

In the area of network security, several approaches have been proposed to model and 

simulate the spreading of worms in the network.  

The classical deterministic epidemic models [13, 24] are Susceptible-Infectious (SI) 

models, in the sense that all hosts can have only one of two states: susceptible or infectious. 
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Staniford et al. [7] presented a random constant spread model (RCS) for the Code-Red I v2 

worm. Essentially, it is the above classical simple epidemic model allowing for the infection 

rate to be constant, and without considering patching cases. The classical general epidemic 

models [26] improve the classical simple epidemic models by considering the removal of 

infectious hosts due to patching. Zou et al. [2] proposed a two-factor model on the basis of 

the classical simple epidemic model. This model introduced human countermeasures in 

patching, the removal of hosts from both the infectious and susceptible population, and 

considered the infectious rate as a variable but not a constant. Additionally, models from Z. 

Chen et al. [10] and Y. Wang et al. [61] took into account the time taken to cause an infection 

from spreading the virus from one infected host to other hosts. However, all of the above 

models rely on the homogeneous mixing assumption that an infected host can infect any other 

susceptible hosts with equal possibility. Thus, they are no longer appropriate to model the 

propagation of topology-based worms since these models overestimate the worm‟s 

propagation speed, especially at the beginning stage when a small number of nodes are 

infected and clustered with each other [6].  

K.R. Rohloff et al. [8] presented a stochastic density-dependent Markov jump process 

propagation model for RCS (Random constant Scanning) worms, drawn from the field of 

epidemiology. Sellke et al. [9] built up a stochastic branching process model to characterize 

the propagation of worms using a random scanning approach. It developed an automatic 

worm containment tactic for preventing the worm propagation beyond its early states. 

Nevertheless, these two models are based on a linear structure or a one-to-many hierarchy 

and thus, they are not applicable to topology-based worms.  

A topology-based model describes the worms that rely on the topology for spreading 

themselves. Fan and Xiang [19] employed a logic matrix approach to model the spreading of 

peer-to-peer worms between each pair of all peers. They discovered the relation between out-
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degree, vulnerability and coverage rate in power law and simple random graph topologies 

respectively. However, they did not consider the propagation probability and infected 

probability of each node, which had a significant impact on the infection procedure. Zou et al. 

[6] considered these two probabilities and compared internet email worm propagation on 

power law, small world and random graph topologies. In the proposed model, the probability 

of each user opening a worm attachment can be treated as an infected probability and the 

distribution of email checking times can represent the propagation probability. However, this 

model still describes the email worm propagation tendency instead of modeling the dynamic 

spreading procedure between each pair of nodes. 

We propose a probability matrix that models topology-based worm propagation and 

analysis the spreading procedure of worms. Using this matrix in the propagation of worms 

forms the major difference between this work and existing work. In our model, we focus on 

investigating the procedure of worms‟ spreading and providing effective patching strategies 

for preventing topology-based worms from propagating in the network. 

5.3 Propagation Model 

In this chapter, in order to describe how topology-worms propagate in the network, we 

choose a typical topology-based worm on the basis of email worms which infect their logical 

neighbors through sending malicious email attachments.   

5.3.1 Propagation Matrix (P) 

Instead of the complex matrix in Chapter 3, we propose employing an n by n square matrix 

P with elements pij to describe a network consisting of n nodes. We consider that two nodes 

in the network are connected, thereby making node i and j immediate neighbors. In this 
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matrix, each element pij represents a propagation probability of the worm spreading from 

node i to node j under the condition that node i is infected. We call this matrix the 

propagation probability matrix (P) of network, as shown in (5.1). 
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where Ni denotes the node i, Nj denotes the node j in the network. Each row of the P 

represents the propagation probability from one infected node to all other nodes. Each 

column of the P represents the propagation probability from infected nodes to a target node. 

We assume one node cannot propagate the worm to itself, so the probability of self-

propagation is zero.  

5.3.2 Propagation Probability  

In real-world conditions, worms can be spread between nodes from node i to node j via one 

or more intermediate nodes. In existing worms it is observed that an infectious node can 

propagate worms and a vulnerable node can also be infected and become a new infectious 

node for future propagation with a certain probability. 

We assume that a worm‟s propagation from node i (Ni) to node j (Nj) is via and only via k 

intermediate nodes in a network consisting of n nodes. It is denoted by pij 
(k)

 and defined in 

(5.2):  
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Since Ni self-propagation via k nodes is meaningless in the real world, we let the value of 

this propagation probability be zero; namely pij
(k)

 =0 when i=j. We introduce a function γ to 

conduct the iterated procedure. It is defined in (5.3):  
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Operation × is the traditional matrix multiplication. Subsequently, the P can be represented 

by the following equation when the worm‟s propagation is via and only via k intermediate 

nodes, as shown in (5.4): 
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5.3.3 Propagation Time  

In real scenarios, topology-based worms attack victims in the network via neighbor lists. 

For example, email worms search all email addresses found on the compromised user‟s 

computer to spread themselves. Social network worms look for the friends‟ list from the 

victim‟s account and use this list as targets. In this study, we mainly focus on the propagation 

procedure of worms and thus, we assume all events (worm infection, user checking email, 

user clicking website, etc.) happen right at each discrete time tick. Once a host is infected, it 

immediately sends out malicious messages to its neighbors at time tick t and the messages 

could be read by its recipients as soon as the next time tick, t+1. Therefore, the propagation 

time of topology-based worms in the proposed model is equivalent to be presented by the 

number of intermediate users in the propagation path from initially infectious users to the 

current infected user.  
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For email worms, if user i checks email at time t, the user checks all new email received 

after his or her last email checking. When a worm email is opened, user i is infected and the 

worm will send a worm email to all neighbors of the user. These worm emails are read at the 

next time tick. Thus, the time of a current infected user j being infected by user i is 

represented by the hops from user i to user j.     

5.3.4 Propagation Source Vector (S) 

In a network, a propagation source is one of the significant factors for worm propagation, 

which represents whether the state of the node has been infected or not. An initial 

propagation source vector (S) is defined as shown in (5.5). An infectious node that can 

propagate worms is represented with a probability of one. Zero means that a node is healthy 

and does not have the ability to propagate the worm. 
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The iterated procedure can be represented as function γs in (5.6):  
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We define &L the same as in formula (3.7) in Chapter 3.  During the propagation process, 

each intermediate node can be infected and become infectious. We introduce an infected 

probability vector I, as shown in (5.7): 
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Is
 (k)

 reflects the infected possibility of each node after a worm‟s propagation via k 

intermediate nodes under a certain deployment of S. The P can be represented by the 
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following equation when a worm‟s propagation is via and only via k intermediate nodes, as in 

(5.8):  
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5.3.5 Patch Strategy Vector (Q)  

A patch strategy is another important factor for the propagation of topology-based worms, 

which provides an approach to cure infected nodes. An infected node can be cured so it is 

unable to spread worms to other nodes. Therefore, we need to remove these nodes from the 

propagation process at that time. We define a patch vector Q in (5.9). For each element in Q, 

the value of one represents that a node has been patched and becomes a healthy node. A value 

of zero indicates that a node is still vulnerable. 
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Once the nodes have been patched, they will be immune to the worms and lose their 

infectious ability. Thus, we should exclude these patched nodes in the matrix for the 

successive iteration. The iterated procedure can be represented as function γsq shown in (5.10):  
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We define &R the same as formula (3.13) in Chapter 3. After considering the Q, the P and 

infected probability vector I can be represented by the following equations respectively when 

the worm propagates via and only via k intermediate nodes, as shown in (5.11):  
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5.3.6 Accumulative Infected State (AI) 

We introduce an infected probability vector I for evaluating the infected capability of each 

node in the network, as shown in (5.12):   
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where K means the maximum number of intermediate nodes when no nodes can become 

infectious.  

In consideration of more than one path for the propagating worm, we adopt an 

accumulative infected state (AI) to represent the sum of probabilities for the worm 

propagation via at most k intermediate nodes. It is defined in (5.13).  
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5.4 Model Analysis  

5.4.1 The Experimental Environment  

Our implementation is in Visual C++ 2008 SP1 and Matlab 7. The random numbers in our 

experiments are produced by the C++ TR1 library extensions. In order to show these results 

clearly, we choose reasonable network sizes (5000 nodes) and examine these under different 

scenarios.  

In our experiments, we use a typical topology-based worm on the basis of email worms to 

investigate the propagation procedure. The topology of an email network has been studied by 
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many researchers [6, 62] because it plays a critical role in determining the propagation 

dynamics of an email worm. According to the analysis in [6, 33, 62], the topology mainly has 

the characters: 1) the topology can be thought of as a “semi-directed network”, a graph in 

which some edges are directed and others are undirected; 2) users who have large groups of 

friends tend to appear in the contact lists of many others; 3) the weight of each edge denotes 

the probability of a user being infected by one of their friends. This probability is strongly 

affected by human factor. Therefore, we let the topology of the network in the experiments 

follow Power Law Distribution, namely nodes with the higher value of topology out-degree 

are the minority, most nodes having a lower value of topology out-degree. We assume 

checking probability of email follows the Gaussian Distribution T~N (0.5, 0.2
2
).  

5.4.1.1 Power-law Network Generator 

The Power Law Topology can be characterized by the following equations, as shown in 

(5.14). We assume P(x) follows power law distribution. 
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where x0 and x1 represent the minimum topology out-degree and maximum topology out-

degree respectively, n is the power law exponent, and C is a constant.  In order to make sure 

the topology of networks follows power law distribution, we deduct the out-degree of each 

node by the following equations, as shown in (5.15) and (5.16). Firstly, we assume y is a 

uniformly distributed variant on [0, 1]: 
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Then, according to the (21), we can derive the out-degree x of each node that follows 

power law distribution strictly from the following equation: 
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Finally, once the power law exponent n is determined, given x0 , x1 and a uniformly 

distributed variant y, the out-degree of each node in  the network can be worked out, which 

models the Internet email network followed the power law topology distribution. 

5.4.1.2 Effect of Power Law Exponent n 

The power law exponent n is an important parameter for a power law topology. Combining 

with the minimum and the maximum topology out-degree, it limits the expected value of 

topology out-degree [26], as shown in (5.17).  
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where E(d) stands for expected value of topology out-degree. 

In a real Internet email network, the true value of n is variable. In order to observe how the 

power law exponent n affects the power law topology, we compare the changes of E(d) under  

a different value of n. In a real scenario, a key user has some possibility to connect all other 

users. According to the different topology, the value of out-degree is contingent. In our 

experiment, we assume the minimum topology out-degree x0 is equal to 3, the maximum 

topology out-degree increases from 100 to 550 with step size 50. We believe the range of 100 

to 550 is a reasonable area. The result is shown in Fig. 5.1, which reveals that a larger 

maximum topology out-degree requires a larger power law exponent n, and that a larger 

expected value of topology out-degree demands a smaller power law degree. 
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5.4.2 Effect of the Propagation Source Vector 

In this subsection, we assume all nodes in the network are vulnerable and no nodes have 

been patched. Since an email worm‟s propagation depends on a different topology of the 

network and has a close relation with the out-degree of initially infectious sources, we 

arrange a group of scenarios with practical meaning in Table 5.1 to describe the worm‟s 

spreading under different origins of worms. The results are represented by the maxima and 

the minima of the value of infected probability:  AI(Max), AI(Min). 
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 Figure 5.1: Power law exponent n 
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5.4.2.1 Scenario 1 

We consider two cases: in the first case we select the node with the highest out-degree as 

an initially infectious node, while in the second case the initially infectious node has the 

lowest degree. We fix the number of initially infectious nodes to be one in both cases. Both 

power law networks have the same nodes and a power law exponent of α=2.2, which 

represents a sparse connection. From Table 5.2 and Fig. 5.2, AI declines sharply at the 

beginning stage in both cases, then AI increases continuously when more intermediate nodes 

become involved, and finally achieves the maxima. When the average out-degree increases, 

AI in both cases goes up. The maxima and minima of AI in the first case are larger than in the 

second case.  

Table 5.1 Scenarios for Analyzing Infectious Source (S) in Email Worms 

Scenario Description Practical Meaning 

1 

In a low expected out-degree 

network, the initial infectious node 

has the highest degree or has the 

lowest degree in the topology. 

Analyzing the impact of initially 

infectious sources located in the key 

user or normal user on the Email 

worm‟s propagation in a sparsely 

connected Email Community. 

2 

In a high expected out-degree 

network, the initial infectious node 

has the highest degree or has the 

lowest degree in the topology. 

Analyzing the impact of initially 

infectious sources located in the key 

user or normal user on the Email 

worm‟s propagation in a densely 

connected Email Community. 

 

Table 5.2 Scenario 1: A list of AI (α = 2.2) 

Max 

(OD) 

Average 

(OD) 

Infected Probability 

AI(maxOD) AI(minOD) 

Minima Maxima Minima Maxima 

100 8.04 0.2450 0.9408 0.1138 0.9270 

200 8.93 0.3215 0.9601 0.1201 0.9488 

300 9.41 0.3263 0.9649 0.1287 0.9558 

400 9.73 0.3585 0.9711 0.1575 0.9603 

500 9.96 0.3912 0.9766 0.1585 0.9667 

  OD: the value of out-degree 
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Analysis: 

At the beginning the infected probability declines sharply because the infected probability 

of a node is smaller than when it is directly infected. However, when some intermediate 

nodes with high out-degree are involved, a large number of nodes are infected quickly, which 

results in the AI increasing continuously. The AI will increase if the maximum out-degree 

increases, meanwhile the number of intermediate nodes decreases meaning more nodes can 

possibly be infected via less intermediate nodes when the network has a high average out-

degree. From Table 5.2, we also observe that when the initially infectious node has a higher 

out-degree, the infected probability of nodes will be larger than the node that has a lower out-

degree. This shows that a worm‟s propagation can be effectively prevented if we immunize 

the infected nodes with a higher out-degree.  

5.4.2.2 Scenario 2 

Similar to scenario1, we consider the initially infectious node has the highest out-degree 

(the first case), and it has the lowest degree (the second case). In both cases, the number of 
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 Figure 5.2: Propagation probability in scenario 1 
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initially infectious nodes is one. Both power law networks have the same nodes (5000 nodes) 

and a power law exponent of α=1.6, which represents a dense connection.  From Table 5.3, 

we observe that the change of AI is similar to Scenario 1.  

Analysis: 

Scenario1 and 2 discuss the infected probability of nodes (AI) when worms propagate in 

different connection densities. Compared with scenario1, the AI in scenario 2 is larger. This 

means when worms propagate in a densely connected network, more nodes can be infected 

than worms spread in a sparsely connected network no matter if the initially infectious node 

has the highest or the lowest out-degree. Moreover, regardless of connection densities, more 

nodes can possibly be infected if the initially infectious node has a higher out-degree. 

Therefore, in a densely connected network, if the highly-connected infectious node is 

immunized, the worm spread will slow obviously. 

5.4.2.3 Inspiration for Developing the Patch Strategy 

The two different cases indicate whether the node is a key user or a normal user. The two 

different scenarios show the connection densities of the network. In practice, a key user has a 

larger email list than a normal user. If the key user, especially in a highly-connected network, 

is compromised by malicious email worms, more normal users will be infected when they 

Table 5.3 Scenario 2: A list of the AI (α = 1.6) 

Max 

(OD) 

Average 

(OD) 

Infected Probability 

AI(maxOD) AI(minOD) 

Minima Maxima Minima Maxima 

100 14.33 0.3039 0.9431 0.1218 0.9289 

200 19.42 0.3466 0.9700 0. 1564 0.9616 

300 23.16 0.4139 0.9711 0.1632 0.9617 

400 26.22 0.4720 0.9741 0.2685 0.9660 

500 28.86 0.5366 0.9842 0.3204 0.9700 

 OD: the value of out-degree  
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open email attachments from the key user. Therefore, email worm‟s propagation can be 

effectively prevented or slowed down when key users can be immunized regularly. 

5.4.3 Effect of the Patch Strategy Vector 

In this subsection, we analyze the effect of Q, which is used to immunize the small subset 

nodes for preventing the propagation of worms effectively. The results are represented by the 

accumulative infected probability AI. In order to observe how the patch strategy impacts the 

worm‟s propagation, we consider two different immunization defense methods. In the first 

case, we randomly deploy 5% of nodes to patch, while in the second case we patch the 5% of 

highly-connected nodes in the network.  In both cases, the number of initially infectious 

nodes is one. Both power law networks have the same nodes and a power law exponent of 

α=2.2. The network has an average out-degree of 8. From Fig. 5.3, the curve of the selective 

patch strategy is obviously lower than the random patch strategy. However, the AI after 

random patching nodes is similar to no immunization. 

Analysis: 
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 Figure 5.3: Patching strategy in email worms 
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According to Fig. 5.3, we can observe that patching highly-connected nodes is a quite 

effective strategy to slow down the propagation of email worm. However, if we randomly 

select nodes to immunize, there is a high chance of choosing the nodes with a lower out-

degree in a power law network, which results in a small group of nodes avoiding infection 

during worm‟s propagation. Thus, the effect of random patching is not obvious as email 

worms spread by relying on the underlying connectivity between each pair of nodes. 

5.5 Propagation Errors 

Currently, a variety of models have been proposed for modeling the propagation 

mechanism. A common feature of all current epidemic models [2, 5-10, 15, 23-26, 60, 63] is 

to estimate or predict the number of infected nodes in each time tick, and then the node will 

be counted as long as it is infected. An infectious node can spread worms via some 

intermediate nodes to itself again, which forms a propagation cycle in the spreading 

procedure. However, some worms, such as Melissa and Love Letter, belong to the non-

reinfection class of worms. These types of worms can be infected only once. Consequently, 

propagation errors, and an overestimation of the scale of the infected network, cannot be 

avoided by previous research if a node is infected more than once.   

A possible reason for the above overestimation may be rooted in the failure of considering 

the dynamic spreading procedure between each pair of nodes. Most current models pay 

attention to analyze the overall scale of the infected network, and do not investigate the 

concealed errors between each pair of nodes. Although [57] identified that an email network 

contains cycles, it only considered the topology of the email network as a tree structure. It did 

not discuss the errors caused by a process of self-infection through other nodes, called 

propagation cycles. Based on our knowledge, few models currently aim to eliminate errors. 
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Both macroscopic and microcosmic worm propagation models can encounter the problem of 

propagation cycles. Thus, we introduce an error calibration vector in the proposed 

microcosmic model to eliminate errors caused by propagation cycles. 

In this subsection, we use the revised microcosmic propagation model to efficiently prove 

the existence of propagation cycles and consequentially, the propagation errors caused by 

them. We discuss the negative effects of the errors and propose a method to remove it by 

using our formulized definition. Validation against conducted simulation experiments reveals 

that our analysis of errors helps correctly estimate the worm‟s spreading.  

Preparation: 

To evaluate the propagation errors caused by cycles, we introduce an error calibration 

vector E when there are k intermediate nodes, as shown in (5.18). 
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In the real word, the propagation of email worms is related to the topology of a network 

and the probability of opening an email. We assume the network topology follows a power 

law distribution and the probability of checking an email (C) follows a Gaussian distribution: 

C~N (0.5, 0.2
2
). Therefore, the propagation errors of non-reinfection email worms can be 

defined by (5.19)  
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where k is the number of intermediate nodes. csx
 (k-j-1)

 is the propagation probability from node 

s to node x via (k-j-1) intermediate nodes. cxx
(j)

 is the propagation probability from node x to 

node x via j intermediate nodes. 
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We conducted a simulation with a power law exponent of α=2.2. The highest out-degree of 

this network was 100 and the lowest out-degree was 3. We arranged the initially infectious 

node to have the highest and the lowest out-degree in alternate scenarios. 

Analysis: 

In Fig. 5.4(a), if the initially infectious node has the highest out-degree, errors occur when 

the worm‟s propagation is via two intermediate nodes and reaches 100% when the number of 

intermediate nodes is 11. If the initially infectious node has the lowest out-degree, the errors 
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Figure 5.4: Errors analysis of non-reinfection email worms 
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occur when the worm‟s propagation is via four intermediate nodes and reaches 100% when 

the number of intermediate nodes is 13. The propagation errors continuously increase in 

relation to the increased possibility of cycles forming when more intermediate nodes are 

involved. Since a node can be infected only once, when all nodes in the network have been 

infected, the 100% probability of nodes infecting other nodes is caused by errors only. 

Fig. 5.4(b) shows the infected probability of nodes after the removal of errors when the 

worm‟s propagation is via some intermediate nodes.  Because the infected probability of a 

node is smaller than when it is infected directly, at the beginning the infected probability 

declines sharply. However, when some intermediate nodes with high out-degree are involved, 

a large number of nodes are infected quickly, which results in the infected probability and the 

errors of nodes continuously increasing. When most nodes have been infected, the infected 

probability of nodes tends to be zero after eliminating the errors. 

From Fig. 5.4, when the scale of the infected network increases, the errors will 

significantly mislead the analysis. Through the inspection of these errors, however, we can 

eliminate this negative effect. The errors can be subtracted by formula (5.19) for email worms. 

After the scale of the infected network reaches a peak, the infected probability of nodes 

declines sharply which limits the infected scale extending infinitely. 

5.6 Summary 

This chapter presented a novel process modeling the propagation of topology-based worms 

by concentrating on the propagation probability. In order to understand the propagation 

procedure, we used a typical topology-based worm, an email worm, as an example to 

investigate how a worm spreads from one node to another node through a group of 

intermediate nodes. According to the email user‟s behavior, such as checking email 
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probability, we examined the propagation source and patch strategy vector for investigating a 

more effective patch strategy for preventing worms from spreading. We found that for a 

power law network, a more effective patch strategy against an email worm‟s propagation is to 

immunize the most-connected nodes. 

We also analyzed the formation of propagation errors and examined the impact of 

eliminating errors on the propagation procedure of email worms. Through the use of 

simulations, we have shown that errors increase as more propagation cycles are formed and 

we quantified the errors under different propagation scenarios. This work is helpful in the 

accurate analysis of worm spreading.  
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Chapter 6  

Modeling Propagation Dynamics of Email 

Worms  

As one of the major forms of worms, email worms pose a critical security threat to the 

Internet. This is because an email worm sends itself to the email addresses found on an 

infected computer and email recipients often trust the emails received, especially from their 

friends. Almost everyone uses an email service and thus, the propagation of email worms can 

be incredibly fast and cause significant damage. Modern email worms are more sophisticate 

and intelligent. For example, reinfection email worms will send malicious copies every time 

the user opens the worm email and self-start reinfection email worms can be triggered by 

specific events and the system restart process. The proposed microcosmic worm propagation 

model in Chapter 3 may not simulate the propagation procedure accurately. In this chapter, 

we present an analytical model on the propagation dynamics of email worms. Our model 

distinguishes itself from previous models because: 1) we extensively investigate classes of 

real-world worms based on their infection strategies, including non-reinfection, reinfection, 

and modern self-start reinfection categories; 2) we investigate the details of the propagation 

mechanisms by examining the individual steps and state transitions. Our model can provide 
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an accurate representation of the propagation of worms with different checking time of 

mailboxes from users; 3) our model reflects the repetitious email sending process in 

reinfection and self-start reinfection worms. To highlight the advantage of our analytical 

model, we implement a series of experiments. The results show that our modeling is accurate 

and can aid a better and more realistic understanding of the propagation of worms. This has 

benefits for devising new tactics against email worms. 

6.1 Introduction 

For a number of years, the propagation of email worms has followed the same modus 

operandi; a worm email is sent to victims which looks legitimate. The email appears as 

though it was sent by somebody the recipient trusts and the subject matter will often be 

related to the recipient's area of business. Once the victim is fooled into either clicking a 

malicious link or opening a malicious attachment, the victim's PC will be infected and start to 

search for local information, such as an email address book, in order to discover the 

communication topology of the network and infect new targets. From Melissa in 1999, Love 

Letter in 2000, Mydoom in 2004 and W32.Imsolk in 2010, we have witnessed the prevalence 

of email worms and as a consequence, the damage to the Internet. According to the Symantec 

Internet Security Threat Report [59], in the last two years email worms or resembling attacks 

accounted for 1/4 of the total threats in 2009 and nearly 1/5 of the total threats in 2010.  

Although worm propagation through email is an old technique, it is still worthy of further 

study. Firstly, email worms would not have been successful without convincing users that the 

links and attachments they received in an email were from a trusted source. Unfortunately, 

however, most of the email recipients have little security awareness since they always trust 

emails, especially from their friends. Currently, almost everyone using a computer uses an 
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email service, which means the potential damage from email worms is likely to continue in 

the future. Thus, it is of significant importance to investigate email worms and how they 

propagate. Secondly, email worms collect information on the communication of victims. This 

mechanism is similar to certain types of worms like Koobface [27] spreading on social 

networks or Commwarrior [85] propagating through a multimedia messaging service or 

through Bluetooth of mobile devices. The research on the propagation of email worms can 

help us characterize the propagation dynamics of those isomorphic worms. 

In this model, real-world email worms are classified into the following categories based on 

their infection strategies: 

 Non-Reinfection: Non-reinfection means each infected user sends out worm copies 

only once, after which the user will not send any further worm emails, even if he 

opens a worm attachment again. Non-reinfection worms mainly appear in the early 

worm cases, such as Melissa [70] and Love Letter [71]. 

 Reinfection: Reinfection means that an email user will send out worm email copies 

whenever he opens an email worm attachment. Reinfection greatly accelerates the 

spreading speed. 

 Self-start Reinfection: Evolving from reinfection, modern email worms modify the 

registry entries and can be triggered whenever the computer is restarted or certain 

files are opened, such as opening an image file like Mydoom [72] and W32.Imsolk 

[58]. 

In order to understand and possibly address defense strategies against email worms, it is 

important to analyze the propagation of worms. Previous work has adopted the classical 

simple epidemic model [34, 53-55] and the spatial-temporal model [32]. Recently, in order to 

focus on realistic scenarios of email worm propagation, researchers [6] have relied on 
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simulation modeling rather than on mathematical analysis. The difficulty of mathematical 

modeling lies in two aspects. Firstly, each user has their own habits of checking emails. It is 

really hard to characterize the propagation dynamics with different mailbox checking time 

between email users in a large scale network. Secondly, modern email worms belong to 

reinfection or self-start reinfection worms. This means it is difficult to model the repetitious 

email sending process. 

There are only a few email worms that attack client-side vulnerabilities in email agents and 

can infect computers by simply being read by users (with no attachments) [6]. In order to 

understand how worms propagate by email, we focus exclusively on those that propagate 

solely through email attachments. To facilitate an understanding of the following, if not 

otherwise stated, a user reading an email means opening email attachments. The motivation 

and contributions of our research are summarized as follows. 

 We derive an accurate propagation model of email worms by observing the spreading 

procedure from an analytical point of view. We examine the individual spreading 

steps and every state transition on each node in the network so that our analytical 

model can reflect the propagation dynamics with the different mailbox checking 

habits of users (see Section 6.3). 

 Zou et al. have mentioned a noticeable overestimation [6] in the early topological 

epidemic models [34, 53-55] and presented a comprehensive simulation analysis on 

the propagation of email worms, which has been referred to in many papers since 

2007 without its accuracy being questioned. However, as we show in Section 6.5.2, 

their simulation model still poorly estimates the spreading speed of email worms 

due to their assumption regarding repetitive infectious behavior. We propose the 

concept of virtual users to represent the process of sending repetitive emails so that 

our analytical model can accurately reflect the propagation of reinfection worms. 
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 We carry out extensive studies on realistic email worms. Our contributions are made 

as follows: 

− As the authors in [74] stated, neither reinfection nor non-reinfection is very 

realistic. Indeed, according to various security reports like [59], most 

modern email worms that are exposed belong to the more sophisticated self-

start reinfection category and use every opportunity to spread. Different 

from previous works, our model analyzes these types of email worms (see 

Section 6.6). 

− We gain insight into the trust levels among email users. In Section 6.3.1, we 

use a propagation matrix to present the pair-wise information between email 

users. Each email user has different trust levels among their friends, as 

opposed to a constant [6, 34, 53-55]. 

− We prove the exponential increase in the number of received reinfection 

worm emails without considering user awareness (see Section 6.5.2). 

Actually, real-world email recipients may become watchful after receiving a 

number of emails that excessively exceeds the number they would normally 

receive. 

The remainder of this chapter is structured as follows. In Section 6.2, we introduce related 

work. A basic analytical model is presented in Section 6.3. In section 6.4, 6.5 and 6.6, we 

model the propagation of non-reinfection, reinfection and self-start reinfection email worms 

respectively. We conclude this chapter in Section 6.7 with a brief summary and an outline of 

future work. 
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6.2 Related Work 

Early research on email worm modeling mainly refers to academic thought on epidemic 

propagation [34, 53-55]. Distinguished by whether infected users can become susceptible 

again after recovery, these models can be classified into Susceptible-Infectious-Susceptible 

(SIS) models [18, 53, 74-77] and Susceptible-Infectious-Recovered (SIR) models [34, 53-54, 

73]. If no infected users can recover after a worm attack, it is also called the Susceptible-

Infectious (SI) model [6, 20-21]. Satorras and Vespignani [53] presented a differential 

equation for their SIS model by differentiating the infection dynamics of nodes with different 

degrees. Later, Moreno et al. [54-55] and Boguna et al. [34] provided a differential equation 

SIR model to study the dynamics of epidemic spreading on topological networks. As shown 

in Zou et al. work [6], such differential equations significantly overestimate the epidemic 

spreading speed due to their implicit homogeneous mixing assumption. In actual fact, the 

spreading of email worms is directly related to network topology. In our work, we avoid 

traditional overestimation problems (homogenous mixing) by examining the individual 

spreading steps and state transitions on each node in the network (see Section 6.3.2).  

Zou et al. [6] also presented a simulation model on the propagation of email worms. Their 

paper demonstrates a fairly comprehensive analysis on the impact of various parameters, 

different topologies and selective percolation. However, some assumptions are not realistic. 

For example, the authors believe that just one malicious email copy will be sent to recipients 

even if an infected user checks multiple emails containing worms. In fact, only one malicious 

copy is sent whenever the infected user opens a reinfection worm email. We analyze and 

discuss these problems in Section 6.3.2 and Section 6.4.  

In the work of Chen and Ji [32], a spatial-temporal random process was used to describe 

the statistical dependence of malware propagation in arbitrary topologies. However, there are 
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also some weak assumptions made. Firstly, [32] uses a SIS model, even though infected users 

are not likely to be infected again after they clean their computers by patching vulnerabilities 

or updating anti-virus software. Secondly, their model assumes that an infected computer 

cannot be reinfected. As we stated above, recent email worms are apt to reinfect users, which 

are far more aggressive in spreading throughout the network. Thirdly, the authors ignore an 

important human behavior; the email checking time, which has been proven to greatly affect 

the propagation of email worms. In this chapter, we also discuss the spatial and temporal 

processes in the propagation of worms, but we extend this and focus on more realistic 

reinfection email worms. Moreover, we synchronize the worms spreading time between 

nodes because of their different email checking time.  

In recent years, there has also been some research on the propagation of isomorphic 

worms, such as Bluetooth worms, p2p worms [18-19], and worms on social networks [20]. 

Yan and Eidenbenz [21] presented a detailed analytical model that characterizes the 

propagation dynamics of Bluetooth worms. It captures not only the behavior of the Bluetooth 

protocol but also the impact of mobility patterns on the propagation of Bluetooth worms. 

However, all individual Bluetooth devices are homogeneously mixed, which overlooks the 

significant impact of topology. Fan and Xiang [19] used an ideal logic matrix to model the 

peer-to-peer propagation of worms. But in reality, their logic matrix is weak regarding an 

email resembling network because the weight of each link is a probability value ranging from 

zero to one instead of constant zero or one. Fan and Yeung [20] proposed a virus propagation 

model based on the application network of Facebook, which is the most popular among social 

network service providers. The difference between email worms and Facebook worms, as the 

authors highlight, is that people only check if there are any new emails and then log out while 

they spend more time on Facebook. Despite various differences among email worms and 
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other isomorphic worms, the manner in which they are spread is similar. Our work, therefore, 

can help create a better understanding of such models. 

There is another type of worm which propagates through the vulnerabilities in the entire IP 

space [36, 78-79]. However, this propagation is unrelated to topology information and is 

already beyond the scope of this chapter. Our major focus is to understand the complex 

propagation dynamics of email worms, and thus, we focus solely on SI models and do not 

consider the recovery process.  

6.3 Generality of the Propagation Model  

6.3.1 Propagation Parameters 

6.3.1.1 Node Status X(t) 

Each node in the network has two different states: „healthy‟ and „infected‟. „Healthy‟ 

means the node is still susceptible and „infected‟ means the node has been infected by email 

worms. We draw a basic state transition graph of an email user in Fig. 6.1(a). Moreover, an 

infected node sends out malicious emails at the precise moment when a user opens the worm 

email. Later, the node remains infected yet dormant until the process of disseminating 

malicious emails is triggered again. To facilitate the description, we set „infected‟ as having 

two sub-states in terms of „active‟ and „inactive‟ respectively to denote an infected computer 

being at the stage of disseminating infectious emails or staying dormant. Let random variable 

Xi(t) denote the status of a network node i at discrete time tick t, so we have  

 

0 healthy

1.1 active
1 infected

1.2 inactive

iX t




 



             (6.1) 
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Our model consists of the propagation process at each discrete time tick. Each time tick t 

can represent an arbitrary time interval in the real world, such as one minute, ten minutes, or 

even one hour. Thus, the absolute time tick value used in a discrete-time model does not 

matter, such as the mean value E[CTi]=40 used in our model. On the other hand, since all 

events are assumed to happen right at discrete time ticks, a discrete-time model would be 

more accurate if a discrete time tick represents a shorter time interval. The expected number 

of infected nodes at time t, n(t), can be easily computed from P(Xi(t))=1. 

        
1 1 1

1
M M M

i i i

i i i

n t E X t E X t P X t
  

 
       

 
              (6.2) 
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Figure 6.1:  State transition graphs of an email user. 
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6.3.1.2 Email Checking Time (CT) 

The infection time includes network latency from node i sending a malicious email to node 

j, and an email checking time delay which is the time when a user opens a malicious email. 

Compared with time costs of checking an email, network latency can be ignored. In this 

chapter, we assume a worm copy is sent at time t and it will appear directly in the receiver‟s 

mailbox next time tick t+1. In fact, the email checking time of a user is a stochastic variable 

determined by the user's habits. For example, some users check email once every morning. 

Some users use email client programs to fetch and check email at a specified time interval or 

at a random time. We use CTi to denote the average email checking time period of node i. 

Each user i will check and read emails with their own CTi. We use a random variable openi(t) 

to indicate the event of user i to check their mailbox at time t, as in 

 
0 user i does not check mailbox at time t

1 user i checks mailbox at time t
iopen t


 


           (6.3) 

To facilitate the description, we introduce G(i, t) to indicate whether user i checks their 

mailbox at time t or not. This can help synchronize propagation dynamics between the nodes 

in the network, as in 

 
0 otherwise

,
1 t mod CT 0i

G i t


 


               (6.4) 

When G(i, t) is equal to one, user i is checking their mailbox. Therefore, we have the 

expression:  

    1 ,iP open t G i t                    (6.5) 
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6.3.1.3 Self-Start Time (RT) 

Currently, certain email worms, such as Win32/Mydoom and Win32.Imsolk, register 

themselves in start-up services and spread at every opportunity, and do not solely rely on a 

user opening emails. This kind of worm will automatically send out malicious copies once 

the system starts or when specific events are triggered. In this chapter, we employ RTi to 

represent the average self-start period of user i. Similar to the definition of email checking 

time CT, we also use the random variable starti(t) to indicate the „self-start‟ event in user i‟s 

computer at time t, as in 

 
0 system i does not start up at time t

1 system i start up at time t
istart t


 


             (6.6) 

We also introduce Q(i, t) to indicate whether the infected computer will send out malicious 

emails by the self-start process at time t or not, as in 

 
0 otherwise

,
1 t mod RT 0i

Q i t


 


                 (6.7) 

Similarly, we have the expression:  

    1 ,iP start t Q i t                             (6.8)  

6.3.1.4 Propagation Matrix (P) 

Whether or not a computer can be infected by worm emails is determined by human 

factors, such as the user's personal habits of checking emails and their security consciousness. 

In our analytical model, we propose employing an M by M square matrix P with elements pij 

to describe a network consisting of M nodes, wherein pij represents the propagation 

probability of the worm spreading from user i to user j. Specifically, when the value of pij is 

not equal to zero, it means the probability that user j is infected by opening malicious emails 
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received from user i. Otherwise, when pij is equal to zero, it means there is no contact 

between user j and user i. Thus, matrix M also reflects the topology of an email network. We 

call this matrix the propagation matrix P of a network, as in 

11 ... ...

... ... [0,1]

... ...

ij ij

MM M M

p

P p p

p


 
 

  
 
 

                (6.9) 

If user i is susceptible, it can be compromised by any of its infected neighbors once this 

user opens a worm email. As shown in Fig. 6.1(b), for non-reinfection email worms, user i is 

susceptible only when this user is at a healthy stage. We have:  

 ( ) 1.1| ( 1) 1.1, ( 1) 0, ( ) 1j i j j ijP X t X t X t open t p                               (6.10) 

However, as shown in Fig. 6.1(c), for reinfection email worms, user i is susceptible, not 

only at healthy but also at an active and inactive state. In addition to (6.11), we have:  

 ( ) 1.1| ( 1) 1.1, ( 1) 1, ( ) 1j i j j ijP X t X t X t open t p                                       (6.11) 

Moreover, as shown in Fig. 6.1(d), similar to reinfection worms, self-start reinfection email 

worms can drive an infected user to the „active‟ state when the user restarts the computer or a 

specific event is triggered. Thus, in addition to (6.10) and (6.11), the propagation probability 

from user i to user j by worm emails but not the self-start process is as follows: 

 ( ) 1.1| ( 1) 1.1, ( 1) 0, ( ) 1j i j j ijP X t X t start t open t p                           (6.12)  

6.3.2 Basic Analytical Model of the Propagation of Email Worms 

According to (6.2), the expected number of infected users is ascribed to the sum of 

probability of being infected for each node in the network. Therefore, the following 
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discussion will be based on how to compute the probability of being infected for each node. 

The procedure of infection for each node can be expressed by a state-transition graph as 

shown in Fig. 6.1. When a healthy but susceptible user opens a worm email, it is infected 

immediately and the worm begins to search the local email contact book to send malicious 

copies. In this phase, this infected user is at the stage of „active‟. After this infected user 

sends out email copies to their friends, it transfers to the next step definitely, called the 

„inactive‟ state, which means the node will not spread worms even if this infected user opens 

malicious copies again. We then have the following computation for the infected probability 

of each node at time t: 

       
      

321

0)1(0)1(|1.1)(1)1(1)(

f

i

f

ii

f

ii tXPtXtXPtXPtXP 
 
      (6.13) 

In (6.13), f1 and f3 can be iterated by difference equations. The problem becomes how to 

compute f2. To facilitate the description, we use v(i,t) to represent f2. It indicates user i is 

healthy at time t-1, but is infected at time t. If user i does not open worm emails at time t, 

v(i,t) is equal to zero. Therefore, we have: 

   

 

impossible event

( , )

( ) 1.1, ( ) 0 | ( 1) 0 ( ) 1.1, ( ) 1| ( 1) 0

( ) 1.1, ( ) 1| ( 1) 0

i i i i i i

i i i

v i t

P X t open t X t P X t open t X t

P X t open t X t

         

    

  (6.14) 

There is no relation between a user i opening a worm email at time t and whether this user 

is infected or not at time t-1. Therefore, the random events Xi(t-1) and openi(t) are 

independent. According to the theorem 1, we can compute v(i,t) as follows: 

 

 

( , )

( ) 1.1| ( 1) 0, ( ) 1 ( ( ) 1)

( ) 1.1| ( 1) 0, ( ) 1 ( , )

i i i i

i i i

v i t

P X t X t open t P open t

P X t X t open t G i t

     

    
   

                              (6.15) 
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Theorem 1: we assume there are three arbitrary random variables: A, B, C. When B and C are 

independent, we have P(AB|C)=P(A|BC)P(B). 

Proof: 

            

     

left

right

P ABC P C P ABC P B P B P C

P ABC P B P BC

 

 
                    

In the real world, users will check and read emails according to their own personal habits. 

Once users read malicious emails, worm copies are then sent out. In this chapter, we assume 

email users check their mailbox periodically. Thus, malicious emails in a user‟s mailbox may 

arrive at different times, though they will be read at the same time when the user visits their 

mailbox. We introduce t’ to indicate an arbitrary time within a time period between when a 

user last checks their email and the current time t (excluding time t). It is significant to 

ascertain the number of unread emails after a user last checks their emails. We then have (as 

shown in Fig. 6.2):  

 

' if G(i,t)=1

 mod ' otherwise

i

i

t CT t t

t t CT t t

  

  

                                                  (6.16) 

In  (6.15), we use s(i,t) to represent P(Xi(t)=1.1|Xi(t-1)=0, openi(t)=1). Different from v(i,t), 

this indicates the probability of user i being healthy at time t-1 but infected at time t under the 

condition that the user opens the mailbox at time t. Let Ni denote all neighbors of node i, Ni = 

{j|pij≠0, ∀j}. The malicious emails in a user‟s mailbox come from neighbors Ni. As a result, 

we have the following computation:  

 

        
        

        
impossible event

,

1.1, ' 1.1 1 0, 1

1.1, ' 1.1 1 0, 1

1.1, ' 1.1 1 0, 1

i i j i i

i i j i i

i i j i i

s i t

P X t j N X t X t open t

P X t j N X t X t open t

P X t j N X t X t open t

        

      

       

                  (6.17) 
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If user i receives worm emails from its neighbors, then the probability for user i to be infected 

is as follows:  

 

        

, 1

1 1.1, ' 1.1 1 0, 1
i

i j i i

j N

s i t

P X t X t X t open t


 

      
 

                  (6.18) 

In (6.18), the events Xj(t’)=1.1 and Xi(t-1)=0 are dependent [32]. According to our 

investigation [80], the dependence of the above events is mainly caused by the cycles in the 

propagation procedure. However, it is really a challenge to estimate the effect of this 

dependence. The conditional probability P(Xj(t’)=1.1|Xi(t-1)=0) is computationally too 

expensive to obtain, especially when the size of a neighborhood is large. In paper [32], the 

authors use two approximations for modeling a worm‟s propagation. Readers can find 

extensive discussion in [32, 80]. In this chapter, we use the simple approximation from [32] 

and consider they are independent. We then have:  

1

( , )

1 1 ( ( ) 1.1 ( ') 1.1, ( 1) 0,

( ) 1) ( ( ') 1.1)

1 [1 ( ( ') 1.1)]

i

i

i j i

j N

i j

ji j

j N
f

s i t

P X t X t X t

open t P X t

p P X t





      

  

   





                              (6.19) 

In this section, we have elaborated a basic propagation modeling mechanism. By using 

difference equations to iterate function s(i,t), we are able to estimate the number of infected 

CTi

range of t’

tt-(t mod CTi)

(b)

CTi

range of t’

tt-CTi

(a)

 
Figure 6.2: Different cases of the parameter t’. 
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nodes in the network at time t. In the following sections, we will derive the computation of f1 

of (6.19) in different cases respectively, because it has different values by different kinds of 

email worms. 

6.4 Modeling of Non-reinfection Email Worms   

6.4.1 How Non-reinfection Worms Work  

Non-reinfection email worms usually appear early on. The state transition graph of an 

email user is shown in Fig. 6.1(b). For each „active‟ user, he sends out one malicious copy 

only once even if worm emails are checked several times. Subsequently, the infected user 

becomes „inactive‟ and stays dormant during propagation.  

A healthy email user will be infected only when its neighbors are in the active stage. In Fig. 

6.3, we set up a simple example of non-reinfection worms spreading in three time ticks. User 

1, 2 and 3 are a victim‟s neighbors. In Fig. 6.3(a), user 1 and user 2 check their mailboxes and 

are infected. 

At the same time, two malicious copies are sent to the victim. This process happens at the 

time t-2. In Fig. 6.3(b-1), user 3 checks their mailbox and reads both emails. As a result, a 

copy of the worm is sent to the victim at time t-1. At this time, there are already two worm 

copies in the victim‟s mailbox. Then, in Fig. 6.3(c-1), the victim receives a total of three 

worm copies from their neighbors at time t. 

By investigating the above scenario, we derive the spreading nature of non-reinfection 

email worms: 1) an infected email user has and only has one chance to spread worm copies in 

an active state; 2) once being infected, an email user will send out just one copy to their 

friends. Non-reinfection email worms spread less efficiently in a network. 
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6.4.2 The Model  

In order to model the propagation of non-reinfection email worms, we extend f1 in (6.19). 

If a user j is in an active stage at time t’, according to Fig. 6.1(b), it should be healthy at time 

t’-1. Then we have:   

( , ) 1 1 ( , ' 1) ( ( ' 1) 0)
i

ji j

j N

s i t p v j t P X t


                          (6.20) 

We disassemble (6.20) and then we have:  

1
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                       (6.21) 
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Figure 6.3: Example of email worms spreading between nodes in the network. 
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In (6.2), f1can be iterated by difference equations. f2 is similar to (6.21) except that f2 

excludes the infection process at time t-1. According to the condition that if user i checks 

their mailbox at time t-1, we have time t’ drop in a range from the time user i last checked the 

mailbox to t-1 as shown in Fig. 6.4(a). Therefore, f2 in (6.21) is equivalent to s(i, t-1). f2 in 

this case, records the effect of emails received from the time user i last checked their mailbox 

to t-1. Then we have: 

 ( , ) 1 1 ( , 1) 1 ( , 2) ( ( 2) 0)
i

ji j

j N

s i t s i t p v j t P X t


                            (6.22) 

However, as shown in Fig. 6.4(b), if user i checked their mailbox at time t-1, the mailbox 

at current time t would only contain emails sent from neighbors at time t-1. Thus, f2 is 

meaningless and equal to one. So we have  

( , ) 1 1 ( , 2) ( ( 2) 0)
i

ji j

j N

s i t p v j t P X t


                             (6.23) 

We unify the two cases of a user checking mailbox at time t-1, then we have:  

3 4
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Figure 6.4: Two cases in the iteration of s(i,t)  
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In (6.24), f1, f2, f3 and f4 represent variables of user i at time t-1. Therefore, the infected 

number (n(t)) in the network at time t can be iterated step by step through the difference 

equations of (6.2), (6.15) and (6.24).  

6.4.3 Evaluation of the Non-reinfection Email Worms Model  

We represent the topology of the logical email network by a directed graph as the sending 

and receiving of emails is governed by different processes. A widely-studied typical complex 

network [6, 32] has a power-law topology, where the nodal degree distribution is 

characterized as P(k) ~ k
-α

 with P(k) being the probability that a node has a degree of k [47, 

81]. We choose a simple power-law network generator proposed in Chapter 5 (See Section 

5.3.1.1) instead of other generators because it has an adjustable power-law exponent α. Paper 

[34] refers to another concept in email networks: the correlated or uncorrelated email 

network.  For a correlated email network, there is a heightened chance that an email user will 

have some people in their contact list if they have this person in theirs. Besides, the email 

addresses of individuals who have large address books tend to appear in the address books of 

many others. In this chapter, we use reciprocity to indicate the fraction of edges between 

users that point both ways and follow the research findings of [62]: the reciprocity is equal to 

0.23. 

We compare the performance of our proposed analytical model with that of some well-

known models: the simulation model [6] and the spatial-temporal model [32]. These two 

models have been verified by the authors to be more accurate than earlier models, such as the 

epidemic models in [34, 53-55] and the AAWP model [10]. In this chapter, we expect the 

evaluation of our model to be closer to the simulation model than the spatial-temporal model. 
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It should be noted that we compare our model with the independent spatial-temporal model 

according to the independence assumption in this chapter. 

Our implementation is in Visual C++ 2008 SP1 and Matlab 7. The random numbers in our 

experiments are produced by the C++ TR1 library extensions. In the experiments, we set two 

initially infectious nodes. The degree of the topology follows the power-law distribution 

(α=2.58). We assume the total number of nodes in the network is 100,000, and the simulation 

program runs 100 times. 

In this subsection, we carry out two experiments to evaluate the performance of the 

propagation of non-reinfection worms with the same parameters as [6]. Fig. 6.5 shows the 

comparison of the aforementioned models in the uncorrelated and correlated network 

respectively, with infection probability p=0.5 or p=0.3 and CT~N(40, 20
2
). Firstly, we found 

the performance of our model much closer to the simulation model than to the spatial-

temporal model. The main reason is that our analytical model takes into account the user 

checking period, whereas the spatial-temporal model considers that a user opens an email at 

the time of receiving it. Apparently, this is not realistic according to the above statement. 
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Figure 6.5: The propagation of non-reinfection worms with different infection probability p.     

(a) Uncorrelated network with CT~ N(40, 20
2
); (b) Correlated network with CT~ N(40, 20

2
) 
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Thus, the spreading speed of the spatial-temporal model is faster and cannot match the 

simulation model very well. Secondly, the analytical model in Fig. 6.5(a) fits the simulation 

model better than Fig. 6.5(b). This is because the dependence effect on the uncorrelated 

network is weaker than that on the correlated network. We have proven this as follows.  

Proof: For an uncorrelated email network, the effect on the dependence of events (e.g. 

Xj(t)=1.1and Xi(t-1)=0) is weak. We generate the uncorrelated email network as follows. For 

each user, we let a user‟s out-bound edge point to any other randomly selected users, and thus 

the out-degree and in-degree of users is uncorrelated. According to our investigation [80], the 

dependence of the above events is mainly caused by propagation cycles in the spreading 

procedure. A propagation cycle is a spreading route from one user back to itself through 

several intermediate users. For a cycle with one intermediate user, we have:  
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wherein, D is an average out-degree of each user. N is the network size. E(pij) is the mean of 

the propagation probability of the worm spreading from any user i to user j. Generally, for the 

cycle with k intermediate users, we then have:  
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In this chapter, we generate the email network with D=8, E(pij)=0.5 and N=100,000. It is 

easy to achieve the result where the above formula has a maximum when k is equal to one. 

Then we have:  
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Therefore, we prove that the negative effect on dependence is weak in the uncorrelated 

network. 

Nevertheless, due to the correlated network having a large reciprocity (0.23), many 

propagation cycles exist in the spreading procedure. As discussed in [80], a large number of 

cycles lead to the non-negligible dependence effect on the correlated network. Moreover, it is 

observed that the infection probability p can affect the accuracy of the model. In both Fig. 

6.5(a) and (b), the analytical model with a larger infection probability (p=0.5) fits better with 

the simulation model than the case with a smaller infection probability (p=0.3). In fact, the 

infected scale and speed are largely determined by the early stage of the worm‟s propagation 

[79]. If the infection probability is small, the propagation procedure in the simulation model 

can probably be stopped in the early stages. This results in the small infected scale of the 

network greatly reducing the mean value of n(t). We then have: 

Remark 1: Our analytical model performs better when the email worm is more deceptive 

(means larger infection probability). 

Different from Fig. 6.5, Fig. 6.6 compares models in the uncorrelated and correlated 

network respectively with different email checking time CT~N(40,20
2
) or CT~N(20,10

2
) and 

p=0.5. From both Fig. 6.6(a) and (b), we can conclude that the spreading speed is faster if the 

email checking period is shorter. Similar to Fig. 6.5, when compared with models in an 

uncorrelated network, the models in a correlated network have a larger dependence effect on 

the propagation procedure. In the real world, the correlated network is more realistic [62]. 

Thus, we have: 
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Remark 2: We have to improve the accuracy of our analytical model by eliminating the 

dependence effect. An inspired measurement is to integrate the Markov approximation [32] 

or propagation cycles [80] into our analytical model. 

6.5 Modeling of Reinfection Email Worms  

6.5.1 How Reinfection Worms Work  

Reinfection email worms can greatly accelerate the worm spreading speed as the malicious 

copy will be sent out every time the user opens the worm email. The state transition graph of 

an email user is shown in Fig. 6.1(c). Different from non-reinfection, when an inactive user 

checks a worm email, this user will become active and once again send out malicious copies 

to their neighbors. In order to investigate the propagation process among the email users in 

the network, we have another example of reinfection worms spreading in three time ticks in 

Fig. 6.3. Similar to non-reinfection email worms, in Fig. 6.3(a), infected user 1 and user 2 

send two malicious copies to the victim at time t-2. In Fig. 6.3(b-2), user 3 reads both emails 

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Time: t

n
(t

)

(a) (b)(b)(b)(b)(b)

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Time: t

n
(t

)

Spatial-Temporal Model (CT~N(20,102))

Analytical Model (CT~N(20,102))

Simulation Model (CT~N(20,102))

Spatial-Temporal Model (CT~N(40,202))

Analytical Model (CT~N(40,202))

Simulation Model (CT~N(40,202))

Spatial-Temporal Model (CT~N(20,102))

Analytical Model (CT~N(20,102))

Simulation Model (CT~N(20,102))

Spatial-Temporal Model (CT~N(40,202))

Analytical Model (CT~N(40,202))

Simulation Model (CT~N(40,202))

 
Figure 6.6: The propagation of non-reinfection worms with different email checking time CT.  

(a) Uncorrelated network with p=0.5; (b) Correlated network with p=0.5 
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inside the mailbox and two copies of the worm are sent to the victim at time t-1. As a result, 

in Fig. 6.3(c-2), the victim receives a total of four worm copies from their neighbors at time t.  

Through analysis of the individual steps and the state transition above, we derive the 

spreading nature of reinfection email worms as follows: 1) an infected user will go into an 

active state and send out worm copies after being infected not only from a healthy state but 

also from an infected state; 2) the number of malicious emails sent by an infected user is 

determined by the number of worm emails this user reads when they open their mailbox. 

Compared with non-reinfection worms, reinfection email worms are far more efficient to 

spread in a network. 

6.5.2 Underestimation in the Traditional Simulation Model  

The traditional simulation model [6] ignores the second part of propagating reinfection 

worms. An infected user in the simulation model always sends only one worm copy to their 

neighbors even if the user opens two or more infectious emails. Take Fig. 6.3(c-2) for 

example, one of the two emails from user 3 will be neglected and the victim will receive a 

total of three emails at time t. 

However, the problem is not as simple as we have discussed above. If we revise the 

simulation model to satisfy the second spreading nature, the simulation model becomes a 

time-consuming process. The situation becomes worse when the scale of the email network is 

enlarged. In Fig. 6.7, we observe that the number of emails received by each user increases 

exponentially. Intuitively, this phenomenon is attributed to the snowball effect: we simply 

suppose each email user is connected to m users and will read all emails received. Initially, 

each user has m worm emails. Subsequently, users will receive m
2
 worm emails after one 
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mailbox checking period. Similarly, it is easy to know that each user will be overwhelmed by 

worm emails within a short period of time. 

In the real world, however, email recipients may be aware of the number of emails they 

receive in their mailbox. If the number of emails exceeds the usual number, email users may 

not open all of them. A user‟s vigilance leads to an infected user sending out more than one 

but still a limited number of worm copies to their friends, which is mainly determined by 

social engineering techniques the worm adopts and also the user‟s awareness. For example, 

email worms like Mydoom [72] have many different subject topics. Some email worms, like 

w32.Imsolk [58], are more deceiving because the email titles are labeled with “Here you are”. 

The vigilance effect is hard to estimate and we do not know the true impact of the real worms 

propagation. In order to see how it affects the spreading procedure, we introduce a vigilance 

degree as β. In this chapter, we assume email users mainly communicate with their friends 

and the number of emails sent by users will not exceed β times the length of their contact list. 

We will evaluate the vigilance effect with a series of β (See Section 6.5.5). 
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Figure 6.7: Snowball effect and vigilance effect. 
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According to the above analysis, we revise the simulation model [6] and compare it. As 

shown in Fig. 6.8, it is noticeable that the simulation model significantly underestimates the 

spreading ability of reinfection email worms. Later, we will use the revised simulation model 

to evaluate our analytical model. 

6.5.3 Virtual User  

We use six nodes to illustrate the propagation between email users in the network. As 

shown in Fig. 6.9(a), User U5 may be infected three times by possibly opening one to a 

maximum of three malicious email attachments from U1, U2 and U3. User U6 receives emails 

from U4 and U5 but may be infected again by the possible arrival of another two malicious 

emails from U5. In order to model the infection process of U6, we propose a concept of 

virtual users to explain the possible repetitious infection caused by U5 opening more than one 

worm copies. As is shown in Fig. 6.9(b), U5_1 represents U6 being infected by U5 for the first 
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Figure 6.8: Underestimation in the traditional simulation model. 
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time. If U5 reads two worm emails, we use U5_2 to represent the possible infection of U6 for 

the second time. Similarly, U5_3 represents the third possible infection if U5 reads three emails. 

To facilitate the explanation, we simply set the email checking period as one time tick and the 

current time as t in this example. U1, U2, U3 and U4 initially have only one worm email in 

their mailbox. Then we have:  

3

5_1 5

1

( ( 1) 1.1) 1 1 ( ( 2) 1.1)j j

j

P X t P X t p


                           (6.25) 

We introduce a random variable ki(t) to denote the number of emails user i reads at time t. 

Besides, we use variable Yij(t)=P(Xi(t-1)=1.1)pij to indicate the probability of user j having 

received and read the email from user i and variable ij(t)= 1- P(Xi(t-1)=1.1)pij to indicate the 

negation of Yij(t). We have  
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Figure 6.9: The propagation of reinfection and self-start reinfection worms. 
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Actually, if the number of users in the network is large enough, it is exceptionally hard to 

examine P(ki(t-1)=K) on each K by each user. K is the number of emails that a user has 

opened. Suppose the network has m users, the complexity of the algorithm to obtain the 

infection probability of each virtual user is O(m
3
). In this chapter, we adopt an approximate 

calculation. Generally, the Bernoulli experiment is widely used to model the number of 

successes in a sample drawn from a large population. Thus, we use the approximation as 

follows:  

     
2

1

5_ 2 5_1 3 5| 5|( 1) 1.1 ( 1) 1.1 ( ) 1 ( )ave aveP X t P X t C p t p t                     (6.28) 

whereas C3
1
 is the Bernoulli coefficient. Pi|ave(t) denotes the average probability of user j 

having received and read the email from user i, as in  

   5| 15 25 35

1
( ) ( ) ( )

3
avep t Y t Y t Y t                                (6.29) 

We also have,  
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                       (6.30) 

Therefore, the probability of user U6 being infected and sending out worm copies is as 

follows:  
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6.5.4 The Model 

In this section, we follow the above discussion and example to build the propagation model 

of reinfection email worms. As shown in Fig. 6.1(c), not only a healthy but also an infected 

user can become active and send out worm emails to their neighbors. We define vR(i,t) as the 

probability of user i having been infected at time t-1 and being active at time t. Then we have: 

   , ( ) 1.1 ( 1) 1R i iv i t P X t X t                                (6.32) 

In order to model the propagation of reinfection email worms, we extend f1 in (6.19) of the 

basic model. Similar to the non-reinfection model, we assume the events Xj(t‟)=1.1 and Xi(t-

1)=1 are independent in this chapter. Then according to theorem 2, we have:  
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Theorem 2: when the events Xj(t‟)=1.1 and Xi(t-1)=1 are independent, there is vR(i,t)=v(i,t). 

Proof: similar to (6.15), (6.17) and (6.18), we have the following derivation:  
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If the events Xj(t‟)=1.1 and Xi(t-1)=1 are independent, similar to (6.19), we then prove the 

proposition as in: 

          
, '

, 1 1 ( ') 1.1 ( , ) , , ,
i

R ji j

j N t

v i t p P X t G i t s i t G i t v i t


 
      
 

  

We continue to disassemble (33) for iteration, as in 
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i i
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                               (6.34) 

According to the condition, if user i checks their mailbox at time t-1, s(i,t) may have 

different results. Similar to the analysis in Section 6.4.2, we have a unified conclusion as in 

      , 1 1 ( , 1) , 1 1 ( , 2)
i

ji

j N
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                                 (6.35) 

Different from non-reinfection email worms, the neighbors Ni of user i should be 

composed of two parts: real users and virtual users. We use Ni|R to represent real neighbors 

and Ni|V to represent virtual neighbors. Note that Ni|R is constant for each user i in our 

topology, but Ni|V(t) is determined by the propagation procedure of worms. Ni|V(t) varies at 

different time t. Thus, we have  

        , 1 1 ( , 1) , 1 1 ( , 2) 1 ( , 2)

i R iV

ji ji

j N j N

s i t G i t s i t p v j t p v j t
 

                     (6.36) 

Visual users are created when corresponding real users are infected. We assume that visual 

users send worm copies to their neighbors at the time they are created. That is, visual users 

are healthy before, but infected when they are created. Thus, for a visual user which is 

created at time t, we have: 
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Because visual users are supposed to be initially healthy, we have f1 is equal to one and f2 

is equal to zero in (6.37). According to the analysis of the virtual users and the vigilance 

effect in Section 6.5.2 and 6.5.3, we have:  
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wherein ||Ni|V(t)|| is the number of visual users at time t, which can be iterated in the 

propagation procedure. In this chapter, we assume the number of emails sent by a user i will 

not exceed β times the length of user i‟s contact list (Di), so we use min(||Ni|V(t)||, Di) to obtain 

the minimum value. K ranges from 1 to min(||Ni|V(t-2)||, βDi). P(Xj_K(t)=1.1) is the probability 

for the k-th virtual user of real user j to be at an active state. We calculate P(Xj_K(t)=1.1) as in:  
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Pi|ave can be calculated as in 
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i

i ave ji

j Ni

p t Y t
N 

                                    (6.40) 
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In (6.38), all the components can be determined by the variables of user i at time t-1 or t-2. 

Therefore, the number of infected users in the network (n(t)) can be estimated by difference 

equations of (6.2), (6.15) and (6.38). 

6.5.5 Evaluation of the Reinfection Email Worms Model  

In this subsection, we carry out three experiments to evaluate the performance of 

propagation for reinfection worms with the same parameters as [6]. To the best of our 

knowledge, there are no analytical models that describe the propagation of reinfection and 

self-start reinfection worms. [32] discussed the propagation of worms in the network on the 

basis of a non-reinfection spreading mechanism. In this subsection, we compare our 

analytical model with the simulation model and expect its performance to be closer to the 

simulation model.  

Fig. 6.10 shows the comparison of models in the uncorrelated and correlated network 

respectively with infection probability p=0.5 or p=0.3 and CT~N(40, 20
2
). Similar to the non-

reinfection case, the results in the uncorrelated network are a lot better in relation to 

performance than in the correlated network. Meanwhile, it is observed that our analytical 

model is fairly accurate to the simulation model if users have a higher probability of opening 

malicious emails. Fig. 6.11 depicts the comparison of models in the uncorrelated and 

correlated network respectively with different email checking time CT~N(40,20
2
) or 

CT~N(20,10
2
) and p=0.5.  We then have: 
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Remark 3:  Our analytical model can accurately reflect the propagation of reinfection worms. 

The simulation model [6] did not consider the effect of repetitious spreading and assumed 

only one copy was sent by an infected user, which results in underestimating the scale of 

infection throughout the network. However, the repetitious spreading can lead to an 

overwhelming number of emails without considering user awareness. In order to be more 

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Time: t

n
(t

)

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Time: t

n
(t

)

(a) (b)

Analytical Model (p=0.5)

Simulation Model (p=0.5)

Analytical Model (p=0.3)

Simulation Model (p=0.3)

Analytical Model (p=0.5)

Simulation Model (p=0.5)

Analytical Model (p=0.3)

Simulation Model (p=0.3)

 
Figure 6.10: The propagation of reinfection worms with different infection probability p. 
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Figure 6.11: The propagation of reinfection worms with different infection probability p.  
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realistic, we introduce virtual users sending malicious copies in the propagation procedure. 

To overcome the snowball effect, we adopt the vigilance degree β to reflect a user‟s 

awareness when they receive an abnormal number of emails. As shown in Fig. 6.12, when the 

value of β increases, the spreading speed becomes faster. A high value of β represents more 

malicious copies checked by users so that users can be easier to infect. In our analytical 

model, this means more virtual users are involved in the propagation procedure. Thus, we 

have:   

Remark 4: A large β can lead to a more accurate model when the worm is fairly deceptive 

However, it is observed that the increase of spreading speed decreases with the increasing 

β. This is because the infected probability of virtual users decreases in (6.28) and (6.38). 

Meanwhile, a large β may consume a great deal of computation. Thus, we need to choose a 

large but suitable β for modeling.   
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Figure 6.12: Reinfection worms‟ propagation with β. 
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6.6 Modeling of Self-start Reinfection Worms  

6.6.1 How Self-start Reinfection Worms Work  

Evolving from reinfection, self-start reinfection worms register themselves in start-up 

services and automatically send out malicious copies once the system starts or specific events 

are triggered. For example, in Fig. 6.3 (b-3), user 2 sends out a worm email to the victim at 

time t-1 as self-start reinfection. The victim receives five worm emails from their neighbors 

at time t. The state transition graph of an email user is shown as in Fig. 6.1(d). We use vS(i,t) 

to indicate the probability of user i having been infected at time t-1 and being active at time t 

under the scenario of self-start reinfection.  

6.6.2 The Model  

The self-start reinfection propagation procedure is determined by a user‟s personal habits 

and, thus, it is independent of the event of Xi(t-1)=1. Different from reinfection, we derive 

vS(i,t) as in:  

 

 

 

 

inevitable event

1

( , )

( ) 1.1| ( 1) 1

( ) 1.1| ( 1) 1, ( ) 1 ( ( ) 1)

( ) 1.1| ( 1) 1, ( ) 0 ( ( ) 0)

( , ) ( ) 1.1| ( ) 0, ( 1) 1

s

i i

i i i i

i i i i

i i i

f

v i t

P X t X t

P X t X t start t P start t

P X t X t start t P start t

Q i t P X t start t X t

   

      

    

       1 ( , )Q i t

                  (6.41) 

According to theorem 3, we have 

 ( , ) ( , ) ( , ) 1 ( , )sv i t Q i t v i t Q i t                                (6.42) 
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Theorem 3: when the events Xj(t‟)=1.1 and Xi(t-1)=1 are independent, there is 

P(Xi(t)=1.1|starti(t)=1, Xi(t-1)=1) is equal to v(i,t). 

Proof: similar to (6.15), (6.17) and (6.18), we have the following derivation:  

In this work, we assume the events Xj(t‟)=1.1 and Xi(t-1)=1 are independent. Similar to (6.19), 

we then prove the proposition as in 
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Therefore, f1 in (6.41) is equal to v(i,t). 

In order to model the propagation of self-start reinfection email worms, we extend f1 in 

(6.19) of the basic model. Then we have  
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              (6.43) 

Similar to (6.34) and (6.35), we can derive (6.44) as in:  
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                  (6.44) 

As is shown in Fig. 6.9(c), the self-start process can be considered as a virtual user (Ni|S) 

who sends worm emails to user i periodically. We disassemble the neighbors of user i into 

three parts: Ni|R, Ni|V and Ni|S. For Ni|R and Ni|V, we have f2=0 because there is no self-start 
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effect on them. For Ni|S, we also have f1=0 because this kind of virtual user results from the 

self-start process rather than from worm spreading. Therefore, we are able to factorize (6.44) 

as in  
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f1 in (6.44) can be calculated by iteration. Therefore, the number of infected users in the 

network (n(t)) for self-start reinfection worms can be estimated by difference equations (6.2), 

(6.15) and (6.45).  

6.6.3 Evaluation of the Self-start Reinfection Worms Model  

The difference between the propagation of reinfection and self-start reinfection worms is 

that the latter can be trigged by specific events and the system restart process. The 

propagation dynamics of self-start reinfection is similar to the one of reinfection. In this 

subsection, we mainly analyze the impact of the self-start period RT on the propagation 

procedure. The dependency effect may affect the investigation of the self-start process, and 

thus, we only examine the propagation of self-start reinfection worms in the uncorrelated 

network.  

In Fig. 6.13, it is observed that the spreading speed is faster if the self-start period is short. 

If a spreading process can be trigged by more events such as opening a picture or movie files, 



Chapter 6 Modeling Propagation Dynamics of Email Worms 

164 

it means the worm is more aggressive and has a faster propagation speed.  However, in the 

real world, it is harder for aggressive worms to conceal themselves. Our analytical model can 

reflect the self-start reinfection propagation process. 

6.6.4 Comparison of the Spreading Speed of Different Email Worms  

We constructed our basic model of worm propagation in Section 6.3.2. The mechanism of 

spreading varies for different type of worms. As shown in Fig. 6.3, the victim receives three 

worm emails for non-reinfection, four for reinfection and five for self-start reinfection. In this 

subsection, we will investigate and compare the spreading speed of each type of worm. We 

also discuss the reason for their derivation. 

Remark 5: The spreading speed of reinfection worms is much faster than non-reinfection 

worms. 

We use the number of infected users at time t(n(t)) as the benchmark to estimate the 

spreading speed. The key propagation procedure is described by (6.23) for non-reinfection 

worms and by (6.37) for reinfection worms. In (6.23), f2 belongs to [0, 1] so that s(i,t) of 
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Figure 6.13: The propagation of self-start reinfection worms in an uncorrelated network with RT. 
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(6.23) is less than (1-λ) in (6.37). Moreover, (6.37) contains the component which reflects the 

effect of virtual users in the propagation of worms, and the value of this component is less 

than one. Thus, it is easy to prove the spreading speed of reinfection worms is much faster 

than non-reinfection worms. 

Remark 6: The spreading speed of self-start reinfection worms is much faster than reinfection 

worms. 

The key propagation procedure of self-start reinfection worms is described by (6.43). 

Compared with reinfection, (6.43) has an extra component f1, which reflects the effect of the 

propagation procedure when the system starts or specific events are triggered. The value of f1 

is less than one. As a result, the value of (6.37) is less than (6.43). Therefore, the spreading 

speed of self-start reinfection worms is much faster than reinfection worms. 

We compare the spreading speeds and show the difference between different kinds of 

email worms in Fig. 6.14. We find reinfection and self-start reinfection email worms 

propagate much faster than non-reinfection email worms. 
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Figure 6.14: The propagation of non-reinfection, reinfection and self-start reinfection worms in an 

uncorrelated network. 
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6.7 Summary 

This chapter presented a new method for modeling the propagation process of email 

worms. We discussed three categories of email worms: non-reinfection, reinfection and self-

start reinfection. We also analyzed previous research and compared our approach with these 

works. The evaluation we performed demonstrates the accuracy of our approach. Researchers 

can employ our analytical model to analyze the propagation of worms in order to provide 

defense strategies. We believe this is the most significant characteristic and the most 

important contribution of this thesis. 

There is still much work to be done in relation to the propagation of email worms. Firstly, 

in this chapter, we focused on the modeling propagation procedure for various email worms. 

As part of our ongoing work, we plan to estimate the parameters of worms‟ propagation and 

use our proposed model to study the countermeasures [82] for controlling the spread of email 

worms. Secondly, by making use of our model, we have studied the impact of the underlying 

topology on the propagation of worms. However, an email network is essentially a complex 

network, and many factors of complex networks can affect the propagation and defense of 

worms but these have not been explored in this work [83-84]. Thirdly, in a correlated email 

network, the effect on dependence cannot be neglected. In order to analyze the model more 

accurately, future work will pay attention to eliminating the impact on dependence 

completely. Readers can find more details in [32] and [80]. Finally, in the real world, infected 

users may clean the email worms and recover. More comprehensive analysis on the 

propagation of worms should involve the recovery procedure. In this thesis, we mainly 

focused on the propagation procedure and thus, our model is based on the SI model.
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Chapter 7  

Conclusions and Future Work 

This chapter summarizes the main contributions of this thesis on modeling and defenses 

against worm propagation in networks. It also provides suggestions for improving our 

research in the future. 

7.1 Conclusions 

In this thesis, we have conducted research on the characterization of worm spreading 

behavior, analyzed their propagation mechanisms, modeled their propagation procedures and 

developed defense strategies. The research contributions of this thesis have been made in the 

following areas. 

7.1.1 A Microcosmic Model of Worm Propagation  

Each year, large amounts of money and labor are spent by the industry on patching 

vulnerabilities in operating systems and popular software. In order to prevent worms from 

spreading effectively, many models have been proposed by research and application 
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communities. Most worm propagation models, however, are based on a macroscopic 

viewpoint. They focus on the overall tendency of the worm to spread and do not describe the 

worm propagation from node to node or the infection procedure when disrupted by patching 

or immunizing nodes. Consequently, the macroscopic model makes it hard to deal with the 

problems of where, when and how many nodes we need to patch. The question then arises as 

to how we can develop a model that can accurately reflect the distribution of nodes in the 

network, which is beneficial for describing the propagation procedure, and thus, can answer 

the three proposed problems.  

In Chapter 3, a microcosmic worm propagation model was proposed. We introduced a 

complex matrix to represent the probabilities and the time delay between each pair of nodes. 

These two factors lead to an accurate exploration of the propagation procedure and estimation 

of both infection scale and the effectiveness of defense. We also developed three vectors for 

investigating the different scenarios of infectious states, vulnerable states and quarantine 

states. Compared with a macrocosmic propagation model, a microcosmic model prefers to 

study the dynamic propagation between nodes and is able to understand how the current 

infected states impact on the worm‟s propagation in the next step. In addition, we introduced 

an error calibration vector for analyzing the errors caused by reinfection in macroscopic 

models. Modeling a microcosmic propagation procedure can provide defenders with useful 

information to deal with the problems of where, when and how many nodes we need to patch.   

7.1.2 Defense Study against Scanning Worms 

Scanning is one of the most common strategies employed by worms for spreading. Scan-

based worms (scanning worms) probe the entire network and infect targets without regard to 

topological constraints. It is closely related to the logical features of the network rather than 
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the physical structure. The objective of studying scanning worms is to address the three 

practical aspects of preventing worm propagation: where, when and how many nodes we need 

to patch.  

In Chapter 4, we used Code Red II as an example to evaluate the vulnerability distribution 

and patch strategy vector from the microcosmic worm propagation model in Chapter 3 and 

presented a series of recommendations and advice for immunization defense. Firstly, the IP 

ranges with a high density of vulnerable nodes are essential areas for patching. Secondly, for 

high risk vulnerabilities, it is critical that networks reduce the number of vulnerable nodes to 

below a certain threshold, e.g., 80% in this analysis. Thirdly, increased disclosure of specific 

vulnerabilities could possibly be delayed until the patching rate reaches a certain threshold, 

e.g., at least 20% in this analysis. Moreover, we observed the effect of different impact factors 

step by step, which reflected the mutual impact between the propagation probability and time 

delay. Experimental results indicated that an increase in time delay results in a small 

propagation probability of the worm‟s propagation. In addition, the overestimation in 

macroscopic models caused by propagation cycles was also discussed. 

7.1.3 Defense Study against Topology-based Worms 

Topology information is a fundamental element that enables topology-based worms, such 

as email worms and social network worms. In order to control the impact of their outbreak, 

large amounts of money and labor are spent on devising effective strategies for defense. 

Questions then arise as to how to model the propagation mechanism of topology-based worms 

so that we can provide effective schemes to deal with the problems of where and how many 

nodes we need to patch to prevent them from propagating.   
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In Chapter 5, a novel probability matrix was proposed to model the spreading of topology-

based worms. We introduced a propagation source vector and a patch strategy vector to 

evaluate their effects in different spreading scenarios and investigate a more effective 

immunization defense for preventing worms from propagating. We take a typical topology-

based worm, such as an email worm, as an example investigating how a worm spreads from 

one node to another node through a group of intermediate nodes. Through model analysis, we 

derive a better understanding of dynamic infection procedures in each step to answer the 

proposed questions. The results from experiments showed that, for a power law network, a 

more effective patch strategy against email worm propagation is to immunize the most-

connected nodes. Besides this, the effect of random patching is not obvious as email worm 

spreading relies on the underlying connectivity between each pair of nodes. In addition, we 

analyzed the formation of propagation errors and examined the impact of eliminating errors 

on the propagation procedure of topology-based worms. We have shown through simulations 

that errors increase as more propagation cycles are formed and quantified the errors under 

different propagation scenarios. This work is helpful for the accurate analysis of worm 

spreading. 

7.1.4 Modeling the Propagation Dynamics of Email Worms 

Spreading malicious code through email is still effective and is widely used by current 

attackers. However, previous work has preferred to rely on simulation modeling rather than 

on mathematical analysis because of the following two aspects. Firstly, each user has their 

own habits for checking emails. It is really hard to characterize the propagation dynamics with 

different mailbox checking time between email users in a large scale network. Secondly, 
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modern email worms belong to reinfection or self-start reinfection worms. This means it is 

difficult to model the repetitious email sending process.  

In Chapter 7, an analytical model was proposed to characterize the propagation dynamics 

of email worms. Our model extensively investigates different classes of real-world worms 

based on their infection strategies, including non-reinfection, reinfection, and modern self-

start reinfection categories. We examined the individual steps and state transitions in the 

propagation procedure. Compared to the simulation model [6] and the spatial-temporal model 

[32], our model can provide an accurate representation of the propagation of worms with 

different checking time of mailboxes from users. We also analyzed the propagation 

mechanisms of reinfection and self-start reinfection worms respectively. In particular, the 

concept of virtual users was introduced to represent the process of sending repetitive emails. 

Therefore, our model can accurately reflect the propagation of reinfection and self-start 

reinfection worms. The results from our experiments indicate that our analytical model is 

accurate and helpful in providing a better and more realistic understanding of the propagation 

of email worms. 

7.2 Future Work 

There are a number of areas where future work can be pursued. 

 Characterizing the propagation of social network worms: The spreading of 

social network worms rely on the topology of social networks, which may result in 

a problem of spatial dependence in the propagation procedure. This means that 

compromised users will infect their neighbors but the probabilities for those 

compromised users being infected may be due to their neighbors having been 

infected before and then spreading the worm to these compromised users. This 
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results in redundant computation of infection probabilities. In order to simplify this 

problem, some research has assumed the status of all nodes at each time tick to be 

spatially independent. However, it is a weak approximation to the spreading 

dynamics. Therefore, we will attempt to discover what the spatial dependence is 

and how we can approximate it so that we can eliminate the redundancy and 

describe the real spreading probability.  

 Locating defense positions: The centrality of a node in a social network is a 

measure of its structural importance and prominence in the group. It can be 

calculated in a number of ways depending on whether one measures it in terms of 

the degree, the closeness or the betweenness. In this thesis, we have proved that 

patching the highly-connected (high degree) nodes is an effective immunization 

defense for preventing topology-based worms from spreading. Under certain 

conditions, however, such as when some popular users (highly-connected nodes in 

the network) have more vigilance of malicious codes, this may not always be the 

truth. Therefore, how to locate more suitable positions through a measure of 

betweenness and closeness for slowing down the worm propagation should be 

considered in future research. 

 Overhead analysis:  The proposed model in the thesis investigates the propagation 

probability between each pair of nodes through matrix computation. If the 

simulated network has a larger scale, the simulation overhead can be prohibitively 

high in some cases. In the real world, however, some nodes have no direct 

connection in the Internet. If those nodes can be removed from the proposed model, 

the simulation overhead can be saved to a certain extent. Therefore, how to 

represent the nodes without direct connection in the Internet in the proposed model 

should be considered in future work. 
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 Attack source analysis:  In the real world, the distribution and number of attack 

sources has considerable impact on the spreading speed of worms.  Understanding 

the topology of the entire network has been a great help for defenders in analyzing 

the attack sources and then deploying the immunization defense. However, except 

for ISPs and administrators of social networks, it is hard to obtain the structure of 

the entire network. The problem then arises as to how we can minimize the number 

of possible attack sources with only partial network knowledge and effectively 

prevent worm propagation. 
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