
Applying backpressure to balance resource usage in
software-defined wireless backhauls

Jorge Baranda José Núñez-Martı́nez Josep Mangues-Bafalluy

Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)
Av. Carl Friedrich Gauss, 7

08860 Castelldefels (Barcelona), Spain
e-mail: [jorge.baranda, jose. nunez, josep.mangues]@cttc.cat

Abstract—The expected higher complexity of upcoming 5G
wireless backhauls suggests the need to evolve towards a software-
defined networking (SDN) paradigm to increase the degree of pro-
grammability of these networks. Within the context of software-
defined wireless backhaul, one important issue is the provision of
an even resource consumption of both network and IT resources.
Backpressure policies have shown their ability to balance resource
consumption in traditional (non-SDN) wireless backhauls.This
paper analyzes two use cases in which backpressure policiescan
be integrated in software-defined wireless backhaul to manage
network and IT resources. The first use case proposes an SDN
application based on a centralized backpressure policy to balance
network resources in the wireless backhaul. Simulation results
reveal how the granularity of routing decisions in the SDN
application significantly affects the data plane performance,
suggesting a trade-off between data plane performance and
overload in the control plane. The second use case proposes a
distributed backpressure policy to deal with the management of
computing resources by balancing the processing load caused by
OpenFlow (OF) switch requests among the available distributed
SDN controllers. Simulation results demonstrate how a dynamic
and distributed backpressure policy can balance the processing
load amongst different SDN controllers, hence, leading to signif-
icant improvements with respect to static mapping policies.

I. I NTRODUCTION

The management of wireless backhaul resources is ex-
pected to increase in complexity even more for future 5G
mobile networks. This trend can be explained, between others,
due to the following factors. On one hand, the expected higher
density of low power base stations, referred to as small cells
(SC), which is an effective way to increase network capacity
due to reduced cell radii. On the other hand, the higher net-
work dynamicity due to user mobility, decrease of per-device
reliability, abrupt changing traffic loads, and mixed Quality of
Service (QoS) requirements. Thus, given the tight requirements
of SC backhauls [1] and being unlikely that fiber reaches
every SC site in an ultra-dense deployment, the management
of wireless, and possibly wireless mesh, backhaul resources
formed by SCs will have to be significantly improved.

As in [2], we posit that the management of wireless
backhaul resources can be improved by applying the principles
of Software-Defined Networking (SDN), forming a software-
defined wireless backhaul (see Fig. 1). SDN [3] is a game-
changing paradigm allowing the idea of “programmable net-
works”, separating the control plane from network devices.In
SDN, the control plane is moved to a logically centralized

software element referred to as the SDN controller. By means
of the northbound interface (NBI), developed SDN applications
direct specific functions through the SDN controller, which
interacts with the physical infrastructure, that is, the network
devices. SCs embedding backhaul network devices form the
data plane, which is programmed by means of an open
interface, the so-called southbound interface (SBI). The de-
facto protocol for this interface is the OpenFlow (OF) proto-
col [4], which has a strong support from industry, research,and
academia. OpenFlow is developed by the Open Networking
Foundation (ONF) [5], which is dedicated to accelerating the
adoption of open SDN networks.

Fig. 1: Software-defined wireless backhaul

In the context of a software-defined wireless backhaul, a
key question is how to provide a proper load balancing of
network and IT resources. Regarding the load balancing of
network resources, several solutions in SDN deployments have
been proposed in the context of data centers [6], [7]. In the
case of load balancing of IT resources, ElastiCon [8] proposes
a centralized algorithm to change the control assignation of
switches among the pool of available SDN controllers. Thus,
the processing load generated by their requests is distributed
evenly among the resources provided by the SDN controllers.
However, literature lacks from such efforts for emerging
software-defined wireless backhauls.

On the other hand, backpressure [9] has been shown as an
effective approach to balance traffic. Backpressure algorithms
are based on minimizing the queue backlog differentials be-
tween neighboring nodes to push network resources towards
lower congestion states. For this reason, backpressure routing
is able to exploit several paths between source and destination



SCs. Practical extensions of backpressure has been developed
in legacy distributed wireless multi-hop backhauls [10], [11].

The contribution of this paper is the analysis of two re-
search problems for software-defined wireless backhauls where
we foresee that a backpressure approach could be adopted
for a proper load balancing of resources. To our knowledge,
this is the first study integrating backpressure-based policies
for the management of software-defined wireless backhauls.
In the first use case, we leverage a backpressure policy to
balance network resources. In particular, we propose an SDN
application based on a centralized backpressure approach that
balances traffic flows in a software-defined wireless backhaul.
The goal here is to distribute traffic flows to improve the usage
of network resources. Different from our previous work [10],
[11], where routing decisions were taken on a per-packet gra-
nurality, the centralized backpressure policy performs routing
decisions with coarser granularity, that is, per-flow statically
and on a periodical basis. In the second use case, we propose
a distributed backpressure algorithm to balance the processing
load among available SDN controllers due to uneven genera-
tion of requests by OF switches forming the software-defined
wireless backhaul. In contrast to the centralized algorithm
in [8], we propose a distributed backpressure approach em-
bedded in the SDN controllers to dynamically map the control
of OF switches across the multiple SDN controller instances.
The goal here is to balance the number of OF switch requests
served at each instance of the SDN controllers. Note that
in this case, the resource balanced is not network but IT
resources. In addition, we suggest the changes to be introduced
in a real SDN deployment to add the functionalities described
by both use cases. OpenFlow v1.3 [4] is used as a baseline
because currently, this is the most updated version of the OF
protocol that supports most of the current implementation of
OF switches. Furthermore, we provide initial simulation results
with ns-3 [12] and Matlab that indicate the convenience and
potential of using backpressure policies due to their simplicity
and efficiency.

The rest of this paper is organized as follows. In Section II,
we provide a review of the related work. Section III focuses on
the design, and simulation of the centralized SDN application
based on backpressure for load balancing of traffic flows.
Section IV provides a description and study of the back-
pressure approach to balance the mapping of SCs embedding
OF switches to SDN controllers. The paper concludes with
Section V.

II. RELATED WORK

In this section, we first summarize the main ideas behind
the backpressure algorithm applied to legacy distributed wire-
less networks. Next, we detail related work on the two research
topics where we foresee that a backpressure policy can apply.

A. Backpressure Concept

The origins of the Backpressure concept lies on the seminal
paper of Tassiulas and Ephremides [9]. In essence, it is a
centralized policy to route traffic in a multi-hop network which
attains throughput optimality by minimizing the Lyapunov drift
in the network. That is, this policy aims at minimizing the sum
of the queue backlogs in the network from one time slot to

the following one. This is achieved by transmitting packetsat
each time slot between network elements so the queue backlog
differentials are minimized. The backpressure algorithm was
afterwards extended by Neely and Modiano [13], proposing
to combine the previous scheme with a drift-plus-penalty
technique to optimize the performance of wireless multi-hop
networks. The theoretical strengths derived from this work
have recently increased the interest on practical implementa-
tions in the context of wireless multi-hop backhauls [10], [11].
Experimental and simulation results showed that the resulting
distributed backpressure routing strategy attains an evennet-
work resource consumption in a non-SDN wireless backhaul,
where each SC participates in the distributed control plane. In
contrast, this paper pursues the application of backpressure-
based policies in software-defined wireless backhauls.

B. SDN Research Topics where Backpressure can apply

1) Load Balancer of traffic flows as SDN Application:The
SDN paradigm eases the creation and deployment of more
complex network applications, such as the reduction of power
consumption [14]. As pointed out by the ONF [5], efficient
load balancing solutions are needed in highly dynamic net-
works such as the ones managed based on the SDN paradigm.
In the context of software-defined wireless backhaul networks,
an SDN application performing efficient load balancing of
network resources gains more importance due to the limited
nature of such resources that a wireless backhaul has compared
to its wired counterpart. Regarding the use of load balancing
SDN applications, most of the work is derived from the Equal
Cost Multipath (ECMP) protocol [15] and is mostly conceived
for the field of data centers [6], [7]. In this paper, we propose
a centralized approach to choose paths for incoming flows
using a backpressure policy, that is, merely based on polling
queue backlog information of switch ports. Unlike in [7],
which performs the path selection measuring the bandwidth
consumed by each flow at each constrained link. Thus, we
provide another alternative to the static resource allocation
solution (shortest-path routing), which does not exploit the path
redundancy available in the backhaul deployment.

2) Balancing the processing load across multiple dis-
tributed SDN controllers:A distributed architecture for the
SDN controller is justified by several reasons: (1) administra-
tive issues, (2) scalability, (3) fault-tolerance, and (4)switch to
controller latency reduction. The implementation of distributed
systems entails well-known challenges, as pointed out in the
SDN architecture document of the ONF [5]. Furthermore, the
load distribution (i.e., number of managed OF switches) among
the available SDN controllers constitutes an open problem in
the context of a distributed (but still logically centralized) SDN
controller architecture. As mentioned in [8], a static mapping
of OF switches to SDN controllers can produce uneven load
distributions in the SDN controllers derived from changes
in the traffic characteristics. Consequently, some controllers
experience overloading, causing an increase of network latency
associated to the request response time. Hence, a distributed
deployment of SDN controllers requires of procedures and
algorithms to dynamically assign switches to controllers.In
this way, the switches (and its generated load) can be balanced
among the available resources at the pool of SDN controllers.
In [8], an example of such kind of procedure run by a central
entity is presented. In this paper, we present a distributed



backpressure algorithm to dynamically assign switches to SDN
controllers. Besides, and in contrast to [8], our algorithmcon-
siders the distance from switches to controllers as a parameter
to constraint the mapping of switches to controllers.

III. SDN A PPLICATION: LOAD BALANCER OF TRAFFIC
FLOWS

This section details the application of backpressure as a
centralized SDN application to achieve an efficient balancing
of traffic flows across multiple OF switches embedded in SC
devices, as showed in Fig. 1. As explained in [16], an SDN
controller contains, among others, two basic modules: the link
discovery and the topology manager. The link discovery mod-
ule discovers the nodes and maintains the information about
the status of the physical links in the network. The topology
manager builds and maintains the topology information and
calculates the routes in the network using the information
collected by the link discovery module.

When a OF switch receives a packet, it looks for a matching
forwarding rule in its flow table. If there is a match the
packet is forwarded. If there is not a match, the packet is
encapsulated in a OFOFPT PACKET IN request towards the
SDN controller, which is in charge of providing the rule to
forward this packet. To compute routes, the topology manager
embedded in the SDN controller leverages the Dijkstra’s algo-
rithm to find the shortest path between two network elements,
deriving in a static allocation of network resources. However,
this approach does not ensure an efficient use of the network
resources depending on the network congestion conditions.
We propose to enhance the routing functionality with an SDN
application that uses a backpressure policy to provide routing
and load balancing for the traffic traversing the software-
defined wireless backhaul. In order to do so, the application
bases on the information provided by the SDN controller
services such as the topology manager and the link discovery.

The SDN application needs to maintain an abstracted
global view of the network to determine the appropriate route
for an incoming flow and to install the corresponding rules in
the OF switches. The information about the network topology
and link status is gathered from the database maintained by
the link discovery and the topology manager modules. The
information in this database is populated running a discovery
procedure using the Link Layer Discovery Protocol (LLDP).
With this information, the SDN application can obtain the mul-
tiple routes between any pair of network elements embedding
a protocol, such as Equal Cost Multi-Path (ECMP) [15]. To
use a backpressure policy, the SDN application also requires
to poll periodically the queue sizes of the ports in the OF
switches embedded in the SCs.

In particular, the SDN application assigns a weightw to
each possible link(i, j) with rate Rij forming part of the
routes available for this traffic flow according to the following
expression:

wij = (Qi −Qj)Rij , (1)

where Qi is the queue occupancy of OF switchi and
Qj is the queue occupancy of OF switchj. For each new
flow entering the network, weights are calculated out of
the available routes for this flow. Once all the weights are
computed, we select the pathp∗ satisfying:

p∗ = argmax
p∈P

∑

(i,j)∈p

wij (2)

wherep is one of the possible end-to-end paths of the setP
calculated by the SDN application. In this way, the application
selects, for each flow, the route that maximizes the path weight
computation depicted in Equation (2). Note that the weights
can be periodically recalculated configuring appropriately the
timeouts of the installed flow table rules at the OF switches.
This is of special interest in the case of long-lived flows since
it allows rerouting, hence experiencing path readjustments
to better adapt to abrupt changes in the network congestion
conditions. Additionally, path readjustments may be necessary
due to the changing conditions of the wireless medium.

In order to implement this load balancing application, some
adjustments to the OF v1.3 specification [4] are required.
The application needs to gather the queue sizes to abstract
the congestion level of ports in the OF switches forming
the backhaul network. Periodically, the OF switches can send
this information to the SDN controller to be stored in the
network topology database. We can leverage OF multipart
messages, which are primarily used to request statistics orstate
information from the switch.

In particular, theOFPMP QUEUE multipart message pro-
vides queue statistics. However, the current implementation
of this message does not include any field related to the
queue size of a port in packets. We propose to expand
this message by including queue occupancy information to
infer network congestion conditions. The link rate information
between OF switches is available by means of the asyn-
chronousOFPT PORT STATUSmessage. OF switches send
this message to inform the controller of changes on a port.
The port physical rate is encoded in theOFP PORTstructure,
which describes the information associated to a port.

Thus, for each OFOFPT PACKET IN request received by
the SDN controller, instead of determining the route running
a static single shortest path protocol, it will request to the
SDN application the appropriate route. The queue and routing
information exchanged between the application and the con-
troller is collected through the NBI by means of the REST
API using the HTTP protocol. From those available routes,
the SDN application selects the route maximizing the sum of
the link weights computation, and informs the SDN controller
of the selected route. Through the OFOFPT FLOW MOD
message, the controller will then push the new flow rule to the
network switches.

A. Case Study

In this section, we evaluate the modeled centralized SDN
application based on backpressure with ns-3 [12]. In partic-
ular, BP(per-flow)takes routing and load balancing decisions
on a per-flow basis, andBP(periodical)on a periodic basis,
thus, potentially changing the path for long-lived flows. We
compare these approaches with our backpressure distributed
solution in [11], labeled asBP(per-packet), which takes de-
cisions on a per-packet basis in a non-SDN version of the
evaluated scenario, and a centralized shortest-path basedroute
determination. For these initial results, we assume that the
control plane is part of another alternative reliable network so
that control and data plane do not share the same infrastructure.



 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

200flows 250flows 300flows 350flows

No
rm

ali
ze

d 
th

ro
ug

hp
ut

Number of flows

BP(per-flow)
SP(per-flow)

BP(periodical)
BP(per-packet)

Fig. 2: Performance comparison of achieved throughput

 1

 10

 100

 1000

200flows 250flows 300flows 350flows

Av
er

ag
e 

La
te

nc
y (

in 
m

s)

Number of flows

BP(per-flow)
SP(per-flow)

BP(periodical)
BP(per-packet)

Fig. 3: Performance comparison of achieved latency

Fig. 2 and Fig. 3 shows the statistical distribution of the
averaged performance of 25 repetitions of the simulated 5x5
grid like wireless mesh backhaul with an SDN controller.
Simulations span over five minutes with multiple constant bit
rate (CBR) traffic flows entering and leaving the network,
thus sharing the wireless resources. We show the normalized
throughput and the average latency in the data plane for a
different number of input flows. The normalized throughput
is defined by the ratio between the received and the injected
traffic. For each of these network performance metrics, we
use average values and boxplots to represent their statisti-
cal distribution. Boxplots represent the statistical distribution
stretching from the 25th to the 75th percentiles, and the
whiskers represent the 5th and 95th percentiles.

The trend observed in Fig. 2 and Fig. 3 shows that
the obtained gains with BP(per-flow) and BP(periodical)
are achieved when network dynamics increase because the
available resources in the data plane of the wireless back-
haul are used more efficiently. RemarkablyBP(per-flow)
and BP(periodical), obtain a minimum improvement of 40%
on average latency compared toSP(per-flow)for the case of
350 flows. In general,BP(periodical) tends to show better
performance in terms of normalized throughput and latency
than BP(per-flow)and SP(per-flow)for high loads. The peri-
odical recomputation of a path for a flow increases the degree
of traffic distribution showing less variability and significant
improvement in terms of throughput and latency compared
to SP(per-flow)andBP(per-flow).

Although the performance in terms of latency
of BP(periodical) is even better than that ofBP(per-
packet)for the 350 flows case, in general we observe similar
behavior with BP(periodical) and BP(per-packet). This
suggests thatBP(periodical) could offer a good trade-off
between data plane performance and overhead (e.g., Packet
In requests) generated by OF control plane traffic. In our
simulations, the path recomputation was performed every
second. The impact of the periodicity of such recomputation
will be a subject of further study. Note that control plane
overhead acquires even more relevance in scenarios where
control and data plane share resources in an unreliable
wireless backhaul network.

IV. BALANCING THE LOAD BETWEEN MULTIPLE
DISTRIBUTED SDN CONTROLLERS

In the envisioned context of high network dinamicity, the
rate of requests generated in the set of OF switches controlled
by an SDN controller experience variations due to changes

in the spatial traffic distribution. The processing load at an
SDN controller is directly related with the amount of requests
generated by the OF switches embedded in SCs. As explained
in [8], a dynamic assignment of switches to controllers could
react in front of processing overloads at the SDN controllers
in such kind of distributed deployments. Due to this, in this
section, we focus on the modeling of a distributed backpressure
algorithm that pursues an even distribution of the processing
load amongst the pool of available SDN controllers present in
the network deployment.

The proposed algorithm considers that the software-defined
wireless backhaul has been divided into different controller
domains to keep bounded the latency in the communication
between switches and controller as depicted in Fig. 4. Each
different domain contains an SDN controller, which initially
manages a set of OF switches deployed in the given domain.
Each SDN controller embeds a module which records the
number of OF requests from each switch under control during
the last observation time. This value abstracts the queue back-
log of requests associated to each SDN controller. Moreover,
it is disseminated periodically to adjacent SDN controllers
through the east/westbound interfaces, which allow inter-SDN
controller communications. We consider that switches can only
be migrated between adjacent SDN controller domains to
avoid excessive latencies in the communication between the
OF switch and SDN controller. In addition, we assume that
only one switch migration is allowed between a pair of SDN
controllers at each scheduling decision period (time slot)to
decrease the impact of disruption on ongoing flows due to the
migration process.

Fig. 4: Distributed SDN controller deployment

At the beginning of each time slot, each SDN controller
checks if its processing load during the last time slot has
exceeded a predefined threshold denoted byUt. This thresh-
old pretends to avoid continuous migrations of OF switches
between SDN controllers and is fixed assuming that the SDN
controller is able to serve the incoming requests in a reasonable



time. If Ut is exceeded, this means that the SDN controller is
overloaded and needs to migrate OF switches to neighboring
SDN controllers to reduce/balance its processing load. The
SDN controller “under stress” computes the following metric,
which seeks the minimization of the Lyapunov drift between
the processing load of the local SDN controller and the
neighboring SDN controllers:

sij = max(0,
(Ri −Rj)

2
) (3)

where sij denotes the number of requests which should
be migrated to attain balance between the considered SDN
controllers.Ri is the number of requests in the local SDN
controller andRj denotes the reported number of requests of
the neighboring SDN controller.

Each SDN controller keeps track of the neighboring SDN
controllers j with positive weight sij . Remember that we
assume that OF switches can only be migrated between ad-
jacent domains. Thus, according to Fig. 4, a switch originally
associated to the blue domain can be part of the red domain
but not a candidate to be controlled by the green domain.

The switch selection algorithm is executed as follows.
First, neighboring SDN controllersj with positive weightsij
are sorted in descending order. Thus, those neighboring SDN
controllers presenting a lower processing load are considered
before to host a switch migration. Second, we generate the
list of local candidate switches to be migrated. This list is
populated according to the spatial location of an OF switch.
Third, we select the switch from this list that produces the
biggest reduction insij while not overloading the neighboring
SDN controllerj, that is, not exceeding the previous defined
utilization thresholdUt. In this way, we are applying a max-
weight (or backpressure) policy to select intended OF switch
migrations. Then, the algorithm repeats the process for the
following neighboring SDN controllersj of the list. Prior to
this, the weightsij is recomputed in the local SDN controller.
The reason to update the weights is to avoid unnecessary
OF switch migrations. Once the local SDN controller has
finished the previous process, it notifies the corresponding
neighboring SDN controllers and the migration operations start
if any switch has been selected. Note that with the proposed
assumptions, OF switch migrations per time slot for an SDN
controller are bounded to the the number of neighboring SDN
controllers. Thus, the process to decrease the overload of an
SDN controller may imply several time slots.

Since version 1.3 [4], OF protocol defines three opera-
tional modes for a controller: master, slave, and equal. This
allows the design of switch migration protocols between
SDN controllers, such as the one presented in [8], which
ensures minimal disruption to ongoing flows. In this protocol,
the original controller changes its role to slave by sending
the corresponding OFOFPT ROLE REQUESTmessage to
the switch. The new SDN master controller must send the
OF OFPT ROLE REQUESTmessage to inform the switch of
its new role as master. The other requirement to implement our
distributed algorithm is the necessity of data exchange between
SDN controllers through the east/westbound interfaces. An
example of protocol to manage east/westbound communica-
tions between neighboring SDN controllers is the Advanced

Message Queuing Protocol (AMQP) [17], as proposed in [18].
AMQP is a lightweight protocol that allows the exchange of
information between entities, hence being a suitable alternative
to exchange the information related to the number of received
requests in each SDN controller. Note, however, that currently,
there is not a clear east/westbound interface standard, like
OF for the SBI, to provide compatibility and interoperability
between different SDN controllers.

A. Case Study

In this subsection, we provide simulation results obtained
with Matlab software where we compare the proposed load
balancing algorithm based on backpressure with a static
switch-controller mapping policy. We consider three SDN
controllers deployed as showed in Fig. 4, where each controller
initially manages a disjoint set of ten OF switches. Each setof
switches models the spatial distribution of OF requests in the
network. We assume that each SDN controller can manage
up to 10000 requests per time slot. Each switch generates
independently OF requests in each slot following a uniform
random distribution. Switches of set one generate OF requests
uniformly distributed in the range [0,500], switches of set
two in the range [0,2500], and switches of set three in the
range [0,1500]. Hence, initially, each SDN controller receives
a uniform distribution of OF requests at a mean rate of 2500,
12500, and 7500 requests per time slot, respectively.

Fig. 5 shows the evolution of the processing load at each
controller comparing the different switch-controller mapping
strategies. Fig. 5(a) reveals that SDN controller2 suffersfrom
processing overload as a consequence of the static mapping
strategy, which derives in an increase of the response time for
the received requests. However, the other SDN controllers have
spare processing resources which could be used to reduce the
processing load at SDN controller2. In contrast, when usingthe
proposed algorithm based on backpressure, the processing load
of SDN controller2 is mostly delegated to SDN controller1
attaining a fair share of load between the available controllers,
as can be observed in Fig. 5(b).

10 20 30 40 50
0

50

100

Time slot

L
o
a
d
 (

%
)

Processing Load at SDN controller1

10 20 30 40 50
0

50

100

Time slot

L
o
a
d
 (

%
)

Processing Load at SDN controller2

10 20 30 40 50
0

50

100

Time slot

L
o
a
d
 (

%
)

Processing Load at SDN controller3

(a) Static mapping

10 20 30 40 50
0

50

100

Time slot

L
o

a
d

 (
%

)

Processing Load at SDN controller1

10 20 30 40 50
0

50

100

Time slot

L
o

a
d

 (
%

)

Processing Load at SDN controller2

10 20 30 40 50
0

50

100

Time slot

L
o

a
d

 (
%

)

Processing Load at SDN controller3

(b) Dynamic mapping

Fig. 5: Evolution of processing load at each SDN controller

Next, we show the reaction of the proposed algorithm when
switches of each set change suddenly the mean number of
generated requests, simulating a spatial variation in network
traffic conditions. In particular, the mean rate of requestsof



each group of switches is changed from 2500, 12500, and
7500 requests to 12500, 7500 and 2500 requests, respectively,
in time slot 25. Fig. 6(a) shows the evolution of the process-
ing load experienced by each SDN controller, and Fig. 6(b)
shows the temporal evolution of the number of OF switches
managed by each SDN controller. Initially, we observe how
the overload suffered by SDN controller2 is delegated mostly
to SDN controller1. At time slot 25, the abrupt change in the
request generation rate produces overload in SDN controller1.
As a result, this controller starts assigning switches to SDN
controller2. Fig. 6(b) shows that this process implies several
time slots due to the design constraints of only migrating one
switch per neighbor and time slot. Then, SDN controller2
starts experiencing an elevated processing load and ends up
transferring switches to SDN controller3. Finally, the system
becomes stable and switch migrations are less frequent.

The above results suggest that workload amongst SDN con-
trollers can be shared using a distributed backpressure policy,
confirming its suitability to balance IT resource consumption
(i.e., load in SDN controller). Initial simulation results, in
general, reveal a good reaction of this policy even for abrupt
changes in the workload to be managed by an SDN controller.

10 20 30 40 50
0

50

100

Time slot

L
o

a
d

 (
%

)

Processing Load at SDN controller1

10 20 30 40 50
0

50

100

Time slot

L
o

a
d

 (
%

)

Processing Load at SDN controller2

10 20 30 40 50
0

50

100

Time slot

L
o

a
d

 (
%

)

Processing Load at SDN controller3

(a) Processing load

10 20 30 40 50
0

10

20

Time slotN
u
m

b
e
r 

o
f 
s
w

it
c
h
e
s Number of switches managed by SDN controller1

10 20 30 40 50
0

10

20

Time slotN
u
m

b
e
r 

o
f 
s
w

it
c
h
e
s Number of switches managed by SDN controller2

10 20 30 40 50
0

10

20

Time slotN
u
m

b
e
r 

o
f 
s
w

it
c
h
e
s Number of switches managed by SDN controller3

(b) Managed switches

Fig. 6: Dynamic mapping when changing traffic conditions
V. CONCLUSIONS

In this paper, we identify two use cases relevant for a
software-defined wireless backhaul where backpressure based
policies can be applied: load balancing of traffic flows and
balancing of processing load among the available SDN con-
trollers. As for the former, we devise an SDN application
based on a centralized backpressure policy. We also provide
hints on how to implement such an application in a real OF
context. Simulation conducted for this use case demonstrate
that a centralized backpressure policy with proper periodic
route recomputations can bring significant performance gains
for the data plane. As for the latter, we propose and provide
some initial simulation results of a distributed backpressure
approach to balance processing load amongst a physically
distributed SDN controller architecture. We also provide some
hints on how to implement such a distributed dissemination of
load information between neighboring SDN controllers.

To the best of our knowledge, this paper is the first one
focusing on software-defined wireless backhauls and backpres-
sure policies to manage not only network resources but also

IT resources. We expect that it constitutes a starting point
for the introduction of such technique and, more in general,
the introduction of stochastic network optimization techniques
to better manage the available resources in software-defined
wireless backhauls. The efficient management of resources in
such kind of deployments is a vital issue due to their associated
constraints compared to their wired counterparts.

ACKNOWLEDGMENT

This work was carried out in part within H2020 SANSA
project, funded by EC under grant agreement no. 645047,
and by the Spanish Ministry of Economy and Competitiveness
under grant TEC2014-60491-R.

REFERENCES

[1] Next Generation Mobile Networks Alliance, “Small cell backhaul
requirements,”NGMN White paper, 2012.

[2] C.J. Bernardos, A. de la Oliva, P. Serrano, A. Banchs, L.M. Contreras,
Hao Jin, and J.C. Zuñiga, “An architecture for software defined wireless
networking,” Wireless Communications, IEEE, vol. 21, no. 3, pp. 52–61,
June 2014.

[3] N. McKeown, “Software-Defined Networking,” INFOCOM Keynote
talk, April 2009.

[4] Open Networking Foundation, “OpenFlow Switch Specification (Ver-
sion 1.3.0),” June 2012.

[5] Open Networking Foundation, “Available at:
https://www.opennetworking.org,” .

[6] C.A.B. Macapuna, C.E. Rothenberg, and M.F. Magalha?es,“In-packet
bloom filter based data center networking with distributed openflow
controllers,” in GLOBECOM Workshops (GC Wkshps), 2010 IEEE,
Dec 2010, pp. 584–588.

[7] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,”in Proc.
of the 7th USENIX Conf. on Networked Systems Design and Imple-
mentation, Berkeley, CA, USA, 2010, NSDI’10, pp. 19–19, USENIX
Association.

[8] Advait D., F. Hao, S. Mujherjee, T.V. Lakshman, and R. Kompella,
“Towards an elastic distributed SDN controller,” inProc. of the
2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking (HotSDN 2013). ACM, 2013, pp. 7–12.

[9] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,”IEEE Trans. on Automatic Control, vol. 37,
no. 12, pp. 1936–1948, Nov. 1992.

[10] J. Núñez-Martı́nez, J. Baranda, and J. Mangues-Bafalluy, “Experimental
evaluation of self-organized backpressure routing in a wireless mesh
backhaul of small cells,”Ad Hoc Networks, Elsevier, 2015.

[11] J. Núñez-Martı́nez, J. Baranda, and J. Mangues-Bafalluy, “A self-
organized backpressure routing scheme for dynamic small cell deploy-
ments,” Ad Hoc Networks, Elsevier, 2015.

[12] “The ns-3 network simulator, Avalaible at: http://www.nsam.org,” .

[13] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation
and routing for time-varying wireless networks,”Selected Areas in
Communications, IEEE Journal on, vol. 23, no. 1, pp. 89–103, 2005.

[14] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis,P. Sharma,
S. Banerjee, and N. McKeown, “Elastictree: Saving energy indata
center networks,” inProcs of the 7th USENIX Conf on Networked Sys-
tems Design and Implementation, Berkeley, CA, USA, 2010, NSDI’10,
pp. 17–17, USENIX Association.

[15] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” 2000.

[16] Aricent, “Demystifying routing services in software-defined network-
ing,” White Paper, 2013.

[17] Advanced Message Queuing Protocol, “Available at:
http://www.amqp.org,” .

[18] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed multi-domain
sdn controllers,” inNetwork Operations and Management Symposium
(NOMS), 2014 IEEE, May 2014, pp. 1–4.


