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ABSTRACT

In this paper we address the problem of multi-object tracking
in video sequences, with application to pedestrian tracking
in a crowd. In this context, particle filters provide a robust
tracking framework under ambiguity conditions. The parti-
cle filter technique is used in this work, but in order to reduce
its computational complexity and increase its robustness, we
propose to track the moving objects by generating hypothe-
ses not in the image plan but on the top-view reconstruction
of the scene. Comparative results on real video sequences
show the advantage of our method for multi-object tracking.

1. INTRODUCTION

Video object tracking in dense visual clutter, although being
notably challenging, has many practical applications in scene
analysis for automated surveillance, such as the detection of
suspicious moving objects (pedestrians or vehicles), or the
monitoring of an industrial production [1][2] [3][4]. The
quality of an object tracking system is very much dependent
on its ability to handle ambiguous conditions, such as occlu-
sion of an object by another one. To cope with such ambigu-
ities, multi-hypotheses techniques have been developed [5].
In the standard techniques using multi-hypotheses for the
state estimation and tracking, the Kalman filter is used under
the premise that the noise distributions are Gaussian and the
system dynamics are linear [6]. However, when tracking hu-
man movements, non-linear and non-stationary assumptions
make it suboptimal to use. In this context particle filter algo-
rithms are attractive because they are both simple and very
general. The particle filter algorithms track objects by gen-
erating multiple hypotheses and by ranking them according
to their likelihood. They suppose that the correct hypothesis
is retained [7][8]. Many tracking filters have been proposed
using this approach, defining the states as being each static
posture or position of the objects and modeling a motion se-
quence by the composition of these states with some transi-
tional probabilities [9][10][11]. Those state-of-the-art tech-
niques perform efficiently to trace the movement of one or
two moving objects but the operational efficiency decreases
dramatically when tracking the movement of many moving
objects because systems implementing multiple hypotheses
and multiple targets suffer from a combinatorial explosion,
rendering those approaches computationally very expensive
for real-time object tracking. In this paper we propose an ef-
ficient approach for the track maintenance problem keeping
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a low computational cost. In our algorithm, the hypotheses
are generated not on the image plan but on the top-view re-
construction of the scene. A calibrated camera is necessary
to get this reconstruction. On this plan, the object dynamics
can be modeled more conveniently and precisely than on the
image plan, allowing to considerably reduce the number of
hypotheses needed to achieve a robust tracking. In our prac-
tical application of pedestrian tracking we will show a sim-
ple model where the appropriate guidance control follows a
anisotropic Gaussian function oriented along the current ob-
ject motion direction [12].

The article is organized as follows: In Section 2 we
briefly describe the particle filter algorithm. In Section 3
the multi-object tracking system, using the reconstructed top-
view plan, is introduced. In Section 4 some dynamic mod-
els are presented and tested. Results are illustrated and dis-
cussed. Conlusion and future research in Section 5.

2. PARTICLE FILTER

Particle filtering provides a robust tracking framework, as it
models uncertainty. Particle filters are very flexible in that
they not require any assumptions about the probability distri-
butions of data. In order to track moving objects (e.g. pedes-
trians) in video sequences, a classical particle filter contin-
uously looks throughout the 2D-image space to determine
which image regions belong to which moving objects (target
regions). For that a moving region can be encoded in a state
vector.

2.1 Target regions encoded in a state vector

In the tracking problem the object identity must be main-
tained throughout the video sequences. The image features
used therefore can involve low-level or high-level approaches
(such as the colour-based image features (histograms), a sub-
space image decomposition or appearance models) to build a
state vector.

A target region over the 2D-image space can be repre-
sented for instance as follows:

r={l,s,m,y} )

where 1 is the location of the region, s is the region size, m
is its motion and y its direction. In the standard formulation
of the particle filter algorithm, the location 1, of the hypoth-
esis, is fixed in the prediction stage using only the previous
approximation of the state density. Moreover, the importance
of using an adaptive-target model to tackle the problems such
as the occlusions and large-scale changes has been largely
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recognized. For example, the update of the target model can
be implemented by the equation

ry= (l *)\)ftfl +/\E[I‘t] (2)

where A weights the contribution of the mean state to the
target region. So, we update the target model model during
slowly changing image observations.

2.2 The propagation algorithm

In the standard formulation of a particle filter algorithm, the
aim is to estimate recursively in time the filtering density
(also called posterior density) defined in a state space. There-
fore the image features are modeled as an object class and
they can be used in a dynamical model expressed as a tem-
poral Markov-chain, where the hypotheses are fixed in the
prediction stage using only the previous approximation to the
state density. For example, a 2"? order process can be conve-
niently represented in discrete time ¢ as,

ry — T = S(I‘t_]_ — f‘) —|—NWt (3)

where, r¢,ry_1 are the state-vectors, T is the mean value of
the state vector, w is the noise term and S and IN are the
matrices representing the deterministic and stochastic com-
ponents. In this way, the learned dynamical models are ap-
propriate to be used in the propagation algorithms. Given a
continuous-valued Markov chain with independent observa-
tions, the conditional state-density p; at time ¢ is defined by

Pi(re) = p(re | Ip). 4)

This represents the whole information about the state of a
region r, and Iy = {ij...iy} the image features at time #. And
the dynamical model can be re-expressed as:

p(re|re—1) 0
exp— 5 N (e 1) = S(xy 1~ ) )

The time propagation rule is made of two steps: a
prediction and a update step:

PREDICTION STEP : The prediction density is obtained
by applying a dynamical model to the output of the previous
time step.

ey | Tooy) = / p(re |t )p(res | L1).  (6)

rg—1

UPDATE STEP : The output measurement update stage is a
set of N weighted particles.

p(re | Ig) = p(ig [ re)p(re [ Te-1) (7

where the set of image features at time ¢ is iy with his-
tory Iy = {iy...it}. In the standard particle filter, the set
is re-sampled in order to discard particles with insignificant
weights and multiply particles with large weights.

3. TRACKING MOVING OBJECTS ON THE
TOP-VIEW PLAN

3.1 State-space over the top-view plan

In a practical particle filter implementation, the prediction
density is obtained by applying a dynamic model to the out-
put of the previous time-step. This is appropriate when the
hypothesis set approximation of the state density is accurate.
But the random nature of the motion model induces some
non-zero probability everywhere in state-space that the ob-
ject is present at that point. The tracking error can be reduced
by increasing the number of hypotheses (particles) with con-
siderable influence on the computational complexity of the
algorithm. However in the case of tracking pedestrians we
propose to use the top-view information to refine the predic-
tions and reduce the state-space, which permits an efficient
discrete representation. In this top-view plan the displace-
ments become Euclidean distances. The prediction can be
defined according to the physical limitations of the pedestri-
ans and their kinematics. The calibration of such models is a
work in progress in our group.! In this article we use a sim-
pler dynamic model, where the actions of the pedestrians are
modeled by incorporating internal (or personal) factors only.
The displacements Mtopview follows the expresion

M; = iA(Vtopview)lv-[t_l

topview topview

+N (8)

where A (.) is the rotation matrix, Yopview i8 the rotation an-
gle defined over top-view plan and follows a Gaussian func-
tion g(Viopview; Oy), and N is a stochastic component. This
model proposes an anisotropic propagation of M : the high-
est probability is obtained by preserving the same direction.
The evolution of a sample set is calculated by propagating
each sample according to the dynamic model. So, that pro-
cedure generates the hypotheses.

3.2 Estimation of region size

The size of the search region represents a critical point.In our
case, we use the a-priori information about the target object
(the pedestrian) to solve this tedious problem. We assume
an averaged height of people equal to 160 cm, ignoring the
error introduced by this approximation. That means, we can
estimate the region size s of the hypothetical bounding box
containing the region of interest r = (1,s,m, y) by projecting
the hypothetical positions from top-view plan (see Fig. 1). A
camera calibration step is necessary to verify the hypotheses
by projecting the bounding boxes. So this automatic scale
selection is an useful tool to distinguish regions. In this way
for each visual tracker we can perform a realistic partitioning
(bounding boxes) with consequent reduction in the computa-
tional cost. The distortion model of the camera’s lenses has
not been incorporated in this article. Under this approach,
the processing time is dependent on the region size.

3.3 The output measurement update stage

In multi-object tracking, the hypotheses are verified at each
time step by incorporating the new observations (images). A
well known measure of association (strength) of the relation-
ship between two images is the normalized correlation.

dcj, = corrye(target;, hypothesis; ) 9)
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SCENE 2D

Figure 1: left: the approximation of Top-View plan by image
plan with a monocular camera, right: size estimation

Figure 2: left: foreground image of the background subtrac-
tion, right: multi-hypotheses

where j : target region, and # : an hypothesis of the target
region j. The observation of each hypothesis is weighted by
a Gaussian function with variance 0.

—(1—de,n)2

1 y)

UM = —— e 2% 10
\/27T0'dce ( )

where 41/ is the observation probability of the hypothesis n
tracking the target j. The obvious drawback of this technique
is the choice of the region size (defined in previous section)
that will have a great impact on the results. Larger region
sizes are less plagued by noise effects.

3.4 Background subtraction

In order to reduce background effects, the correlation is per-
formed by using foreground image. Since the camera is fixed
the background can be modelled statistically. We compute
the difference between the background image and the cur-
rent frame. From that we obtain a binary support layer and
a foreground-object image (see Fig. 2). So, the visual corre-
lations will be performed over the foreground-object image
between current frame and the target-regions.

The proposed tracking algorithm performs the following
steps.

e Recognize the moving regions based on background sub-
traction.

e Map the image coordinates to the
coordinates,(top-view plan).

e Perform a realistic partitioning on the image using the
real-world coordinates.

e Compute correlation and use the mean-value locations
for the consecutive video images to establish the trajec-
tory, based on the particle filtering technique.

real-world

il | # 7 I | a 1

(a) A corrupted track and the non- (b) An improved track and the
compact diffusion of hypotheses at compact diffusion of hypotheses at
time ¢ time ¢

Figure 3: left: The top-view pedestrian trajectory of a par-
ticle propagation on image plan, right: The top-view pedes-
trian trajectory of a particle propagation on top-view plan

4. RESULTS

The goal of our experiments is to track moving regions
(pedestrians) during the video sequences. We compare
both dynamical propagation on image plan (the classical
approach) and on top-view plan.

e model; : The dynamic model propagates the particles
over the image plan with anisotropic propagation.

e model, : The dynamic model propagates the particles
over the top-view plan with isotropic propagation.

e model;z : The dynamic model propagates the particles
over the top-view plan with anisotropic propagation.

We have supposed pedestrian’s height : 1.60 m and we
have analysed outdoor video sequences representing the exit
of a metro station, 10 images/s with pedestrian’s displace-
ments between 0.05 and 0.25 m/image. Fig. 3 shows an
example of tracking a pedestrian with the same dynamical
model performing on both image plan and top-view plan.
We can see the projected particles on the top-view plan : the
first case presents a track corrupted by particles located far
from E[r;] and the zoomed area containing the particles in a
range of 9mx2m, and the second one presents an improved
track performed with the compact diffusion in a range of
0.5mx1.2m. The experiment was repeated many times vary-
ing the particles each time. Fig. 4 shows the results. N/A4
means that more than 100 hypotheses are needed to track
moving objects. Fig. 5 and Fig. 6 show examples of the
tested video sequences and illustrate the importance of an
adaptive target model in cases of occlusions and large scale
changes. The mean state of each object is estimated at each
time step and then plotted as a box. The video sequences can
be downloaded from http://Itswww.epfl.ch/Itsftp/Venegas/.

5. CONCLUSION AND FUTURE RESEARCH

In this paper we have shown how a simple behavioral model
of pedestrian dynamic consisting of maximum displacement
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Samples | model; | model, | models
videoi N/A 35 30
videoy N/A N/A 60
videos N/A 30 30
videoy N/A 50 30
videos N/A N/A 100
videog N/A 100 30
videor N/A 55 35
videog N/A 30 30

Figure 4: The number of hypotheses to avoid crossing.

(b) image 15

e S

(a) image 1

(d) image 44

e

(c) image 38

Figure 5: The mean state of the objects. models : the parti-
cles are propagated with anisotropic propagation on top-view
plan

==
(a) image 31

(b) image 39

=
(c) image 47

= ol
(d) image 53

Figure 6: The mean state of the objects. models : the parti-
cles are propagated with anisotropic propagation on top-view
plan

and change in direction, can be very usefull to solve the
tracking problem, because it is directly linked to the actual
pedestrian behavior. We are currently working on the speci-
fication and calibration of a more complex pedestrian behav-
ioral model. The preceding sections have discussed a parti-
cle filter algorithm which performs propagation on top-view
plan and verification on image plan. We believe that the con-
straints and/or models, made on the top-view plan, are more
effective (realistic) that complex models made on the image
plan. The pedestrian tracker can efficiently handle non-rigid
objects under different appearance changes. Also, as a limi-
tation under this approach is the real-time capability, the pro-
cessing time is dependent on the region size and the number
of hypotheses per pedestrian. Incorporating the coarse-to-
fine hierarchy of observation is straightforward.
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