

Task Oriented Fault-Tolerant Distributed

Computing for Use on Board Spacecraft

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Muhammad Fayyaz

Department of Engineering

University of Leicester

2015

ii

Abstract

Current and future space missions demand highly reliable, High Performance

Embedded Computing (HPEC). The review of the literature has shown that no single

solution could meet both issues efficiently at present addressing HPEC as well as

reliability. Furthermore, there is no suitable method of assessing performance for such

a scheme.

In this thesis a novel cooperative task-oriented fault-tolerant distributed computing

(FTDC) architecture is proposed, which caters for high performance and reliability in

systems on board spacecraft. In a nut shell, the architecture comprises two types of

nodes, a computing node and an input-output node, interfaced together through a high-

speed network with bus topology. To detect faults in the nodes, a fault management

scheme specifically designed to support the cooperative task-oriented distributed

computing concept is proposed and employed, which is referred to as Adaptive

Middleware for Fault-Tolerance (AMFT). AMFT is implemented as a separate

hardware block and operates in parallel with the processing unit within the computing

node. A set of metrics is designed and mathematical models of availability and

reliability are developed, which are used to evaluate the proposed distributed

computing architecture and fault management scheme.

As a new development, extending the current state of the art, the proposed fault-

tolerant distributed architecture has been subjected to a rigorous assessment through

hardware implementation. Implementation approaches at two levels were adopted to

provide a proof of concept: a board level and a Multiprocessor System-on-Chip

(MPSoC) level. Both distributed computing system implementations were evaluated

for functional validity and performance.

To examine the FTDC architecture performance under a realistic space related

distributed computing scenario a case-study application, representing a satellite

Attitude and Orbit Control System (AOCS), was developed. The AOCS application

was selected because it features a time critical task execution, in which system failure

and reconfiguration time must be kept minimal. Based on the case-study application, it

was demonstrated that the FTDC architecture is capable of fully meeting the desired

requirements by timely migrating tasks to functional nodes and keeping rollback of

task states minimal, which proves the advantages of the adopted cooperative

distributed approach for use on board spacecraft.

iii

Dedication

To My Late Mother, Father, and Father-in-Law.

May Allah rest their soul in peace.

iv

Acknowledgements

“In the name of Allah, the most generous, most benevolent.”

First of all, I would like to thank Almighty Allah, who gave me the power to achieve

my goals. Then, I am very grateful to my supervisor Prof. Tanya Vladimirova for

inculcating professionalism towards the achievement of my goals and for being a

source of motivation and inspiration throughout the research. Her guidance and

encouragement were instrumental in crafting and ensuring success in this research

program. Without her advice and support, breaking dead ends would have been fatal.

I am also thankful to my second supervisors Prof. Mike Warrington and Dr. Alistair

McEwan for their guidance and sharing of wisdom to ensure my work makes an

impact. I am very grateful to Prof. Micheal Pont for his valuable feedback and

encouragement during the APG exam. I am very thankful to the staff of the

Engineering Department; especially Michelle Pryce for her support to sort out

University related academic matters.

The research work would not be possible without the generous funding and support

provided by the University of Leicester, UK, and the European Commission as part of

the FP7 Project “ReVuS: Reducing the Vulnerability of Space Systems”. I am very

thankful to both organizations. Special thanks go to Jean-Michel Caujolle from Airbus

Defence & Space, France for his guidance.

There are numerous students and academic staff that have supported me in technical

and non-technical ways. These include, in no particular order, Paul William, Tom

Robotham, Ian, Irfan, Muhammad Zia, Saad A. Malik, Jing, Xiaojun Zhai, Julie

Clayton, Farah, and Ioannis. I am very thankful to all of you.

Last, but not the least; I am very grateful to my wife, mother-in-law, and colleagues for

their support and encouragement throughout the Ph.D. research.

v

Declaration of Authorship

I hereby declare that this submission is my own work, and that is the result of work

done during the period of registration. To the best of my knowledge, it contains no

previously published material written by another person. None of this work has been

submitted for another degree at the University of Leicester or any other University.

vi

Contents

Abstract .. ii

Dedication ... iii

Acknowledgements... iv

Declaration of Authorship .. v

Contents .. vi

List of Figures .. xii

List of Tables .. xvi

List of Abbreviations ... xviii

List of Symbols ... xxiii

Chapter 1 ... 1

1. Introduction ... 1

1.1 Motivation ... 6

1.2 Scope and Objectives .. 6

1.3 Methodology ... 7

1.4 Novelty Contributions ... 8

1.5 Thesis Structure ... 9

1.6 Publications ... 11

Chapter 2 ... 13

2. Fault-Tolerant Distributed Computing in Embedded Systems 13

2.1 General Overview and Concept .. 13

2.1.1 Distributed Computing .. 13

2.1.2 Distributed Embedded Systems .. 14

2.1.3 Fault-Tolerance ... 14

2.1.4 Faults, Errors, and Failures ... 14

vii

2.1.5 Concept of Redundancy .. 15

2.2 Fault-Tolerance Techniques .. 19

2.2.1 Replication .. 20

2.2.2 Distributed Recovery Block .. 23

2.2.3 Redundant Execution .. 24

2.2.4 Network Surveillance .. 25

2.3 Fault Detection Methods for Embedded Distributed Computing Systems 26

2.3.1 Hardware Based Fault Detection .. 26

2.3.2 Software Based Fault Detection .. 27

2.4 Communication Network .. 30

2.5 Summary ... 34

Chapter 3 ... 36

3. Fault-Tolerant On-Board Computing ... 36

3.1 Related Definitions ... 36

3.1.1 Spacecraft .. 36

3.1.2 On-Board Computer .. 37

3.1.3 Computer, Node, Unit, and Module .. 37

3.2 Fault-Tolerant Computing for Aerospace Applications .. 38

3.2.1 Computing Models .. 38

3.2.2 Fault Management Scheme ... 40

3.2.3 Fault-Tolerant Computing Systems .. 44

3.2.4 Discussion ... 50

3.3 Wireless Protocols for Spacecraft Fault-Tolerant Computing 53

3.4 Modern Implementation Approaches to Fault-Tolerant Computing Systems 57

3.5 Issues of Current Fault-Tolerant Computing Approaches .. 60

3.6 Problem Definition .. 63

3.7 Summary ... 66

Chapter 4 ... 68

4. Novel Architecture for Fault-Tolerant Distributed Computing 68

4.1 Introduction ... 68

4.2 System Hierarchy of the Proposed Architecture ... 70

4.3 Distributed Computing Node .. 72

4.4 Input-Output Node .. 74

4.5 Communication Network .. 75

4.6 Software Stack .. 77

viii

4.6.1 Distributed Computing Application .. 79

4.7 Fault Management Scheme ... 83

4.8 Fault Detection .. 85

4.8.1 Transient SDC Error Detection ... 86

4.8.2 Permanent SDC Fault Detection ... 87

4.9 Summary ... 88

Chapter 5 ... 90

5. Adaptive Middleware for Fault-Tolerant Distributed Computing 90

5.1 Design Goals ... 90

5.2 Algorithms .. 92

5.2.1 Start-up .. 93

5.2.2 Normal Operations .. 93

5.2.3 AMFT Fault Handling... 95

5.2.4 Tasks Migration .. 97

5.3 AMFT Design ... 98

5.3.1 Top-Level Design ... 99

5.3.2 Implementation Approaches ... 100

5.3.3 AMFT Messages and Formats .. 101

5.3.4 AMFT Tables .. 105

5.4 AMFT Scenarios and Network Communication ... 106

5.5 AMFT Software Structure... 109

5.5.1 FDIR Task ... 110

5.5.2 Target Fail-Over Node Selection Task.. 111

5.5.3 AMFT Communications Task ... 112

5.5.4 AMFT Receiver Task .. 115

5.5.5 AMFT Sender Task ... 115

5.6 Discussion ... 116

5.7 Summary ... 117

Chapter 6 ... 119

6. Evaluation of the Proposed Approach .. 119

6.1 Dependability Analysis of the Distributed Computing Approach 119

6.1.1 Performance Metrics ... 120

6.1.2 Reliability Analysis of Computing Architectures ... 121

6.1.3 Fault Management Scheme Analysis: Distributed vs Centralized 129

6.2 Functional Verification ... 137

ix

6.2.1 Distributed System Performance Metrics ... 137

6.2.2 FTDC Prototype Design .. 139

6.2.3 Distributed Node Prototype ... 139

6.2.4 Distributed Computing Node Testing ... 141

6.2.5 Fault-Tolerant Distributed System Prototyping .. 145

6.2.6 Experimental Results .. 146

6.2.7 Implementation Issues ... 150

6.3 Summary ... 152

Chapter 7 ... 153

7. Novel MPSoC Based Design for Fault-Tolerant Distributed Computing 153

7.1 Why MPSoC Design? ... 153

7.2 Description of the MPSoC Based Fault-Tolerant Distributed Computing Design . 155

7.2.1 MPSoC Operational Scenarios .. 156

7.2.2 MPSoC Block Diagram... 160

7.2.3 Selection of FPGA Based MPSoC Device .. 161

7.3 MPSoC Hardware Implementation ... 163

7.3.1 Logic Resources .. 163

7.3.2 Electrical Power Consumption .. 165

7.4 MPSoC Software Implementation .. 165

7.4.1 Application Software .. 165

7.4.2 AMFT Software .. 167

7.4.3 AMFT Software Overhead .. 169

7.5 MPSoC Fault Injection Mechanism .. 170

7.5.1 Transient Fault Injection ... 171

7.5.2 Permanent Fault Injection ... 172

7.6 Experimental Setup and Results.. 173

7.7 Multiprocessor System-on-chip for a CubeSat Mission ... 180

7.7.1 Implementation of MPSoC-CubeSat PCB Design .. 182

7.8 Summary ... 182

Chapter 8 ... 184

8. Case Study: Fault-Tolerant Distributed AOCS Computer ... 184

8.1 Attitude and Orbit Control System ... 184

8.2 Rationale for Distributed AOCS ... 185

8.3 Design of a Distributed Attitude and Orbit Control .. 186

8.3.1 Requirement Specifications .. 187

x

8.3.2 AOCS Sensors and Actuators ... 187

8.3.3 Functional Design Processes ... 187

8.3.4 Distributed AOCS Software Structure .. 189

8.4 Distributed AOCS Computer Implementation and Testing 199

8.4.1 System Configuration.. 199

8.4.2 Experimental Results .. 201

8.5 Analysis of Experimental Results ... 204

8.5.1 Computational Integrity .. 204

8.5.2 Fault Coverage .. 208

8.6 Summary ... 210

Chapter 9 ... 212

9. Conclusions and Future Work ... 212

9.1 Research Summary ... 212

9.2 Contributions to the State of the Art ... 213

9.3 Future Work .. 215

Appendix A. ... 217

A. Definitions ... 217

Appendix B. ... 220

B. Derivation of Reliability ... 220

B.1 Reliability of Series System .. 220

B.2 Reliability of Parallel System.. 221

B.3 Reliability of Satellite On-Board Computers .. 222

B.3.1 Centralized OBC ... 223

B.3.2 Cold Standby Redundant OBC ... 224

B.3.3 Warm Standby Redundant OBC ... 225

B.3.4 N-Modular Redundant OBC ... 226

B.3.5 1:N Redundant OBC ... 229

Appendix C. ... 230

C. Implementation Details .. 230

C.1 Board Level Implementation... 230

C.1.1 Resources .. 230

C.2 MPSoC based Implementation .. 232

C.2.1 Electrical Circuit Diagram .. 232

C.2.2 Device Utilization ... 232

C.2.3 Permanent Fault Injection Design ... 235

xi

Appendix D. ... 236

D. Distributed Computing Node PCB Design Data ... 236

D.1 Printed Circuit Board Layout .. 236

D.2 Bill of Materials .. 239

Appendix E. ... 240

E. Software ... 240

E.1 Application Software Top Level Design ... 240

E.2 AMFT Software Top Level Design .. 248

E.3 AOCS Telemetry List ... 256

Bibliography .. 259

xii

List of Figures

Figure 1.1: Block Diagram of the Sentinel-2 Centralized Computing System [8]. 3

Figure 1.2: Distributed Synthetic Aperture Radar [12]. .. 4

Figure 1.3: Thesis Organization .. 11

Figure 2.1: Redundancy Schemes. ... 19

Figure 2.2: Comparison of Replication Techniques in Distributed Systems. .. 24

Figure 3.1: Cross-Strapped Satellite Platform Computing Model. .. 39

Figure 3.2: Centralized Fault Management Scheme. ... 42

Figure 3.3: Decentralized Fault Management Scheme. ... 43

Figure 3.4: Hierarchical Fault Management Scheme. ... 44

Figure 3.5: Classification of Fault-Tolerant Distributed Systems. .. 49

Figure 3.6: Operations of a Distributed Computing System under Fault .. 65

Figure 4.1: Hardware Architecture for Fault-Tolerant Distributed Computing. 71

Figure 4.2: A Group View of Architecture for Fault-Tolerant Distributed Computing........................... 72

Figure 4.3: Fault-Tolerant Distributed Computing Node. ... 73

Figure 4.4: Design of Input-Output Node .. 75

Figure 4.5: Network for the Proposed Architecture. .. 76

Figure 4.6: Time Slots for Network Communication in Bus Topology. ... 77

Figure 4.7: Software Stack. ... 78

Figure 4.8: Distributed Application Software Block Diagram. ... 79

xiii

Figure 4.9: Fault Management Scheme. .. 85

Figure 4.10: Algorithm for Transient SDC Errors. ... 86

Figure 4.11: Algorithm for Permanent SDC Faults. .. 88

Figure 5.1: Algorithm for AMFT Start-up. .. 94

Figure 5.2: Algorithm for AMFT Normal Operations. .. 95

Figure 5.3: Algorithm for Fault and Recovery Handling... 97

Figure 5.4: Task Migration. ... 98

Figure 5.5: AMFT Top-Level Design. .. 100

Figure 5.6: AMFT Block: Implementation Approaches. ... 101

Figure 5.7: Network Communication in case of Normal Operations. ... 107

Figure 5.8: Network Communication in case of Processing Unit Failure. .. 108

Figure 5.9: Network Communication in case of AMFT Failure. ... 108

Figure 5.10: AMFT Software Implementation. ... 109

Figure 6.1: System Reliability. .. 121

Figure 6.2: Markov Model for Centralized System. .. 122

Figure 6.3: Markov Model for TMR-based System [211]. .. 124

Figure 6.4: Markov Model for a Two-Node Distributed System. ... 126

Figure 6.5: Markov Model for a Three-Node Distributed System... 127

Figure 6.6: Reliability Curves for Centralized, TMR-based and Distributed Systems. 128

Figure 6.7: Relative Improvement in Reliability Values for Distributed Computing Approach. 129

Figure 6.8: Comparison between Centralized and Distributed Fault Management Scheme. 131

Figure 6.9: Availability Model for Centralized Fault Management Scheme. .. 134

Figure 6.10: Availability Model for Distributed Fault Management Scheme. 136

Figure 6.11: Board Level Design of Distributed Computing System. ... 140

Figure 6.12: Board Level Implementation of Distributed Computing Node. .. 140

Figure 6.13: Setup for Testing of Processing Unit. ... 142

Figure 6.14: Processing Unit Functional Testing with Task-1. ... 142

Figure 6.15: Processing Unit Functional Testing with Task-1 and Task-2. ... 143

xiv

Figure 6.16: Processing Unit Functional Testing with Task-1 to 5. .. 143

Figure 6.17: Setup for Functional Testing of AMFT Unit. .. 144

Figure 6.18: AMFT Memory View Captured by IAR, when node was healthy. 144

Figure 6.19: AMFT Memory View Captured by IAR, when node was faulty. 145

Figure 6.20: Task State Data Flow. ... 151

Figure 7.1: Distributed System Configuration. .. 156

Figure 7.2: Data Flow in a Normal Scenario. .. 157

Figure 7.3: Task Migration Scenario ... 158

Figure 7.4: Fault Detection and Isolation Scenario ... 160

Figure 7.5: Block Diagram of the MPSoC Design. ... 161

Figure 7.6: MPSoC based Implementation of a Distributed Computing Node. 164

Figure 7.7: MPSoC Electrical Power Consumption. ... 165

Figure 7.8: Application Software Structure. .. 167

Figure 7.9: Structure of AMFT Software ... 169

Figure 7.10: Fault Injection Mechanism. ... 171

Figure 7.11: Host Software for Fault Injection. ... 171

Figure 7.12: Transient Fault Injection Mechansim. ... 172

Figure 7.13: Permanent Fault Injection Mechanism. ... 173

Figure 7.14: Experimental Setup. .. 175

Figure 7.15: Fault Detection Latency. ... 177

Figure 7.16: Reconfiguration Time. .. 178

Figure 7.17: State Data Size, Transmission Time, and Communication Time Slot. 180

Figure 7.18: Number of State Rollbacks and Task Period. .. 180

Figure 7.19: Design of Multiprocessor System-on-chip CubeSat (MPSoC-CubeSat). 181

Figure 8.1: Block Diagram for Attitude and Orbit Control System. .. 185

Figure 8.2: Design Processes for Attitude and Orbit Control Application. ... 188

Figure 8.3: Distributed AOCS Software Structure. ... 189

Figure 8.4: Mapping of AOCS Tasks. ... 198

xv

Figure 8.5: Comparison of Computational Performance .. 204

Figure 8.6: Simulink Model of ADCS ... 207

Figure 8.7: ADCS Controller Input with a State Rollback of 6 a) Angles b) Angular Rates................. 207

Figure 8.8: Satellite Attitude with a State Rollback of 6 a) Angles b) Angular Rates 208

Figure 8.9: Fault Coverage of the FT Distributed AOCS Computer ... 209

Figure B.1: Series System of n Components ... 220

Figure B.2: Parallel System of m Components. ... 221

Figure B.3: Centralized OBC Reliability ... 223

Figure B.4: Cold Standby OBC ... 224

Figure B.5: Supervisory Unit .. 224

Figure B.6: Warm Standby OBC ... 226

Figure B.7: N-Modular Redundant OBC ... 227

Figure B.8: Hardware Voter .. 227

Figure B.9: Software Voter ... 228

Figure C.1: Effect on Electrical Power with Task Load Variation. ... 231

Figure C.2: Effect on Electrical Power with Frequency Variation. ... 231

Figure C.3: Circuit Diagram of MPSoC Implementation. ... 232

Figure C.4: Permanent Fault Injection Mechanism Implementation. .. 235

Figure D.1: Front View. .. 236

Figure D.2: Back View. ... 237

Figure D.3: Top Layer. .. 237

Figure D.4: Top Overlay. .. 238

Figure D.5: Bottom View. ... 238

xvi

List of Tables

Table 2.1: Comparison of Wired Communication Protocol .. 33

Table 3.1: Fault-Tolerant Centralized Computers. .. 52

Table 3.2: Fault-Tolerant Distributed Systems. ... 53

Table 3.3: Features of Existing Wireless COTS Technologies.. 56

Table 5.1: HeartBeat Message Format. ... 102

Table 5.2: HeartBeat Message Fields. ... 102

Table 5.3: Fault Message Format. ... 102

Table 5.4: Fault Message Fields. ... 102

Table 5.5: State Update Message Format for Inter-AMFT Communication. .. 104

Table 5.6: State Update Message for AMFT and Processing Unit Communication. 104

Table 5.7: State Update Message Format: Processing Unit and AMFT Communication. 104

Table 5.8: State Update Message Fields. ... 104

Table 5.9: Task List Message Format. ... 104

Table 5.10: Task List Message Fields. .. 105

Table 5.11: Node Table. .. 105

Table 5.12: Task Migration Table. .. 106

Table 5.13: Footprint Comparison for Real-Time Operating Systems. ... 110

Table 6.1: Parameters for the Centralized Fault Management Scheme Model. 133

Table 6.2: Parameters for Proposed Distributed Fault Management Scheme Model. 135

Table 6.3: Availability Values for Centralized and Distributed FM Schemes. 137

xvii

Table 6.4: Test Vectors. ... 141

Table 6.5: Configuration Setup for Prototyping of FTDC System. ... 146

Table 6.6: Scenario-I: Results on Start-up Time Measurements. .. 147

Table 6.7: Scenario-II: One Processing Unit Failure. .. 148

Table 6.8: Scenario-II: Failure of AMFT Block. ... 148

Table 6.9: Scenario-III: Recovery of AMFT Block. .. 150

Table 6.10: Scenario-III: Simultaneous Recovery of Two Processing Units. 150

Table 7.1: SoC FPGAs .. 162

Table 7.2: Design and Development Tools and Target Board for MPSoC Implementation 162

Table 7.3: Logic Resources. .. 164

Table 7.4: File list for Processing Unit Application. ... 166

Table 7.5: File list for the AMFT Application ... 168

Table 7.6: Overhead of AMFT .. 170

Table 7.7: Prototyping System Parameters. ... 174

Table 7.8: Mission Task Set .. 175

Table 8.1: Spacecraft Formation Flying Missions. .. 186

Table 8.2: AOCS Sensors and Actuators. .. 187

Table 8.3: AOCS Modes of Operations. .. 188

Table 8.4: Characteristics of Distributed AOCS Task Set. .. 190

Table 8.5: Distributed AOCS System Parameters. .. 199

Table 8.6: Reconfiguration Time Measurements... 201

Table 8.7: Rollback of Task State. ... 202

xviii

List of Abbreviations

A

 ASIC Application Specific Integrated Circuit

 AMFT Adaptive Middleware for Fault Tolerance

 AOCS Attitude and Orbit Control System

 AWSN Aerospace Wireless Sensor Network

B

 BC Bus Controller

C

 CAN Controller Area Network

 CCM Core Computing Module

 CMP Chip Multiprocessor

D

 DCN Distributed Computing Node

 DES Distributed Embedded System

E

xix

 ECC Error Correcting Code

 EGSE Electrical Ground Support Equipment

 EMC Electromagnetic Compatibility

 EMI Electromagnetic Interference

 ESA European Space Agency

F

 FD Fault Detection

 FDIR Fault Detection, Isolation, and Recovery

 FEC Forward Error Correction

 FM Fault Management

 FPGA Field Programmable Gate Array

 FT Fault-Tolerant

 FTDC Fault-Tolerant Distributed Computing

 FTD-OBC Fault-Tolerant Distributed On-board Computer

 FTDS Fault-Tolerant Distributed System

H

 HBM HeartBeat Message

 HPEC High Performance Embedded Computing

J

 JPL Jet Propulsion Laboratory

L

xx

 LEO Low Earth Orbit

M

 MIPS Million Instruction per Second

 MPSoC Multiprocessor System-on-chip

N

 NASA National Aeronautics and Space Administration

 NMP NASA’s New Millennium

O

 OBC On-board Computer

 OBDH On-board Data Handling

 OMG Object Management Group

 OS Operating System

P

 PPIF Point-to-point Interface

 PRHB Periodic Reception History Broadcast

 PU Processing Unit

R

 REE Remote Exploration and Experimentation

 RTOS Real-Time Operating System

S

 SAR Synthetic Aperture RADAR

xxi

 SBST Software-based Self-Test

 SEEs Single Event Effects

 SEU Single Event Upset

 SoC System-on-a-chip

 SRAM Static Random Access Memory

 STAR Self-Testing and Repairing

 SUM State Update Message

 SNS Supervisory-based Network Surveillance

T

 TDMA Time Division Multiple Access

 TLM Task List Message

 TMR Triple Modular Redundant

 TTCAN Time-Triggered Controller Area Network

 TTEthernet Time-Triggered Ethernet

U

 UART Universal Asynchronous Receiver Transmitter

W

 WDT Watchdog Timer

 WLAN Wireless Local Area Network

 WPAN Wireless Personal Area Network

X

xxii

 XPP eXtreme Processing Platform

xxiii

List of Symbols

𝛼𝑒 = Attitude Angle Vector

𝜔𝑒 = Attitude Angular Velocity Vector

𝑡𝑐𝑠 = Duration of TDMA Slot

e = Exponential function

𝜆 = Failure rate

𝑠0, 𝑠1 = States

𝑡𝐷 = Fault Detection Time

𝑡𝐹𝑀 = Fault Message Sending Time

𝑡𝑇𝑋 = Fault Message Transmission Time

𝑡𝑇𝑀 = Fault Message Reception and Scheduling Time

𝑑𝑃𝑠0(𝑡)

𝑑𝑡
 = First order derivative for State-0

𝑑𝑃𝑠1(𝑡)

𝑑𝑡
 = First order derivative for State-1

∀ = For all

s = Laplace operator

xxiv

𝑃𝑠0(𝑠) = Laplace Transform for State-0

𝑃𝑠1(𝑠) = Laplace Transform for State-1

𝐵𝑑
𝑡 = Magnetic Field at time instance t

𝐵𝑑
𝑡−1 = Magnetic Field at time instance t-1

𝐵𝑑𝑜𝑡 = Magnetic Field derivative

𝑚𝑏 = Magnetometer measurement in body frame

𝑚𝑖 = Magnetic Field model value in inertial frame

Mbps = Megabits per second

µsec. = Microseconds

ms = Milliseconds

[𝑀𝑥 ,𝑀𝑦,𝑀𝑧] = Moments

n = Number of Nodes

p = Number of Processors

𝑘 = Number of Replicas

𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 = Number of State Rollback

q = Number of subsystems

v = Number of Tasks

𝑅𝑖 = Node Reliability

𝑡𝑅 = Node recovery time

𝑡𝐹 = Node failure time

= Number of Tokens

xxv

𝜃 = Pitch Angle

𝑡𝐹𝐷_𝑝𝑒𝑟𝑖𝑜𝑑 = Period of Fault Detection Task

𝑡𝑠 = Primary to redundant Switching time

𝑏 = Probability of Success

𝑡𝐹𝐷_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = Processing Time for Fault Detection Task

∏ = Product

𝑡𝑅𝑒𝑐𝑜𝑛𝑓 = Reconfiguration Time

m = Redundant unit per subsystem/ Number of migration

𝑅𝑐𝑒𝑛𝑡_𝑠𝑦𝑠(𝑡) = Reliability of centralized system

𝑅𝑡𝑚𝑟_𝑠𝑦𝑠(𝑡) = Reliability of Triple Modular Redundant system

𝑅𝑑𝑖𝑠𝑡_𝑠𝑦𝑠(𝑡) = Reliability of distributed system

µ = Repair rate

𝛷 = Roll angle

𝑅𝑏𝑖 = Rotation matrix from inertial to body frame

∆𝑆𝐷 = State Data

𝑅𝑠𝑦𝑠(𝑡) = System reliability

𝑃𝑠0(0) = State-0 initial value

𝑃𝑠1(0) = State-1 initial value

𝑃𝑠0(𝑡) = State-0 probability in time

𝑃𝑠1(𝑡) = State-1 probability in time

xxvi

𝑥 = State Matrix

𝑠𝑏 = Sun sensor measurement in body frame

𝑠𝑖 = Sun sensor model value in inertial frame

T = Task Period

t = Time

𝑢 = Torque Vector

𝑡1𝑏 = Triad Vector Component 1 of sensor-1 in body frame

𝑡2𝑏 = Triad Vector Component 2 in body frame

𝑡3𝑏 = Triad Vector Component 3 of 𝑡1𝑏 𝑥 𝑡2𝑏 body frame

𝑡1𝑖 = Triad Vector Component 1 of Model-1 in inertial frame

𝑡2𝑖 = Triad Vector Component 2 in inertial frame

𝑡3𝑖 = Triad Vector Component 3 of 𝑡1𝑖 𝑥 𝑡2𝑖 of in inertial frame

𝑅𝑏𝑡 = Triad to body frame rotation matrix

𝑅𝑖𝑡 = Triad to inertial frame rotation matrix

𝑡𝑠𝑐ℎ = Time required to schedule the Migrated Tasks

Δt = Time interval of failure

𝜓 = Yaw Angle

1

Chapter 1

1.Introduction

Distributed embedded systems are ubiquitous and have deeply penetrated into our

society [1]. Major sectors targeted by distributed systems are telecommunications,

automotive, avionics, industrial automation, robotics, consumer electronics, medical,

and aerospace. The overall value of the embedded sector market worldwide is about

1600 billion € per year [2], a large part of which is attributable to distributed systems.

The widespread deployment of distributed embedded systems is due to them being able

to support important system properties, such as high reliability, scalability, high

performance [3]. A single processor failure in a distributed embedded system can be

avoided by distributing the system computing workload among multiple processors [4]

[5]. For critical applications, such as spacecraft, control of nuclear reactors, etc., using a

distributed system could increase the system reliability significantly.

In general, a distributed computing system is any computing system that involves

multiple processors, remotely located from each other, where each processor plays a

particular role in the execution of a computation or control problem. This type of

distributed computing is referred to as physically distributed computing. An advanced

form of distributed computing, which is referred to as cooperative distributed

computing, involves collaboration among processors, in which an individual processor

solves a part of a larger problem. Cooperative distributed computing is achieved via a

distributed computing system that comprises a set of p processors connected via a

network. A computing problem is then divided into v tasks, and each processor is

Chapter-1. Introduction

2

assigned a subset of v tasks [6, 7]. Cooperation among processors can make the

distributed computing approach more efficient and reliable in comparison with just

physically distributed computing units.

In this thesis a novel cooperative task-oriented fault-tolerant distributed computing

(FTDC) architecture is proposed, which utilizes the advantages of cooperative

distributed computing. Therefore, in the rest of the thesis the term “distributed

computing” refers to “cooperative distributed computing”. An example of a legacy

centralized on-board computer (OBC) [8] on board the Sentinel-2 spacecraft is depicted

in Figure 1.1. However, in high precision spacecraft control, a significant amount of

data processing is required, which a centralised OBC is not able to support [9]. In

addition, the physical redundancy scheme used in current spacecraft on-board

computers is limited to a single processor failure, and its performance is constrained

by the operating frequency that cannot be increased beyond a certain limit [10]. To

address these and other requirements of modern spacecraft, the use of distributed

computing is essential. The aim of this thesis is to propose a viable distributed OBC

design, capable of achieving a significantly higher computing performance and

reliability, to replace the traditional centralised OBC design, exemplified in Figure 1.1.

The intra-spacecraft application of distributed computing, outlined above, could be

extended to serve the purpose of supporting emerging modern distributed space

systems. For example, it can be employed in a constellation of spacecraft for

applications requiring inter-spacecraft links, such as synthetic aperture radar (SAR),

high precision spacecraft control, real-time optical imaging etc.. To illustrate this

concept a SAR distributed space system is shown in Figure 1.2. Synthetic Aperture

Radar is a well-known remote sensing technique that captures images of target objects

on Earth using the motion of antenna to control image resolution. The SAR that is

usually mounted on an aircraft or spacecraft, is referred to as monolithic SAR. The

monolithic SAR is limited in terms of resolution. Contrary to the monolithic SAR, on-

going research on distributed SAR proved that it is capable of producing a large

synthetic aperture [11, 12]. To create such a large synthetic antenna aperture, a

spacecraft cluster is used as shown in Figure 1.2. One of the satellites acts as a master,

while the others act as slaves. The master spacecraft is equipped with a transmitting

antenna for the transmission of the SAR signal, while the slave spacecraft are used to

Chapter-1. Introduction

3

receive and process the signal. Each spacecraft has its own processor for the execution

of tasks. Each processor is assigned tasks accompanied with a chunk of data for

processing. Cooperative distributed computing among these spacecraft is necessary, as

the spacecraft cluster is required to work collaboratively to achieve an outcome. A

distributed SAR imaging system, based on two satellites, where each satellite can

acquire, divide and distribute data chunks to the other satellite for onward transmission

to the ground station, is described in [13, 14]. Distributed computing in such a system

will allow improving revisit time, image resolution and targeting viewing.

X-Band Payload Data Transmission

System (PDTS)

On-Board Computer

(OBC)

Mass Memory & Formatting Unit

(MMFU)

Power Control &

Distribution Unit

(PCDU)

Solar Array

Drive

Mechanism

Remote Interface Unit (RIU)

Analogue & Digital I/O Interfaces

Propulsion Control Module

Processor Module of ERC 32

Safeguard Memory

Mass Memory

On-Board Time

Two MIL-STD-1553

TC Authentication

DC/DC Converter Module

Multispectral

Instrument

(MSI)

Solar

Array

BPSK

Mod.

BPSK

Mod.

BPSK

Mod.

BPSK

Mod.

TWTA

1 (hot)

TWTA

1B

(cold)

TWTA

2 (hot)

TWTA

3 (hot)

Wave guide Switching Unit

OMUX

Antenna

Hold Down

& Release

Mechanism

S-Band

Transponder

A/B

3 dB Coupler

Nadir

Antenna

(Helix)

Zenith

Antenna

(Helix)

Thermistors

S/W

Heaters

Li-ion Batteries

Propulsion System

Reaction

Wheel

Magnetometer

(3 Axis)

CESS

Magnetor

quer

GPS

Receiver

IMU

RMU

Head

Ant.

Redundancy

Non-redundant

Internal redundant

Hot redundancy

Cold redundancy

Harness Legend

Unregulated 28 V

MIL-STD-1553 P/L (N/R)

MIL-STD-1553 P/F (N/R)

SpaceWire

Discrete & Serial IO

RF Signal

MIL-STD-1553 (Payload)

MIL-STD-1553 (Platform)

T

T

T

T

1/2...

A/B...

Star

Tracker

28V unregulated

Max. Efficiency via MPPT

Battery Charge Regulator

Battery Monitoring

Heater Switching

Umbilical Power I/F

DNEL Logic

Uplink

Downlink

Sentinel-2 Electrical System Overview

Legend

RMU: Rate Measurement Unit

CESS: Coarse Earth Sun Sensors

IMU: Inertial Measurement Unit

Figure 1.1: Block Diagram of the Sentinel-2 Centralized Computing System [8].

Other emerging space applications in which distributed computing is essential

include space weather monitoring, fractionated spacecraft and distributed imaging.

These applications are inherently distributed and must employ distributed computing

among the spacecraft to achieve the overall mission objective. At present there are a

Chapter-1. Introduction

4

few technological challenges, particularly in the design of wireless inter-satellite

communication links that need to be overcome in order to implement distributed

computing among spacecraft.

Figure 1.2: Distributed Synthetic Aperture Radar [12].

This thesis addresses space applications, however many other applications may

directly benefit from the distributed computing approach. A number of terrestrial

applications, such as autonomous cars [15] and distributed robots can also profit from

this approach in comparison to a tightly coupled design [16]. Autonomous cars, for

example, rely on a real-time sensor data processing and interpretation of complex

control and navigation algorithms and in addition the underlying computing platform

must support fault tolerance. The traditional standalone dual redundant embedded

computing units (ECUs) are not sufficient to support such fault-tolerant data-driven

Chapter-1. Introduction

5

driverless operations. Therefore, a distributed computing system that provides

enhanced performance and reliability is essential.

An on-board embedded distributed computing system has to operate under the

influence of severe environmental conditions, which could cause a failure of a

processor or a network. A main reason of a failure in space systems is radiation [17,

18]. Radiation can damage electronic components via total ionizing dose (TID) and

single event effects (SEEs). TID is a slow phenomenon and can be overcome by

suitable metallic shielding. SEEs, which are caused by high-energy particles, can

instigate bit flipping that can lead to a temporary failure of a processor. Furthermore,

physical damage by space debris, particularly in low earth orbit (LEO), is another cause

of systems failures [19-21].

The efficiency of a computing application, running on a distributed computing

platform is severally degraded in the presence of failures. A distributed computing

system comprised of p processors can tolerate up to p-1 failures, and then the overall

system performance would be equal to a uniprocessor system. Similarly, a ‘p’

processors system can achieve a p-fold increase in computational efficiency (speed-up)

[6]. Thus both computational efficiency and fault-tolerance, cannot be achieved

simultaneously. Thus, the challenge is to develop an efficient fault-tolerant technique

that can achieve fault-tolerance by graceful degradation in computational efficiency.

Distributed computing can support such a fault-tolerant technique, as it inherently

consists of multiple processors that can either be utilized for high computational

efficiency or fault-tolerance purpose. Failure related issues, which are intrinsic to

distributed computing systems, are as follows:

 A crash of a processor can lead to a loss of all tasks that belong to it.

 A malicious failure of a processor can disguise itself, “giving a wrong

impression” to the other processors that it operates in normal mode.

 After a processor restart, following a failure, it needs to be made aware of the

state of the overall computation progress.

Chapter-1. Introduction

6

 To minimise the loss of efficiency, processors should not only perform their

assigned tasks but they must be able to detect the occurrence of a failure of a

processor in coordination with the other processors.

In this thesis, a novel approach to fault-tolerant distributed computing is presented.

It provides high computational efficiency during normal operation and supports

graceful degradation in case of failures. This approach is particularly designed for space

applications but, in general, it can be applied to any distributed embedded computing

application.

1.1 Motivation

The motivation behind this research is threefold:

 Demands for high-performance on-board processing in a single spacecraft mission,

is continuously increasing and could not be met with by a standalone dual

redundant processor [22]. By distributing a computational problem to multiple

processors, these demands can easily be met.

 Traditional redundancy-based approaches could not be utilized in design of a fault-

tolerant distributed computing system because in such approaches the peer

redundant processor achieves 2:1 redundancy only. Distributed computing systems

are inherently redundant, comprising multiple processors that can be intelligently

used to achieve higher reliability.

 The same fault-tolerant distributed computing approach can be directly or indirectly

applied to future multiple spacecraft missions [23].

1.2 Scope and Objectives

In this thesis a novel cooperative task-oriented fault-tolerant distributed computing

(FTDC) architecture is proposed, which caters for high performance and reliability in

systems on board spacecraft. In a nut shell, the architecture comprises two types of

nodes, a computing node and an input-output node, interfaced together through a high-

speed network with bus topology. To detect faults in the nodes, a fault management

Chapter-1. Introduction

7

scheme specifically designed to support the cooperative task-oriented distributed

computing concept is proposed and employed, which is referred to as Adaptive

Middleware for Fault-Tolerance (AMFT). AMFT is implemented as a separate

hardware block and operates in parallel with the processing unit within the computing

node. A set of metrics is designed and mathematical models of availability and

reliability are developed, which are used to evaluate the proposed distributed

computing architecture and fault management scheme.

The scope of the thesis is limited to a fault-tolerant technique for distributed computing

employed in a single spacecraft only.

The main objectives of this research are:

 To assess existing approaches/methods/architectures for fault-tolerant distributed

computing through investigation of the current state of the art.

 To propose a suitable fault management scheme for distributed computing on board

spacecraft.

 To analyse, evaluate, test and demonstrate the proposed scheme through hardware

implementation and a realistic space related case-study.

1.3 Methodology

We began our research by identifying existing distributed computing architectures in

general, and fault tolerant schemes in particular. The architectures were evaluated in

terms of their performance for reliability. Furthermore, shortcomings were identified,

pros and cons compared, and finally it was observed that existing schemes were not

efficient and suitable to meet our requisite performance and reliability. Therefore, a

novel distributed fault-tolerant computing (FTDC) architecture, incorporating a new

fault management scheme was designed, developed and finally implemented.

For validation of the proposed concept performance measuring metrics were

identified and requirements were set that could serve as the appropriate criteria to

assess operational success.

The proposed fault-tolerant distributed architecture was realised using system level

hardware-software co-design principles and its performance was assessed by two

Chapter-1. Introduction

8

implementation approaches. Firstly, the distributed computing system was

implemented and tested as a printed circuit board level design. Secondly, a novel

MPSoC design was proposed, implemented and tested. Both distributed computing

system implementations were evaluated for functional validity and performance.

To examine the FTDC architecture performance under a realistic space related

distributed computing scenario a case-study application, representing a satellite

Attitude and Orbit Control System (AOCS), was developed. The AOCS application

was selected because it features a time critical task execution, in which system failure

and reconfiguration time must be kept minimal. Based on the case-study application, it

was demonstrated that the FTDC architecture is capable of fully meeting the desired

requirements by timely migrating tasks to functional nodes and keeping rollback of

task states minimal, which proves the advantages of the adopted cooperative

distributed approach for use on board spacecraft.

1.4 Novelty Contributions

As a result of the research described in this thesis a novel concept for fault-tolerant

distributed computing was developed and applied to a single spacecraft. The proposed

scalable model is aimed at a single satellite subsystem as well as at the entire intra-

satellite computing system. An assessment of the suitability of the approach to satellite

on-board computing was carried out, which is accomplished for the first time. A

demonstration of the fault-tolerant distributed computing concept was undertaken

through a case-study aimed at the development of a new On-board Distributed

Computer.

Specific novelty aspects of the work are as follows:

 A novel architecture for fault-tolerant distributed computing on board spacecraft is

proposed, which is highly reliable and can provide high computing performance by

running tasks concurrently on multiple nodes.

 A novel adaptive middleware design that is used for fault management of

distributed system is proposed, designed and implemented.

Chapter-1. Introduction

9

 A novel MPSoC based approach to implement fault-tolerant distributed computing

system is proposed, designed and implemented. An MPSoC based distributed

computing system is designed, implemented and validated for the proposed fault

management scheme.

 The proposed architecture and fault management scheme are validated by a case

study of a new distributed design of satellite AOCS computer.

 Mathematical models for comparative evaluation of fault-tolerant computing

system are developed.

 Novel algorithms for detection of silent data corruption for on board the spacecraft

distributed computing are proposed and designed.

 Fault Injection mechanism, particularly suitable for assessment of distributed

computing system is proposed, designed and implemented.

1.5 Thesis Structure

This thesis consists of nine chapters as shown in Figure 1.3. The structure of the thesis

is carefully organized to show the complete picture from motivation to the final

research outcome. The rest of thesis is divided into three parts – (1) background and

related work, (2) research contribution of the thesis and (3) final conclusions and

future work.

The next two chapters - Chapter 2 and 3 - present the background and research

work done in the area of fault-tolerant computing and current applications. In

particular, Chapter 2 discusses the basics of fault-tolerance techniques, fault detection

methods, and communication protocols for fault-tolerant distributed computing in

embedded systems. Chapter 3 gives a detailed overview of fault-tolerant computing

for space applications. The current challenges and existing solutions are also

discussed. It highlights the research gap and presents the research question that is

addressed throughout the rest of the chapters.

The next five chapters (chapter 4-8) present the design, assessment and

implementation of a novel reliable and efficient fault-tolerant distributed computing

platform. Chapter 4 proposes a novel distributed computing architecture, where a

Chapter-1. Introduction

10

processor failure is resolved by migration of tasks to other processors. Chapter 5

presents a middleware design for fault management of the distributed computing

platform. Fault management includes failure detection, failure coordination, and

reconfiguration of distributed computing platform. This chapter includes algorithms,

design and implementation details of the middleware.

In chapter 6, reliability and availability analysis of the proposed architecture and

fault management scheme is presented. For reliability modeling, Markov models─

centralized, TMR, distributed system - were developed and compared. Following that

fault management schemes - centralized and distributed - are analyzed and compared.

Then functional verification is carried out by prototyping the fault-tolerant distributed

system at a board level. Experimental results are reported and implementation issues

are highlighted. Chapter 7 documents a Multiprocessor System-on-chip (MPSoC)

based design and implementation of the distributed computing system. A separate

dedicated hardware for the AMFT block and processing unit allows concurrent

execution of the fault management functions and application tasks, thus achieving

better reliability and performance. The outcome of this chapter is a reliable and

efficient distributed computing system, particularly suitable for spacecraft on-board

applications. Chapter 8 presents a case study of the satellite attitude and orbit control

system (AOCS) distributed computer that is a most suitable example for the validation

of proposed concept of distributed computing.

Chapter 9 summarizes the final results of this thesis. The research outcomes are

assessed against the objectives. The key novelty contributions to the state-of-the-art

are presented. Finally, future directions of the research are highlighted.

Chapter-1. Introduction

11

2

Chapter 1.
Introduction

Chapter 2.
Fault-Tolerant Distributed Computing in Embedded Systems

Chapter 3.
 Fault-Tolerant On-Board Computing

Chapter 6.
 Evaluation of the

Proposed Approach

Chapter 4.
 Novel Architecture for Fault-Tolerant Distributed Computing

Chapter 5.
Adaptive

Middleware for
Fault-Tolerant

Distributed
Computing

Chapter 7.
Novel MPSoC

based Design for
Fault-Tolerant

Distributed
Computing

Chapter 9.
Conclusions and Future Work

Chapter 8.
Case Study: Fault-Tolerant Distributed AOCS Computer

1

3

Figure 1.3: Thesis Organization

1.6 Publications

The results of this thesis were reported in the following publications, to each of which

the author has made substantial contributions:

Conference Papers

1. M. Fayyaz, T. Vladimirova and J.M. Caujolle, "Adaptive Middleware Design

for Satellite Fault-Tolerant Distributed Computing", in Proceedings of 7
th

ESA/NASA Adaptive Hardware and Systems Conference (AHS-2012),

Nuremberg, Germany, 25-28 June 2012.

2. T. Vladimirova and M. Fayyaz, “Wireless Fault-Tolerant Distributed

Architecture for Satellite Platform Computing”, in Lecture Notes in Computer

Science, 2012, Volume 7425, pp. 428-436, Eds. G. Lee, D. Howard, and D.

Ślęzak (Eds.), Springer-Verlag Berlin Heidelberg.

Chapter-1. Introduction

12

3. M. Fayyaz and T. Vladimirova, "Fault-Tolerant Distributed approach to

satellite On-Board Computer Design," in Proceedings of IEEE Aerospace

Conference, 2014, pp. 1-12.

4. M. Fayyaz and T. Vladimirova, "Detection of Silent Data Corruption in Fault-

Tolerant Distributed Systems on Board Spacecraft," in Proceedings of 9
th

ESA/NASA Adaptive Hardware and Systems Conference (AHS-2014), 2014,

pp. 202-209.

Journal Papers

1. T. Vladimirova and M. Fayyaz, “Fault-Tolerant Computing on Board

Spacecraft using Distributed Multicore Processors, submitted to Acta

Astronautica , Elsevier, 2015.

2. M. Fayyaz and T. Vladimirova, “Survey and Future Directions of Fault-

Tolerant Distributed Computing on Board Spacecraft”, submitted to Advances

in Space Research, Elsevier, 2015.

13

Chapter 2

2.Fault-Tolerant Distributed Computing in

Embedded Systems

This chapter presents a detailed review of fault-tolerant distributed computing in

embedded systems. Section 2.1 covers the terminology and definitions used in fault-

tolerant distributed computing. In section 2.2, a detailed review of fault-tolerance

techniques employed in distributed computing systems is presented. Fault detection

methods are covered in section 2.3. Issues related to communication among distributed

nodes are covered in 2.4.

2.1 General Overview and Concept

2.1.1 Distributed Computing

Distributed Computing refers to any decentralizing of the computing power of a

system. This means moving the centralized computing responsibilities away from a

central location and distributing it between multiple locations, typically for some form

of performance improvement or fault-tolerance purposes [24]. According to this

definition, the computational problem is divided into tasks (processes) and is equally

shared between the processors.

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

14

2.1.2 Distributed Embedded Systems

A distributed system is a collection of independent computing nodes, connected via a

network, that appears to its users as a single coherent system [24]. A characteristic

feature of a distributed system that distinguishes it from a centralized single computer

system is the notion of partial failure. An important goal of distributed system is to

recover from failures automatically without seriously affecting the overall

performance. A distributed system should continue operations, even in the presence of

a failure. A distributed system that provides this service is called a fault-tolerant

distributed system. The same definition applies to a distributed embedded system.

However, a distributed embedded system is a resource constrained specially designed

system, usually placed inside or near the physical system that it controls or provides

data to. It is constrained in terms of electrical power, computational performance, and

physical size.

2.1.3 Fault-Tolerance

Fault-Tolerance is generally addressed via redundancy, i.e. providing backup

resources that can be used in place of a failed resource. Fault-tolerance in a distributed

system can be implemented at the architectural level, or at the node level. At the

architectural level, failure of a node within a distributed system is masked by a

redundant node. At this level, the failed node should display a simple failure mode

(fail-stop). In the optimal case, a node exhibits only a fail-stop failure, i.e. the node is

either operational or not. At the node level, the node implementation must ensure that

the failure assumption that has been made at architectural level holds with a high

probability [25].

2.1.4 Faults, Errors, and Failures

The terms ‘fault’, ‘error’ and ‘failure’ are extensively used in the context of fault-

tolerant systems. A fault is a hardware or software defect that can lead to a system

entering into an incorrect state. An error is a part of the system state which is liable to

lead to system failure, while a failure is a state in which the system is restricted from

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

15

performing its required functions. When designing a fault-tolerant system, a designer

makes some assumptions about the types of faults that must be handled. This is

denoted as a system fault model. A fault model elaborates all the assumptions of a

system failure. A designer will often design a system under the assumption that

processors are failed in a fail-stop manner [26]. In general, the following types of

faults are often considered [27].

 Fail-Stop (Fail-Silent) Faults: a processor stops producing outputs when

it fails.

 Byzantine (Malicious) Faults: a processor sends erroneous output when it

fails. Byzantine fault can be either symmetric or asymmetric.

o Fail Symmetric: the fault results in the same erroneous value being

sent to all other processors.

o Fail Asymmetric: the fault results in different erroneous values

being sent to other processors.

Faults may also be classified based on duration:

 Transient Faults: a processor fails and recovers after a short duration.

 Permanent Faults: a processor fails and disappears.

 Intermittent Faults: a processor fails and recovers sporadically.

2.1.5 Concept of Redundancy

Redundancy allows a computer system to work under the condition of faults or

failures. A basic concept of redundancy is to provide alternative paths to allow the

system to continue its operation, even in the presence of failures [28]. Redundancy can

be implemented in either the time or spatial domain.

2.1.5.1 Time Redundancy

In time redundant systems (also called software redundancy), a software task is

executed multiple times, consecutively to avoid temporary faults. It is used to detect

transient faults in a software program [29].The disadvantages of this method include

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

16

performance loss and additional power consumption. Common examples of time

redundancy are N-version programming [30], and redundant execution. In N-version

programming, multiple versions of the same program are running sequentially to mask

out a faulty version. In contrast, redundant execution can mask or detect transient

faults by execution of the same program multiple times [31].

2.1.5.2 Spatial Redundancy

In spatial redundancy (also called hardware redundancy), physical spare resources are

provided. Spatial redundant computers can be internal redundant, comprising

internally redundant units [32], or externally redundant, comprising a set of two or

more processors configured as dual modular redundant (DMR), triple modular

redundant (TMR) or N-Modular redundant (NMR) configuration [33]. Spatial

redundancy can be implemented as static redundancy, dynamic redundancy or hybrid

redundancy.

Static redundancy relies on the fault masking approach. In this scheme, a set of

multiple processors (e.g. triple or quad) are voted to mask single or double failures.

Static redundancy is suitable for applications where maintenance during operation is

impractical and is equally applicable to transient [34] and permanent faults [35]. In

static redundancy [36], all processors are clock synchronized, processing the same

input information and generating the same output data. The final output delivered to

the target system, is derived from majority voting. In this scheme, it is assumed that no

two processors can fail simultaneously. TMR computers are conceptually simple, but

some issues arise in their implementation. These issues are due to the use of common

circuits for clock synchronization circuit, voting, and common interfaces. A failure of

common circuits in the TMR scheme can be catastrophic, leading to the failure of the

whole computer. Therefore, these circuits have to be extremely reliable. Highly

redundant implementations for these circuits can be used as adopted as in the Fault-

Tolerant Multiprocessor (FTMP) [37] and Software Implemented Fault-Tolerant

(SIFT) scheme [38]. An issue in TMR with repair computer (recoverable systems),

which restricts its usage only to small duration missions, is the integration of a faulty

processor after its successful recovery. There are two recovery techniques—rollback

and forward recovery— which can be employed. Rollback Recovery is not a

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

17

preferable method for TMR computers, as it requires additional mechanisms for the

saving and restoring of the execution context. [39]. Therefore, forward recovery to

integrate with the other two running computers is employed. Forward Recovery is a

difficult process, which requires all processor register values to be copied prior to

reintegrating a recovered processor. Another disadvantage of the TMR redundancy

scheme is its limited tolerance to a single processor failure. If one of the three

processors fails, the fault-tolerance mechanism of the TMR computer is no longer

effective. In order to overcome this problem, a hybrid redundancy is suggested [40,

41]. Hybrid redundancy includes the features of static and dynamic redundancy

schemes. Hybrid redundancy is comparatively efficient in terms of fault coverage as

compared to static and dynamic redundancy schemes; however it adds additional

complexities in the computing system design to manage both types of redundancies.

In dynamic (standby) redundancy, a fault is first detected, and then a spare is

substituted in its place. The following section explains the different types of dynamic

redundancy schemes.

Simplex Processing with Backup Spare: This redundancy allows a program to run

on a single processor while backup processors are available to take over the task load

in case of a primary failure. Each processor has its own concurrent fault detection

mechanism, which enables it to detect faults. Standby redundancy can be implemented

as warm standby redundancy or cold standby redundancy.

In the case of warm standby redundancy, both the primary and redundant

processors are powered [42]. Normally, only the primary processor executes tasks,

while the redundant processor is in idle state. The downtime of the warm standby

redundancy is considerably less because of its backup power up state. In cold standby

redundancy, the redundant processor is placed in a power down state. In case of failure

of a primary processor, the redundant processor is powered up. As the primary and

redundant processors execution is not synchronized, a considerable amount of time is

required for the redundant processor to reach a known state.

There are two main drawbacks of the standby redundancy. Firstly, a delay in

switching the operation loses some of the computation, which gives a lower

computational integrity. Secondly, due to single execution, it also has low fault

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

18

coverage. Nonetheless, it reduces electrical power consumption, and its simple design

makes it favorable for long-life missions such as spacecraft and space rovers.

Duplicated Processing without Backup Spare: In the design of Dual Modular

Redundant (DMR) computers, two processors run the same computation and their

outputs are compared. On disagreement, diagnostics are executed to find the failed

processor. To identify a faulty processor, it relies on a diagnostic test, which cannot

ensure high computational integrity and fault coverage. A fault of an unknown nature

can easily be missed, if it is not considered in the diagnostic test routine.

Later DMR designs include two self-checking processors. Both of them are running

the same program. Each self-checking processor has its fault detection circuit, which

can signal an error as soon as it appears. The outputs of the two processors are

compared. On disagreement, the processor signals an error is ignored while the other

completes its computation. This type of DMR computer has higher computational

integrity due to its redundant execution. However, it has lower fault coverage because

of the internal fault detection circuitry that may not detect all errors. In that case, an

erroneous output could be delivered to the system.

2.1.5.3 Discussion

We conclude our discussion by comparing the two redundancy schemes as shown in

Figure 2.1. The time redundancy approach is preferably employed for non-critical

systems while spatial redundancy is employed for critical systems. The various forms

of spatial redundancy have their advantages and disadvantages. In dynamic

redundancy, all spare processors are operated in standby mode. Therefore, it requires

less electrical power, which is very important for long-life applications. It does not

require synchronization of the primary and spare processors. Design diversity between

the primary and redundant processor is also possible. However, it uses Simplex

processing, which provides poor fault coverage and computational integrity. On the

other hand, static redundancy (TMR computer) provides better fault coverage and

computational integrity but requires more electrical power and computational

resources. Another drawback is when a single processor, out of three, fails, resulting in

no further failure masking. Static redundancy is suitable for short duration applications

(such as aircraft applications) that requires high fault coverage and able to bear high

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

19

electrical power consumption. The hybrid scheme, which utilizes the features of static

and dynamic redundancy, includes spares to protect a system against more than one

processor failure. However, designing such a system is significantly more complex. Its

complex design enhances the design cost and introduces the possibility of more faults

into the system [43-46]. All of the above redundancy based approaches can only protect

a system against a single processor failure, and thus requires additional processors and

support circuitry for enhancing reliability. Furthermore, these additions require an

intelligent decision for integration/disintegration of a processor in existing systems.

Time
Redundancy

Spatial
Redundancy

Redundancy

N-Version
Programming

Redundant
Execution

Dynamic
Redundancy

Static
Redundancy

SimplexDMRTMR NMR

Hybrid
Redundancy

Figure 2.1: Redundancy Schemes.

2.2 Fault-Tolerance Techniques

In the previous section, we discussed that the redundancy based approaches are limited

in terms of reliability. This section presents the various fault-tolerance approaches that

utilize multiple processors for enhancing the reliability of computing systems. The

main focus of this review is to analyse the techniques, particularly designed for

reliable distributed embedded systems.

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

20

2.2.1 Replication

Replication involves information sharing to ensure data consistency between the

redundant resources. These redundant resources can be hardware or software

components. Replication is one of the most well-known solutions to fault-tolerance in

distributed systems [47]. This technique is initially derived from highly reliable back-

end servers where loss of service availability is very critical. Nowadays, it has

widespread applications in distributed embedded systems. Replication has two main

types called active and passive replication. The other variants are semi-active and

semi-passive replications, which are derived from active and passive replications and

retain their features, respectively.

2.2.1.1 Active Replication

In the active replication scheme [48], processes are replicated to multiple processors

for fault-tolerance. The invocating process (client process) does not call a particular

process. Instead, it addresses replicas as a process group. After sending a request to all

replicas, the invocating process waits for a reply. If the replicas do not behave

maliciously, then the invocating process can decide on the first reply. Otherwise, it

waits for at least k+1 replicas in a k fault tolerant system. In the first case, the

invocating process assumes fail-silent process failure while in the second case, it

assumes Byzantine failure (behave maliciously when sick). The correct decision in the

presence of a Byzantine failure is difficult, and various protocols are used [49-52]. To

ensure the consistent replicas state, the totally-ordered multicast mechanism is used.

This can be implemented using Lamport’s logical clock that is suitable for small

distributed systems. Most of the implementation techniques of active replicas [53, 54]

assume partial synchrony of the underlying communication where the messages are

communicated with certain time bound limits. In case of a large physical distributed

system, partial synchrony cannot be achievable, and three-tier architecture is the only

solution as reported in [55-57]. In three-tier architectures, instead of sending a request

directly to replica’s processes by the invocating process, an intermediate process is

introduced for maintaining the consistency of replicas. The main advantages of the

active replication scheme are its failure transparency and deterministic timing response

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

21

to the invocating process. However, it consumes more resources, as active replication

requires processing at all nodes.

The practical example of the active replication approach is the design of

Maintainable Real-Time System (Mars) [3]. Mars uses active redundancy for fault-

tolerance whereby two or more components executes the same tasks. Communication

between any two components is also protected against errors by sending messages

twice. Components are self-checked and behave silently on the occurrence of a fault.

This fail-stop feature restricts components to either sending correct message or no

message. Mars components are arranged in a cluster. Communication between the

different components is based upon the time division multiple access (TDMA)

scheme.

Another example of active replication is the Delta-4 architecture [58], which

consists of multiple computing nodes connected via a local area network (LAN). An

individual node can be a uni-processor, a multiprocessor system or a specialized

system comprised of array processors. Software components are replicated to multiple

nodes to provide active redundancy against faults or failures. Each node has a network

attachment controller (NAC) that provides services related to communication and

message self-checking comparison. Also, the NAC provides multicast and fail-stop

node operation.

Active replication is a useful scheme, which is employed in many applications.

However, it has two main drawbacks: (1) it requires high resources due to redundant

processing and (2) all requests have to be handled in a deterministic way.

Furthermore, it requires voting among the replicas for systems in which byzantine

failures can happen. [59, 60].

2.2.1.2 Passive Replication

In passive replication, also called primary-backup, only the primary node processes

input messages and provides outputs. To make the replicas consistent, the internal

state of the replicas is regularly updated from the primary replica. So, in the primary-

backup scheme, contacting process communicates only with the primary node. If a

primary node sends a reply immediately to the contacting process, it is called as a non-

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

22

blocking primary-backup scheme, while in a blocking primary-backup scheme, the

primary waits for an acknowledgment from the backup nodes before sending a reply to

the contacting process. In [61], trade-off analysis between the blocking and non-

blocking scheme is presented. The response time for the non-blocking scheme is small

in comparison to the non-blocking scheme. However, this is not always true,

particularly in a scenario, when nodes are connected via a point-to-point

communications network. In this case, a delay at the intermediate nodes causes an

overall increase in the response time. Therefore, broadcast communication networks

are preferred for achieving a small response time in non-blocking protocols.

In [62] a primary-backup scheme is proposed for real-time distributed systems,

which unlike the active replication scheme, does not require a strong determinism.

However, frequent state updates between the primary and the backups are necessary to

achieve consistency among the replicas. To accomplish a timely response, a temporal

consistency is suggested. Two objects or events are said to be temporally consistent

with each other if their corresponding time stamps are within a predefined time

interval. In a real-time primary-backup scheme the frequent state updates must be

compliant with the predefined time bound of the application. In other words, a backup

should have sufficient data information that can safely replace a failed primary node.

Therefore, such a primary-backup scheme can be used in real-time distributed systems.

The major drawback of primary-backup replication is its slower response to

failures. It is particularly the case when the primary replica crashes and a selection of a

new primary is initiated.

2.2.1.3 Semi-Active Replication

In the semi-active replication scheme [63], which is also called “leader-follower”, only

one replica, i.e. the leader, outputs messages, while the follower replicas perform the

same computation autonomously as the leader does but do not produce output.

However for the non-deterministic decision, they must follow the instructions from the

leader replica, thus relaxing the requirement of determinism.

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

23

2.2.1.4 Semi-Passive Replication

A new style of replication, called semi-passive replication [60, 64, 65], is devised to

overcome the slow response problem of passive replication. In semi-passive

replication, the request is sent to all the replicas and only one replica processes the

request. After processing the request, it generates a reply message for the client and an

update message for the other replicas. Semi-passive replication is a variant of the

passive replication and retains the characteristics of passive replication. However, it

uses a rotating coordinator approach [66] for the selection of the new primary instead

of group membership service. If the primary node crashes or a incorrectly suspected of

having crashed, then the backup acts as the primary node.

Figure 2.2 shows the characteristic features of each of the replication techniques.

The active replication technique provides a faster response to invocating process, but it

requires a strong replica consistency and consumes more energy due to the execution

of multiple replicas. On the other hand, passive replication requires less energy but it

does not maintain a full consistency among the replicas. The semi-active replication

scheme does not require a strong replica consistency, however, it consumes more

energy. Similar to the passive replication scheme, the semi-passive replication scheme

requires state messages for replica consistency. In addition, it has a lower response

time to the invocating process as compared to the semi-active replication. To

conclude, the replication based schemes are not efficient in terms of the utilization of

resources, as they require excessive computing resources (processors, memory) for

execution and maintenance of the replicas. This makes a replication based distributed

system costly and inefficient for resource constraint applications.

2.2.2 Distributed Recovery Block

In the distributed recovery technique [67, 68], two copies of the same program are

executing simultaneously on the processors of a node pair. A node pair is a set of dual

redundant operational nodes. In a node pair, one node is active, called an operational

node, while the other node is inactive, and called the shadow node. Under normal

conditions, the active operational node executes a primary version of the tasks while

the shadow node executes an alternative version of the same tasks. On each node,

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

24

correctness of the result is checked by an acceptance test. If the acceptance test is

passed, executive layer routine outputs the results of the primary routine. On failure of

the acceptance test inside the primary node, the shadow node is informed either by the

primary node executive layer or by the shadow node time-out value (for the case

where the primary node fails silently). In that case, the shadow node becomes an

active node and sends output results. Similar to the redundancy based approaches,

discussed in section 2.1.5, this technique has limited reliability and can only protect a

computing system against a single processor failure.

Replications

All replicas are
in Consistent

State

Active

Higher
Electrical

Energy

Fast Response
Time to Failures

All replicas are
in inconsistent

State

Passive

Lower Electrical
Energy

Slow Response
Time to Failures

All replicas are
in partially
Consistent

State

Semi-Active

Higher
Electrical

Energy

Fast Response
Time to Failures

All replicas are
in partially
Consistent

State

Semi-Passive

Lower Electrical
Energy

Intermediate
Response Time

to Failures

Figure 2.2: Comparison of Replication Techniques in Distributed Systems.

2.2.3 Redundant Execution

Redundant execution (also called time redundancy) is another fault-tolerance

technique for distributed embedded systems [69]. Redundant execution can be done at

the instruction level or the task level. At instruction level [70], each instruction of the

executing program is duplicated and, after each duplicated instructions, results are

compared for errors. On the other hand, at task level redundant execution, a software

task is executed twice or more in time to avoid temporary faults. Contrary to

replications, it does not require additional hardware to run the redundant copy. Instead,

it uses extra time to do redundant execution of the same program. As the primary and

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

25

redundant execution of a program running on a similar hardware can only protect the

system against the transient faults.

A single program executing multiple times reduces the overall computing

performance. Additionally, it also consumes more electrical power. However, a recent

form of redundant execution called multiplexed redundant execution, as suggested in

[71] overcomes this problem to some extent. The basic scheme is the same as

redundant implementation, but it uses chip multiprocessor (CMP) for the execution of

leading and trailing threads.

2.2.4 Network Surveillance

Network Surveillance is a technique that uses a communication network for the fault

detection and configuration of distributed components [72]. In its simplest form,

network surveillance includes a master that periodically calls other nodes for the

detection of a failure. The master confirms a node failure if it does not receive a reply

message. In order to avoid a single point of failure, K. H. Kim and E. Shokri propose a

decentralized approach, called periodic reception history broadcast (PRHB) [73]. In

PRHB, each node broadcasts a periodic reception history, which is gathered during the

last two TDMA cycles, that includes the health status of the available nodes.

Disadvantage of the PRHB scheme is the large reconfiguration time of up to two

TDMA cycles, which causes the scheme less responsive in case of a node failure. Both

network surveillance schemes ─ simple master/slave and PRHB ─ are used for

broadcast networks only. K.H. Kim and C. Subbaraman propose a scheme called

supervisory-based network surveillance (SNS) for point-to-point networks [74]. This

scheme utilizes two types of nodes; worker nodes and supervisor nodes. Worker nodes

pass the health statuses of its neighbour nodes to a supervisor node, which sends status

messages to all the other nodes in the network. In this scheme, each node has complete

health information of all the other nodes irrespective of the availability of a direct

connection. There are two main problems with this scheme: firstly, it requires election

in case of a supervisor node failure, which can take a considerable time; secondly,

messages traverse the network via several links in a store and forward fashion,

resulting in an additional processing overhead on each node and adding extra fault

sources.

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

26

2.3 Fault Detection Methods for Embedded

Distributed Computing Systems

In fault-tolerant computing systems, fault detection is a very important element of the

overall tolerance process. The fault-tolerant process cannot start unless a fault is

detected. In distributed system, before applying prevention to tolerant a processor

failure, a faulty processor must be identified. A fault in a processor can be detected by

either hardware or software based detection methods. Hardware based fault detection

requires extra hardware to detect faults and might not be feasible for distributed

system comprising of the several processors. Therefore, software-based fault detection

is usually preferable. The following section will critically review both methods from

the point of fault detection of a processor in a distributed system.

2.3.1 Hardware Based Fault Detection

A comparison of two or more than two hardware computing elements is one such fault

detection that relies on physical redundancy. In its simplest form, two elements are

compared by (Exclusive OR) XOR operation. A mismatch of any of these indicates a

fault that requires further diagnosis to find out the exact faulty element.

Monitoring for fault detection is used as an alternative to physical redundancy [75-

81]. In monitoring, a separate hardware module called monitor is used to detect faults

in the actual computing modules. A similar approach is employed in the Self-Testing

and Repairing (STAR) computer that was developed by the Jet Propulsion Laboratory

(JPL) [82]. This computer consists of multiple redundant units, connected via a 4-wire

internal bus that is monitored by a special unit called Test and Repair Processor

(TARP). The TARP is connected to the internal bus and uses error-detecting codes and

status messages for fault detection of the computing units. On detection of a fault, it

first rolls back the program and, if a problem persists, it replaces the faulty unit with a

spare.

Watchdog Timers (WDT) are an additional monitoring based fault detection

method that is widely used in embedded systems. A processor of an embedded system

can go into an undefined state if an error appears in the program flow. The WDT

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

27

monitors a processor for a pre-defined timeout value. If there is no received signal

from a processor during the timeout period, it signals the processor to go into its initial

reset state or to run a processor in diagnostic mode. In some cases, it may switch to a

redundant system. The WDT method is simple, but it is very obvious that malfunctions

can happen, even if the processor generates the right timing signal for the watchdog

timer [83]. During this situation, the simple watchdog timer is not very helpful into

detecting system failures. In [84], a watchdog processor is dedicated to detect faults in

the main processor. It splits the fault-detection process into a setup and a checking

phase. In the setup phase, checked values for the detection of faults in the main

processor are provided while, in the checking phase, the watchdog processor monitors

the main processor against the checked values. These checked values can be control

flow information, memory access behaviour, or the reasonableness of the results. In

control flow monitoring, watchdog processor has to check signatures values and their

associated relationship. During the program execution of the main processor, the

watchdog processor computes the signature and compares it with a concurrently

provided signature. It indicates an error if the two signatures are mismatched. In [85],

authors propose a watchdog processor for a memory access behaviour that is called

capability checking. In that case, the watchdog processor checks the memory

accessibility at the processor/memory interface using physical addresses. If an illegal

access to the memory is detected, the processor is informed, and a recovery process is

initiated. In conclusion, watchdog based methods provide a basic level of fault

detection and are limited to timing violation and illegal access. Therefore, the WDT

based fault detection is preferably used in conjunction with other methods.

2.3.2 Software Based Fault Detection

Assertion is a basic technique for software fault detection, where a programmer inserts

a small hand written code called an assertion for checking of the original program [86-

90]. If a subprogram passes the acceptance test written as an assertion, it proceeds to

the next subprogram. Otherwise, failure of the acceptance test is an indication of a

fault. Assertions act as a barrier between the two sub-programs.

Unlike assertions, a separate non-distributed [91] and distributed monitor [92] is an

alternative way of software-based monitoring. These software-based fault detectors as

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

28

demonstrated in [93, 94], they consume much higher resources than the execution of

the task itself to support high-coverage of faults. The implementation of these

methods, such as software-based monitors [91, 92] and software-based detectors [93,

94], sometimes consumes more resources than the application itself.

Another technique is called off-line periodic test. In which, the normal operation of

the system is temporally suspended and a diagnostic program is used to monitor the

system health. Contrary to off-line periodic checking, Software-based Self-Test

(SBST), as suggested in [95], provides an online mechanism to self-test a system. In

this case, a separate task is assigned to run with an actual program. This task

periodically executes and its period controls the detection latency. For smaller values

of the period, the detection latency is low.

Symptom-Based Fault Detection: A symptom is a departure from the normal

function or execution of a computer system, indicating the presence of a fault [96].

Symptom-based anomaly detection techniques focus on monitoring key parameters

within the software that can indicate abnormal behaviour due to either hardware or

software faults. These key parameters are evaluated during runtime, maximizing the

effectiveness while keeping the overhead to a minimum.

Man Li presented, in [97-99] a symptom-based anomaly detection system, named

software anomaly treatment (SWAT). The system performs hardware and software

anomaly detection by observing software behaviour. It employs four abnormal

behaviours as symptoms of an anomaly: (i) fatal traps, (ii) abnormal application exits,

(iii) hangs, (iv) high contiguous Operating System (OS) activities. The fatal trap is a

common fault that is usually detected by the built-in detection mechanism of a

commercial off-the-shelf (COTS) processor. Fatal traps detect faults like divide-by-

zero, out of bound memory access, misaligned memory access, illegal instructions and

watchdog expiration. Abnormal application exits are errors, which are not detected by

hardware but are visible to the OS. The third abnormal behaviour symptom, hangs, is

detected through a heuristic approach to monitoring all the executed branches in the

application and OS. The fourth symptom is related to the time spent in executing the

OS. If the execution takes longer than a certain number of instructions in the OS, then

it is considered as a symptom of anomalous behaviour. The last two symptoms are

effective but prone to false positives as their detection is based on heuristic

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

29

approaches. A similar fault detection method for multicore systems, named

SymptomTM, is proposed by Gulay in [100]. This method uses transactional memory

to isolate faults by first writing the results into a local hardware transaction memory

and monitoring symptoms such as fatal traps. If there is a fatal trap, then the

transaction is executed again, and if the fault persists, then the transaction is executed

on another processor core. If the software runs correctly on the second core, then the

first core is marked as damaged. If the transaction fails on the second core, this

indicates a software error. Thus, faults are isolated, and a system can tolerate more

latency, however, only faults that cause fatal traps are targeted.

Detection of conditional branching anomalies is addressed in a symptom-based soft

error detection scheme named ReStore [101]. In this scheme, a checkpoint is created

after every 10 to 1000 instructions and in case of soft errors, a rollback is executed. In

case of a false positive the effect is a slight performance loss due to the repeated

execution from the previous checkpoint. The proposed method makes use of built-in

pipeline branch predictors. These predictors are highly accurate and can achieve up to

95 % accuracy [101]. To further reduce the overhead caused by the false positives, a

confidence level indicator in the predictors is also utilized by setting a confidence

threshold. Cache misses are normal behaviours; however, they can also be used for

detection of anomaly symptoms. The existing hardware used for anomaly detection in

[101] results in a large number of false positives, since it is not designed or optimized

for this purpose.

Statistical anomaly detection schemes are suggested in [102, 103]. Finite state

automata is used to define states of the software programs as runtime events. These

states include program start, procedure start, loop start, compound statement start,

program end, procedure end, loop end and compound statement end. In the training

mode, the transition frequency of each event is calculated as a baseline. For example,

assume that the frequency of a certain loop execution cycle is calculated during the

test run, and its mean and variance values are x and y, respectively. If, during the

software execution, the x or y value exceeds a certain threshold then, it will be

considered as a symptom of an anomaly. This method can be effective. However, it

requires dividing the program into states and an accurate calculation of the statistical

parameters during test runs. Ensuring correspondence between the test runs and the

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

30

actual operation is critical to the success of the detection scheme. Also, dynamic

operation environments can cause a large number of false positives.

Correctly detecting software crashes and hangs is very important for high

availability systems. Nakka proposed three fault detection techniques to detect

software crashes and hangs [104]. An Instruction Count Heartbeat (ICH) signal detects

abnormal process termination and hangs. It monitors whether the processor executing

the instructions has the right context by finding a particular fixed number of

instructions in a fixed time. This functionality is already present in modern high-end

processors. An Infinite Loop Hang Detector (ILHD) module detects hangs due to

infinite execution in a loop. A compiler is used to instrument the entry and exit points

in each loop with a different timeout for each loop. A Sequence Code Hang Detector

(SCHD) module detects the infinite loop hangs due to illegal loops by maintaining a

log of recent instructions and looking up the same instruction sequence. In this way,

repeated instruction can be detected. However, the implementation of this technique

on embedded processors requires additional hardware modules.

2.4 Communication Network

In fault-tolerant distributed computing, selecting the right communication network and

protocol are essential. In general, the networks for critical systems have to meet the

following broad functional requirements: fault-tolerant operation, determinism and

reliable data delivery. In addition to these minimal requirements, features such as

high-speed, multi-master, and power consumption are also important. Fault-tolerance

is the most important feature for a mission critical distributed system. A single

network failure ─babbling, network partitioning─ can be catastrophic for the entire

communication process and result in the loss of the whole mission. Errors in a network

such as an invalid message, a non-responsive message, and node conflicts are usually

protected. The following section discusses these aspects of network communication

protocols in the light of fault-tolerant distributed computing.

MIL-STD-1553 is a widely used protocol configured in bus topology and was

initially developed for avionics systems. In MIL-STD-1553, three types of messages

─command, data, and status─ are used. A word is a smallest entity in a message and

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

31

contains 20 bits. Each transmitted word is protected by a parity bit for the detection of

invalid messages. In addition to the parity bit, each word is also protected by a 3-bit

sync pattern. The pattern for command and status words is identical, while a separate

inverted sync pattern is used for data words. A failure of a non-responsive node is

handled by the status messages. MIL-STD-1553 is a dual redundant bus, but during

normal operation, data is only transmitted on one bus while the other bus is kept as a

hot backup. The Bus Controller (BC) can use the other redundant bus when a babbling

node on the primary bus prevents normal communication. In this case, the BC would

send a stopping command for shutting down the babbling node’s transmitter. The

redundant bus can also be used for the normal communication in case of physical

damage to the primary bus. In MIL-STD-1553, all the data movement is controlled by

the BC, which ensures deterministic and real-time bus access. Although, MIL-STD-

1553 proves it heritage in many avionics and space projects, but it has limited speed

(up to 1 Mbps). Thus, it cannot meet the high-speed requirements of current and future

applications. Although further researched [105, 106], no considerable performance in

terms of speed is achieved. Another limitation of the MIL-STD-1553 bus is that it only

supports master/slave communication model for distributed computing.

Controller Area Network (CAN) is an event-triggered network, originally

developed for the automotive control applications. However, CAN and its variants

have also been developed for other applications [107-109]. CAN is a multi-master,

prioritized, short messaging, and medium speed data network. Reliability of a

communication network is validated through its bit error rate, fault localization, and

immunity to radiation. In the case of CAN, a 15 bit CRC and frame format/size

checking is used for data integrity at the message layer. At the physical layer, two

mechanisms─ bus monitoring and bit stuffing─ are implemented for the detection of

errors. Each transmitter checks the transmitted signals on the network to ensure

reliable communication. The CAN network is capable of switching-off a node if a

node sends erroneous messages on the network greater than the pre-defined limit. The

CAN communication protocol cannot, however, switch-off a babbling node while it is

transmitting correct messages. While a CAN network is operated in a dual redundant

bus topology, there is no provision in the protocol to switch to the redundant bus.

Also, the CAN protocol uses priority-driven Carrier Sense Multiple Access/Collision

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

32

Detection (CSMA/CD) medium access scheme, so deterministic behaviour cannot be

guaranteed. A modified CAN protocol that meets the real-time deadline of critical

systems is a Time-Triggered Controller Area Network (TTCAN) [110]. TTCAN is

highly reliable and suitable for critical applications [111]. It divides the bus access into

multiple slots that guarantee real-time data delivery. TTCAN allows a node to write on

the bus at a particular time. Therefore, it is relatively easy to detect the existence of

babbling nodes by watching the relevant time slots [112].

Nowadays, Ethernet is rapidly emerging in embedded computing due to its

widespread availability and cheaper cost [113]. Ethernet uses an event triggered

Carrier Sense Multiple Access/Collision Detection (CSMA/CD) scheme for medium

access, in which arbitration is based on a back-off mechanism. On contention, each

node waits for a random amount of time and then attempt to re-transmit on the

network. Due to this back-off mechanism for arbitration, the timeline for

communication cannot be guaranteed. To ensure a timeline, TTTech suggested a new

Ethernet protocol called the Time-Triggered Ethernet (TTEthernet) [114]. This

protocol combines the event and time-triggered scheme to support rate constraints,

best-effort and real-time traffics. Also, it uses redundant path, switches, and end

systems to ensure fault-tolerant operation of the network. It concludes that a failure of

a single node or messages in a network can be tolerated without affecting the

application. Also, each node and the network switch are protected by guardians that

ensure the communication compliance within the TTEthernet network, according to

predefined parameters.

SpaceWire is a point-to-point standard that was developed to provide high data rate

communication for on board space systems. Under this system, mass storage units,

processing units and subsystems are interconnected via a SpaceWire router that allows

multiple devices to communicate simultaneously. SpaceWire uses Low Voltage

Differential Signalling (LVDS), which consumes very low electrical power at very

high speed [115]. LVDS isolates its physical interface to avoid damages during a short

circuit condition. SpaceWire supports group adaptive routing for isolating a failure

link. The communication over SpaceWire is non-deterministic. Therefore a

SpaceWireRT [116, 117] was proposed. SpaceWireRT allows a Quality of Service

(QoS) layer over SpaceWire to support deterministic, reliable real-time data delivery.

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

33

Although the original SpaceWire protocol is non-deterministic, due to its simplicity,

adaptable topology and high-speed communication, it has been used on many NASA

and ESA missions.

Few other COTS communication protocols, such as I2C and IEEE-1394, are also

suggested for network bus-based communication for various applications [118, 119].

To make these communications protocols fault-tolerant, necessary modifications are

adopted in the X2000 program. However, due to lack of network layer support, these

cannot be appropriate options for future scalable missions. Also, the limited speed of

the I2C bus restricts its use for CubeSats and other similar space applications.

A network can be configured in different topologies─ such as bus, line, star, ring,

mesh and point-to-point. The mesh topology has the best redundancy, even when a

link is down. However, it becomes very complex as the number of nodes increases.

Star is centralized and has a single point of failure; therefore it is not at all considered.

The ring topology is more complex than the bus, and most of the communication

protocols support a bus topology. Therefore, it is a more appropriate option for

broadcast/multicast communication in fault-tolerant distributed computing systems.

To support current and future distributed applications, key features for each

protocol are tabulated in Table 2.1. It includes features of fault-tolerance, high data

rate, scalable topology, real-time and reliable data delivery, and multi-master support

for comparison. This comparison shows that SpaceWireRT and TTEthernet are the

two appropriate options for supporting all these features. However, TTCAN can also

be used for low data rate applications.

 Table 2.1: Comparison of Wired Communication Protocol

Parameters TTCAN Bus MIL-STD-

1553/1773

SpaceWireRT TTEthernet

Max. Speed 1 Mbps 1 Mbps 400 Mbps 10/100 Mbps

Power

Consumption

0.75 W (COTs)/

1W (RadCAN)

High 0.5 W > 1 W

Topology Bus Bus Point-to-

point/Network

Bus/Network

Architecture Multi-master Master-slave Any Any

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

34

2.5 Summary

Replication allocates the same tasks to multiple physical nodes. The disadvantage of

this is the underutilization of computing resources for the sake of achieving a higher

reliability. The techniques reviewed in the literature are not well suited for adapting to

other applications.

One important aspect of the active replication-based system is that it uses the

method of majority voting, in which a consensus is carried out to ascertain the most

reliable outcome amongst each other. However, if one of the nodes fails (either

through functional failure or damage), consensus cannot be established, which is a

particular limitation only in a three node system. A consensus based system also

suffers from a large inter-node communications overhead, which also demands higher

processing power, indirectly consuming more power, and demanding a fast

communication network. Therefore, fault-tolerance by replication can be suitable for a

general purpose system, but not for a resource-constrained embedded distributed

system.

Fault detection is an important element of fault-tolerant distributed computing,

which is carried out commonly at two levels, hardware and software, both of which

have been discussed. It is evident that both the hardware and the software level fault

detection methods are imminent in a fault-tolerant computing system. It is observed

that software-based fault detection is commonly used, since it utilizes fewer resources

(and resources are scarce in embedded systems).

Distributed computing system requires some means of communication amongst its

peer computing nodes. Communications protocols in light of distributed computing

systems requirements were reviewed. The focus of this review was to analyse

Max. Data/Packet 8 bytes 64 bytes Variable Variable

Real-Time

Delivery

Deterministic Deterministic Deterministic Deterministic

Fault-Tolerance Good Best Good Good

Scalability Not Not Yes Yes

Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems

35

protocols from three aspects— fault-tolerance, real-time and reliable data delivery—

for the employment in embedded distributed computing systems.

In conclusion, replication is a tried and tested technique, which is widely used in

distributed computing systems. However, emerging demands for high performance

distributed computing require a fault-tolerance technique that utilizes the inherent

availability of multiple processing units.

36

Chapter 3

3.Fault-Tolerant On-Board Computing

This chapter reviews the existing fault-tolerant computing schemes in space

applications. In section 3.1, the general concept of space fault-tolerant computing is

introduced. State-of-the-art fault-tolerant mechanisms employed in existing spacecraft

and aircraft are surveyed in section 3.2, covering computing models, fault

management schemes, and existing fault-tolerant distributed systems. In section 3.3,

the importance and suitability of commercial off-the-shelf (COTS) wireless protocols

are discussed in terms of spacecraft distributed computing. A brief overview of current

non-distributed fault-tolerant systems, in terms of high-reliability and high-

performance demands, is discussed in section 3.4. The main issues and research gaps

in the existing fault-tolerant schemes are highlighted in section 3.5. A problem

statement consisting of a main definition, fault model and performance metrics is

defined in section 3.6.

3.1 Related Definitions

3.1.1 Spacecraft

Spacecraft is a vehicle that is designed to fly in outer space. It has the capability to

travel in the free space while satellites are intended to orbit a planet. Both of these are

designed to provide a particular service. Both are used for a variety of purposes

Chapter-3: Fault-Tolerant On-Board Computing

37

including communication, navigation, Earth observation, planetary exploration,

transportation of humans and cargo. The internal functionality of each

spacecraft/satellite is divided into platform (also called Bus System) and payload

systems. The payload system is used to provide the intended service while the platform

system is for the support of the payload system [120]. The spacecraft platform system

consists of many subsystems including structure and mechanisms, thermal, attitude and

orbit control (AOC), propulsion, power, telemetry and command, and on-board data

handling (OBDH). Although, all subsystems of a spacecraft are important, the on-board

data handling, AOC and the payload itself are very important from a computational

point of view. All three are responsible carrying out computationally intensive tasks

and huge data processing in the presence of severe environmental conditions.

3.1.2 On-Board Computer

The On-Board Computers (OBCs) of a spacecraft provide computational service to

platform data processing, vehicle control (AOC) and payload data processing. These

functions are very critical, so OBCs must be able to withstand the effects of thermal,

mechanical, high energetic particle radiation and other environmental hazards. These

implications significantly influence the design of OBCs and make them largely

different from the traditional computers used on Earth [121].

3.1.3 Computer, Node, Unit, and Module

Throughout this chapter, four terms are often used to represents the physical entities of

fault-tolerant computing systems. These terms are defined as:

 A ‘computing node’ is viewed as consisting of a processor connected to some

network or communications medium.

 A ‘unit’ represents a computing entity within a node. According to this

definition, a computing node can include multiple units.

 A ‘module’ can or cannot be a part of the computing unit. Each module is

required to do some useful functions.

Chapter-3: Fault-Tolerant On-Board Computing

38

 A ‘computer’ consists of one or multiple nodes that are attached to each other by a

communication network. This same definition applies to the fault-tolerant

computer comprised of primary and redundant nodes.

3.2 Fault-Tolerant Computing for Aerospace

Applications

This section reviews fault-tolerant computing from an aerospace application point of

view. Existing fault-tolerant mechanisms are surveyed to get an idea of the current state

of the art, covering computing models as well as fault management level schemes.

Furthermore, a detailed design overview of fault-tolerant systems is also presented.

3.2.1 Computing Models

This section will present how the primary and redundant nodes of a fault-tolerant

computer are connected to form a fault-tolerant computing architecture. There are

mainly three architectures, which are explained in the following section.

3.2.1.1 Centralized Model

In a centralized computing model, all computing functions are executed on a single

computer. This computer is internally redundant and usually designed using module-

level redundancy [32]. In this computing model, only one module is active at any time,

which can be replaced by the redundant module in case of a fault. For fault detection ─

arithmetic codes, product, and residue ─ are used. The reconfiguration module, which

knows the health state of each module via a fault status signal, itself is triplicated. The

reliability of the centralized computer depends on the failure rate of its components,

whereas its computational performance depends on the processor’s operating

frequency.

3.2.1.2 Cross-Strapped Model

The cross-strapping model is a widely used in on-board computing systems [122]. It is

employed between two similar pairs of nodes or units as shown in Figure 3.1. Cross-

Chapter-3: Fault-Tolerant On-Board Computing

39

strapping is not dealt with at the internal node level of redundancy. It is an approach to

provide a dual redundant communication path to ensure system reliability. In cross-

strapping, multiple functional components/modules are connected in series to form a

string or chain to achieve overall functionality. Components of one string are cross-

strapped with the other string to build a cross-strapped computing system. This scheme

is better in terms of failure isolation because it can isolate a unit without disabling the

other units in a string. It is different from the non-cross-strapped case, where a failure

of one computing unit will disable all the other units in the same string. However, the

cross-strapped scheme has poor failure containment and fault detection, isolation and

recovery (FDIR) testability [123]. A single failure may affect all the cross-strapped

strings. In terms of FDIR testability, it is very difficult to test the overall cross-

strapped computing system. Furthermore, each cross-strapped unit requires fault

detection algorithm to isolate a particular unit.

OBDH (P)

Mass
Memory

ADCS
Computer (P)

ADCS
Computer (R)

OBDH (R)

RTURTU

Mass
Memory

Cross-Strapping

OBDH Bus

Actuators Sensors

Figure 3.1: Cross-Strapped Satellite Platform Computing Model.

Chapter-3: Fault-Tolerant On-Board Computing

40

3.2.1.3 Distributed Model

A distributed model takes advantage of the underlying network. The three distributed

computing models─ client-server, master-slave [124] and node pair [67]─ can be used

for the implementation of fault-tolerant distributed systems. The client-server model is

mostly used for general purpose fault-tolerant computing, where there is no need of

absolute time bound, and enough computing resources are available. On the other

hand, the master-slave design is widely employed in embedded fault-tolerant system.

The main advantage of the master-slave model over the client-server model is a zero

connection setup time. In the node pair model, a computing system consists of a single

supervisor node and multiple operational nodes operating in a node pair configuration.

A node pair is a set of dual redundant nodes. In a set pair, one operational node is

active while its peer node is in a shadow mode, which operates on a failure of a

primary.

3.2.2 Fault Management Scheme

Often a fault management scheme is identified using different terms, such as health

management, fault detection, isolation, and recovery (FDIR), and redundancy

management. In this thesis, we will use the term fault management scheme to

represent all these terms. In general, the fault management scheme would apply to all

parts of a spacecraft but here fault management at the architectural level to cater for a

failure of a computing node is discussed. A computing node’s failure can be handled

by a manual or an autonomous fault management scheme. In the manual fault

management scheme, a ground command is required for activation of the redundant

node. The disadvantage of the manual fault management scheme is its long response

time because of the long delay encountered during the communication and operator

intervention. While an autonomous fault management scheme eliminates this delay by

making local decisions on board. These decisions can be made by hard-coded or by

table-driven algorithms. Hard-coded algorithms are coded as an integral part of the

flight software and are verified in the same way as the flight code. Table-driven

algorithms use a database for defining and monitoring parameter and, their failure pre-

set thresholds. The table driven approach allows easier modification, however, full

testing and verification are still required for each database change. There are four main

Chapter-3: Fault-Tolerant On-Board Computing

41

schemes based on the location of the algorithms: half satellite, centralized,

decentralized, and hierarchical, which can be used for fault management of a

computing system at the architectural level.

3.2.2.1 Half Satellite Fault Management Scheme

The half satellite fault management scheme is a simple form of fault management

[125]. This scheme comprises of primary and redundant computing chains. The

primary chain includes a set of primary computing nodes, while the redundant chain

includes a set of redundant computing nodes. The scheme is not able to make

decisions on isolation and reconfiguration of an individual computing subsystem. In

case of a fault, it simply switches to the redundant computing chain irrespective of the

remaining healthy computing nodes. Later on, the fault is analysed on ground, and

possible commands for a particular configuration are initiated. This scheme is not a

suitable option for current and future space missions, which are geared towards on-

board autonomy.

3.2.2.2 Centralized Fault Management Scheme

In case of a centralized fault management (FM) scheme [126], all the functions related

to fault detection, isolation and reconfiguration of a system are located on a single

computing subsystem called on-board data handling (OBDH), as shown in Figure 3.2.

This scheme is simpler in terms of the implementation of the fault management

algorithms because all fault management related activities are executed on a single

processor. Due to the centralized implementation of the fault management functions, it

is much easier to verify the overall scheme. The main disadvantage of this scheme is

that all the telemetry and telecommand signals are routed via a central computing node

that introduces additional failures paths. Also, it may overload the central computing

node.

3.2.2.3 Decentralized Fault Management Scheme

In the decentralized approach, the fault monitoring functions are moved to the

individual computing nodes as shown in Figure 3.3. Each node monitors itself and

passes the data to the centralized computing node that is the on-board data handling

Chapter-3: Fault-Tolerant On-Board Computing

42

(OBDH) node. The centralized computing node examines the telemetry data for

detecting a fault in a node. If there is a severe fault, a particular node is replaced by a

redundant node. However, on a minor fault, it is reported in the telemetry data for on-

ground analysis.

The Modular Architecture for Robust Computing (MARC), proposed in [127], is

based on a similar decentralized scheme. In this architecture, a Core Computing

Module (CCM) is designated to run the main fault management algorithms. All the

other computing nodes periodically send health telemetry data to CCM via SpaceWire

[115] , which is used for detection of faults. On failure detection of a node, CCM

reconfigures a redundant node to assign the lost tasks.

The decentralized FM scheme is better than centralized FM because it reduces the

workload of the central computing node by shifting the monitoring functions close to

the subsystems. It does not reduce the complexity but improves monitoring of

parameters. However, similar to the centralized FM scheme, a failure of the

centralized node can lead to the loss of the whole mission.

NETWORK

Fault Management
(Monitor, Detect &

Reconfigure)

AOCS RTU THERMAL TMTC

OBDH

Figure 3.2: Centralized Fault Management Scheme.

Chapter-3: Fault-Tolerant On-Board Computing

43

3.2.2.4 Hierarchical Fault Management Scheme

In the hierarchical fault management scheme, shown in Figure 3.4, the system is

divided into multiple levels [128]. Each level has its fault management mechanism for

failure detection, isolation, and reconfiguration. Instead of a central controller, the

hierarchical strategy spreads the fault management functions throughout the

spacecraft. This off-loading of the fault management functions to multiple units results

in a better performance. However, involving multiple levels of fault management

makes the overall satellite system much more complex and vulnerable to failure, if not

properly designed. Also, much more efforts will be required on the testing and

verification of the fault management design.

NETWORK

Fault Management (Detect
& Reconfigure)

OBDH

Fault
Monitoring

AOCS

Fault
Monitoring

RTU

Fault
Monitoring

THERMAL

Fault
Monitoring

TMTC

Figure 3.3: Decentralized Fault Management Scheme.

Chapter-3: Fault-Tolerant On-Board Computing

44

POWER (R)POWER (P)

Subsystem
Level FM
Scheme

OBDH (R)OBDH(P)

Node Level
FM Scheme

Node Level
FM Scheme

THERMAL
(R)

THERMAL
(P)

Subsystem
Level FM
Scheme

Node Level
FM Scheme

Node Level
FM Scheme

AOCS (R)AOCS (P)

Subsystem
Level FM
Scheme

Node Level
FM Scheme

Node Level
FM Scheme

TMTC (R)TMTC (P)

Node Level
FM Scheme

Node Level
FM Scheme

Subsystem
Level FM
Scheme

Node Level
FM Scheme

Node Level
FM Scheme

System Level FM Scheme

Subsystem
Level FM
Scheme

Figure 3.4: Hierarchical Fault Management Scheme.

3.2.3 Fault-Tolerant Computing Systems

Since 1960, various fault-tolerant computers have been designed and developed. In

this section, we will first discuss centralized fault-tolerant computers. A centralized

fault-tolerant computer executes a particular task set either by a Simplex execution,

dual redundant execution or TMR execution. Then, we will discuss distributed fault-

tolerant computing systems, where multiple sets of tasks are executed on different sites

where each site is comprised of a single, dual or TMR computer.

3.2.3.1 Centralized Fault-Tolerant Computing Systems

The Apollo and SATURN V launch vehicle guidance computers were developed to

use a static and dynamic redundancy scheme [33, 129]. Static redundancy has been

adapted for the processors, while dynamic redundancy was used for the memory

system. A processor set comprises three processors, running the same program and

their outputs are voted to mask a single error. Two memories with error detecting

codes were employed. If one memory fails, then a processor can access the other

memory.

Chapter-3: Fault-Tolerant On-Board Computing

45

A self-testing and repairing (STAR) computer was developed by the Jet

Propulsion Laboratory (JPL) [32]. The architecture of the STAR computer comprises

multiple redundant functional modules, connected via a 4-wire internal bus and

monitored by a special module called Test and Repair Processor (TARP). TARP

monitors all the other modules by their messages on an internal bus. For detection, it

relies on the arithmetic coding or uses simple comparison among the modules. Each

transaction on the bus uses arithmetic codes (product code, residue code). In case of a

failure, TARP first rollbacks a program in the faulty module. If the problem persists; it

replaces the faulty module with a spare. The TARP itself has more than three

redundant modules, but three of these are powered up at any time. The use of standby

redundancy in the STAR computer is advantageous for long life missions. However,

the overall design is much more bulky and consumes more electrical power due to its

modular design, where each module has spares. Also, due to its Simplex execution, it

can skip faults that are beyond the boundary of its self-detection logic.

The Fault-Tolerant Multiprocessor (FTMP) computer was designed for deep space

missions in which maintenance is subject to a delay and a loss of control functions

leads to a high cost in terms of life [37]. It is designed for a rate of 10
-10

 failures per

hour due to random failures on ten-hour flights, where no on-board maintenance is

available. The design consists of fully synchronous hardware units partitioned into

processor cache modules, memory modules, and input-output modules, which

communicate via redundant serial buses. All information processing and transmission

is triplicated in the FTMP. A voter in each triad handles error correction and tolerance

renewal. The tolerance renewal mechanism replaces a faulty module with a spare

module. The FTMP redundancy scheme is not based on a simple TMR, it is a parallel

hybrid redundancy, where any other similar module can substitute a major module.

The Software Implemented Fault-Tolerance (SIFT) computer was similar to

FTMP in terms of functional specifications [38]. The two designs differ in the

hardware and software fault-tolerance implementations. Unlike FTMP, SIFT mostly

relies on software-based fault detection, correction and reconfiguration process. SIFT

uses the concept of tasks execution in the form of iterations. A set of three processors

runs the same task. Each processor executes tasks and places the data in its memory.

After all the three processors place the output data in the memory, before the execution

of the next task, all the three results are voted. If one of the three disagrees, a log event

Chapter-3: Fault-Tolerant On-Board Computing

46

is reported to the configuration module, which retires the faulty module and integrates

a new module. The modules do not require a strict time synchronization. They only

require different processors running the same iteration of the task within a 50 us

boundary.

The space shuttle computer uses a hybrid redundancy approach, where each

computing node communicates with the other computing node at the interface level for

consistency, data voting, and synchronization [40]. This computer comprises of five

general-purpose computing nodes. Four of these are reserved for flight-critical

functions while the fifth is dedicated to non-critical functions. In normal operation, all

four computing nodes are operated in a static redundancy mode whereby all nodes

simultaneously process the same input and produce the same output. All computing

nodes are loosely connected, and periodic messages are required to keep nodes within

tolerable limits. For fault detection techniques like compare word testing, bus channel

time out, self-testing and watchdog are used. On failure of two of the computing

nodes, static redundancy is not possible, so dynamic redundancy mode is enabled. In

this mode, only two nodes are included in the redundant set. Thus, failure

identification is performed by self-testing of each machine. Due to the complex hybrid

redundancy scheme and complex IOs design, the mean-time-to-failure (MTTF) for this

computer is very small and it is not suitable for long-duration missions.

In [124, 130-132], the master-slave model is used for the implementation of a

fault-tolerant computer for space applications, the design of which uses low cost

embedded microcontrollers. Each embedded microcontroller module has three states;

master, slave and off-line. In the initial configuration, one master, two slaves and one

off-line embedded microcontroller modules are used. Master and slave modules have

the same application program to provide masking against failures. Master and slaves

are the active modules while off-line modules do not participate in the computation.

During normal operation, the master sends computed result values to the slaves for

voting whereas the slaves reply with an “agree” or a “disagree” decision. If any of the

slaves disagree, the master sends an off-line command to that slave. In the off-line

state, a slave can only execute diagnostic routines to detect the cause of failure. If an

off-line slave cannot compute correct diagnostic computation, it turns off immediately.

In case of a master failure, detection is a difficult process. If the majority of the slaves

disagree with the master, then they confirm the master failure. In that case, a new

Chapter-3: Fault-Tolerant On-Board Computing

47

master is selected from the slaves. Thus, the master-slave model has a single point of

failure. Also, critical functions such as clock synchronization, fault management, and

consensus are all handled by a single computing node ‘master’, which potentially

limits scalability and performance.

The Multicomputer Architecture for Fault-Tolerance (MAFT) was designed to

provide extremely reliable computation in real-time control systems [133]. It divides

each node into two separate processors: an Operational Controller (OC) and an

Application Processor (AP). The OC handles the system executive tasks (the operating

system tasks). These include inter-node communication and synchronization, data

voting, task scheduling, error detection, and system reconfiguration. The AP runs only

application tasks that include reading sensor data, executing control law functions and

sending commands to actuators. In the MAFT computing system, application tasks are

redistributed to account for changes after a node failure. Tasks are static to nodes, and

can be run as an individual copy or through the use of replication. MAFT uses voting

to detect a faulty task or faults / failures of a particular node. Also, a voted replicas

system requires a minimum amount of healthy replicas to reach a consensus that is not

possible if one of the nodes fails in a three node system. For communication, each

node has its broadcast bus with the other nodes and number of communication buses

depends on the number of nodes. On each additional node, an additional

communication bus will be required which adds more overhead on the electrical power

and weight.

A high assurance on-line recovery technology for an on-board computer design is

presented in [134]. The on-line recovery computing system comprises multiple nodes,

connected via a CAN network. The main objective of this computing system is to

present a self-recovery mechanism of a computing node following a fault. In case of a

fault, the faulty node can recover itself by only looking at messages on the

communication network. It satisfies the requirements for a short control cycle and tries

to maintain the degree of redundancy of the overall system. Similar to other

approaches, this computer requires redundant computing nodes to mask a fault. Also,

the computer uses a timeout for each computational step that requires perfect timing

among the different nodes. Furthermore, the fault-tolerant scheme is not designed to

work for Byzantine failures.

Chapter-3: Fault-Tolerant On-Board Computing

48

3.2.3.2 Fault-Tolerant Distributed Computing Systems

Distributed computing systems have gained significant acceptance in the area of

mission critical applications. These systems offer substantial fault-tolerance features.

Contrary to a centralized computing system, a single failure does not lead to the loss of

the whole system [135].

Fault-Tolerant Distributed systems are classified into two main classes, (i) life

critical and (ii) non-life critical systems as shown in Figure 3.5. Life critical systems

involve human life directly or indirectly while the non-life critical do not. These are

further divided into computationally critical, high availability, and high-performance

systems. Computationally critical systems are those systems that require real-time hard

or soft deadline for their operation. Missing a deadline can be catastrophic resulting in

the loss of the whole mission. In high availability system, occasional loss of one

computing unit is acceptable but the entire system outage is not acceptable. HPEC

systems demand higher throughput but do not require a hard deadline. In the following

section, we will review Fault-Tolerant Distributed Systems for computationally critical

systems with particular emphasis on satellite systems [136].

The concept of FTMP [34] is extended to a distributed system in the Advance

Information Processing System (AIPS) [137]. The computer system is divided into

multiple sites. Each site consists of a triplex, duplex, or simplex configuration

depending upon the criticality of its tasks. These sites are connected via an

intercommunication network, which is also triplicated. Each processing site has its

local clock for synchronization. Hardware voting is used throughout the system.

Hardware voting within a site is easy and managed by the local clock. However, a

synchronizer is required for triplicated data send between the processing sites.

In [82, 138], D. A. Rennels extended the master/slave approach proposing a

distributed hierarchical computer, consisting of low-level and high-level computers.

Although, the design is similar in nature to the master/slave approach in terms of

physical architecture, it is different in terms of the functional behaviour. In the

master/slave model, discussed in section 3.2.3.1, each computing node is assigned the

same tasks, and the final output is delivered by the master only. In a hierarchical

design, each low-level computer has its task set while the high-level computers store

commands from ground, direct processing in the low-level computers and control the

Chapter-3: Fault-Tolerant On-Board Computing

49

communication on the network. For multiple low-level computers, one high-level

computer is designated. For hardware redundancy, each computer (high, low) is

duplicated. However, each duplicated computer is dedicated to a particular function

and is assumed to run only a specific task set. In other words, it cannot reconfigure for

other functions that make this approach inflexible.

FTDS

Non-Life CriticalLife Critical

Computational Critical

Long
 Life

Short Life

Computational Critical

Long
 Life

Short
Life

Missile just
before Flight

Launch Vehicle
at early stage

Nuclear Control

Industrial Process

Traffic/Vehicle
Control

Space Shuttle

Aircraft Control
(passenger/

Fighter)

Missile

Launch
Vehicle

Satellites
Control

UAVs

Planetary
Missions

Internet

Online
Banking

Telephone

High Peroformance
System

Long
 Life

On-board
SAR Data

Processing

On-board
Optical Data
Processing

High Availability

Long
 Life

Figure 3.5: Classification of Fault-Tolerant Distributed Systems.

In 2000, NASA started to develop a low-cost distributed computing architecture

for deep space applications [139, 140]. The main objective was to build multi-mission

spacecraft systems using COTS technologies. Similar to the traditional computing

architectures, the ‘X2000’ architecture is comprised of multiple nodes connected via

two dual redundant networks in a bus topology (IEEE 1394, I2C). Due to COTS

communication protocols in the design, extra efforts were required to implement a

fault-tolerant network design. This design includes an enhanced fault detection and

Chapter-3: Fault-Tolerant On-Board Computing

50

recovery mechanism that includes fault isolation and recovery by design diversity. As

the main focus of X2000 was to build a robust network, fault-tolerance is provided by

the use of dual redundant nodes. The number of redundant nodes increases with the

increase in actual computing nodes which is an underutilization of computing

resources.

The design of the Maintainable Real-Time System (Mars) started in 1980 [3]. The

first Mars prototype, which was targeted to real-time control applications, was

developed in 1984 at the University of Berlin. Mars uses active redundancy for fault-

tolerance whereby two or more components executes the same tasks. Communication

between any two components is protected against errors by sending the messages

twice. The components are self-checked and behave silently on the occurrence of a

fault. This fail-stop feature restricts components to either sending the correct message

or no message. Mars components are arranged in a cluster. Within each cluster, an

interface component provides extensibility of the cluster. The communication between

the different components is based upon the time division multiple access (TDMA)

scheme. Although, Mars has useful features of self-checked components, all the

redundant resources reside in the idle state and are only activated in case of a failure of

their primary peer computing node.

The Delta-4 project [55] defines an open, fault-tolerant distributed computing

architecture. It consists of multiple computing nodes connected via a local area

network. An individual node can be a processor, a multiprocessor system or a

specialized system comprised of an array of processors. Software components

replicate to multiple nodes to provide active redundancy against faults or failures.

Each node has a Network Attachment Controller (NAC) that provides services related

to communication and message self-checking comparison. Also, the NAC provides a

multicast and fail-stop node operation.

3.2.4 Discussion

It is evident from the summary of the reviewed centralized fault-tolerant computing

systems in Table 3.1 that most of the computers, particularly designed for short

duration applications (aircraft and space shuttle) rely on hardware and software TMR

based approaches for fault-tolerance. Although, TMR has a better fault coverage, but

Chapter-3: Fault-Tolerant On-Board Computing

51

adding a spare node or reintegrating an existing node requires synchronization. Also,

the use of TMR is more costly and consumes more electrical power. For long duration

missions such as spacecraft, where a temporary pause in computation is tolerable,

standby redundancy is considered a better option than TMR.

The reviewed distributed computing systems are summarised by rows 1 to 5 in

Table 3.2, row 6 is related to the work proposed in this thesis. It is evident from Table

3.2 that for short duration missions, the highly redundant distributed system (AIPS)

that includes DMR or TMR is the preferred option. While for long duration control

applications, EDRB and triplication are the preferable methods. The third category of

distributed systems is related to space applications where Simplex processing with a

standby redundancy is used. Standby Redundancy requires less physical hardware

resources and electrical power, both of which are limited on board spacecraft. As the

space system is tolerable to lost computation without damage, the standby redundancy

is the most appropriate option for these unattended systems.

It can be seen from Table 3.2 that distributed computing has been employed in

spacecraft in one form or another. Especially, it can be noted that multiple processors

are used to carry out a set of tasks in existing systems, however, the tasks are not

executed in a collaborative way. The reliability is ensured via physical hardware

redundancy of each processor. Therefore, if one processor fails its redundant backup

takes over, and even if that fails, then there is no provision for transferring its set of

tasks to another processor. In these circumstances, the spacecraft has to limit its

functionality by operating in a safe mode. The distributed computing architecture

summarised in the bottom row of Table 3.2 aims to address the above deficiencies. It

is introduced in Chapter 4 and a system-on-a-chip multi-core implementation is

described in Chapter 7. A distributed FDIR strategy is used, in which each node has its

own FDIR mechanism, embedded inside a dedicated block. This approach provides

architectural-level cost effective fault-tolerance by enabling tasks’ migration among

the computing nodes.

Chapter-3: Fault-Tolerant On-Board Computing

52

Table 3.1: Fault-Tolerant Centralized Computers.

Fault

Tolerant

Centralized

Computer

Redundancy Redundancy Management Communication

Network

Application

Fault

Detection

Recovery &

Reconfiguration

Apollo and

SATURN V

Triple

Modular

redundancy at

module level

Disagreement

Detectors

Manual

Commands

- Short

Duration

missions

(Launch

Vehicles)

JPL STAR

Computer

Simplex

Execution

with Spares

Arithmetic

Codes,

Comparison

test

Test and repair

Processor

(TARP)

Internal 4-bit bus

for

communication

of modules

Long-life

missions

(Spacecraft)

FTMP Parallel

Hybrid Triple

Modular

Redundancy

at module

level.

Hardware

TMR Voting

Software to

replace a faulty

unit.

5x Redundant

Buses with bus

guardian

Aircraft

SIFT Hybrid TMR

redundancy at

module level

Software TMR

Voting

Software to

replace a faulty

unit.

5x Redundant

Buses

Aircraft

Space

Shuttle

Computer

Hybrid

redundancy (5

identical

computers in

a set)

Compare word

test, bus-

channel time-

out test, self-

test, watchdog

timer

Manual

Restoration

28 1-MHZ Serial

Data Buses (23

shared, 5

dedicated)

Short

Duration

missions

COTs FT

Computer by

JPL

TMR

Master/Slave

with one spare

Message

Timeout or

mask error by

majority

voting

Multi-level

Self-Recovery

Master channels,

Slave Channels

and Status

Channels.

Long-life

Missions

(Spacecraft)

MAFT Hardware /

Software

replication

Reasonable

checks,

Convergent

Voting

Strategy and

ECC.

Operational

Controller

Fully Connected

Broadcast Bus

Network

Aircraft

High

Assurance

Online

Recovery

Multiple

nodes with

replication.

Message

Timeout and

Software

voting

Self-Recovery TDMA based

over CAN

Short

duration

Chapter-3: Fault-Tolerant On-Board Computing

53

Table 3.2: Fault-Tolerant Distributed Systems.

Fault-

Tolerant

Distributed

Systems

Site

Redundancy

Redundancy Management Communication

Bus/Network

Application

Fault

Detection

Recovery &

Reconfiguration

AIPS Simplex,

DMR, and

TMR

Hardware

TMR Voting,

DMR

Comparison

Primary /

Backup global

computers

Network,

comprise of

redundant links

and switching

nodes.

Short

Duration

missions

FTD

Computer

by JPL

Simplex for

Low-Level

and High-

Level

Computers

Arithmetic

Codes

High-Level

Computers

Multiple

Redundant Buses

Long-life

Missions(

Spacecraft)

Mars Hardware /

Software

replication

with fail-

silent node.

Self-Checking

Nodes

- TDMA over

Ethernet with

message

redundancy

Process

Control

Delta-4 Hardware /

Software

replication

with fail-

silent node.

Software

Voting /

System

Monitoring

System

Administration

Software

Local Area

Network

(Duplex

channels)

General

purpose

applications

EDRB FTD

Computer

Extended

Distributed

recovery

block

Acceptance

Test,

Message

Timeout

Supervisor node

Dual redundant

supervisor and

node pair

Networks.

Process

Control

Fault-

Tolerant

Distributed

Computing

Over-

Provisioned

Resources

Hybrid

(Symptom-

based Fault

Detection +

Monitoring)

Distributed

Coordination

Dual redundant

Time Triggered

Networks

Space

Applications

3.3 Wireless Protocols for Spacecraft Fault-Tolerant

Computing

Systems such as traffic control, industrial automation, aerial vehicles, satellites and

space shuttles heavily rely on data communications, both for normal operations as well

as for diagnostics. Using wireless links instead of wired bus harnesses, has several

advantages. Relocation of sub-systems becomes easy since there is no need for

rerouting data cables. No special connectors are needed for additional diagnostics, and

the data link is inherently immune to wear and tear. Furthermore, once the wireless link

Chapter-3: Fault-Tolerant On-Board Computing

54

is properly designed, system integration, testing, and operational diagnostics are faster

and easier, which is a significant issue in critical systems comprising many integrated

sub-systems.

Spacecraft, in particular, can benefit from using wireless communication links on

board. Wireless interfaces can help reduce the overall mass, as the harness can weigh as

high as 10 % of the total mass of the satellites [141]. Wireless links are less vulnerable

to debris impact when these are deployed in LEO. It is because of the number of

objects in these altitudes is drastically increasing with time [19, 20]. It is also relevant

to other safety critical applications. A system failed in navy ships due to damaged

harness and its cost analysis for its diagnostics is reported in [142]. Despite several

benefits, wireless COTS protocols in its current form cannot be deployed for space

fault-tolerant distributed systems. It is because COTS technologies are not inherently

designed for critical applications.

Wireless links are inherently unreliable and often characterized by higher message

loss. For reliable data delivery, forward error correction (FEC) and assured delivery are

usually used. Additional bits in the form of FEC are appended with data for the

correction of transmission errors while assured delivery assumes acknowledgment on

each message from the recipient. FEC is better than the assured delivery because it not

only assures reliable data delivery but also helps to maintain timeliness of the

distributed application. FEC can only work if a packet receives at the receiver site.

However, in case of packet loss, retransmission of data is essential. Packet loss may be

worse when wireless distributed nodes place at a short distance in a close metallic

structure of the spacecraft.

Electromagnetic Compatibility and Electromagnetic Interference (EMC/EMI) is

another problem in the employment of wireless technologies for space applications. In

[143], various wireless technologies for space applications are investigated. Among

these, WiFi (IEEE 802.11) standard was analysed for satellite on-board communication

for EMC/EMI at frequency bands of 2.4 GHz and 5.0 GHz. No interference was

reported with the Telemetry/Telecommand S-band at 2.4 GHz, but it does interfere with

the payload instrument, Doris, operated in the S-band range. Interference also occurred

with the spaceborne Synthetic Aperture Radar (SAR) and X-band radar harmonics

when operated in the 5.0 GHz band. It shows that the adoption of wireless

Chapter-3: Fault-Tolerant On-Board Computing

55

communication as OBDH bus requires careful frequency selection among the payload,

TM/TC, and the wireless standard.

In fault-tolerant distributed systems, devices need to communicate with each other

through the exchange of data which requires topology. The star topology in the

infrastructure mode is proposed for Wi-Max/Wi-Fi [144] [145]. Star Topology is not

suitable for fault-tolerant computing because all the computing nodes are connected via

the access point rather than directly connected to each other. Another topology based

on the tree structure as suggested for ZigBee [146], which can make direct

communication possible but it may susceptible to a single point of failure. On the other

hand, Mesh Topology avoids such single point of failure problems, is most suitable

option for the spacecraft distributed computing.

In fault-tolerant distributed systems, a deterministic access on the network is

essential which cannot meet with the non-deterministic CSMA/CA medium access

protocol currently employed in wireless communications protocols. In IEEE 802.15.4

Standard, the channel is divided into slotted and non-slotted mode. In the slotted mode,

the channel is accessed on a turn basis whereas non-slotted mode allows anyone access

on the channel. The slotted scheme of IEEE 802.15.4 standard can be useful for the

deterministic access.

Fail-stop node behaviour when sick is an important concern for critical

applications. If this does not address properly, a faulty node can send erroneous

messages that subsequently jam the rest of the nodes’ communications. However, due

to the availability of multiple channels in current wireless technologies, such failures

can be handled very easily.

The IEEE-802.11 protocol [145] is the most researched and widely adopted to

emerging applications. It has been used in military mobile ad-hoc networks, railways

(ALARP) [147], aerospace, medical, and commercially almost every household and

office. It has been evaluated for a constellation of satellites, operating in a network

[148-152] and also proposed as the main data handling bus within the spacecraft [153].

Another wireless protocol, ZigBee [146] [154] is developed for very low power data

sensing applications. ZigBee has been used in many applications. It includes

Aerospace Wireless Sensor Network (AWSN) [155], Physical environmental and

Physiologic [156], Electrical Ground Support Equipment (EGSE) [157], and Vehicle

Chapter-3: Fault-Tolerant On-Board Computing

56

Collision Avoidance System [158]. ZigBee is also found its usage in spacecraft

telemetry/telecommand system [159], launch vehicles, and space shuttles system [160].

It is evident that ZigBee can deploy in critical applications. However, its adaptation

requires further investigation of the requirements for critical systems

Bluetooth is analyzed as a replacement for existing CAN networks for intra-vehicle

and inter-vehicle non-critical applications. Bluetooth is also suggested for combat

vehicles as reported in [161] where wireless Bluetooth replaces wired communication

between crew stations. A major hindrance to its adoption for critical applications is the

connection setup time that in some cases is as much as 5-6 seconds. The main features

of COTS wireless protocols are stated in Table 3.3. These features act as a basis for the

selection of wireless protocol, over which further modifications can be made. The use

of COTS protocols as a baseline design for fault-tolerant computing reduces the design

cost and time.

Table 3.3: Features of Existing Wireless COTS Technologies.

Wireless

Technologies

WiFi (IEEE

802.11b)

WiFi (IEEE

802.11a/g)

ZigBee (IEEE 802.15.4) Bluetooth (IEEE

802.15.1)

Modulation DSSS OFDM DSSS FHSS

Encryption Optional

RC4(AES in

802.11i)

Optional

RC4(AES in

802.11i)

AES Block Cipher(CTR,

counter mode)

EO Stream

Cipher

Topology Infrastructure/

Ad hoc

Infrastructure/A

d hoc

Star/ Mesh/Cluster Tree Point-to-point,

point-to-

multipoint

Access

Protocol

CSMA/CA CSMA/CA Slotted/Un-slotted

CSMA/CA

Master/Slave

Transmission

Range

30 m(indoor)

@ 11 Mbps

30 m(indoor)

@ 54 Mbps

10 to 100 m but for

ZigBee Pro is 1500 m

1 to 100 m

Freq. Band 2.4 GHz ISM 2.4 GHz ISM

(g)

5.0 GHz U-

NII(a)

868 MHz Europe, 915

MHz USA/Australia;

2.4 GHz

2.4 GHz

Data Rate 11 Mbps 54 Mbps 20 to 250 Kbps 0.723 to 2.1Mbps

Power

Consumption

< 1 W < 1 W < 1 mW < 100 mW

Channel BW 25 MHz 20 MHz Multiple channels in each

band

1 MHz/channel

Duplex Half Half -- Half/Full

Chapter-3: Fault-Tolerant On-Board Computing

57

3.4 Modern Implementation Approaches to Fault-

Tolerant Computing Systems

This section will overview other modern implementation approaches to fault-tolerant

computing, particularly focusing on the design of space computing systems. It will

briefly discuss reconfigurable computing systems, multicore systems and cluster

computing systems. The main focus of this review is to highlight the advantages and

disadvantages of each approach.

Reconfigurable Fault-Tolerant Computing: A reconfigurable computing platform

is a platform that can be repaired or reconfigured. To achieve a reconfigurable

computing platform, static random access memory (SRAM) based field programmable

gate arrays (FPGAs) are used. The inherent reconfigurable feature of these FPGAs

provides a computing platform that can be repaired to tolerate hardware failures.

These FPGAs can accommodate redundant logic such as a processor, input-output

blocks, and memory system, and can load a module to repair or upgrade an existing

computing system. The reconfigurability feature of FPGAs is particularly suitable for

remote systems, where it is hard to repair after the initial installation. The spacecraft is

one such example of these systems [162].

In [163], a reconfigurable fault-tolerant (RFT) avionics system for a Nanosatellite

has been proposed. A node based on an SRAM based FPGA was designed which

allows switching between Simplex and TMR based redundancy scheme. The main

objective is to save electrical power by switching different redundancy schemes. The

selection of simplex or TMR scheme is based on the orbital parameters.

In [164], another method that includes Simplex, DMR and TMR redundancy

scheme has been presented. Instead of using orbital parameters, selection of

redundancy scheme is selected on the severity level of radiations which is monitored

by a MicroBlaze processor. Each time a pre-set threshold is reached; configuration bits

related to the particular redundant scheme are loaded. During the normal operation, it

utilizes scrubbing to mitigate the effects of Single Event Upsets (SEUs).

FPGAs devices wear out with use and can fail due to two types of failure

mechanisms ─ physical and functional failures. Physical failures are permanent and

due to defect in processing, packaging, die attachment failure, bonding or particle

Chapter-3: Fault-Tolerant On-Board Computing

58

contamination. Functional failures are temporary or intermittent and due to striking of

high energy proton or neutron. It is evident that fault-tolerance by a reconfigurable

computing platform can only protect the system from functional failures or partial

physical device failures. In the former case, scrubbing and in-circuit redundancy are

employed. Scrubbing is an error correction technique, which is based on rewriting the

FPGA configuration to avoid accumulation of errors induced by radiation [165]. In the

latter case, the configuration affected by the partial device failure can be relocated.

However, protection against a full device failure is essential, which can only be

provided by a fault-tolerant distributed computing approach.

Multicore Fault-Tolerant Computing: Another recent trend for enhancing the

reliability of on-board computing systems is the use of multicore or manycore

processors [16]. Multicore processors are inherently redundant in terms of processor’s

cores, I/O, power supply pins and memory ports. Thus, a system can utilize these

resources for improving the reliability of on-board computing systems. In a multicore

system, multiple available cores are used for fault-tolerant computing. Either software

or hardware provides fault-tolerance in multicore systems. Software-based fault-

tolerance is preferably suitable for commercial-off-the-shelf (COTS) processors,

where hardware modification is impossible. While the hardware based fault-tolerance

is employed for custom design of multicore processors, which can be designed as

ASIC (Application Specific Integrated Chip) or it can be implemented on an FPGA.

In the software-based fault tolerance, redundant execution approaches, which

exploit the inherent replication of processor cores, are used [166-169]. Redundant

execution of a process can be done in time or in the spatial domain. In the time

domain, a single core is used to execute the multiple copies of the same process. The

utilization of the single core for replication is simple, but it is limits to transient faults

only. On the other hand, in the spatial domain, multiple cores are used to execute

replicated processes. Each replicated process runs in a separate core and results from

all are compared or voted to produce a result. A software implemented fault tolerance

(SIFT) approach is demonstrated in Maestro [170], in which a processor consists of 49

cores interconnected via switch engines. The Control and Fault Management (CFM)

software that is used to manage the cores collects the error messages and restarts the

applications runs on three cores. CFM sends a heartbeat message to the external

Chapter-3: Fault-Tolerant On-Board Computing

59

hardened state machine, where they are voted. If any two of the three fails to deliver

an ‘OK’ heartbeat message, the whole system is restarted by the external sequencer.

Common circuitry of COTS multicore processors, such as clock and control, are

not inherently designed to be fault-tolerant. Also, a fault in a single core can stop the

whole chip. Furthermore, shared memory among the cores is a potential bottleneck to

achieve high performance [171] [172]. Lastly, heat dissipation per small chip,

particularly in the presence of vacuum is another issue [173].

To solve these problems, various solutions have been proposed, which include the

custom design of multicore processors. For fault containment, one approach is to

isolate all the cores completely on a chip. Each core has its memory controller and

input-output connection. This approach is efficient for fault containment, but hard

partitioning of resources such as cache, memory controller, and input-output

significantly reduce the overall performance. To overcome this problem, another

partially partitioned design for the multicore processor is proposed in [167]. This

design divides the overall resources into multiple groups, and each group is bound to

share its resources. For fault-tolerance, such as in the case of DMR or TMR

implementation, each computing core must be from a different group to isolate

primary from the redundant core.

A non-shared memory based architecture of the multicore processor is presented

in [170]. This architecture eliminates the shared memory access latency. In this

architecture, each core has its dedicated memory and sharing of data accomplishes via

message passing over a network among the cores. For fault-tolerance, TMR based

software replication is suggested.

Instead of considerable efforts to solve multicore issues, heat dissipation is still a

problem, particularly for space applications. Also, a single node of a multicore

processor is a single point of failure. Therefore, an approach that exploits features of

the multicore processor and avoids the problems of a single point of failure and heat

dissipation is essential.

Cluster-based Fault-Tolerant Computing: The NASA’s New Millennium (NMP)

ST8 project was aimed to develop a COTS-based dependable multiprocessor systems

[174-177]. The architecture consists of dual redundant system controller and n data

computing nodes; all are connected to a dual redundant gigabit Ethernet. The whole

Chapter-3: Fault-Tolerant On-Board Computing

60

assembly forms a cluster computer for parallel data processing. All type of messages

(data, control), a single Ethernet, is used which can potentially delay the cluster’s

reconfiguration process in case of failure.

One such example of Linux-based Beowulf cluster computer for terrestrial

applications is proposed [178]. In [179], a similar Beowulf cluster approach is adopted

for the satellite imaging payload application. This cluster computer comprises of 20

StrongARM controllers that are connected by four FPGAs. This cluster is merged as a

single computing node to form a homogenous cluster and require some mechanism to

dissipate a large amount of heat. Heat dissipation is a serious issue in embedded

clusters architectures for on-board computing systems. It will require system designers

to solve problems ranging from how to house, power, and cool the machine.

Remote Exploration and Experimentation project (REE) is one such effort,

particularly designed for deep space missions [180, 181]. The main goal of the REE

project is to develop a low cost very high-performance computer system comparable

to a supercomputer for space applications. The main motivation behind this project is

to provide on-board autonomy so that more science objectives can achieve with the

help of low-cost commercial-off-the-shelf components. Unlike fault-tolerant systems,

it is allowed to fail occasionally similarly to the sample data computation systems. It is

primarily designed for science data processing rather than the mission critical and hard

real-time data processing; therefore software based triple mode redundancy for fault-

tolerance was used.

3.5 Issues of Current Fault-Tolerant Computing

Approaches

Legacy fault-tolerant computing systems aimed at space applications were designed

with high reliability as an uncompromised objective. Employing a redundancy scheme

is a common practice. It is evident that physical redundancy alone cannot be a cost

effective solution to achieving higher reliability as well as High Performance

Embedded Computing. Also, recent failures of On-Board Computers in GOCE-2013

[182] and Phobos-Grunt-2012 [183] revealed that centralized and dual redundant

computers may fail resulting in the loss of the complete mission. Other issues related

to computational integrity, adaptability, resource underutilization, provision of task

Chapter-3: Fault-Tolerant On-Board Computing

61

migration, and isolation of the input-output interfaces also demand a new approach to

designing fault-tolerant computing systems for space applications.

Computational Integrity: In a fault-tolerant computing system, computation integrity

refers to a loss free computation. Computational integrity is maintained by periodic

storing of the task states during the normal operation that are provided to a redundant

node in case of failure of a primary node. In a review of the state-of-the-art schemes

and methods, only a few fault-tolerant schemes consider state storing while most of

them do not. However, due to a large amount of primary to redundant switching and

state transfer time, a considerable amount of computation is lost that would result in

compromised computational integrity.

The two main approaches to computational state storing use: i) a separate internal

module attached to the system bus, ii) a centralized module connected to a network,

can be used [121]. The need to design a separate internal module adds additional

design complexity in terms of isolation between the powered and unpowered nodes,

particularly in case of a cold redundant system. On the other hand, a centralized

module attached to the network provides a complete isolation between the primary and

the redundant node, but the state transfer time due to the communications is

considerably high. Furthermore, both approaches can cause a single point of failure.

Adaptability: The second important issue is the lack of adaptability in current fault-

tolerant systems. In current on-board systems, redundant resources are fixed to a

particular subsystem and sharing of these resources among the different subsystems is

not possible. Emerging demands for High Performance Embedded Computing require

a fault-tolerance technique that utilizes the inherent availability of multiple processing

units. In other words, instead of placing idle resources for each subsystem, resources

need to be shared for the purpose of high reliability, performance, and computing load

balancing.

Also, demands of space missions ─ space probes, space robotics ─ vary

throughout the mission life. In some phases, High Performance Embedded Computing

is required for a very short duration, such as in the case of a Lander. Autonomous

landing requires High Performance Embedded Computing for real-time range and

range rate estimation algorithms, as well as terrain visualisation and trajectory

calculations. Additional dedicated processors are used for this computation. However,

Chapter-3: Fault-Tolerant On-Board Computing

62

as soon as the Lander completes its landing manoeuvre, these computers are put in the

idle state and are not utilizable for another purpose. The provision of dedicated

computing resources for such a short duration is not a good solution because it

increases the cost, weight and size of the spacecraft. The same demand can be met

with the idle redundant computing resources if a system is provisioned to adapt to such

scenarios.

Furthermore, current computing systems are not capable of adapting their

operation to achieve thermal balancing or compensation against environmental

radiation. This makes thermal and radiation design of High Performance Embedded

Computing systems rather complex.

Inefficient Utilization of Resources: In the state-of-the-art redundant space fault-

tolerant computing systems, discussed in section 3.2.3, resources are reserved for

fault-tolerant operation. For example in the TMR computer, a set of three processors is

running the same tasks to achieve high reliability. It results in a resource utilization

efficiency of only 33 % because three processors do the work of one processor.

Compared to TMR, the internal redundant centralized and dual redundant standby

computers are relatively more efficient, where one processor is dedicated to the

execution of the tasks, while the other processor in the idle state, consuming only 50 %

of the total available resources.

On the other hand, physically distributed computing systems, which are usually

comprised of three nodes requires three redundant nodes. In this scenario of three

nodes, three redundant nodes are in the idle state, thus making the system inefficient in

terms of resource utilization. It is because computing resources are grouped in a pair of

two nodes (primary, redundant), and a node failure is only masked with its peer

redundant node. The reliability of a distributed system can be enhanced if the system is

provisioned to reconfigure all available nodes in case of a failure of any of the

distributed nodes.

No provision for Task Migration: Task migration is supported in general purpose

desktop based distributed systems. However, there is no such technique which could

be directly employed in safety critical distributed embedded systems. The lack of the

task migration capability for such critical systems binds the computing tasks with a

Chapter-3: Fault-Tolerant On-Board Computing

63

particular node, thus making a distributed embedded computing system inflexible to

achieving reliability and performance simultaneously.

Isolation of Input-output Interfaces: In fault-tolerant computing systems, both the

primary and the redundant computing nodes need to be connected with the various

input-output signals. These signals correspond to the sensors, actuators or health status

of the different modules. In case of a failure, a switch-off is essential for isolating a

faulty primary node. Although standard methods are employed for input-output

isolations of the primary and redundant node [184, 185], the power-off faulty node can

accidently be back-powered from the common logic signals, thus causing unexpected

behaviour in the running node.

3.6 Problem Definition

Distributed computing is achieved via the use of distributed systems to solve

computational problems. In a distributed system, a bigger computation problem, such

as satellite attitude and orbit control, is divided into v tasks, and each processor is

assigned a subset of the v tasks. All v tasks are executed collaboratively to produce the

final result.

On board spacecraft, each task has to be executed timely, and in a coherent

manner. For instance, consider an example of an AOCS system. In some missions,

AOCS handles firing of the thrusters at exact times. The time slot is limited, and the

task has to be executed within the time available, otherwise the wrong firing of the

thrusters would result in the satellite moving in an unwanted orbit, and may cause a

collision with existing satellites. This emphasises the following points:

 Tasks must be executed timely.

 No task can be left incomplete. Otherwise, the overall outcome will be incorrect,

leading to erroneous computational results, which can cause a disaster.

Consider a set of tasks being executed on the distributed computing system shown

in Figure 3.6. Firstly the tasks will be distributed amongst the processors by some

algorithmic means and then each processor will perform its tasks. Eventually, the

system output is the overall outcome from all processors. In a normal operation, all

processors would be working as desired. Now consider a scenario, when one or more

Chapter-3: Fault-Tolerant On-Board Computing

64

processors fail, as depicted in Figure 3.6, leading to an erroneous result. In order for

the system to be able to recover from this unacceptable situation the following is

required:

 A fault detection (FD) mechanism must be in place.

 The fault should be isolated, i.e. the faulty processor should be correctly identified,

and removed from the system.

 Finally the system should be reconfigured via re-allocation and migration of the

tasks of the failed processor(s) to other healthy processors.

The needs stated above necessitate the incorporation of a fault management

capability. The existing fault management schemes, reviewed in this chapter, do not

fulfil the requirements of high-performance mission critical embedded systems. To

address this gap in the present state-of-the-art, in this thesis a novel approach to fault

management is proposed, the fault model and performance metrics for which are

detailed below.

Fault Model: We define the targeted fault model that is representative of typical

problems occurring in distributed computing systems in the presence of failures. We

assume that failures could manifest themselves as temporary or permanent processors

failures. We assume that the underlying network is reliable and messages are shared via

synchronous communication semantics. We consider the following processor failures.

 Processor Fail-Stop or Crash Failures: A processor may crash, and once it

crashes, it can be restarted and reintegrated. The crash failure of a processor in

our synchronous model of communication is detected by timeout messages.

 Processor Crash and Restart: In this scenario, a processor restarts after having

a crash failure. The crashed processor loses its current state, but its operation is

resumed from a known state after restart.

Chapter-3: Fault-Tolerant On-Board Computing

65

Fault Management

Scheme

Faulty

Processor

Tasks lost

Processor Processor Processor

ActuatorsSensors

Computing
Problem

Divide and
Distribute

Figure 3.6: Operations of a Distributed Computing System under Fault

Performance Measures: For evaluation of the proposed fault management scheme,

reliability and availability metrics are identified as detailed in chapter-6. The

performance of the fault management scheme will be measured by the fault coverage

and computational integrity of the system as follows:

 Fault coverage: We define fault coverage in terms of qualitative and

quantitative parameters. The qualitative parameter specifies the type of the

faults (transient, permanent) that the system can handle. The quantitative

parameter expresses the conditional probability that the system will recover

appropriately in the event of a fault occurrence of a particular type. For each

fault type, its quantitative parameter gives a measure of how well the fault

protection mechanism work.

 Computational integrity: Computational integrity has two main components, (i)

the time period when the computation is not available, referred to as

reconfiguration time, and (ii) the degree of protection of critical state data ∆𝑆𝐷 ,

Chapter-3: Fault-Tolerant On-Board Computing

66

referred to as check-pointing and state rollback. Both are defined and explained

in chapter-6.

3.7 Summary

In this chapter existing redundancy schemes, architectures and fault management

approaches in computing systems were reviewed and analysed. It is concluded that for

long term missions, it is appropriate to use the standby redundancy scheme due to its

reduced electrical power and area. An on-board distributed architecture requires a

redundancy management scheme to make the computing system fault tolerant. Various

redundancy management schemes were critically reviewed— Half Satellite,

Centralized, Decentralized, and Hierarchical—commonly employed in space

computing systems, highlighting the advantages and disadvantages of each scheme. It

was concluded that the decentralized and the hierarchical scheme have an edge over

the other schemes in terms of reliability. However, current redundancy based designs,

where a task is bound to execute on a primary node or its peer redundant node, can

only utilize the primary and redundant node computing resources. Also, they do not

allow other subsystems to make use of their idle redundant resources either for

performance or fault-tolerance purposes. In future computing systems, where a

computing system is comprised of several computing nodes, subsystem level

redundancy in the form of primary/redundant node is not feasible. If the same legacy

approach is adopted, it will be very expensive and would result in underutilization of

computing resources.

Conventional space-borne fault-tolerant systems— centralized, and distributed—

were also systematically reviewed and analysed. It was concluded from this study that

the proposed system approaches were limited and could not be used to directly

enhance high performance and reliability in mission critical embedded systems.

Furthermore, significant issues of current fault-tolerant computing systems were

highlighted and discussed.

An overview of wireless protocols and their suitability for on board spacecraft

fault-tolerant computing was also presented in view of the benefits that intra-satellite

wireless communication can bring to distributed systems. Two COTs wireless

protocols (WiFi and ZigBee) were found suitable for further improvement and their

Chapter-3: Fault-Tolerant On-Board Computing

67

deployment as a fault-tolerant network. A brief review of modern implementation

approaches to fault-tolerant computing systems was also presented. The suitability of

each design was critically reviewed by presenting advantages and disadvantages.

To summarise, legacy computing architectures and approaches are designed to

meet only one objective, either performance or reliability. No single computing system

meets both objectives simultaneously. The outcome of this review emphasized the

importance of the current research topic of task oriented fault-tolerant distributed

computing and highlighted the need for a feasible, efficient solution that is not

available in the known literature and engineering practice. Following from that a new

approach to fault tolerance management in distributed systems was conceived, which

requires architecture level changes and enhancements, thus leading to a novel

distributed computing architecture and fault management scheme.

68

Chapter 4

4.Novel Architecture for Fault-Tolerant

Distributed Computing

In this chapter, the proposed architecture for fault-tolerant distributed computing is

presented. The architecture covers the hardware as well as the software part. In section

4.1, preliminary details of the architecture are introduced while the system hierarchy

of the proposed architecture is discussed in section 4.2. Details of the design of the

distributed computing node are presented in section 4.3, while the input-output node is

discussed in section 4.4. Nodes are connected via a network that is discussed in section

4.5. The software stack of the distributed computing node is presented in section 4.6,

which primarily includes the software design of the processing unit and the fault

management block. Details of the fault management scheme are covered in section

4.7, while section 4.8 describes algorithms proposed for fault detection.

4.1 Introduction

The proposed architecture addresses High Performance Embedded Computing

requirements and the need for a fault-tolerant capability of the current mission critical

applications as discussed in Chapter 1. High Performance Embedded Computing is

achieved via the incorporation of multiple processors, which communicate with each

other over a network. The multiple processors work in collaboration and, therefore, the

system falls under the category of collaborative distributed computing systems. To

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

69

make the distributed architecture resilient to failures, a Fault Management Scheme

must be incorporated as stated in section 3.6.

The three main components of the architecture are:

1. Nodes,

2. Communication Network, and

3. Fault Management Scheme.

Any processor attached to the communication network is termed as a node. A

node is further distinguished based on its functionality as: (i) a distributed computing

node and, (ii) an input-output (I/O) node. The distributed computing node handles the

computation, whereas, the I/O node allows the interface to sensors and actuators for

acquisition and commanding.

The reason for including a separate I/O node is primarily, to permit access to all

distributed computing nodes, as needed by the system. For instance consider the

example of AOCS, where, sensors and actuators need a direct dedicated interface to its

processors. In our case, sensors and actuators are attached to the network, not directly

to processors. Therefore the I/O nodes provide the necessary conversion of the

dedicated interface to the network interface. Removing the direct interface in our

architecture addresses several issues, namely, the question of isolation on interfaces,

back-powered, and lack of adaptability as discussed in section 3.5.

As discussed in section 2.4, a network can be implemented, using four main

topologies, i.e. the mesh, star, ring, and bus. The bus topology is more appropriate

because of its simple design and widely used in spacecraft network. Therefore, we opt

for a bus topology in our architecture.

To make a distributed computing architecture fault-tolerant, a fault management

scheme is required. From the literature as discussed in section 3.2.2, it was evident that

there are two broad schemes in use i.e. centralized and decentralized. Centralized

scheme is a single point of failure. Therefore, it is not considered further. In the

decentralized scheme, decision power is available with a few distributed computing

nodes. To elaborate this point, consider a hypothetical scenario of 10 nodes. With the

decentralized scheme, suppose the decision for the fault management scheme handles

on only three nodes. These nodes monitor all other nodes, and itself, for faults, by

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

70

reading node’s health status. The node’s health parameters comprise temperature,

voltage, current values, which are included in a message being sent via the

communications network, thus has a time delay. The message is read, and if it shows

an error, a fault is detected. A decision is made to isolate the faulty node. This decision

is broadcasted to all nodes (broadcast). The faulty node is isolated by powering it off,

whose control is with the decision node. Thus, the system recovers via reconfiguring

itself.

A considerable time will be required to reconfigure the system (complete the

whole FDIR process) due to inherent communication delays over the network. If the

decision-making control is distributed to all nodes, the communication delay can

automatically be eliminated, as a node would be able to isolates itself in the case of a

fault. Other nodes could reconfigure themselves as soon as the node is isolated.

Furthermore, the distribution of the decision making control to all nodes makes the

system more reliable than a decentralized scheme.

With this argument, we proceeded to implement a Distributed Fault Management

Scheme, which was not readily available in the literature. This scheme is distinguished

from the Decentralized one, in the sense, that the responsibility for making decisions is

not limited to a few nodes but is available to all nodes.

Another distinguishing point is the integration of the proposed new fault

management scheme with the corresponding processor. It is possible to provide this

functionality within the processor or use a separate hardware block outside the

processor. We opted for the second option, details of which are discussed in section

5.3.2.

4.2 System Hierarchy of the Proposed Architecture

The generic view of the proposed distributed computing hardware architecture for

Fault-Tolerant Distributed Computing (FTDC) is depicted in Figure 4.1. The

architecture can be extended to variable depth hierarchies, starting from the top level

to the group level. At the top level, it is comprised of multiple groups connected via

switches. The role of the switch is to route the data from one group to another group.

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

71

Also, it divides the physical network into multiple physical networks enhancing the

communication bandwidth per node.

A computing group comprises multiple nodes (processing / IO nodes), connected

via two separate networks using a bus topology. Figure 4.2 shows a group view of the

architecture, where two dual redundant networks, main network and AMFT network,

are used. The main network is used for communication between the processing units,

while the AMFT network is dedicated to communication for the purpose of fault

management. Separate networks do not only reduce the response time in case of a

node failure but also provide better performance for the applications tasks. A group

executes the tasks corresponding to one (or more than one) spacecraft subsystem (e.g.

OBC/OBDH) and is responsible for their successful execution.

For input-output (I/O) operations such as acquiring data from sensors, and

commanding actuators, no direct I/O is routed through the distributed computing

nodes. It is essential to off-load the I/O operations from the distributed computing

node for achieving high reliability as described earlier. Therefore, all sensors and

actuators are accessed via dedicated input-output nodes.

Processing
Nodes

Processing
Nodes

Processing
Nodes

Distributed
Computing

Nodes

Distributed
Computing

Nodes

Distributed
Computing

Nodes

Input-Output
Nodes

Input-Output
Nodes

Input-Output
Nodes

Group
AMFT Network

Main Network
Switch

SwitchSwitch

Switch

Figure 4.1: Hardware Architecture for Fault-Tolerant Distributed Computing.

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

72

4.3 Distributed Computing Node

In the proposed architecture, a Distributed Computing Node (DCN) consists of a

Processing Unit (PU) and a Fault Management (FM) block as shown in Figure 4.3.

The Processing Unit runs the actual application tasks while the Fault Management

block is used for the fault detection, isolation, and reconfiguration of the distributed

system. Unlike other techniques, we adopt a different approach whereby the fault

management block is implemented on a separate physical medium, outside the host

processor and is connected to a different network. In this way, the fault management

block retains the detection, isolation and reconfiguration functions in case of faults in

the processing units. Also, being detached from the processing units, it does not

interfere with real-time requirements.

Distributed
Computing

Node-n

Distributed
Computing

Node-2

Distributed
Computing

Node-1

AMFT Network

Main Network

Actuator
Node

Sensor NodeOther
 Nodes

Processing Unit

Fault
Management

Block

Distributed
Computing Node

Switch

Switch

Figure 4.2: A Group View of Architecture for Fault-Tolerant Distributed Computing.

A Processing Unit consists of a processor that can be a single core or a dual-core

processor. The memory system for each DCN includes a boot Read-only Memory

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

73

(ROM), Non-volatile Random Access Memory (NVRAM), Static Random Access

Memory (SRAM), and Error Correcting Code (ECC) memory. The boot ROM is used

to store the boot image that is needed for the initial booting of the DCN. The main

program is stored in the NVRAM while the data is stored in the SRAM. An ECC

protects the data stored in SRAM. Internal Random Access Memory (RAM) on each

Processing Unit is used for faster data access to its processor.

As shown in Figure 4.3, the Fault Management block requires analogue and

digital signals for failure monitoring. Analogue signals monitoring include

temperature, current, and voltage of DCN while the digital signals monitoring includes

watchdog and memory error status signals. On detection of a fault of a Distributed

Computing Node, the Fault Management block generates a shutdown signal to turn off

the node power, which can be turn-on later via a ground command.

Legend:
BOOT ROM: Boot Read-only Memory NVRAM: Non-Volatile Random Access Memory
SRAM: Static Random Access Memory ECC: Error Correcting Code
EDAC: Error Detection & Correction FM: Fault Management
DC : Direct Current

Fault Management
(FM) Block

SRAM

Boot ROM

ECC

NVRAM

Memory

Distributed Computing Node

Board Power
DC/DC

Converter

Memory
Controller
with EDAC

Processing
Unit

Memory
Error Signal

Health
Telemetry

Shutdown

Communication
Network

C
o

m
m

u
n

ic
at

io
n

N

et
w

o
rk

Shutdown

Internal
RAM

Figure 4.3: Fault-Tolerant Distributed Computing Node.

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

74

4.4 Input-Output Node

Input-Output (I/O) node is used for the purpose of sensor data acquisition and

actuators commanding. Failure in the Input-Output node can be catastrophic because it

is the only interface that connects the Distributed Computing Node with the sensors

and actuators. Therefore, the design of the Input-Output node should be highly reliable

and should have a compact size.

Figure 4.4 shows the block diagram of the proposed design for the I/O node. The

design comprises a processor, Error Detection and Correction (EDAC) module, a triple

modular voter for program memory, watchdog timer (WDT), an oscillator (OSC.) and

a communication controller. The memory used for the program storage is based on

erasable programmable read-only memory (EPROM)/electrical erasable

programmable read-only memory (EEPROM) technologies. These technologies are

susceptible to total ionising dose [186, 187] and may cause a functional failure.

Therefore, a triple modular redundant design for the program memory is suggested

that can mask such a failure. The data memory is based on the SRAM technology is

more vulnerable to soft errors caused by Single Event Upsets (SEUs) [188, 189]. Soft

errors are temporary and cannot cause a functional failure of the memory. Therefore,

an EDAC module is included to detect and correct these soft errors in the data

memory. On each data word read operation, the EDAC module checks and corrects a

single bit error caused by SEUs while, during a write operation, each data word with

its checksum is written to the data memory.

The network controller is attached to the processor for communication on the

network. The type of the controller depends on the network and will be discussed in

section 4.5. The Input-Output node runs small software routines for acquiring sensors

data and commanding actuators. A watchdog timer handles hangs in the software

routines. Analogue inputs correspond to the analogue sensor’s input data while the

digital IOs are used for the digital sensor’s input and actuator’s commanding. Both

analogue inputs and digital IOs are routed to the glue logic that supports the necessary

conversion circuitry before connecting it to the processor.

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

75

Analog
Inputs

Processor

Network Controller

WDT

Glue Logic

EDAC

Digital IOs

Program
Memory

TMR
Voter

Data
Memory

OSC.

Transceiver

Figure 4.4: Design of Input-Output Node

4.5 Communication Network

As shown in Figure 4.5, the communication network of the proposed architecture is

comprised of dual redundant networks, which are connected by multiple switches to

combine two networks together to achieve a scalable fault-tolerant design. The

purpose of the separate networks is to provide a dedicated bandwidth for the fault

management functions and application tasks e.g. OBC/OBDH. Both networks are

configured in a bus topology. To ensure deterministic access on the network, the Time

Division Multiple Access (TDMA) protocol is proposed, where each bus has its own

time-triggered communications Scheduler for the bus access. The redundant network

is provided for fault-tolerant purposes and is only activated in case of a failure of the

primary network.

The main reasons for the use of switches in the proposed architecture are: (i) to

provide a separate collision domain for each group, (ii) for on-board clock

synchronization and time distribution and furthermore, (iii) switches allow easier

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

76

expandability to achieve a scalable distributed computing system. The rationale behind

(i) and (ii) is explained next. In the proposed hardware architecture, the bus topology

of the network is a shared communication channel. If multiple computing groups are

connected to such a communication medium, the effective available bandwidth per

node will be decreased. To avoid this problem, switches are used to partition the

overall network allowing a separate collision domain for each computing group. Also,

switches are used to maintain clock synchronization and time distribution to all the

nodes of a distributed system.

The communication Scheduler of each network (in a bus topology) consists of 64

time slots, as shown in Figure 4.6. Slot number 0 is reserved for the distribution of the

network time and slots number 1-61 are reserved for the communication of the DCN

tasks, while slots number 62-63 allow communication among two groups via the

network switches.

Primary Link

Primary Link

Redundant Link

Redundant Link

 Components of Fault Management Network

Components of the Main Network

Switch

SwitchSwitch

Switch

Interconnectivity between Networks

Figure 4.5: Network for the Proposed Architecture.

To fulfil the requirements, TTEthernet is selected as the most appropriate network

technology because of its inherent features as discussed in section 2.4. The main

characteristics of the TTEthernet are derived from the Ethernet and a large set of

protocols are available, which can be tailored for adaptation to space applications.

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

77

Furthermore, high speed, multi-master, and embedded in a large number of devices,

makes it a suitable choice for the future on-board computing networking. TTCAN can

also be used for the proposed architecture, but its limited speed of 1Mbps cannot meet

the high-speed demands of future applications. However, for low-speed network

demands, it can also be employed.

0 1 3 62 63

Time
Distribution

61

Slots Reserved for
Nodes

Slot Allocated to
Network
Switches

Figure 4.6: Time Slots for Network Communication in Bus Topology.

4.6 Software Stack

The software stack for a DCN, supporting fault-tolerant distributed computing is

shown in Figure 4.7. It comprises two main parts: (i) a Processing Unit and (ii) a Fault

Management software block. The software of the Processing Unit is further divided

into the following layers:

 Application layer: This layer includes functions that facilitate the implementation

of a distributed application. The details of these functions are given in section

4.6.1.

 Fault detection layer: This layer handles the detection of faults in the application

software. It detects a fault and passes its information to a fault management block

via a software monitoring (SM) interface. The detail of fault detection layer is

covered in section 4.8.

 Both the above layers run on top of a Real-Time Operating System (RTOS) such

as FreeRTOS or threadX. The use of RTOS makes it easier to manage resources

and schedule tasks timely. Otherwise that would require considerable

programming efforts.

 The application tasks are distributed to multiple nodes that require communication

among themselves. For this purpose, the communication on the main bus is made

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

78

via a message passing interface (MPI). This interface provides send/receives

functions to communicate on the bus.

The software stack of the Fault Management block consists of three layers. The

function of each layer is explained below:

 The first layer corresponds to the implementation of the Fault Management

functions. It is responsible to detect a failure via either the hardware monitoring

(HM) interface or via the software monitoring (SM) interface.

 The second layer supports task migration. It manages task state data, node/task

tables, and coordination among the fault management layer and the communication

layer.

 The third layer handles communication among the Fault Management blocks. It

allows each Fault Management block to access the bus in its dedicated time slot.

Details of the Fault Management (also called AMFT) algorithms and their software

implementation are given in Chapter 5.

Legend:
HM I/F: Hardware Monitoring Interface MPI: Message Passing Interface
RTOS: Real-Time Operating System SM I/F: Software Monitoring Interface
TDMA: Time Division Multiple Access

Distributed Computing ApplicationFault Management Block

Application Tasks

Fault-Detection
SM
I/F

RTOS

MPI

Hardware

Fault
Management

Functions

Task Migration

SM
I/F

TDMA Communication
Service

Hardware

HM
I/F

Network for Fault Management
Functions

Main Network

Distributed Computing Node
Software Stack

Figure 4.7: Software Stack.

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

79

4.6.1 Distributed Computing Application

A distributed application decomposes into smaller tasks that are distributed to the

multiple processing units. The code for every task is present on every DCN, but a task

only activates/runs on a single node at any one time. A simplified block diagram for

the application software is shown in Figure 4.8, which shows a top-level view of the

DCN application layer. The distributed application comprises application tasks and

support tasks. Application tasks represent the actual distributed application and the

total number of tasks to be executed by the system can be varied, as well as the

characteristics of each task. The main task characteristics are periodicity, duration and

state data length. The state of a task comprises a set of values that must be preserved

for future execution of the task. Support tasks are the tasks which provide support in

terms of communication and activation/deactivation of the main tasks.

 Application
Task-1

 Application
Task-2

Application
Task-3

Application
Task-(n-1)

Application
Task-(n-1)

Application
Task-n

Receiver
Task

 AMFT to
Processing Unit

Message Transfer

Sender Task

Task Manager for
task Activation/

Deactivation

Task Deactivated

Task Activated

Support Tasks

Comm. Tasks

Queue

GiveSemaphore

GiveSemaphore

Queue

Data
Store
(SUM)

Processing Unit to Fault
Management Block TX

done

Main Bus
Comm.

Interface

SUM Message
Transfer

(TLM + SUM)
Messages

Legends:
TLM: Task List
Message
SUM: State Update
Message
TX: Transmit

Figure 4.8: Distributed Application Software Block Diagram.

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

80

4.6.1.1 Application Tasks

Each application task is used to represent an activity to be carried out by the

distributed system, to fulfil the intended system functionality such as OBDH, AOCS

or payload functions. Whenever a task runs, it output results in the form of state data

values, which are stored, and the support task ‘sender task’ is informed via a queue to

send a message to the fault management block regarding the updated data values.

For the purpose of the prototyping in section 7.4, the particular function

performed by each application task is not taken into account. It is sufficient that each

task is required to run for a given duration, with a given periodicity, which may be

different for each task. Also, each task has a “state” which is updated when the task

executes. It may be, for example, the previous values of the AOCS angles or velocities

that are required for future calculations. In prototyping, the state data ΔSD consists of a

series of bytes, and the operation performed is to increment the value of each of these

bytes one by one each time the task executes.

To enable task states to be transferred between nodes for task migration using

State Update Messages (SUMs) are used. The task state is saved to a location which is

accessible by the AMFT Sender task that creates and sends the SUMs containing the

state data, 𝛥𝑆𝐷. Once the application task updates its state, it notifies the AMFT Sender

task that a new state is available, so the state can be sent to the other nodes. It is also

required that the task state data is initialized within its assigned memory locations

prior to starting a task on the node following migration of the task from a failed node.

This is done by the application Task Manager task. A template pseudo code for an

application task is given below:

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒:

1 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇𝑎𝑠𝑘 (𝑡𝑎𝑠𝑘 𝑖) {

2 𝑤ℎ𝑖𝑙𝑒(1){

3 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝑥 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

4 𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑒 𝑑𝑎𝑡𝑎, 𝑖. 𝑒. 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑎𝑐ℎ 𝑏𝑦𝑡𝑒 𝑐𝑜𝑚𝑝𝑟𝑖𝑠𝑖𝑛𝑔 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒

5 𝑠𝑒𝑛𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝐴𝑀𝐹𝑇 𝑆𝑒𝑛𝑑𝑒𝑟 𝑡𝑎𝑠𝑘: 𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

6 }

7 }

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

81

4.6.1.2 System Support Tasks

System support tasks provide support to the application tasks. They consist of

communication tasks (sender and receiver tasks) and an activation/deactivation task.

Communication tasks handle the communications with the AMFT and the distributed

processing unit while the activation/deactivation task controls the execution of the

application tasks based on the requests of the AMFT unit.

Activation/deactivation: The Task Manager task activates and deactivates application

tasks as required, based on task lists received from the AMFT Receiver task. For each

application task in the received task list that is not already running on the node, it

initializes the task’s state data 𝛥𝑆𝐷 using the data received in the State Update Message

following the Task List Message, and then starts the application task. It stops any tasks

that are running but are not included in the received task list. For the transfer and

receipt of state data values and Task List Messages (TLMs), various queues are used.

Data queues enable safe communication among the two tasks.

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒:

1 𝑇𝑎𝑠𝑘 𝑀𝑎𝑛𝑎𝑔𝑒𝑟 𝑇𝑎𝑠𝑘(𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡) {

2 𝑤ℎ𝑖𝑙𝑒(1){

3 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝐴𝑀𝐹𝑇 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑇𝑎𝑠𝑘: 𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

4 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑎𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

5 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑎𝑠𝑘 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡

6 {

7 𝑖𝑓 𝑡ℎ𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑎𝑠𝑘 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑟𝑡𝑒𝑑

8 {

9 𝐺𝑒𝑡 𝑠𝑡𝑎𝑡𝑒 𝑓𝑟𝑜𝑚 𝑆𝑈𝑀 (𝑖𝑓 𝑎𝑛𝑦)

10 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡𝑎𝑠𝑘 𝑠𝑡𝑎𝑡𝑒 𝑑𝑎𝑡𝑎

11 𝑠𝑡𝑎𝑟𝑡 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘

12 }

13 }

14 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑎𝑠𝑘 𝑛𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑟𝑢𝑛𝑛𝑖𝑛𝑔

15 {

16 𝑠𝑡𝑜𝑝 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘

17 }

18 }

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

82

Communication Tasks: The communication tasks handle the transfer of data. There

are two primary interfaces that handle communication.

Processing Unit Network Communication: This interface is used for the

communication of application tasks over the main network. It is a software interface

that is accessible from each of the application tasks. It enables all tasks to execute in

parallel by exchanging data messages to complete an overall task. The following

shows the pseudo code for this task.

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒:

1 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑃𝑎𝑠𝑠𝑖𝑛𝑔 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑇𝑎𝑠𝑘(𝑡𝑎𝑠𝑘 𝑖, 𝑑𝑎𝑡𝑎) {

2 𝑤ℎ𝑖𝑙𝑒(1){

3 𝑀𝑠𝑔 = 𝑓𝑜𝑟𝑚𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑡𝑎𝑠𝑘 𝑖, 𝑑𝑎𝑡𝑎)

4 𝑠𝑒𝑛𝑑(𝑀𝑠𝑔)

5 𝑖𝑓(𝑚𝑠𝑔𝑅𝑒𝑐𝑒𝑖𝑣𝑒 == 𝑡𝑟𝑢𝑒){

6 𝑝𝑙𝑎𝑐𝑒 𝑖𝑛 𝑏𝑢𝑓𝑓𝑒𝑟 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑜𝑟 𝑡𝑎𝑠𝑘 𝑖

7 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑡ℎ𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑡𝑎𝑠𝑘 𝑖 𝑓𝑜𝑟 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

8 }

9 }

10 }

AMFT and Processing Unit Communication: This software interface sends and

receives data between the processing unit and fault management block (AMFT). This

interface depends on the physical hardware interface between the Fault Management

block and a Processing Unit. It is mainly includes two tasks; AMFT Receiver Task and

AMFT Sender Task.

AMFT Receiver Task: The AMFT Receiver task waits for data to be received from the

AMFT via the Processing Unit-AMFT interface. If this data is a followed by State

Update Messages, these data are passed to the Task Manager for

activation/deactivation of tasks. The following shows the pseudo code for this task.

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

83

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒:

1 𝐴𝑀𝐹𝑇 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑇𝑎𝑠𝑘{

2 𝑤ℎ𝑖𝑙𝑒(1){

3 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝐴𝑀𝐹𝑇

4 𝑖𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑖𝑠 𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

5 {

6 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 𝑎𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠

7 𝑠𝑒𝑛𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑡𝑜 𝑇𝑎𝑠𝑘 𝑀𝑎𝑛𝑎𝑔𝑒𝑟

8 }

9 }

10 }

AMFT Sender Task: The AMFT Sender task sends State Update Messages to the

AMFT, created from state data sent to it from application tasks. The following shows

the pseudo code for this task.

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒:

1 𝐴𝑀𝐹𝑇 𝑆𝑒𝑛𝑑𝑒𝑟 𝑇𝑎𝑠𝑘 {

2 𝑤ℎ𝑖𝑙𝑒(1){

3 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑎𝑠𝑘: 𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒 𝑑𝑎𝑡𝑎

4 𝑐𝑟𝑒𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

5 𝑠𝑒𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

6 }

7 }

The detail of the application software implementation is given in Appendix E.

4.7 Fault Management Scheme

In the proposed architecture, fault management functions are distributed locally to

each node as shown in Figure 4.9 and implemented as a separate block named

Adaptive Middleware for Fault Tolerance (AMFT). This distribution of fault

management functions allows each node to detect and isolate its faults locally without

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

84

the intervention of a centralized/decentralized node. It reduces the amount of time

involved in the decision, thus making the system more responsive by reducing the

reconfiguration time as desired.

To achieve high reliability, a hybrid fault detection method based on hardware and

software is proposed in this thesis. This method covers hardware as well the software

faults. In case of hardware fault detection, the health status of each node is monitored

to identify a fault condition. Health monitoring includes observing the analogue

(temperature, current and voltage) and digital signals (watchdog, IO) of each node. For

fault detection, these monitored values are compared with pre-defined values and

statuses. Violation of any pre-defined thresholds or combination of these is considered

as an indication of a fault.

In case of software fault detection, symptom-based anomaly detection methods

are used. In our case, we applied this method to detect faults in the application

software as well as hardware faults propagated to software, as described in section 4.6.

Details of this method are given in section 2.3.2. The symptom-based detection

method has a limitation which is that it does not protect the processor from silent data

corruption errors. Therefore to overcome this, new algorithms for silent data

corruption are proposed and explained in section 4.8.

The next step after detection is fault isolation. Fault isolation means to disconnect

the faulty node from the rest of the system. There are two options either to power off

the faulty node or to disconnect it from its interfaces (IOs). We adopted the former

approach for its simplicity.

Now that the fault is isolated, the tasks must be migrated to other nodes within a

minimal period of time. Each task should be executed starting from the point where

the processing was interrupted by the node failure. This information is stored in the

form of information about program states. The corresponding technique, which is

called program checkpointing, is computationally intensive and requires a very high

speed communication network to transfer frequent checkpoints. Another method is to

monitor the outcomes of each task and store the state information, which is called data

checkpointing. In this method, the task is not executed from the point where it was

interrupted, in fact, the task is re-executed. During the re-execution the task know its

data, whose information is provided in the form of data checkpointing. This method is

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

85

much simpler than program checkpointing, in terms of a reduced amount of state

variables that need to be stored and, therefore, it was adopted in the proposed scheme.

In the suggested scheme, the migrated task outcome is passed to other nodes via

the AMFT network, where the checkpointed data (states) is being maintained. The

other node has access to the task outcome, which serves as its input now to execute the

migrated task. However, when the fault occurred, the task outcome was not updated,

and, therefore, the other node gets the previous task outcome and executes the

migrated task based on that. Therefore, after the first task execution on the new node

there will be a slight deviation from the actual task outcome and results, which may

also affect any dependant tasks. Task migration for inter-dependant tasks is application

specific, and we consider this issue in our case study for AOCS in section 8.5.1.

During subsequent re-executions the migrated tasks are able to compensate for

any deviations caused by the node failure and normal operations are resumed. This

functionality (correct state storage/management) is carried out by AMFT. The details

of the AMFT design and implementation are given in chapter-5.

Processing Unit

Fault
Management

Block

Processing Unit

Fault
Management

Block

Processing Unit

Fault
Management

Block

Distributed
Computing Node

Distributed
Computing Node

Distributed
Computing Node

Figure 4.9: Fault Management Scheme.

4.8 Fault Detection

The symptom-based fault detection approach to detect software faults is adopted

among the various methods as discussed in Section 2.3.2. It requires fewer resources

because current processors are inherently designed to detect symptoms. However, this

method is limited to known symptoms only. This includes fatal traps─illegal memory

access, misaligned memory access, illegal instruction execution. Symptom-based

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

86

detection method could not handle errors caused by silent data corruption (SDC). SDC

errors are those errors, which could affect the program flow and its data contents, if

they persist. This may cause a system to produce the wrong output. To detect these

errors, two algorithms are proposed. The first one is a selective duplication algorithm

that protects the software against transient SDC errors. The second algorithm detects

permanent SDC faults by explicitly moving data patterns in storage / functional

elements.

4.8.1 Transient SDC Error Detection

In the transient SDC detection algorithm, proposed here, it is assumed that the

application program consists of multiple functions, where each function is protected

against SDC errors. The objective is to detect a fault in the processor

microarchitecture, and so it is further assumed that the memory is fully protected.

Figure 4.10 shows the description of the algorithm. In this algorithm, all global and

formal variables, including the loop index involved in the computation, are stored on a

spare storage before being used for execution. Run the program for both the formal

and stored variables. If they produce different results, a transient SDC error in the

computation of microarchitecture is reported. Contrary to full duplication, the adopted

selective duplication method only selects a particular part of the program and its

variables at any time. Once the program executes, the storage for duplication is

released. This method improves performance and consumes small data memory.

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚:

1 𝑠𝑝𝑎𝑟𝑒 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ′𝑠′ = 𝑐𝑜𝑝𝑦 𝑟𝑒𝑎𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴

2 𝑐𝑎𝑙𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴 𝑤𝑖𝑡ℎ 𝑠𝑡𝑜𝑟𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑠𝑒𝑡 ′𝑠′’

3 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎 𝐴 (𝑓𝑜𝑟𝑚𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ′𝑓′){

4 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴 𝑜𝑛 𝑓𝑜𝑟𝑚𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑠𝑒𝑡 ′𝑓′

5 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 𝑏𝑜𝑡ℎ 𝑒𝑥𝑒𝑐𝑢𝑎𝑡𝑖𝑜𝑛 (𝑓𝑜𝑟𝑚𝑎𝑙 𝑠𝑒𝑡 ′𝑓′ 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 ′𝑠′)

6 𝑖𝑓 (∀ ′𝑓′ ≠ ∀ ′𝑠′)

7 𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑑𝑐_𝑒𝑟𝑟𝑜𝑟;

8 𝑒𝑙𝑠𝑒

9 𝑟𝑒𝑡𝑢𝑒𝑛 0;

Figure 4.10: Algorithm for Transient SDC Errors.

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

87

4.8.2 Permanent SDC Fault Detection

This section presents an algorithm for detection of permanent SDC faults. These faults

include stuck-at-bit and bridging faults. Stuck-at-bit faults are those faults where a bit

is stuck at logic one or zero, irrespective of the actual value of the element. While a

bridging fault is a crossing of two signals that results in an ‘OR’ or ‘AND’ logic

operation, which forces adjacent bits to change to either logic ‘1’ or logic ‘0’. Bridging

faults are difficult to detect because they depend upon the physical routing of the

connections. To detect these faults, the following data patterns are selected.

 For stuck-at-bit faults, data patterns of all zeroes ‘0x00000000’ and ones

‘0xFFFFFFFF’ are used. These patterns can easily detect errors in registers/

latches caused by bits stuck at zero and one.

 For bridging faults, data pattern of ‘0x55555555’ and ‘0xAAAAAAAA’ are used.

This pattern of alternating zeroes and ones is suitable to detect the crossing of bits.

Figure 4.11 shows the proposed algorithm for detection of permanent SDC faults.

The input of the algorithm is the contents of functional elements such as registers,

latches and arithmetic logic unit (ALU), while the output of the algorithm is the faulty

components. In an iteration of the algorithm, storage/functional elements are checked

by explicitly moving a pattern. The element is considered faulty if the defined

conditions in the algorithm are not met. This process repeats for the rest of the data

patterns with all storage /functional elements. At the end of the algorithm, numbers of

identified faulty elements are returned to the calling function as a signature value. In

order to improve the performance of algorithm, it is recommended that storage

registers─R1, R2, A, B, data_pattern─ and a comparator, which are being used in the

execution of the algorithm, should be triplicated.

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 𝑆𝐷𝐶 𝐹𝑎𝑢𝑙𝑡𝑠:

1 Input = 𝑀𝑖𝑐𝑟𝑜𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 (𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠, 𝐿𝑎𝑡𝑐ℎ𝑒𝑠, 𝐴𝐿𝑈 𝑒𝑡𝑐.)

2 output = 𝐹𝑎𝑢𝑙𝑡𝑦 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

3 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ← 0;

5
𝐹𝑈𝑁𝐶𝑇𝐼𝑂𝑁𝐴𝐿_𝐸𝐿𝐸𝑀𝐸𝑁𝑇 ← 𝐴𝐿𝑈 𝑆𝑇𝑂𝑅𝐼𝑁𝐺_𝐸𝐿𝐸𝑀𝐸𝑁𝑇

← 𝑅𝐸𝐺𝐼𝑆𝑇𝐸𝑅/𝐿𝐴𝑇𝐶𝐻

6 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑖 < 𝑑𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

88

7 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑗 < 𝑛𝑢𝑚_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

8 𝑖𝑓(𝑒𝑙𝑒𝑚𝑒𝑛𝑡[𝑗] == 𝑆𝑇𝑂𝑅𝐼𝑁𝐺_𝐸𝐿𝐸𝑀𝐸𝑁𝑇)

9 𝑒𝑙𝑒𝑚𝑒𝑛𝑡[𝑗] ← 𝑑𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛[𝑖]

10 𝑖𝑓(𝑒𝑙𝑒𝑚𝑒𝑛𝑡[𝑗] ≠ 𝑑𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛[𝑖]

11 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 + +;

12 𝑒𝑙𝑠𝑒 𝑖𝑓(𝑒𝑙𝑒𝑚𝑒𝑛𝑡[𝑗] == 𝐹𝑈𝑁𝐶𝑇𝐼𝑂𝑁𝐴𝐿_𝐸𝐿𝐸𝑀𝐸𝑁𝑇)

13 𝐴 ← 𝑑𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝐵 ← 𝑑𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛

14 𝑅1 ← 0; 𝑅2 ← 0; // 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠

15 𝑅1 ← 𝐴 ^ 𝐵; 𝑅2 = 𝐴 ~^ 𝐵;

16 𝑖𝑓(𝑅1 ≠ 0𝑥00000000 || 𝑅2 ≠ 0𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

17 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 + +;

18 𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒;

Figure 4.11: Algorithm for Permanent SDC Faults.

4.9 Summary

A novel distributed computing architecture is proposed in this chapter, which

addresses the primary objective of providing both reliability and High Performance

Embedded Computing for mission critical applications. It overcomes the issues of

current fault-tolerant computing approaches, described in section 3.5. The main

features of the architecture are its cooperative distributed behaviour, distributed nodes,

communication bus, and a new fault management scheme. The system has a hierarchal

structure, which is modular and scalable.

The core components are the DCNs, which are segregated into separate

application and fault management functions. This enables the high-performance

activities carried out by the processing unit and the fault management to be executed

in parallel. Other peripherals interface to the DCNs via I/O nodes.

Two communication networks are used, separating the network for processing and

fault management, thus incorporating high reliability, without compromising

performance. Standard high data rate (reliable) networks are identified as candidates

for the network implementation. The network follows a deterministic behaviour by

deploying a TDMA scheme.

Chapter 4. Novel Architecture for Fault-Tolerant Distributed Computing

89

A novel fault management scheme is proposed, where tasks are seamlessly

migrated to other nodes in the case if one of the nodes fails. To implement these

features, an AMFT block is proposed, the design of which will be discussed in the next

Chapter 5.

The design of the whole software architecture is described, which enables the

correct functionality of the proposed architecture for a given distributed embedded

computing scenario. Faults occurring in the application are also detected, for which

new algorithms have been designed.

To conclude, a reliable High Performance Embedded Computing architecture is

proposed. This architecture is further assessed and analysed in Chapter 6.

90

Chapter 5

5.Adaptive Middleware for Fault-Tolerant

Distributed Computing

In this chapter, an adaptive middleware is proposed to implement the fault

management functions as briefly described in section 4.7. The goals of the middleware

design are discussed in section 5.1. In section 5.2, algorithms for the middleware

functionality to enable distributed computing are presented. Details on the design of

the middleware will be described in section 5.3. In section 5.4, failure scenarios in

case of distributed processing are covered. The implementation of proposed

middleware for the fault management scheme is described in section 5.5. Section 5.6

is devoted to general discussion. Section 5.7 concludes the chapter by presenting

contributions towards the state of the art.

5.1 Design Goals

Middleware manages interactions between the application and the underlying system

software such as the Operating System and the device driver [190], thus acting as an

intermediate layer. In general, it provides Quality of Service (QoS) management, fault-

tolerance, resource allocation and timeliness guarantees to distributed applications.,

Each middleware component is specifically designed to support a particular

application.

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

91

The various implementations of middleware design for distributed fault-tolerant

systems are proposed as part of the ISIS, Mars, Delta-4 and Mach OS projects [191],

[3], [192],[193]. These middleware have been designed to suit the replication based

approach (see section 2.2.1) and require a large memory size. The object-based

middleware implementation─ referred to as fault-tolerant Common Object Request

Broker Architecture (FT-CORBA)─ was proposed by the Object Management Group

(OMG). The design of FT-CORBA was aimed to operate in a client-server model and

support active and passive replication styles. Another implementation of middleware,

focused on providing an adaptive failover strategy and overhead management

approach is described in [194]. This middleware is designed for passive replication to

handle soft real-time applications. As discussed in section 2.2.1, replications cannot

meet the emerging demand for high-performance distributed computing. These

demands require a fault-tolerance technique that utilizes the inherent availability of

multiple processors. Unlike redundancy, fault-tolerance by task migration is a new

concept for critical distributed embedded systems. It is a promising technique that can

provide a balanced approach to high-performance and high reliability under the

constraints of limited resources.

 The proposed fault management scheme uses a middleware concept and falls in

the category of embedded system employing distributed computing with fault tolerant

capabilities, meeting soft real-time requirements, which are essential in space

applications. Contrary to the traditional fault-tolerant middleware for distributed

systems as discussed earlier, the proposed adaptive middleware for fault-tolerance

(AMFT) is novel, and it is the first effort to support task migration for distributed

computing applications.

The objective is to design a middleware that should have the following features.

 The middleware design should be adaptive, up to a considerable extent without

comprising system reliability and deterministic behaviour. The design should

support static, adaptive behaviour, whereby for each possible failure scenario, a

distributed system configuration is pre-stored in the form of tables.

 Instead of the replication approach, discussed in section 2.2.1, tasks are migrated

to compensate for failures in the distributed system. It eliminates the amount of

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

92

computational resources used during the normal operation by executing only one

copy of the task at any time.

 The middleware should be able to support state resumption of a task when it is

migrated to another node in the case of a failure.

 A TDMA based communication protocol is implemented in the middleware to

support a deterministic channel access and a bounded distributed system

reconfiguration time in the event of a failure.

 Due to its deterministic communication protocol, the middleware can run on top of

any wired or wireless communication protocols.

5.2 Algorithms

Algorithms that are based on the master-slave approach for fault detection, isolation

and reconfiguration of a distributed system were presented in [195]. Due to a single

point of failure, the algorithms were modified, and a new set of algorithms based on a

distributed coordination were developed [196, 197]. In the distributed coordination

approach, each AMFT has a complete knowledge of the working nodes in a group. As

described in section 4.2, a group is a set of nodes working collaboratively to

accomplish a bigger task. Within a group, each AMFT has a node table stored in its

local memory. This node table contains an entry for each distributed computing node

with the current operating status of that node (active or inactive) and the relative

communications time slot for that node to communicate on the AMFT network. Each

AMFT maintains its node table based on the messages it receives from other group

members via the AMFT network. All messages are multicast, so all group nodes

connected to the network are expected to receive these messages and update their node

tables accordingly. On receipt of a HeartBeat Message (HBM) from an AMFT block,

it is known that the sending node must be active. Conversely, a node is determined to

be inactive if it sends no message during its allocated communications slot or if it

sends a message in another slot or sends a fault message.

The functionality of the AMFT is divided into four different phases; start-up,

normal operation, AMFT fault handling, and task migration. After the start of a node,

the start-up phase is the first phase where a node knows about the rest of nodes and

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

93

connects itself with the other computing nodes. In normal operations, each node runs

tasks and sends messages to other nodes about its health status in the form of

HeartBeat messages. The third phase is fault handling phase that is only activated on

detection of a failure in a node. Following the fault handling phase, a node entered into

the task migration phase where it migrates the tasks of the faulty node to other nodes.

To accomplish these phases, algorithms are proposed and explained in section 5.2.1 to

5.2.4.

5.2.1 Start-up

Figure 5.1 shows the AMFT start-up algorithm. Upon start-up of the AMFT block, it

attempts to establish a connection with its processing unit. If the processing unit is not

available (e.g. it is switched off or has failed), the AMFT will enter a fault handling

mode, using the fault handling algorithm as shown in . If a connection is established

successfully, the AMFT network communications slots for each node are read from

the Node Table stored in local memory. These time slots are relative and, therefore,

provide no absolute timing information for inter-AMFT communication. An additional

step is required for a node to determine when it is allowed to transmit on the AMFT

network, and this is the final stage of the start-up algorithm. The AMFT listens for

heartbeat messages from other nodes on the AMFT network for a time equal to one

complete communications cycle. If a heartbeat message is received, this provides the

absolute timing information required. When combined with the relative slot times

stored in the Node Table, the AMFT has knowledge of the absolute communications

time slots for every node. If no heartbeat message is received during the listening time,

the AMFT assumes no other nodes are active and transmits its heartbeat message

immediately. The start-up time depends on the number of nodes and slot time per

node. The more the node or slot time, more will be the start-up time.

5.2.2 Normal Operations

Figure 5.2 shows the AMFT algorithm used during normal operation. During normal

operation, in every communications cycle, the AMFT sends its heartbeat message via

the AMFT network during its communications slot. Each AMFT block is restricted to

send messages to other AMFTs in its communication time slot. If a fault has been

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

94

detected in the AMFT’s processing unit, a fault message is sent instead of a heartbeat

message. AMFT also listens for messages received from other AMFTs in their

allocated communications slots, and updates its Node Table based on whether a

particular node has sent a heartbeat message, a fault message or no message at all. If a

node’s status has changed, i.e. it has just become active or inactive, tasks will need to

be migrated based on the new group configuration using the task migration algorithm.

Communications slot timing within the AMFT is also updated when messages are

received from other nodes, to maintain synchronization between all the nodes.

Following its heartbeat message, each AMFT sends a State Update Message containing

the most recent state data for each task being executed on the AMFT’s corresponding

processing unit.

Reset of AMFT

Connect to Processing

Unit

Connection

Established within

timeout period
No

Processing

Unit Fault

Detected

Get AMFT comms slot

times from node table

Listen for HBMs from

other nodes for one

comm period

Yes

Was an HBM

received?

Synchronize comms slots

based on the received HBM

Send own HBM on

 AMFT Network

No

Use local comms slot

timing i.e. become

timing master

Yes

Normal

Operation

No

Figure 5.1: Algorithm for AMFT Start-up.

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

95

Reset of AMFT

Wait until start of own
comms slot

Has a ‘Processing Unit’
fault been detected?

Normal
Operation

Receive messages from
other nodes in their

allocated comms slots

Listen for HBMs from
other nodes for one comm

period

No

Has any node’s
status changes?

Migrate
Tasks

Send fault
message on the

AMFT bus/
network

Yes

Synchronise comms
slot timing

Update ‘Node Table’ based
on the received HMBs/

Fault messages

Yes

No

Wait for time t1

Send HBM to
Processing Unit

Wait for ACK

ACK received
before timeout?

Yes

No

‘Processing
Unit’ fault
detected

Figure 5.2: Algorithm for AMFT Normal Operations.

5.2.3 AMFT Fault Handling

Figure 5.3 shows the fault handling algorithm. The fault handling algorithm is used

when a fault has been detected in the AMFT’s processing unit. Processing unit itself

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

96

uses symptom-based fault detection mechanism [139]. An interface between the

processing unit and AMFT is used to indicate a fault condition inside the processing

unit.

The first step taken following fault detection is to isolate the processing unit from

the network so that it cannot interact with the rest of the system. The exact actions to

be taken will depend on the nature and severity of the fault, e.g. double bits error in

program memory, failure of on-board WDT, and extreme condition on temperature.

Once a severe fault is detected, campaign for the task migration is immediately started.

It then sets a flag to indicate that the AMFT should send a fault message on the

AMFT network rather than a heartbeat message so that the other nodes are aware of

the fault. Once the fault flag has been set, measures may be taken to attempt recovery

of the processing unit. If autonomous recovery steps are permitted, then these may be

attempted first. However, it may be preferred to take manual recovery steps following

an investigation of the fault, which may be carried out sometime after the fault occurs.

If the processing unit is recovered, either autonomously or manually, processing unit is

reconnected to the network. The AMFT’s fault flag is reset so that heartbeat messages

are again transmitted on the AMFT network, and the node can be reintegrated into the

group. However, a failed node is powered off after the recovery attempt.

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

97

Isolate ‘Processing Unit’ from the
Network

Processing
Unit Fault
Detected

Set flag to send fault message on
the AMFT network instead of

heartbeat message

Attempt autonomous recovery of
‘Processing Unit’

‘Processing Unit’
recovered?

Wait for command
Intervention

Set flag to send
HearBeat
messages

No

Normal
Operation

Deactivate all ‘Processing Unit’
tasks

‘Processing
Unit’ recovered?Yes

No

Figure 5.3: Algorithm for Fault and Recovery Handling.

5.2.4 Tasks Migration

The migration of tasks to nodes within the distributed architecture is achieved through

the use of Task Migration Tables. The allocation and scheduling of tasks across the

nodes are determined through analysis at design time, and the resulting distribution of

tasks to nodes is stored in a table that is accessed at run-time. An alternative approach

would be to determine dynamically the distribution of tasks to nodes and scheduling at

run-time, but a static approach requires less processing and provides greater assurance

that the system can meet real-time deadlines. One Task Migration Table is created for

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

98

each possible group configuration. The complete Task Migration Table is stored in

each AMFT unit’s local memory.

Figure 5.4 shows the algorithm used for task migration. It is entered into task

migration whenever a change is detected in the operational status of a node (e.g. if a

fault message has been received from an AMFT via the AMFT bus). The Task

Migration Table to be used is selected based on the current operational status of all

nodes. By reading the table, each AMFT can then determine which tasks are to be

executed by its processing unit. An AMFT unit then informs its processing unit of the

tasks to be executed by sending it a Task List Message (TLM). It also sends the most

recent state data for the tasks in the task list, so that the processing unit can execute the

tasks with their latest states.

Read Task Migration Table
associated with current

node statuses

Task
Migration

Send Task List Message
and state update

messages to Processing
Unit

Normal
Operation

Create Task List Message
based on contents of Task

Migration Table

 Figure 5.4: Task Migration.

5.3 AMFT Design

This section describes the design of the AMFT, a middleware that is proposed for the

on-board spacecraft distributed computing.

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

99

5.3.1 Top-Level Design

Figure 5.5 shows the top-level design of the AMFT, which consists of four main

modules; 1) Fault Monitoring and Detection Module 2) Target Fail-Over Node

Selection 3) State Checkpointing 4) Communication Module.

Fault Monitoring and Detection Module: The Fault Monitoring and Detection

module is used to detect the failure of the processing unit within each distributed node.

As shown in Figure 5.5, this module is used to monitor the software and hardware

faults of the processing unit. For software faults, symptom-based detection method, as

described in section 4.8, is proposed to be implemented inside the processing unit that

inform the AMFT for any abnormality via a software monitoring (SM) interface. This

interface can be a shared memory interface or a simple UART interface. Also to the

software faults, this module also monitors the temperature, current, watchdog and

double bit errors signals. The final decision of a node failure depends on the fusion of

information provided by software and hardware fault detection.

Target Fail-Over Node Selection Module: This module is capable to select the target

node for migration of the tasks. A selection of the target node for task migration is

static [198], whereby the preconfigured tables are used. Based on the fault of a

particular node, this module determines the tasks that need to be run by its associated

processing unit. After this, a TLM is sent to the processing unit for execution of the

tasks.

State Check-pointing Module: State check-pointing is a mechanism in which a

consistent state of a task is stored. If a task or its associated processor fails, then the

task needs to be started on another node. In that case, the stored state helps the task to

resume its execution from that point onward rather than reset from the initial point.

Inside the AMFT block, a module State Checkpointing is dedicated to this type of

functionality. This module handles sending, receiving and storing the check-pointing

information. This module receives checkpointing information from its associated

processor and AMFT network. This information is stored on each node and later

transmitted to other AMFTs.

Communication Module: The communication mechanism adopted inside the AMFT

over the AMFT network is TDMA. Each node has its time slot for communication on

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

100

the AMFT network, which is allocated at each node start-up. TDMA mechanism

ensures deterministic system behaviour in case of a failure. It also eliminates the need

for underlying deterministic communication protocol that enables the AMFT to use

with any non-deterministic protocols.

I
N
T
E
R

-
A
M
F
T

C
O
M
M

Heart
Beat

Memory Access

State
MessageTask List

 Message

Fault
Indication

State
Message

Target Fail-
Over Node
Selection
Module

Node
Table

Fault Monitoring
and Detection

Module

Communication
Module

State
Checkpointing

Module

State
Data
Store

Fault
Detected

State
Checkpointing
Transmit Msg.Fault Message

HeartBeat Msg

Fault Message

WDT, Temp., Current etc.
 Double Bit Errors in Program Memory

Fault Detection Msg.
HeartBeat Msg

State Checkpointing
Msg

State
Checkpointing
Receive Msg.

Figure 5.5: AMFT Top-Level Design.

5.3.2 Implementation Approaches

AMFT is particularly designed to support distributed computing of resource constraint

distributed embedded systems, such as spacecraft distributed computing. AMFT is

attached to each distributed processing unit as a separate hardware block, or it can be

integrated within a Multiprocessor System-on-chip (MPSoC) of a distributed node as

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

101

shown in Figure 5.6. An MPSoC based approach is more beneficial because it requires

less area, size, mass and also consumes less electrical power.

As mentioned earlier, the client-server approach is not suitable for resource

constraint distributed embedded systems due to its connection setup time, It also

allows only one way service from server to client and its server can act as a single

point of failure. Therefore, a distributed coordination approach was adopted for the

communication among the AMFT blocks via a separate network. This distributed

coordination is accomplished through consistent messages among the AMFT blocks

which will be explained later in this Chapter.

Processing
Unit

AMFT

Computing Node

AMFT

Computing Node

Application
Processor

MPSoC

Figure 5.6: AMFT Block: Implementation Approaches.

5.3.3 AMFT Messages and Formats

This section describes the messages transferred between the AMFT blocks via the

AMFT network, and between the AMFT and the processing unit. The following are

the messages:

 HeartBeat Message (HBM)

 Fault Message (FM)

 State Update Message (SUM)

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

102

 Task List Message

HeartBeat Message: A HeartBeat Message is transmitted by a node’s AMFT block

via the AMFT network at the start of the node allocated communications slot. Its

purpose is to indicate the other nodes that the local node is active.

Format. Table 5.1 shows the format of the HeartBeat Message. Table 5.2 provides a

description of each field in the message.

Fault Message: A Fault Message is sent by an AMFT unit via the AMFT at the start

of the node allocated communications slot instead of a HeartBeat Message to indicate

the other nodes that a fault has occurred in the node processing unit.

Format. Table 5.3 shows the format of a Fault Message. Table 5.4 provides a

description of each field in the message.

Table 5.1: HeartBeat Message Format.

Bits 0 7 8 15

Field Node Identifier Heartbeat code (0x48)

Table 5.2: HeartBeat Message Fields.

Field Length Description Value

Node Identifier 8 bits Unique identifier of the sending node 0 to 255

Heartbeat code 8 bits Constant value identifying message

as a HeartBeat Message

0x48

Table 5.3: Fault Message Format.

Bits: 0 7 8 15

Field: Node Identifier Fault code (0x46)

Table 5.4: Fault Message Fields.

Field Length Description Value

Node Identifier 8 bits Unique identifier of the sending node 0 to 255

Fault code 8 bits Constant value identifying message as

a Fault Message

0x46

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

103

State Update Message: State Update Messages (SUMs) are transmitted to provide the

most recent state data 𝛥𝑆𝐷 from an application task. The exact nature of the state data

will be task-specific, but may include values for quantities such as angles or velocity

data to be used in future calculations. SUMs are sent from a processing unit to its

associated AMFT block. SUMs are then passed between AMFT block via the AMFT

network after every HBM to ensure all nodes have up-to-date state data. They are also

sent from the AMFT to the processing unit, if necessary when task migration is

required, to ensure a node taking over responsibility for executing a task uses the most

recent state data 𝛥𝑆𝐷. A SUM contains state data 𝛥𝑆𝐷 for a single task, consisting of a

set of state values. The length in bits of each state value depends on the nature of the

data, e.g. a Boolean or a double-precision floating point value. Therefore the

delimitation of state value fields within a SUM will vary for each task, and the correct

interpretation of the SUM depends on each node having knowledge of the state values

format for each task. The SUM contains a Task Identifier field enabling a node to

determine the correct state values format for that task, and to correctly store the values

in the correct memory locations for use by the mission task.

Format: State Update Messages are sent between AMFTs on the AMFT network, and

also between an AMFT and its processing unit. For the messages sent between an

AMFT and its processing unit, a Node Identifier field is not required, so these State

Update Messages do not include this field. Table 5.5 shows the format for a State

Update Message sent on the AMFT network. Table 5.6 shows the format for a State

Update Message sent between an AMFT to the processing unit while Table 5.7 shows

the message format for a processing unit to AMFT. Table 5.8 provides a description

of each field in the message.

Task List Message: A Task List Message (TLM) consists of a set of Task Identifiers,

indicating the set of tasks to be executed by a processing unit. The AMFT block

always transmits this message to the processing unit.

Format: Table 5.9 shows the format for a TLM. Table 5.10 provides a description of

each field in the message.

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

104

Table 5.5: State Update Message Format for Inter-AMFT Communication.

Bits: 0 7 8 15 16 23 24 variable

Field: Node

Identifier

SUM

code

(0x53)

Task

Identifier

State

value 0

State

value 1

… State value n

Table 5.6: State Update Message for AMFT and Processing Unit Communication.

Bits: 0 7 8 15 16 variable

Field: SUM code

(0x53)

Task

Identifier

State

value 0

State

value 1

… State value n

Table 5.7: State Update Message Format: Processing Unit and AMFT Communication.

Field: Sync

Byte-1

(0xEB)

Sync

Byte-2

(0x90)

Message

Length

SUM

code

(0x53)

Task

Identifier

State

value 0

State

value 1

… State

value

n

Table 5.8: State Update Message Fields.

Field Length Description Value

Sync Byte-1 8 bits Required for Packet Synchronization 0xEB

Sync Byte-2 8 bits Required for Packet Synchronization 0x90

Packet Length 8 bits Packet Length for Processing Unit-AMFT 0 to 255

Node Identifier 8 bits Unique identifier of the sending node 0 to 255

SUM code 8 bits Constant value identifying message as a

State Update Message

0x53

Task Identifier 8 bits Unique identifier of the task to which the

state update applies

0 to 255

State value

fields

8 bits Set of bytes containing the state data for the

task

Variable

Table 5.9: Task List Message Format.

Bits: 0 7 8 15 16 23 24 31 Task

Data

variable

Field

:

TLM code

(0x54)

Number

of tasks

in TLM

Task Identifier

0

Task Identifier

1

… Task

Identifier n

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

105

Table 5.10: Task List Message Fields.

5.3.4 AMFT Tables

There are two types of tables inside the AMFT: (i) Node Table and (ii) Task Migration

Table. The following explains each of these:

Node Table: The Node Table contains a single entry for each DCN present in the

Fault-Tolerant Distributed system. Each entry contains the Node Identifier, and the

node’s communication slot start time, which are both fixed at design time. The status

of the node (active/inactive) which is updated by the Target Fail-Over Selection

Module within the AMFT when a node’s status changes (e.g. when a node fails). The

format for the Node Table is given in Table 5.11, which shows a communication slot

time of 1000 ms and status of the nodes (‘0/1’). The communications slot time of

1000 ms is for demonstration purposes only and the actual slot time depends on the

application tasks period and their data sizes. Further details on the selection of the

communications slot time is given in section 8.4.1.

Table 5.11: Node Table.

Node Identifier Communications

Slot Start Time

(ms)

Active (1) / Inactive

(0)

0 0 1

1 1000 1

2 2000 0

Field Length Description Value

TLM code 8 bits Constant value identifying message as

a TLM

0x54

Number of tasks in

TLM

8 bits The number of Task Identifier fields

following this field

Variable

Task Identifier fields 8 bits for

each

field

Set of fields containing the unique

identifier of each task to be included in

the task list

0 to 255

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

106

Task Migration Table: A Task Migration Table maps each mission task to be

executed by the Fault-Tolerant Distributed system, to one of the distributed computing

nodes. One Task Migration Table exists for each possible active node set, e.g. one

table contains the task migrations for the case where all nodes are active. Another table

contains the task migrations where one of the nodes is inactive, and so on. Each table

contains one entry for each application task referenced by its Task Identifier, and a

corresponding Node Identifier indicating the node on which the task is to execute.

Multiple tasks may run on a single node, but at any time only one instance of a given

task will be executed by the Fault-Tolerant Distributed system. The Target Fail-Over

Selection Module within the AMFT uses the Task Migration Table corresponding with

the current node statuses to inform its processing unit of which application tasks it

must run. The format of the Task Migration Table is shown in Table 5.12, with

example entries. These entries represent a particular scenario for three nodes and five

tasks distributed system. This shows that in the presence of all three nodes, task-0 and

2 are assigned to node-0 while the task-1 is assigned to node-1 and task-3 and 4 are

assigned to node-2.

Table 5.12: Task Migration Table.

Task Identifier Node Identifier

0 0

1 1

2 0

3 2

4 2

5.4 AMFT Scenarios and Network Communication

This section describes the working of different components of the middleware in terms

of fault detection, isolation and tasks migration.

Normal Operation: During the normal operation of AMFT as shown in Figure 5.7,

each node’s AMFT is bound to send a periodic HeartBeat message in its own time slot

via the AMFT network for the health of each node. Inside the AMFT, Communication

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

107

module handles sending and receiving these HeartBeat messages. A reception of

HeartBeat message indicates that a node is healthy, and no configuration is required

while a missing HeartBeat message indicates that node is failed. Also to HeartBeat,

Communication module also sends and receives the tasks state data messages that are

periodically checkpointed from processing unit by the state check-pointing module.

The mechanism inside the state check-pointing module discards the previous state’s

values when it receives new state values. The details on these task’s state data values

depend on the nature of running task while the number of time slots depends on the

number of distributed computing nodes of a distributed system.

Slot-2 Slot-3Slot-1

HBM

AMFT-1

SUM

SUM

SUM
SUM

SUM

HBM HBM

Normal Operations

Slot-0 Slot-n

Allocated Slots
Control

Slot
Unallocated

Slot

AMFT-2

AMFT-3

SUM: State Update
Message
HBM: HeartBeat Message

Figure 5.7: Network Communication in case of Normal Operations.

Processing Unit Fault: On the occurrence of a fault, AMFT communicates this

information to the Communications Module and Target Fail-Over Node Selection

module. On receipt of fault message from ‘Fault Monitoring and Detection’ module,

communication module sends a fault message on the network as shown in Figure 5.8.

All the healthy nodes of a group, which can share the tasks load, receive this message

and reconfigure its associated processing unit based on the node table entries. On the

healthy nodes, each AMFT ‘Target Fail-Over Node Selection’ module sends Task List

Message and state data values for the lost tasks predefined to be shared with this

processing unit. Then processing unit starts the lost tasks with the provided state

values. While on the faulty node, all tasks assigned to its processing unit are stopped.

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

108

Slot-2 Slot-3Slot-1

FM

AMFT-1

SUM

SUM

SUM

SUM
HBM HBM

Fault in Processing Unit

Slot-0 Slot-n

Allocated Slots
Control

Slot
Unallocated

Slot

AMFT-2

AMFT-3

Fault in
Processing

Unit-1

SUM: State Update
Message
HBM: HeartBeat Message
FM: Fault Message

Figure 5.8: Network Communication in case of Processing Unit Failure.

AMFT Failure: Figure 5.9 shows a scenario when one of the AMFTs fails. During

normal mode, the AMFTs exchange periodic HBM messages to indicate their

presence. If there is no HBM from one of the AMFTs during its respective slot, the

receiving AMFTs consider it to be a failed AMFT, and reconfiguration process is

started.

Slot-2 Slot-3Slot-1

AMFT-1

SUM

SUM

SUM

SUM
HBM HBM

AMFT Failure

Slot-0 Slot-n

Allocated Slots
Control

Slot
Unallocated

Slot

AMFT-2

AMFT-3

SUM: State Update Message
HBM: HeartBeat Message

Fail-Silent AMFT
Behaviour on

Failure

Figure 5.9: Network Communication in case of AMFT Failure.

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

109

5.5 AMFT Software Structure

The AMFT functionality, based on the fault management algorithms, presented in

section 5.2, was mapped to software for the purpose of prototyping the proposed fault

management scheme. The structure the AMFT software implementation is shown in

Figure 5.10. The design of the middleware is mapped to several tasks whereas ‘FDIR’,

‘TargetFailOverNodeSelection’, and ‘TDMA communication’ are considered as the

most important tasks. FDIR task complements the functionality of Fault Monitoring

and Detection module of the top-level design of AMFT. As shown in Figure 5.10, the

FDIR task is connected to the SM and HW interface message queues for monitoring

the abnormal condition in a DCN. Data from SM and HW interfaces is passed to FDIR

via software queues. FDIR task analyses the data and detects a fault if the pre-stored

threshold limits for the monitored data is crossed.

BUS/

Network_RX

Interrupt

amftReceiver

Task

QueueRxBusMessage
QueueRxAmftMessageCode

amftSender

Task

xSendBus

Message

TDMA

Communication

QueueForActiveDeactivate

Target Fail-

Over Node

Selection

ProcessingUnit

Sender

ProcessingUnit

Receiver Task

SM

Interface

QueueTxAmftMessageType

GiveSemaphore

TakeSemaph

ore

Queue_CurrentTaskList

RX

State

Messages

Tx

Data

Buffer

Rx

Data

Buffer

GiveSemaphore

State Messages/

Task list Message

TakeSemaphore

FDIR

Queue_FDIR

HW Interface

ucFaultState

Data

Store

(SUM)

TX

State

Messages

Figure 5.10: AMFT Software Implementation.

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

110

For simplicity and portability, the AMFT functions were implemented as a

representative task of an operating system (OS). Table 5.13 shows the footprint

comparison among the various Real-Time Operating System (RTOS). The real-time

operating system ‘FreeRTOS’ [188] was selected for the prototyping, because of its

small footprint and free availability for many embedded processors. However, the

middleware functions can be ported to any operating system or can be implemented as

a standalone application. In addition, these functions can also be implemented as

hardware modules.

Table 5.13: Footprint Comparison for Real-Time Operating Systems.

Real-Time

Operating System

(RTOS)

Footprint (kB) License Type

VxWorks Code Size Min: 36/Basic:150/Full:250

[199]

License required

Windows

Embedded CE

400 (minimum code size) [200] License required

QNX 7-204 [201] License required

uCLinux 2 MB (ROM)/4MB (RAM) [202] Open Source

FreeRTOS 4.4 (code size)/200 bytes (data size) [203] Free for Educational and

Commercial use.

RTEMS Basic: 64-128 (code size)/Complex: 512

(code size)

Free for Educational and

Commercial use.

XilKernel 12-20 (code size) /46.5-59 (data size) [204] Free (Integrated with Xilinx

Embedded Development Kit)

5.5.1 FDIR Task

Description—The FDIR task monitors for processing unit faults. If a fault is detected,

a message is sent to the other AMFT blocks, via the AMFT Comms task, indicating

that the unit has failed. Attempts are then made to recover the processing unit.

The process of fault detection, isolation and recovery is implemented by the FDIR

task inside the AMFT. FDIR informs other modules about the health of processing

unit by a status flag. Other modules inside the AMFT read the status flag and sends

messages accordingly. If there is a fault (software or hardware), FDIR detects a fault

and switches its mode to faulty ‘1’ and starts the recovery process. Meanwhile,

communication service of the AMFT associated with the faulty processing unit reads

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

111

the status flag and starts sending Fault Detection message on the AMFT network.

Afterward, an attempt for the autonomous recovery of the faulty processing unit is

made if recovered; the processing unit is reintegrated into a distributed system. If not

recovered, a faulty node (Processing Unit + AMFT) is shutdown. The pseudo code for

the FDIR task is as follows:

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒:

1 𝐹𝐷𝐼𝑅 𝑇𝑎𝑠𝑘 {

2 𝑤ℎ𝑖𝑙𝑒(1){

3 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝑓𝑎𝑢𝑙𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

4 𝑠𝑒𝑡 𝑓𝑎𝑢𝑙𝑡 𝑓𝑙𝑎𝑔

5 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑜𝑢𝑠 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦

6 𝑖𝑓 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 {

7 𝑟𝑒𝑠𝑒𝑡 𝑓𝑎𝑢𝑙𝑡 𝑓𝑙𝑎𝑔

8 𝑟𝑒𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑

9 }

10 𝑒𝑙𝑠𝑒{

11 𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛

12 }

13 }

14 }

5.5.2 Target Fail-Over Node Selection Task

Description— The “TargetFailOverNodeSelection” responds to messages from the

AMFT Comms task indicating a change in the status of a node. It updates the Node

Table to account for the node status change. It then reads the Task Migration Table

associated with the updated group configuration. Based on the contents of the Task

Migration Table, it sends a Task List Message, It follows by State Update Messages

for each task in the task list, to the “Processing Unit Sender Task” to be sent to the

Processing Unit. The pseudo code for the “TargetFail-Over Node Selection Task” task

is as follows:

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

112

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒:

1 𝑇𝑎𝑟𝑔𝑒𝑡 𝐹𝑎𝑖𝑙 − 𝑂𝑣𝑒𝑟 𝑁𝑜𝑑𝑒 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑇𝑎𝑠𝑘 {

2 𝑤ℎ𝑖𝑙𝑒(1){

3

𝑊𝑎𝑖𝑡 𝑓𝑜𝑟 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝐴𝑀𝐹𝑇 𝐶𝑜𝑚𝑚. 𝑇𝑎𝑠𝑘 𝑓𝑜𝑟

𝑁𝑜𝑑𝑒 𝑆𝑡𝑎𝑡𝑢𝑠 𝑐ℎ𝑎𝑛𝑔𝑒

4 𝑀𝑜𝑑𝑖𝑓𝑦 𝑁𝑜𝑑𝑒 𝑆𝑡𝑎𝑡𝑢𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑁𝑜𝑑𝑒 𝑇𝑎𝑏𝑙𝑒

5 𝑅𝑒𝑎𝑑 𝑇𝑎𝑠𝑘 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑎𝑏𝑙𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 𝑠𝑒𝑡

6

𝐶𝑟𝑒𝑎𝑡𝑒 𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑎𝑠𝑘𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡ℎ𝑖𝑠

 𝑁𝑜𝑑𝑒

7 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑈𝑛𝑖𝑡 𝑆𝑒𝑛𝑑𝑒𝑟 𝑇𝑎𝑠𝑘

8 𝑆𝑒𝑛𝑑 𝑇𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑈𝑛𝑖𝑡

9 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑎𝑠𝑘 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 {

10 𝐺𝑒𝑡 𝑆𝑡𝑜𝑟𝑒𝑑 𝑆𝑈𝑀 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘

11 𝑆𝑒𝑛𝑑 𝑆𝑈𝑀 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑡𝑜 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑈𝑛𝑖𝑡

12 }

13 }

5.5.3 AMFT Communications Task

Description—The “AMFT Comms task” handles the communications with other

AMFT blocks via the AMFT network. It includes a start-up period during which any

HeartBeat Messages from already-transmitting nodes are detected. The local node’s

communication slot timing is then synchronized with the received HBMs during this

phase. If no HBMs are received, i.e. no other nodes have been activated, then the

AMFT Comms task immediately sends the local node’s own HBM. It sets the

communications slot timing based on the time at which it sent its HBM. In this way,

the communications slot timing is always determined by the first node to start up. The

AMFT Comms task handles the overall communications, e.g. slot timing, but the

actual sending and receiving is delegated to the AMFT Sender and AMFT Receiver

tasks, which pass information to and from the AMFT Comms task using message

queues.

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

113

After the start-up phase, the AMFT Comms task enters an infinite loop of sending

its HBM and SUMs during its communications slot. In each subsequent

communications slot, receiving an HBM and SUMs from the other nodes. On receipt

of an SUM, the relevant state data is updated within the AMFT’s local memory.

During each communications period, the local communications slot timing is updated

based on the HBM reception time for the node with the lowest ID in the group (if the

local node does not have the lowest ID).

If the AMFT Comms task receives a message from the FDIR task indicating a

fault in the Processing Unit, the AMFT Comms task stops sending HBMs and instead

sends a fault message via the AMFT bus. It does this until the FDIR task indicates

recovery of the Processing Unit.

The AMFT Comms task informs the Task Migration Manager task that a group

update is required in the following circumstances:

 A fault message is received from a node that is marked as active in the Node

Table;

 An HBM is not received from a node which is marked as active in the Node Table,

during its allocated communications slot;

 An HBM is received from a node that is marked as inactive in the Node Table.

This may occur, for example, when a failed node has been recovered.

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒:

1 𝐴𝑀𝐹𝑇 𝐶𝑜𝑚𝑚. 𝑇𝑎𝑠𝑘 {

2 𝑅𝑒𝑎𝑑 𝑁𝑜𝑑𝑒 𝑇𝑎𝑏𝑙𝑒 𝑡𝑜 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑠𝑙𝑜𝑡 𝑡𝑖𝑚𝑒𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠

3 𝐿𝑖𝑠𝑡𝑒𝑛 𝑓𝑜𝑟 𝐻𝐵𝑀 𝑜𝑛 𝑡ℎ𝑒 𝐴𝑀𝐹𝑇 𝑏𝑢𝑠 𝑓𝑜𝑟 𝑎 𝑡𝑖𝑚𝑒 𝐶𝑜𝑚𝑚. 𝐶𝑦𝑐𝑙𝑒

4 𝐼𝑓 𝐻𝐵𝑀 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

5 𝑢𝑠𝑒 𝑡ℎ𝑖𝑠 𝑡𝑜 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑜𝑚𝑚. 𝐶𝑦𝑐𝑙𝑒

6 𝑒𝑙𝑠𝑒

7
𝑠𝑒𝑛𝑑 𝐻𝐵𝑀 𝑎𝑛𝑑 𝑠𝑒𝑡 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑜𝑚𝑚. 𝐶𝑦𝑐𝑙𝑒 𝑡𝑜

 𝑟𝑒𝑓𝑙𝑒𝑐𝑡 𝑠𝑒𝑛𝑑 𝑡𝑖𝑚𝑒.

8 𝑤ℎ𝑖𝑙𝑒 (1)

9 𝑤𝑎𝑖𝑡 𝑢𝑛𝑡𝑖𝑙 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑁𝑜𝑑𝑒′𝑠𝐶𝑜𝑚𝑚. 𝑆𝑙𝑜𝑡

10 𝐼𝑓 𝐹𝐷𝐼𝑅 𝑡𝑎𝑠𝑘 ℎ𝑎𝑠 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑑, 𝑡ℎ𝑒𝑟𝑒 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑎 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

114

𝑈𝑛𝑖𝑡 𝑓𝑎𝑢𝑙𝑡, 𝑎𝑛𝑑 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑦𝑒𝑡 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 {

11 𝑆𝑒𝑛𝑑 𝐹𝑎𝑢𝑙𝑡 𝑀𝑒𝑠𝑠𝑎𝑔𝑒

12 }

13 𝑒𝑙𝑠𝑒

14 𝑆𝑒𝑛𝑑 𝐻𝐵𝑀

15 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑆𝑈𝑀 𝑆𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑚𝑒𝑚𝑜𝑟𝑦{

16 𝑆𝑒𝑛𝑑 𝑆𝑈𝑀

17 }

18 }

19 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟 𝑛𝑜𝑑𝑒 𝑖𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚{

20 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝐻𝐵𝑀

21 𝑖𝑓 𝐻𝐵𝑀 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑{

22 𝑖𝑓 𝐻𝐵𝑀 𝑖𝑠 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑤𝑖𝑡ℎ 𝑙𝑜𝑤𝑒𝑠𝑡 𝐼𝐷{

23
𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑜𝑐𝑎𝑙 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒 𝑤𝑖𝑡ℎ

𝑡𝑖𝑚𝑒 𝐻𝐵𝑀 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.

24 }

25
𝑖𝑓 𝑛𝑜𝑑𝑒 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝐻𝐵𝑀 𝑖𝑠 𝑚𝑎𝑟𝑘𝑒𝑑 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑖𝑛

𝑡ℎ𝑒 𝑁𝑜𝑑𝑒 𝑇𝑎𝑏𝑙𝑒{

26
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝑇𝑎𝑠𝑘 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑛𝑎𝑔𝑒𝑟

𝑛𝑜𝑑𝑒 𝐼𝐷 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑

27 }

28 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝑆𝑈𝑀𝑠

29 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑆𝑈𝑀 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑{

30 𝑠𝑡𝑜𝑟𝑒𝑑 𝑡ℎ𝑒 𝑆𝑈𝑀 𝑖𝑛 𝑚𝑒𝑚𝑜𝑟𝑦

31 }

32
𝑒𝑙𝑠𝑒 𝑖𝑓 𝑓𝑎𝑢𝑙𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑜𝑟 𝑛𝑜 𝐻𝐵𝑀 𝑤𝑖𝑡ℎ𝑖𝑛

𝑐𝑜𝑚𝑚. 𝑠𝑙𝑜𝑡 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑚𝑎𝑟𝑘𝑒𝑑 𝑎𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 𝑖𝑛 𝑁𝑜𝑑𝑒 𝑇𝑎𝑏𝑙𝑒{

33
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝑇𝑎𝑠𝑘 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑛𝑎𝑔𝑒𝑟

𝑛𝑜𝑑𝑒 𝐼𝐷 𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑

34 }

35 }

36 }

37 }

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

115

5.5.4 AMFT Receiver Task

Description: The AMFT Receiver task processes messages received on AMFT

network from other AMFT units. The messages are received from the network

interrupt routine via a message queue. If the message received is a Heartbeat message

or a Fault message, this information is sent to the AMFT Comms task. If the message

is an SUM, the state data within the message is stored in memory. The pseudo code for

the “AMFT Receiver Task” is as follows:

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒:

1 𝐴𝑀𝐹𝑇 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑇𝑎𝑠𝑘 {

2 𝑤ℎ𝑖𝑙𝑒(1) {

3

𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐶𝐴𝑁 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 𝑟𝑜𝑢𝑡𝑖𝑛𝑒

𝑖𝑓 𝑠𝑡𝑎𝑡𝑒 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑖. 𝑒. 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠

𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 {

4 𝑠𝑡𝑜𝑟𝑒𝑑 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑑𝑎𝑡𝑎

5 }

6 𝑒𝑙𝑠𝑒 {

7 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑖𝑠 𝐻𝐵𝑀 𝑜𝑟 𝑓𝑎𝑢𝑙𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

8
𝑠𝑒𝑛𝑑 𝑎 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝐴𝑀𝐹𝑇 𝑐𝑜𝑚𝑚. 𝑇𝑎𝑠𝑘:

𝐻𝐵𝑀 𝑓𝑎𝑢𝑙𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

9 }

10 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑖𝑠 𝑎 𝑆𝑈𝑀 {

11
𝑔𝑒𝑡 𝑡𝑎𝑠𝑘 𝐼𝐷 𝑓𝑟𝑜𝑚 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑎𝑛𝑑 𝑐ℎ𝑒𝑐𝑘 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑆𝑈𝑀

12 }

13 }

14 }

5.5.5 AMFT Sender Task

Description: The AMFT Sender task sends messages on the AMFT network to other

AMFT units. The AMFT Comms task specifies a message type to be sent

(communicated to the AMFT Sender task via a message queue). Based on the type, the

AMFT Sender task sends a message using the correct message format. This includes

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

116

the current state data for an application task if the message to be sent an SUM. The

pseudo code for the “AMFT Sender Task” is as follows:

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒:

1 𝐴𝑀𝐹𝑇 𝑆𝑒𝑛𝑑𝑒𝑟 𝑇𝑎𝑠𝑘 {

2 𝑤ℎ𝑖𝑙𝑒(1) {

3

𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐴𝑀𝐹𝑇 𝑐𝑜𝑚𝑚. 𝑇𝑎𝑠𝑘

 𝑠𝑒𝑛𝑑 𝑎 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑜𝑓 𝑡𝑦𝑝𝑒 < 𝑡𝑦𝑝𝑒 >

𝑐𝑟𝑒𝑎𝑡𝑒 𝑎𝑛𝑑 𝑠𝑒𝑛𝑑 𝑎 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑡𝑦𝑝𝑒

4 }

5 }

5.6 Discussion

In this section, we discuss the salient features that make the proposed AMFT design

different and more efficient than the existing middleware.

Employed middleware, as stated in the literature, uses client-server model [205-

208]. In the client-server model, the client sends a request to the server asking for a

service and the server process the request and returns a reply. There are two drawbacks

to this approach: (i) for each request, the client has to establish a connection before

sending a request to server, (ii) the client can request but the server cannot. Since a

two-way communication is required for real-time applications, this connection

arrangement causes an additional time delay, therefore, the typical client-server model

was not suitable for our application. However, it can be employed for desktop

distributed computing systems.

In middleware designs [3, 62, 191, 193], processes are replicated for fault

tolerance in distributed systems. If the middleware of the running process fails to send

a ping message within the timeout interval, then the process is considered as failed and

campaign for the failover target node selection is launched. This failure can be a

middleware failure, or it can be a process failure. The behaviour of this type of failure

can be fail-silent or Byzantine. Current middleware failure’s assumption of fail-silent

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

117

is simple and does not consider hardware failures (processor failure common in space).

Therefore, we adapted an additional level of fault detection as deemed essential to

ensure the fail-silent node behaviour.

Applications require data consistency among the primary and backup computing

nodes. This is useful to start the process or task from that point onward when it is

started on another node. This feature is very difficult to achieve, and usually the fault

tolerant middleware designers ignore this feature as mentioned in [208, 209]. In [62],

where an exact match (Complete Task State – State Data) between the primary and

redundant data contents is suggested. It is not necessary because it wastes network

resources, particularly in case of large size data in distributed systems. In our

approach, the State Data is reduced to necessary state information, and therefore

reducing the communication overhead required for state information management,

between AMFTs.

It is important to state here, that the middleware is designed to cater to desktop

applications, whereas the proposed design is for embedded applications. JAVA

language is commonly used for programming, which is inherently not efficient for

real-time applications. Therefore, we used C programming language for its known

heritage.

5.7 Summary

The chapter discusses the proposed new fault management scheme, which is named

Adaptive Middleware for Fault-Tolerance (AMFT), in depth. Novel algorithms for

fault detection, isolation and task migration are developed. The algorithms provide

fault-tolerance in a distributed system by tasks migration rather than task replication.

This feature improves the overall cost efficiency by making the system reliable with

little resource utilization.

AMFT runs on a separate hardware module, alongside the main processing unit,

thus enabling local decision control in case of fault occurrence. AMFT utilizes pre-

assigned node and task list tables, ensuring high reliability, in contrast to dynamic

allocation.

Chapter 5. Adaptive Middleware for Fault-Tolerant Distributed Computing

118

AMFT is capable of monitoring both hardware as well as software faults, working

in conjunction with the application software in DCN. The software faults are

supervised by the application software via a special software monitoring interface

(SM). The hardware is monitored via analogue and digital signal monitoring.

The software code for the main AMFT operations is described. The beauty of

AMFT is that it can be hardwired as a VHDL module. The analysis of the architecture

is carried out in chapter 6. The physical implementation and its issues are highlighted

in Chapter 7.

119

Chapter 6

6.Evaluation of the Proposed Approach

The design of the proposed fault tolerant distributed (FTDC) architecture and the

functionality of the fault management scheme were explained in chapter 4 and chapter

5 respectively. This chapter is dedicated to the analysis and evaluation of the proposed

approach. The first part of the chapter presents analysis of the architecture and the

fault management scheme. The second part of the chapter provides a functional

verification through prototyping at board level of the system. In section 6.1.1,

performance metrics are defined, the proposed architecture is analysed and compared

with a centralized and a TMR-based systems and fault management schemes are

analysed in terms of their performance. In section 6.2, details on the functional

verification are presented, in which experimental results are reported and

implementation issues are highlighted. Section 6.3 concludes the chapter.

6.1 Dependability Analysis of the Distributed

Computing Approach

“The notion of dependability covers the meta-functional attributes of a computer

system that relate to the quality of service a system delivers to its users during an

extended interval of time” [210]. A task-oriented distributed computing system

provides the necessary services for execution of an application, which is represented by

a set of tasks. Reliability and availability are essential criteria to judge the fault-

Chapter 6. Evaluation of the Proposed Approach

120

tolerance performance of a computing system. In this section, a reliability evaluation of

the computing architectures is presented. These architectures are analysed and

compared by their developed mathematical Markov models. The fault management

scheme is also analysed in terms of reliability and availability.

6.1.1 Performance Metrics

Since there were no performance metrics, metrics most suited to dependability

analysis were identified. The performance of the computing architecture and fault

management scheme is evaluated by analysing two main parameters: reliability and

availability.

6.1.1.1 Reliability

Reliability R is the probability of a system to produce the correct (acceptable) output

for a specified period of time t. The reliability of a system, which is used as a

performance metric in computing systems, degrades with system-level failures. Thus,

a reliable computing system should be able to recover from a failure condition. The

system reliability R is an exponential function [28], which decreases with time t as

shown in Figure 6.1. An expression for 𝑅(𝑡) is given by:

 𝑅 (𝑡) = 𝑒−𝜆𝑡 (6.1)

where

𝜆 Failure rate per unit time t

𝑡 Time duration, measured as per requirements (ranging

from sec, min, weeks to years)

6.1.1.2 Availability

Availability represents the probability that a system is operational during a given

period of time. Availability A is measured by the ratio of the uptime (during which the

system is operational) to the total time including the downtime (repair time) and can

be expressed by [28]:

Chapter 6. Evaluation of the Proposed Approach

121

 𝐴 =
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
 (6.2)

Figure 6.1: System Reliability.

6.1.2 Reliability Analysis of Computing Architectures

In this section, we analyse and compare three computer system configurations: (i)

centralized, (ii) TMR and (iii) the proposed FTDC and evaluate their reliability. The

centralized and the TMR-based systems are chosen for the comparison because these

are state-of-the-art computing systems, which are widely used in mission critical

applications and, in particular, on board spacecraft, as discussed in 3.2.3. The reliability

derivation for satellite OBCs is presented in Appendix B, using the Bernoulli

distribution, which is a simplified method and suitable for computing systems with

independent computing nodes. However, if the nodes are statistically dependant and the

failure or repair process of any one of them is dependent on the state the other, a more

sophisticated technique, which is able to incorporate these dependencies, is required. In

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

R
(t

)

Chapter 6. Evaluation of the Proposed Approach

122

this section, a more elegant approach to reliability analysis of computing systems,

based on the Markov mathematical model is presented, where the fault model includes

failure detection, isolation and repair processes. A node in the model (i) is considered

dependent and (ii) can fail with a failure rate of λ and a repair rate of μ. A three years

mission lifetime is assumed with a failure rate λ of 1x10
-3

 per hour and a recovery rate

μ of 1x10
-5

 per hour.

6.1.2.1 Centralized Computing System

A Markov model for the centralized computing system with repair is shown in Figure

6.2. It consists of two states; S0 and S1. The transition probability from state S0 to S1 is

given by λ.∆t, where λ is the failure rate, and ∆t represents the time interval in which

failure is probable. Similarly, transition probability from state S1 to S0 is given μ.∆t

where μ represents the repair rate, and ∆t represents the time interval in which repair is

probable. Each Markov equation represents a particular state of the system and is

expressed by the differential equations (6.3) and (6.4) below.

s0 s1

1
1-λ∆t

λ∆t

μ∆t

S0 = n1 S1 = ~n1

Zero Fails One Fails

Figure 6.2: Markov Model for Centralized System.

𝑑𝑃𝑠𝑜(𝑡)

𝑑𝑡
= − 𝜆 𝑃𝑠𝑜(𝑡) + 𝜇 𝑃𝑠1(𝑡) (6.3)

𝑑𝑃𝑠1(𝑡)

𝑑𝑡
= + 𝜆 𝑃𝑠𝑜(𝑡) − 𝜇 𝑃𝑠1(𝑡) (6.4)

Applying the Laplace transform to Equation 6.3 and 6.4 results in:

Chapter 6. Evaluation of the Proposed Approach

123

 𝑠𝑃𝑠𝑜(𝑠) − 𝑝𝑠0(0) = − 𝜆 𝑃𝑠𝑜(𝑠) + 𝜇 𝑃𝑠1(𝑠) (6.5)

 𝑠𝑃𝑠1(𝑠) − 𝑝𝑠1(0) = 𝜆 𝑃𝑠𝑜(𝑠) − 𝜇 𝑃𝑠1(𝑠) (6.6)

Initially, the centralized system is in working state S0, So, ps0(0) =1 and ps1(0) =0. By

substituting initial values and rearranging the Equations 6.5 and 6.6, we obtained

linear equations, Equation 6.7 and Equation 6.8, which can be easily solved for Ps0(t)

and Ps1(t):

 (𝑠 + 𝜆)𝑃𝑠𝑜(𝑠) − 𝜇 𝑃𝑠1(𝑠) = 1 (6.7)

 (− 𝜆)𝑃𝑠𝑜(𝑠) + (𝑠 + 𝜇) 𝑃𝑠1(𝑠) = 0 (6.8)

Equation 6.7 and 6.8 can also be represented in a (2x2) matrix form, as follows:

 [
𝑠 + 𝜆 −𝜇
−𝜆 𝑠 + 𝜇

] [
𝑃𝑠𝑜(𝑠)

𝑃𝑠1(𝑠)
] = [

1
0

] (6.9)

Solving the above equations yields an expression for the reliability of the centralized

system, Rcent_sys (t), given by Equation 6.10.

 𝑅𝑐𝑒𝑛𝑡_𝑠𝑦𝑠(𝑡) =
1

(𝜆 + 𝜇)
[𝜇 + 𝜆𝑒−(𝜆+𝜇)𝑡] (6.10)

6.1.2.2 Triple Modular Redundant System

A Markov model for the TMR-based system is shown in Figure 6.3. This model

comprises three identical nodes n1, n2, and n3 with the same failure rate λ and recovery

rate μ. Initially, all the nodes are in state S0, and the probability of the transition from

state S0 to S1 is given by 3λ.∆t. The probability of each state is represented by three

Markov equations as follows:

𝑑𝑃𝑠𝑜(𝑡)

𝑑𝑡
= − 3𝜆 𝑃𝑠𝑜(𝑡) + 𝜇 𝑃𝑠1(𝑡) (6.11)

𝑑𝑃𝑠1(𝑡)

𝑑𝑡
= + 3𝜆 𝑃𝑠𝑜(𝑡) − (𝜇 + 2𝜆)𝑃𝑠1(𝑡) (6.12)

Chapter 6. Evaluation of the Proposed Approach

124

𝑑𝑃𝑠2(𝑡)

𝑑𝑡
= 2 𝜆 𝑃𝑠1(𝑡) (6.13)

s0 s1 s2

1-(2λ+μ) ∆t1-3λ ∆t
1

3λ ∆t
2λ ∆t

μ ∆t

S0 = n1n2n3

S1 = ~n1.n2.n3 +

n1.~n2.n3 +

n1.n2.~n3

S2 = ~n1.~n2.n3 +

n1.~n2.~n3 +

~n1.n2.~n3 +

~n1.~n2.~n3

Zero Fails One node Fails two or three nodes Fail

Figure 6.3: Markov Model for TMR-based System [211].

Applying the Laplace transform to Equation 6.11, Equation 6.12, and Equation 6.13

gives:

 𝑠𝑃𝑠𝑜(𝑠) − 𝑝𝑠𝑜(0) = − 3𝜆 𝑃𝑠𝑜(𝑠) + 𝜇 𝑃𝑠1(𝑠) (6.14)

 sPs1(s) − ps1(0) = 3λ Pso(s) − (μ + 2λ) Ps1(s) (6.15)

 𝑠𝑃𝑠2(𝑠) − 𝑝𝑠2(0) = 2𝜆 𝑃𝑠1(𝑠) (6.16)

 [
𝑠 + 3𝜆 −𝜇 0

3𝜆 𝑠 + 𝜇 + 2𝜆 0
0 −2𝜆 𝑠

] [

𝑃𝑠𝑜(𝑠)

𝑃𝑠1(𝑠)

𝑃𝑠2(𝑠)
] = [

1
0
0
] (6.17)

Solving the equations 6.14 to 6.17 for the probabilities of the operational states, Ps0(t)

and Ps1(t), gives the reliability of the TMR system, Rtmr_sys(t), which is represented by

Equation 6.18.

 𝑅𝑡𝑚𝑟_𝑠𝑦𝑠(𝑡) = (3 +
𝜇

𝜆
) 𝑒−2𝜆𝑡 − (2 +

𝜇

𝜆
) 𝑒−3𝜆𝑡 (6.18)

Chapter 6. Evaluation of the Proposed Approach

125

6.1.2.3 Fault-Tolerant Distributed System with Two Nodes

A Markov model for a two-node FTDC system, which uses a task migration scheme,

is shown in Figure 6.4. This model comprises two identical nodes n1, and n2. Initially,

both nodes are in state S0. Upon a failure, the transition from state S0 to S1 is activated

and the tasks running on the faulty node are migrated to the healthy node. In state S1,

one of the nodes is working and sharing the workload of the faulty node tasks. The

probability of each state is represented by Equations 6.19, 6.20 and 6.21 below:

𝑑𝑃𝑠𝑜(𝑡)

𝑑𝑡
= − 2𝜆 𝑃𝑠𝑜(𝑡) + 𝜇 𝑃𝑠1(𝑡) (6.19)

𝑑𝑃𝑠1(𝑡)

𝑑𝑡
= + 2𝜆 𝑃𝑠𝑜(𝑡) − (𝜇 + 𝜆)𝑃𝑠1(𝑡) (6.20)

𝑑𝑃𝑠2(𝑡)

𝑑𝑡
= 𝜆 𝑃𝑠1(𝑡) (6.21)

Applying the Laplace transform gives:

 𝑠𝑃𝑠𝑜(𝑠) − 𝑝𝑠𝑜(0) = − 2𝜆 𝑃𝑠𝑜(𝑠) + 𝜇 𝑃𝑠1(𝑠) (6.22)

 𝑠𝑃𝑠1(𝑠) − 𝑝𝑠1(0) = 2𝜆 𝑃𝑠𝑜(𝑠) − (𝜇 + 𝜆) 𝑃𝑠1(𝑠) (6.23)

 𝑠𝑃𝑠2(𝑠) − 𝑝𝑠2(0) = 𝜆 𝑃𝑠1(𝑠) (6.24)

 [
𝑠 + 2𝜆 −𝜇 0

2𝜆 𝑠 + 𝜇 + 𝜆 0
0 −𝜆 𝑠

] [

𝑃𝑠𝑜(𝑠)

𝑃𝑠1(𝑠)

𝑃𝑠2(𝑠)
] = [

1
0
0
] (6.25)

Solving the above equations for the probabilities of the operational states, Ps0(t) and

Ps1(t), gives the reliability of the distributed system, RDis_sys(t), as follows:

 𝑅𝐷𝑖𝑠_𝑠𝑦𝑠(𝑡) = (2 +
𝜇

𝜆
) 𝑒−𝜆𝑡 − (1 +

𝜇

𝜆
) 𝑒−2𝜆𝑡 (6.26)

Chapter 6. Evaluation of the Proposed Approach

126

s0 s1 s2

1-(λ+μ) ∆t1-2λ ∆t
1

2λ ∆t λ ∆t

μ ∆t

S0 = n1n2 S1 = ~n1.n2+ n1.~n2
S2 = ~n1.~n2

Zero Fails One node Fails two nodes Fail

Figure 6.4: Markov Model for a Two-Node Distributed System.

6.1.2.4 Fault-Tolerant Distributed System with Three Nodes

A Markov model for the three-node distributed system is shown in Figure 6.5.

Compared to the two nodes distributed model, one additional state is added to

represent the third node in the system. State S0 represents normal operation while state

S3 represents a complete system failure. One and two nodes failures are represented by

state S1 and S2 respectively. The corresponding Markov equations (6.27) – (6.30) are

given below:

𝑑𝑃𝑠𝑜(𝑡)

𝑑𝑡
= − 3𝜆 𝑃𝑠𝑜(𝑡) + 𝜇 𝑃𝑠1(𝑡) (6.27)

𝑑𝑃𝑠1(𝑡)

𝑑𝑡
= + 3𝜆 𝑃𝑠𝑜(𝑡) − (𝜇 + 2𝜆)𝑃𝑠1(𝑡) (6.28)

𝑑𝑃𝑠2(𝑡)

𝑑𝑡
= 2𝜆 𝑃𝑠1(𝑡) − (𝜇 + 𝜆)𝑃𝑠2(𝑡) (6.29)

𝑑𝑃𝑠3(𝑡)

𝑑𝑡
= 𝜆 𝑃𝑠2(𝑡) (6.30)

Applying the Laplace transform gives:

 𝑠𝑃𝑠𝑜(𝑠) − 𝑝𝑠𝑜(0) = − 3𝜆 𝑃𝑠𝑜(𝑠) + 𝜇 𝑃𝑠1(𝑠) (6.31)

Chapter 6. Evaluation of the Proposed Approach

127

 𝑠𝑃𝑠1(𝑠) − 𝑝𝑠1(0) = 3𝜆 𝑃𝑠𝑜(𝑠) − (𝜇 + 2𝜆) 𝑃𝑠1(𝑠) (6.32)

 𝑠𝑃𝑠2(𝑠) − 𝑝𝑠2(0) = 2𝜆 𝑃𝑠1(𝑠) − (𝜇 + 𝜆) 𝑃𝑠2(𝑠) (6.33)

 𝑠𝑃𝑠3(𝑠) = 𝜆 𝑃𝑠2(𝑡) (6.34)

 [

𝑠 + 3𝜆 −𝜇 0 0
3𝜆 𝑠 + 𝜇 + 2𝜆 0 0
0 −2𝜆 𝑠 + 𝜇 + 𝜆 0
0 0 −𝜆 𝑠

]

[

𝑃𝑠𝑜(𝑠)

𝑃𝑠1(𝑠)

𝑃𝑠2(𝑠)

𝑃𝑠3(𝑠)]

= [

1
0
0
0

] (6.35)

Solving the above equations for the probabilities of the operational states, Ps0(t),

Ps1(t), and Ps2(t), gives the reliability of the distributed system with three nodes,

RDis_sys (t) , expressed by Equation 6.37.

 𝑅𝐷𝑖𝑠_𝑠𝑦𝑠(𝑡) = 𝑃𝑠0 (𝑡) + 𝑃𝑠1(𝑡) + 𝑃𝑠2 (𝑡) (6.36)

 𝑅𝐷𝑖𝑠_𝑠𝑦𝑠(𝑡) = (1 +
𝜇

𝜆
) 𝑒−3𝜆𝑡 − (3 +

𝜇

𝜆
) 𝑒−2𝜆𝑡 + (3 +

𝜇

𝜆
) 𝑒−𝜆𝑡 (6.37)

s0 s1 s2

1-(3λ+μ) ∆t1-3λ ∆t
1

3λ ∆t 2λ ∆t

μ ∆t

S0 = n1n2 n3
S3 = ~n1.~n2.~n3

s3

1-(2λ+μ) ∆t

λ ∆t

S1 = ~n1.n2.n3 +

n1.~n2.n3 +

n1.n2.~n3

S2 = ~n1.~n2.n3 +

n1.~n2.~n3 +

~n1.n2.~n3

μ ∆t

Zero Fails One node Fails
two or three

nodes Fail

two or three

nodes Fails

Figure 6.5: Markov Model for a Three-Node Distributed System.

6.1.2.5 Discussion

The reliability for each system (Centralized, TMR, and FDTC) is calculated using

equations 6.10, 6.18, 6.26 and 6.37 and presented graphically in Figure 6.6. From the

graphs in Figure 6.6 it can be seen that the proposed scheme is more reliable than the

Chapter 6. Evaluation of the Proposed Approach

128

other two systems. The centralized system’s reliability graph crosses that of TMR after

about 0.6x10
4
 hours. This is due to the TMR system inherent dependency on three

nodes and a voter circuit - as soon as one node fails, the reliability performance falls

drastically. One of the reasons that the proposed FTDC system outperforms the others

is due to the fact that the lost tasks are compensated for by migrating tasks from a

faulty node to healthy nodes, whereas, this functionality is not present in the other

systems. It can also be seen from the Figure 6.6 that the reliability of the distributed

architecture increases with the increase of the number of nodes. It is also evident that

the reliability degrades relatively more gracefully compared to the other systems,

which is desired in mission critical systems.

Figure 6.7 shows the relative improvement in reliability values of the FTDC

system compared to centralized and TMR-based systems. First the centralized system

is compared with the two and three nodes distributed system and their relative

improvement in reliability values (marked with rectangles and circles) are plotted as

shown in Figure 6.7. Then, the TMR-based system is compared with two and three

nodes distributed system and their relative improvement in reliability values (marked

with triangles and asterisk) are plotted as shown in Figure 6.7.

Figure 6.6: Reliability Curves for Centralized, TMR-based and Distributed Systems.

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time in hours

R
(t

)

Centralized

TMR

Distributed with Two Nodes

Distributed with Three Nodes

Chapter 6. Evaluation of the Proposed Approach

129

Figure 6.7: Relative Improvement in Reliability Values for Distributed Computing Approach.

6.1.3 Fault Management Scheme Analysis: Distributed vs

Centralized

In this section, the proposed fault management scheme is compared with the

centralized scheme of section 3.2.2.2 in terms of reliability and availability values. A

three-year mission lifetime with a failure rate λ of 1x10
-3

per hour is assumed. For a

fair comparison, equal reliability of each node was assumed.

Both schemes include a number of computing nodes, which could correspond to an

individual subsystem or a set of subsystems, such as OBDH, Thermal,

Telemetry/Telecommand (TMTC) subsystems. However, in the case of the centralized

scheme, only a single computing node and its pair redundant peer are responsible for

the overall fault management, while in the proposed approach, each individual

computing node is responsible for its fault detection and the reconfiguration of the

system by migrating tasks to other nodes. In the proposed fault management scheme,

each computing node is attached to an AMFT block to serve as distributed fault

management scheme. By distributing the fault management to each individual

computing node, much higher reliability can be achieved as it is evident from the

following evaluation.

0 0.5 1 1.5 2 2.5 3

x 10
4

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time in hours

Im
pr

ov
em

en
t

in
 R

(t
)

RDis-2Nodes&Centralized

RDis-3Nodes&Centralized

RDis-2Nodes&TMR

RDis-3Nodes&TMR

Chapter 6. Evaluation of the Proposed Approach

130

6.1.3.1 Reliability Assessment

In order to simplify the reliability evaluation, a straightforward reliability assessment

method is adopted in this section, whereby the system is broken down into sub-

systems, represented as blocks in a block diagram. The blocks are connected either in

series, parallel or a combination of both. The Reliability is the probabilistic description

of the success of the system. In other words, the assessment is carried out by

determining the relationship of how the node failure, which is dealt with by the fault

management functions, affects the complete system. The detailed derivation of each

block connection (series, parallel) is given in Appendix B.

6.1.3.1.1. Centralized Fault Management Scheme

Consider a traditional centralised on-board computing system, which consists of a

central node and a set of other nodes, with all nodes being dual redundant. The central

node is responsible for the fault management (FM) functions. Upon detection of a

node failure the central node reconfigures the system by switching off the primary

node and switching on the redundant node of the failed dual redundant pair. In this

scheme, the reliability of the complete system depends on the reliability of the central

node. Therefore, it can be represented as follows;

 𝑅𝑠𝑦𝑠_𝑐𝑒𝑛𝑡_𝑓𝑚 = 𝑅𝑐𝑒𝑛𝑡_𝑛𝑜𝑑𝑒 (6.38)

Whereas, the reliability of the central node depends on its configuration and in general,

is expressed as,

 R𝑐𝑒𝑛𝑡_𝑛𝑜𝑑𝑒 = 1 − (1 − e−λt)m (6.39)

where (1 − e−λt)𝑚 is the failure probability of m identical parallel nodes. Therefore,

m = 2, for the case of a dual redundant central node. Hence the centralized scheme

reliability depends on the reliability of the dual redundant central node configuration.

As the centralized node manages all the fault management functions, therefore its

failure could be catastrophic for the whole computing system. However, for m=3 in a

centralized fault management scheme, additional two redundant computing nodes will

be required which increases the overall system cost. The detailed derivation of

reliability is carried out in Appendix B.

Chapter 6. Evaluation of the Proposed Approach

131

6.1.3.1.2. Distributed Fault Management Scheme

In the proposed distributed fault management scheme, unlike centralized scheme, the

fault management functionality is not limited to a single node but distributed to an m

number of nodes in the computing system. The distributed scheme can be represented

as parallel reliability blocks; therefore, the reliability is increased and is directly

dependent on the number of nodes in the system. Therefore, unlike centralized fault

management scheme, where m = 2, depends on the configuration of the centralized

node only, the proposed scheme reliability depends on the total number of available

nodes in the system. The same formula as given in equation 6.39 is also applicable to

the distributed fault management scheme, but m represents the total number of nodes

in a system.

6.1.3.1.3. Discussion of Reliability Results

Figure 6.8 shows the reliability curves that were obtained from the reliability Equation

6.39. The reliability curve R1 as shown in Figure 6.8 is plotted for the centralized fault

management scheme where m=2 is assumed.

Figure 6.8: Comparison between Centralized and Distributed Fault Management Scheme.

0 0.5 1 1.5 2 2.5 3

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in hours for 3 years

R
e
lia

b
ili

ty
 o

f
s
y
s
te

m

R1(cen), m=2

R2(dis), m=3

R3(dis), m =4

R4(dis), m =5

R5(dis), m =6

R6(dis), m =7

R7(dis), m =8

Chapter 6. Evaluation of the Proposed Approach

132

In the case of centralized fault management scheme, as the centralized node is

mainly responsible for the fault management functions, so Rsys_cent_fm, is severely

degraded by the reliability value of the centralized node. On the other hand, the

reliability for the distributed scheme is much higher because of the absence of a

centralized node. The distributed scheme reliability is plotted for different m values

(m=2, m=3, m=4, m=5, m=6, m=7, m=8) as shown in Figure 6.8. It is evident from the

reliability curves in Figure 6.8 that the reliability of the distributed scheme is higher in

comparison to the centralized scheme and depends on the value of m.

6.1.3.2 Availability Evaluation

In this section, a set of stochastic models was developed for the availability evaluation

of the distributed fault management scheme. The models, which are based on the

Extended Deterministic and Stochastic Petri Nets (EDSPN) method, are designed with

TimeNet v4.02 [212]. We choose Petri Nets, because it allows to represent structural

modelling of complex systems easier. Also, Petri Nets can express statistical

dependency that cannot be expressed by reliability block diagrams (RBD) or fault-tree

analysis [213].

Availability models for both the centralized and distributed fault management

schemes were developed for comparison. Assumptions for the failure recovery and

failure transition apply. The followings terms are used for the description of models:

 Probust: Normal working state of a node.

 Pfailure: Failed state of a node.

 trecovery (tR): The time for a node to recover from a failed state to a healthy state.

 tfailure (tF): A failure transition time (tF) from a normal operation to a failed

state.

 tswitch (tS): Switching time from a primary to a spare and vice versa.

6.1.3.2.1. Centralized Fault Management Scheme

As shown in Figure 6.9, the centralized fault management availability model

comprises a central node and a subsystem. The centralized node is the main node

responsible for the fault management functions, while the primary and spare represent

the nodes of an on-board computing subsystem. The details of the transition times (tR,

Chapter 6. Evaluation of the Proposed Approach

133

tF, tS) and trigger condition are given in Table 6.1. The values of the transition times

are extracted from the open literature and are based on the previous experience.

For a fair comparison, the centralized node is considered more reliable, and its failure

transition time tF, from robust state to faulty state, is four times that of the other nodes.

Also, it is assumed that the centralized node is hot redundant with 2:1 redundancy. To

represent hot redundancy of the centralized node, two tokens in the 𝑃𝑟𝑜𝑏𝑢𝑠𝑡 state are

used.

As shown in Figure 6.9, each subsystem robust state contains only one token. In case

of a failure of the primary, a spare token is moved to the primary space to cater for the

effect of the failure. This operation requires a switching time tS, equal to 0.3 min. On

recovery of the primary node, the spare token is moved back to the node-3 space.

The centralized fault management scheme is available, if the total numbers of tokens

in the 𝑃𝑟𝑜𝑏𝑢𝑠𝑡 state are greater than or equal to two as expressed by:

 A𝑐𝑒𝑛𝑡_𝐹𝑀_𝑠𝑐ℎ𝑒𝑚𝑒 = P[#𝑃𝑐𝑒𝑛𝑡 + #𝑃𝑛𝑜𝑑𝑒 ≥ 2] (6.40)

Table 6.1: Parameters for the Centralized Fault Management Scheme Model.

𝐂𝐞𝐧𝐭𝐫𝐚𝐥𝐢𝐳𝐞𝐝 𝐍𝐨𝐝𝐞

𝑃𝑟𝑜𝑏𝑢𝑠𝑡 Robust state of the centralized node representing two tokens

 due to its hot redundant configuration.

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 Failure state of the centralized node

𝑡𝑅 Recovery transition time = 106 𝑚𝑠𝑒𝑐.

𝑡𝐹 Failure transition time = 4 x 2628000 min

𝐒𝐮𝐛𝐬𝐲𝐬𝐭𝐞𝐦 (Primary and spare node)

𝐍𝐨𝐝𝐞 − 𝟐

𝑃𝑟𝑜𝑏𝑢𝑠𝑡 Robust state of the node − 2 representing one token

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 Failure state of the node − 2

𝑡𝑅 Recovery transition time = 106 𝑚𝑠𝑒𝑐

𝑡𝐹 Failure transition time = 2628000 min.

𝐍𝐨𝐝𝐞 − 𝟑

𝑃𝑟𝑜𝑏𝑢𝑠𝑡 Robust state of the node − 3 representing one token

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 Failure state of the node − 3

𝑡𝑅 Recovery transition time = 106 𝑚𝑠𝑒𝑐.

Chapter 6. Evaluation of the Proposed Approach

134

tF

tR

Probust Pfailure

Asys_cent_fdir. = P{#Pcent. + #Pnode >=2}

tF

tR

Probust

t2

t1

tF

tR

tS

Probust

Pfailure

Pfailure

tS

2628000

10
6

10
6

10512000

2628000

10
6

0.3

0.3

0

0

#Pspare>=1

#Pprimary>=1

Node-1

Node-2

(Primary Node)

Central Node for Fault Management (Hot

Redundant)Subsystem

Node-3

(Spare Node)

Figure 6.9: Availability Model for Centralized Fault Management Scheme.

6.1.3.2.2. Distributed Fault Management Scheme

Figure 6.10 shows the availability model for the proposed distributed fault

management scheme, which comprises three nodes. Two tokens represent each node,

one represents its active processor core, while the other one represents its spare

𝑡𝐹 Failure transition time = 2628000 min.

𝐌𝐢𝐬𝐜𝐞𝐥𝐥𝐚𝐧𝐞𝐨𝐮𝐬

𝑡1 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (#𝑃𝑠𝑝𝑎𝑟𝑒 ≥ 1) 𝑜𝑓 𝑡𝑜𝑘𝑒𝑛 𝑓𝑟𝑜𝑚 𝑠𝑝𝑎𝑟𝑒 𝑛𝑜𝑑𝑒

 𝑡𝑜 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑛𝑜𝑑𝑒 𝑜𝑛 𝑎 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑜𝑓 𝑝𝑟𝑖𝑚𝑎𝑟𝑦

𝑡2 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (#𝑃𝑝𝑟𝑖𝑚𝑎𝑟𝑦 ≥ 1) 𝑜𝑓 𝑡𝑜𝑘𝑒𝑛 𝑓𝑟𝑜𝑚 𝑝𝑟𝑖𝑚𝑎𝑟𝑦

𝑛𝑜𝑑𝑒 𝑡𝑜 𝑠𝑝𝑎𝑟𝑒 𝑛𝑜𝑑𝑒 𝑜𝑛 𝑎 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑜𝑓 𝑝𝑟𝑖𝑚𝑎𝑟𝑦

𝑡𝑠 Switching time = 0.3 min. from primary to redudant node and

vice versa.

Number of tokens

Chapter 6. Evaluation of the Proposed Approach

135

computing resources. These spare computing resources can be a complete spare core,

or over-provisioned resources for a computing node. During normal operation, the

active core token executes the tasks workload. On the failure of one of the nodes, the

spare computing resources are utilized for the migration of the faulty node’s tasks. The

details of the transition times (tR, tF) are given in Table 6.2.

The proposed scheme is available if the total numbers of tokens in the 𝑃𝑟𝑜𝑏𝑢𝑠𝑡 state are

greater than or equal to three as expressed by:

 A𝐷𝑖𝑠𝑡_𝐹𝑀_𝑠𝑐ℎ𝑒𝑚𝑒 = P[#𝑃𝑛𝑜𝑑𝑒−1 + #𝑃𝑛𝑜𝑑𝑒−2#𝑃𝑛𝑜𝑑𝑒−3 ≥ 3] (6.41)

Table 6.2: Parameters for Proposed Distributed Fault Management Scheme Model.

𝑵𝒐𝒅𝒆 − 𝟏

𝑃𝑟𝑜𝑏𝑢𝑠𝑡 Robust state of the node − 1, representing a token

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 Failure state of the node − 1

𝑡𝑅 Recovery transition time = 106 𝑚𝑠𝑒𝑐

𝑡𝐹 Failure transition time = 2628000 min.

𝐍𝐨𝐝𝐞 − 𝟐

𝑃𝑟𝑜𝑏𝑢𝑠𝑡 Robust state of the node − 2 representing one token

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 Failure state of the node − 2

𝑡𝑅 Recovery transition time = 106 𝑚𝑠𝑒𝑐

𝑡𝐹 Failure transition time = 2628000 min.

𝐍𝐨𝐝𝐞 − 𝟑

𝑃𝑟𝑜𝑏𝑢𝑠𝑡 Robust state of the node − 3 representing one token

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 Failure state of the node − 3

𝑡𝑅 Recovery transition time = 106 𝑚𝑠𝑒𝑐.

𝑡𝐹 Failure transition time = 2628000 min.

𝐌𝐢𝐬𝐜𝐞𝐥𝐥𝐚𝐧𝐞𝐨𝐮𝐬

Number of tokens

Chapter 6. Evaluation of the Proposed Approach

136

tF

tR

Probust

2628000

10
6

tF

tR

Probust

2628000

10
6

tF

tR

Probust

2628000

10
6

Node-1 Node-2

Node-3

Asys_dis_fdir=P{#Pnode1 + #Pnode2 +

#Pnode3 >=2}

Figure 6.10: Availability Model for Distributed Fault Management Scheme.

6.1.3.3 Discussion of Availability Results

To compare the two fault management schemes, fair transition times and triggering

conditions are assumed. Both models are run for several iterations with a different

number of nodes. Based on the obtained availability results shown in Table 6.3 it can

be concluded that the distributed scheme has a higher availability value compared to

the centralized scheme.

This is obvious, because of the availability of spare computing resources at each

node in the distributed case. This allows to immediately take over the lost tasks while

in centralized method availability largely depends upon redundant physical nodes. It

can further be concluded that the availability values increase with the number of nodes

while, in the centralized scheme, availability decreases with the increase in the number

of nodes.

Chapter 6. Evaluation of the Proposed Approach

137

Table 6.3: Availability Values for Centralized and Distributed FM Schemes.

6.2 Functional Verification

The proposed FTDC architecture was verified functionally through prototyping, which

was carried out at a board level using commercial off-the-shelf microcontroller boards

and purpose-built software. A 3-node FTDC system was implemented and tested. This

section provides details of the implementation setup and the testing results.

6.2.1 Distributed System Performance Metrics

The performance of the proposed FTDC architecture is evaluated in terms of

Reconfiguration Time and State rollback (state age).

6.2.1.1 Reconfiguration Time

Definition: The time required to migrate tasks and resume execution following a node

failure is termed as the “reconfiguration time”. This is measured from the time at

which a fault first happened in a node, to the time at which all the tasks of the faulty

node are made runnable on other nodes.

The reconfiguration time following a node failure, tReconf, is stated as a sum of the

following components.

 𝑡𝑅𝑒𝑐𝑜𝑛𝑓 = 𝑡𝐷 + 𝑡𝐹𝑀 + 𝑡𝑇𝑋 + 𝑡𝑇𝑀 (6.42)

Where tD is the fault detection time; tFM is the time that starts from fault detection

to begin sending a fault message on the AMFT network; tTX is the time required to

transmit the message; and tTM is the time taken for the other nodes to receive the fault

 Availability of Fault Management (FM) Scheme

Number

Of Nodes

Centralized

FM Scheme

Distributed FM

Scheme

3 0.87174681 0.99240057

5 0.73916847 0.99909247

Chapter 6. Evaluation of the Proposed Approach

138

message and schedule the migrated tasks. These timing parameters are defined as

follows:

𝑡𝐷 = 𝑡𝐹𝐷_𝑃𝑒𝑟𝑖𝑜𝑑 + 𝑡𝐹𝐷_𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

𝑡𝐹𝑀 = (𝑛 − 1) ∗ 𝑡𝑐𝑠

𝑡𝑇𝑋 =
𝑚𝑠𝑔_𝑙𝑒𝑛𝑔𝑡ℎ(𝑏𝑖𝑡𝑠)

𝑠𝑝𝑒𝑒𝑑(𝑏𝑖𝑡𝑠/𝑠𝑒𝑐)

𝑡𝑇𝑀 = 𝑡𝑥𝐴𝑀𝐹𝑇2𝑃𝑈 + 𝑡𝑠𝑐ℎ.

𝑤ℎ𝑒𝑟𝑒

𝑡𝐹𝐷_𝑃𝑒𝑟𝑖𝑜𝑑 𝑃𝑒𝑟𝑖𝑜𝑑 𝑓𝑜𝑟 𝑓𝑎𝑢𝑙𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑎𝑠𝑘

𝑡𝐹𝐷_𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑓𝑎𝑢𝑙𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑛 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑜𝑑𝑒𝑠

𝑡𝑐𝑠 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑇𝑖𝑚𝑒 𝑆𝑙𝑜𝑡

𝑡𝑥𝐴𝑀𝐹𝑇2𝑃𝑈 𝑇𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑓𝑟𝑜𝑚 𝐴𝑀𝐹𝑇 𝑡𝑜 𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑

 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑢𝑛𝑖𝑡.

𝑡𝑠𝑐ℎ. 𝑇𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑡ℎ𝑒 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑 𝑡𝑎𝑠𝑘𝑠.

Adhering to the time slot-based communications on the AMFT network, fault

messages can only be sent during the allocated slot. It is, therefore, possible that the

time before a fault message is sent, tFM, may be up to (n-1) tCS. The reconfiguration

time, which depends on tFM, may, therefore, be large if the time slot duration is large.

The system reconfiguration time should be as small as possible.

6.2.1.2 State Rollback

Definition: State rollback is caused by a temporary pause in the computation during

the migration process, during which a task may rollback to a previous state when it

restarts on another node. It is represented by equation 6.43.

𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 =

𝑡𝑅𝑒𝑐𝑜𝑛𝑓

𝑇

(6.43)

𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 = Number of task′s State rollback

𝑡𝑟𝑒𝑐𝑜𝑛𝑓 = Reconfiguration Time

Chapter 6. Evaluation of the Proposed Approach

139

𝑇 = Task Period

State rollback is unitless, and ideally it should be minimal. Consider an example,

Where,

𝑡𝑟𝑒𝑐𝑜𝑛𝑓 = 30 ms, 𝑡𝑡𝑎𝑠𝑘_𝑝𝑒𝑟𝑖𝑜𝑑 = 10 ms

𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 =
𝑡𝑅𝑒𝑐𝑜𝑛𝑓

𝑡𝑡𝑎𝑠𝑘_𝑝𝑒𝑟𝑖𝑜𝑑
=

30

10
= 3

6.2.2 FTDC Prototype Design

As shown in Figure 6.11, the board-level prototyping design consisting of three

distributed nodes. The processing unit and AMFT in each DCN are implemented on

two separate COTS microcontroller boards interconnected via a point-to-point

interface (PPIF) which is used for the exchange of various messages between the

Processing Unit and AMFT.

6.2.3 Distributed Node Prototype

The implementation of the distributed node was carried out using two STM3240G-

Eval boards [214] as shown in Figure 6.12. The STM3240G board includes an ARM®

CortexTM-M4F 32-bit microcontroller, memory, and peripherals. ARM CortexTM-

M4F 32-bit microcontroller has a rich set of peripherals and also includes floating

point unit that can be used for real numbers operations. One board is dedicated to the

application tasks while the other board is used for implementation of AMFT functions.

The communication between the processing unit and its associated AMFT block is

through a UART interface (the PPIF). Processing Units and AMFTs have two separate

CAN buses for communication.

The objective of the AMFT block is to monitor the health of the processing unit

(Critical IOs, Memory Error, Watchdog timer (WDT)) and to indicate a fault

condition. For such monitoring, on-chip ADC and IOs of the AMFT’s microcontroller

were used. Also, there is a UART (Universal Asynchronous Receiver Transmitter)

interface between the processing unit and AMFT that is used for the transmission of

State Update Messages and Task List Messages.

Chapter 6. Evaluation of the Proposed Approach

140

For the development of the application and the AMFT functions, the IAR

Embedded Workbench (v6.3) [215] was used. First software code of an application,

comprised of five tasks was developed, then the AMFT functionality, as described in

Chapter 5, was coded too. The both software were developed in C using the

FreeRTOS Operating System. The software was downloaded to the STM3240 boards,

and testing was carried out as explained in the following section.

PPIF PPIF PPIF

STM3240G
Boards

for Distributed
Processing Unit

STM3240G Boards
for AMFT
Functions

Main Network for Communication

AMFT Network for Communication

Figure 6.11: Board Level Design of Distributed Computing System.

STM3240

Board (Processing

Unit)

STM3240

Board (AMFT)

Application
Tasks

FDIR
Functions

UART

CAN Bus

CAN Bus

A

D

C

WDT

Analog
Signals

Digital IOs

Figure 6.12: Board Level Implementation of Distributed Computing Node.

Chapter 6. Evaluation of the Proposed Approach

141

6.2.4 Distributed Computing Node Testing

Functional testing was done to verify the processing unit and AMFT functionality.

Before experimenting with the overall fault-tolerant distributed system, each

processing unit and AMFT were individually tested. The UART interface is used to

generate test vectors and monitor the status of both the application and AMFT

software. Test vectors are commands given in Table 6.4, which are required to test

each testing scenario. For functional validation, status is generated which is observed

in a terminal (HyperTerminal) running on a remote PC. These status messages are

programmed within the application software and are named software instrumentation.

A similar process is used for the AMFT functional testing; however, its critical

internal variables are also monitored. For this purpose, a JTAG interface is used along

with the IAR workbench. IAR supports a live watch window facility, which allows us

to monitor the internal registers of a processor running on AMFT. In this manner, we

can pinpoint the exact state of the AMFT process, and also debug when necessary.

In the integrated testing, AMFT and the Processing Unit are tested as one unit.

Test vectors are generated by emulating CAN messages (Heartbeat / SUM) and the

states of AMFT and the Processing Unit are monitored on the Saleae Logic Analyzer

[216]. The faults are injected manually on the board by pressing a button on

development boards.

Table 6.4: Test Vectors.

Processing Unit Functional Testing: In the first scenario, the Processing Unit

functionality is verified by activating/deactivating tasks. As shown in Figure 6.13, the

experimental setup for the testing includes a STM3240G-Eval board and a laptop. The

actual application software was run on the STM3240G-Eval board, while the laptop

Testing Scenario Test Vectors Interface

Processing Unit only Task List Messages UART

AMFT only CAN emulated message (Heartbeat and State

Update Messages)

CAN bus

Integrated

(Processing Unit and

AMFT)

CAN emulated message (Heartbeat and State

Update Messages)

CAN bus

Chapter 6. Evaluation of the Proposed Approach

142

was executing the hyper-terminal software that allows us to give commands for

activation and deactivation of the tasks. The successful activation and deactivation of a

single, dual and five tasks are shown in Figure 6.14, Figure 6.15, and Figure 6.16

respectively.

Executing
Application

Tasks

Laptop

HyperTerminal for issuing
command (task list) and

receive State data

UART

Processing
Unit

Figure 6.13: Setup for Testing of Processing Unit.

Task State Data from
Processing Unit Task-1

Simulating AMFT
Command for Task list

Figure 6.14: Processing Unit Functional Testing with Task-1.

Chapter 6. Evaluation of the Proposed Approach

143

Task-1 is executing

Task list command for
executing task-1 and

task-2

Task-2 is also started
after task list

command

Figure 6.15: Processing Unit Functional Testing with Task-1 and Task-2.

Task-2 is executing

Task list command for
executing task-0 to 4

Task-1 is executing

Task-0 is executing

Task-4 is executing

Task-3 is executing

Figure 6.16: Processing Unit Functional Testing with Task-1 to 5.

Chapter 6. Evaluation of the Proposed Approach

144

AMFT Functional Testing: In the second scenario, an experimental setup was

developed to test the AMFT functional behaviour as shown in Figure 6.17. To emulate

the faults caused by WDT and memory (digital IOs), two buttons were used. One

button was used to inject a fault while the other was used to remove a fault. A

potentiometer was used to emulate the node temperature variation that indirectly

provides node health information. On either of the failures (over temperature, WDT,

memory error) AMFT detects a failure and deactivate tasks running on the processing

unit. To capture the internal behaviour of the AMFT, variables corresponding to state

data ∆𝑆𝐷 , node status (ucFaultStatus) and task allocation were observed in the live

watch window as shown in Figure 6.18 (IAR debugging). This depicts the true internal

state of the AMFT, when no fault. Figure 6.19 shows a situation when a fault is

injected. On a fault, AMFT deactivates all the tasks and changes its node’s status to

faulty (ucFaultStatus=0x01).

Executing
FDIR

Functionality

Laptop

Live Watch for AMFT
in IAR Embedded

Workbench

UART

AMFT

Fault Injection Button
(to emulate WDT,

Memory Error)

Fault Removal Button

Potentiometer to
emulate board

temperature

CAN Bus

Emulating CAN
Messages

Figure 6.17: Setup for Functional Testing of AMFT Unit.

Task
State
Data

All Task
Allocated

Node
Status

(Healthy)

Figure 6.18: AMFT Memory View Captured by IAR, when node was healthy.

Chapter 6. Evaluation of the Proposed Approach

145

Task
State
Data

No Task
Allocated

Node Status
(Failed)

Figure 6.19: AMFT Memory View Captured by IAR, when node was faulty.

6.2.5 Fault-Tolerant Distributed System Prototyping

Table 6.5 shows the configuration setup for the implementation of the distributed

system with three nodes, five mission tasks and 1000 ms slot time for TDMA

communication over Controller Area Network (CAN) at 1Mbps. It is prototyped with

six STM3240G [214] evaluation boards as shown in Figure 6.11. Three STM3240G

evaluation boards are used to implement the processing units (top of the picture) and

three boards are used to implement the AMFT block. All three boards of the AMFT

blocks communicate through a CAN bus interface referred to as AMFT network while

the STM3240G containing the application software communicates through another

CAN bus interface called main network. The communication between the Processing

Unit and its associated AMFT block is through a UART interface (the PPIF).

Software Setup: The AMFT block running on each board STM3240G implements the

algorithms as described in section 5.2. We use FreeRTOS for the AMFT

implementation to exploit parallelism in software. The software stack includes

applications software and fault management software as outlined in section 4.6. The

application software mainly includes five application tasks: Attitude determination &

control, power management, thermal management, payload management,

telemetry/telecommand. However, the total number of application tasks to be executed

by the system can be varied, as well as the characteristics of each task. The main task

characteristics are periodicity, duration and state data length. The “state” of a task

comprises a set of values that must be preserved for a future execution of the task. The

application tasks are all periodic, similar to many spacecraft on-board computing tasks

Chapter 6. Evaluation of the Proposed Approach

146

[217]. For the purposes of this prototyping effort, each application task is periodic with

a period of 1000 ms [218] and includes 150 bytes of state data ∆𝑆𝐷. The main option

requiring a trade-off to be made is the number of distributed nodes to be used. For the

on-board computing architecture, increasing the number of processing nodes will

increase the reliability of the system. This is traded against the increased resources

required for additional nodes, such as power consumption and mass. For prototyping

purposes, the tasks are mapped to a three node distributed computing system. The

communications slot time depends on the nature of the tasks, which is explained in

section 8.4.1. The fault management functions are implemented according to the

software structure, introduced in section 5.5. For the software development, the

embedded workbench (v6.3) from IAR Systems aas selected. The software

development is written in the C programming language.

Table 6.5: Configuration Setup for Prototyping of FTDC System.

Parameter Value

Number of Nodes 3

Total Number of Mission Tasks 5

Communication Slot Time (ms) 1000 ms

TDMA Cycle Time (1000 x 3) ms

Internode Communication CAN Bus, 1 Mbps

6.2.6 Experimental Results

Key aspects of the distributed system that have been investigated including the ability

to migrate successfully tasks and resume execution following the failure of a node. The

reconfiguration time required to migrate tasks is an important performance parameter

that is recorded for each possible scenario. In addition, during the migration, state

rollback for each task is also recorded.

6.2.6.1 Scenario-I: Processing Start-up

The time required after the power-up to the final execution of the tasks is called Start-

up time. For the measurement of this time, two pins are used as follows:

Chapter 6. Evaluation of the Proposed Approach

147

 AMFT Board: ARM CORTEX STM32F407 GPIO (GPIOA-PIN-7)

 Processing Unit Board: ARM CORTEX STM32F407 GPIO (GPIOA-PIN-8)

An oscilloscope monitors the time duration between the two pins just after the Start-

up. Table 6.6 shows the start-up time measurements for the three nodes.

Table 6.6: Scenario-I: Results on Start-up Time Measurements.

Node Time (seconds)

1 6

2 5

3 5

6.2.6.2 Scenario-II: Failure

6.2.6.2.1. Failure of One Processing Unit

The AMFT block performs monitoring of the processing unit failures. To emulate

hardware failures within the processing unit, we use two I/O switches on the AMFT

board to represent failure within a processing unit. Also, two GPIO pins are used for

the measurement of reconfiguration time as follows:

 AMFT Board: ARM CORTEX STM32F407 GPIO (GPIOA-PIN-7)

 Processing Unit Board: ARM CORTEX STM32F407 GPIO (GPIOA-PIN-8)

Failure of a processing unit is inserted by pressing one push button on the AMFT

board. The AMFT detects this failure and toggles the output to PIN-7 to indicate a

failure condition. This is the start of the reconfiguration time. The reconfiguration

ends when the failed processing unit tasks are successfully migrated to other units. We

toggle the output of another pin on the healthy processing units to indicate that tasks

have been successfully migrated. The time between these two conditions is observed

by oscilloscope and is given in Table 6.7. We observed that the reconfiguration time is

always less than the TDMA cycle (3000 ms).

In case of a failure, ideally each task has to resume its state from the point at which

execution ended on the failed processing unit. However, due to the TDMA cycle time

Chapter 6. Evaluation of the Proposed Approach

148

of 3000 ms, it is not possible to resume the state from that point onward if a task

period is short. This effect is worse for tasks having very short periods.

6.2.6.2.2. Failure of AMFT Block

In this scenario, an AMFT is considered to be failed in a fail-stop manner. During

normal operation, each AMFT is required to send Heart Beat Messages to the other

AMFTs to communicate its presence. If there is no Heart Beat Message from an

AMFT when it expects it, that AMFT is considered to be failed and a reconfiguration

of the distributed system begins which ends with the successful migration of tasks to

other processing Units.

As can be seen from Table 6.8, the reconfiguration time and task state rollback are

similar to those obtained for the OBC unit failure case above.

Table 6.7: Scenario-II: One Processing Unit Failure.

Processing Unit

Failure

Reconfiguration Time

(ms)

Migrated Mission

Task

Task State Rollback

Processing Unit-1 1110 Mission Task-1

Period = 1000 ms

1 to 3

840 Mission Task-2

Period = 1000 ms

1 to 3

Processing Unit-2 2020 Mission Task-3

Period = 1000 ms

1 to 3

2100 Mission Task-4

Period = 1000 ms

1 to 3

Processing Unit-3 2800 Mission Task-5

Period = 1000 ms

1 to 3

Table 6.8: Scenario-II: Failure of AMFT Block.

AMFT Unit Reconfiguration Time

(ms)

Task State Rollback

AMFT-1 ≈ 200 to 2300 1 to 3

AMFT-2 ≈ 1000 to 2180 1 to 3

AMFT-3 ≈ 300 to 2900

1 to 3

Chapter 6. Evaluation of the Proposed Approach

149

6.2.6.2.3. Failure of Two Processing Units

The simultaneous failure of two processing units is considered in this scenario. In this

case, we simultaneously insert a failure in both Processing Units. The failure insertion

is emulated by pressing two push buttons on the two AMFTs. Similar to the one

processing Unit failure scenario, the reconfiguration time is observed by oscilloscope

using the same pins, and the LCD display observes the state age. The results of our

observations are again the same as those presented for the one processing unit and

AMFT failure scenario.

6.2.6.3 Scenario-III: Recovery

If a processing unit is recovered after failure, it can be reintegrated into the distributed

system. We emulate the recovery process by pressing another button on the AMFT.

When the button is pressed, the AMFT assumes that its processing unit has been

recovered following a failure and starts the reconfiguration process by sending a

Heartbeat Messages to the other AMFTs via the CAN Bus.

6.2.6.3.1. Recovery of One OBC Unit

This scenario represents the recovery of one processing unit after a failure. The

recovery process starts by pressing a button on the AMFT. This shows that its

associated AMFT is recovered. After this, the AMFT starts sending Heartbeat

messages to the other AMFTs. The other AMFTs update their node tables and send

updated task lists to their Processing Units. Similarly, the recovered node’s AMFT

sends an updated task list to its recovered Processing Unit. The results obtained for

reconfiguration time and task state rollback are similar to those obtained in the case of

one processing unit failure scenario.

6.2.6.3.2. Recovery of One AMFT Unit

The recovery of the AMFT unit after a temporary fault starts by sending a Heartbeat

Message on the CAN network. After receiving the Heartbeat Message, each of the

other AMFT units updates its node table and sends an updated task list to its associated

processing unit. The recovered AMFT also sends an updated task list message to its

associated processing unit. The test was carried out by removing a held reset button on

the AMFT. This process reintegrates the AMFT into a distributed system, and tasks

related to its associated processing unit are reallocated back. The results obtained for

Chapter 6. Evaluation of the Proposed Approach

150

the reconfiguration time and state age after recovery of the AMFT are shown in Table

6.9.

Table 6.9: Scenario-III: Recovery of AMFT Block.

Recovered OBC Reconfiguration Time

(ms)
Task State Rollback

AMFT-1 ≈ 560 to 1000 1 to 3

AMFT-2 ≈ 456 to 2750 1 to 3

AMFT-3 ≈ 1106~2226 1 to 3

6.2.6.3.3. Recovery of Two Processing Units

This is a scenario when both of the processing units are recovered simultaneously after

a failure. For performing such a test, the recovery of two processing units is emulated

by simultaneously pressing the recovery button on each of the two node’s AMFT

boards. The important aspect of the result is the same reconfiguration time irrespective

of the number of nodes as shown in Table 6.10.

Table 6.10: Scenario-III: Simultaneous Recovery of Two Processing Units.

Recovered Processing

Unit
Reconfiguration Time (ms) Task State Rollback

Processing Unit-1&2 ≈ 1000 to 2080 1 to 3

Processing Unit-1&2 ≈ 1300 to 3000 1 to 3

Processing Unit-1&2 ≈ 1100 to 2620 1 to 3

6.2.7 Implementation Issues

During the implementation of the board level design of distributed computing systems,

following critical issues were identified.

 Computational Performance: Standalone processors interconnected at board level

require more size, area and electrical power resources and are also computationally

inefficient because of the insufficient resource sharing and limited interconnect

speed.

Chapter 6. Evaluation of the Proposed Approach

151

 State Transfer Issue: The state of the task, as described in section 5.3.3, is

necessary for its resumption when a task is migrated to another node. The size (in

bytes) of the state data ∆𝑆𝐷 depends upon the nature of the task - it may be of a few

bytes or may be of several bytes. In board level design as shown in Figure 6.20, the

state data ∆𝑆𝐷of a task need to be stored in two places before being transferred to

the other nodes. First, the data is stored in the local memory of the processing unit

and secondly, in the local memory of the AMFT. In addition to the dual storage,

the transfer of data consumes physical (CPU bus bandwidth, DMA, UART) and

computational resources that affect the performance of the actual application.

 Task Scheduling Issue: Each node is pre-configured to share the computing

workload of the failed node as described in section 5.2.4. When a task is migrated

to another node, it needs to be added into the existing scheduler of the OS. All

tasks are statically pre-scheduled for all possible scenarios. It was observed that

adding a task in a running schedule, disturbs the overall Scheduler time, a known

issue among the research community [219]. Although our pre-scheduled method

succeeded in addressing the possible scenarios, it was observed, that the scheduler

needs a standalone processing.

Execute Task
(1)

PPIF

CAN Bus

Central
Processing Unit

(CPU)

DMA

Memory

UART

Store Task’s
State (2)

Initialize DMA for
 Transfer (3)

Transfer
Task’s State

(4)

CAN Bus

Central Processing
Unit (CPU)

DMA
Memory

UART

DMA to
Memory Transfer (6)

DMA Interrupt
on Each Receive

Serial
Transmission (5)

Transfer to other
nodes via CAN Bus (7)

Processing
Unit

AMFT

Figure 6.20: Task State Data Flow.

Chapter 6. Evaluation of the Proposed Approach

152

6.3 Summary

Fault-tolerant systems are of a complex nature and require to be analysed before

development. In the first part of this chapter, a novel approach based on mathematical

models was developed to analyse the reliability and availability of fault-tolerant

computing systems. The results on the reliability showed that the proposed distributed

computing approach is more reliable in comparison to the centralized and TMR based

systems. This is due to the fact that the proposed distributed computing architecture is

reconfigurable which allows task migration in the case of a processor failure. Fault

management schemes were also compared and analysed in terms of reliability and

availability. It is evident from the results that by distributing the fault management

functions, much higher reliability and availability values can be obtained.

The second part of the chapter presents a functional verification of the FTDC

system, which was carried out through quick prototyping at board level, providing a

proof of concept for the proposed architecture. The testing setup allows observations

of the system behaviour at run-time. It verifies the proposed approach at the functional

level, including the tasks migration in case of a node failure or following a recovery. It

proves that the tasks are being added to or dropped from the existing scheduler. In

addition, it validates that the AMFT is reconfigured to account for the changes in the

FTDC. Furthermore, the prototyping allowed initial debugging of the software. It also

helped to identify implementation issues which were not foreseeable at the

architectural level design stage.

153

Chapter 7

7.Novel MPSoC Based Design for Fault-Tolerant

Distributed Computing

In this chapter, a novel multi-processor system-on-chip (MPSoC) based design for the

proposed fault-tolerant distributed computing approach is presented. The design is

targeted at modern FPGAs, which incorporate hard processor IP cores and

programmable logic fabric on the same chip. The design is an upgraded version of the

FTDC concept presented in Chapter 4, providing new enhanced features, which are

enabled by the technology. It serves also as validation of the proposed approach and is

used in the space related case-study in Chapter 8. In Section 7.1, the need and benefits

of the MPSoC design is discussed. Section 7.2 presents details on the MPSoC design

covering operational scenarios, block diagram and selection of FPGA. The hardware

design of the MPSoC is presented in Section 7.3. The MPSoC software

implementation is elaborated in Section 7.4. The MPSoC fault injection mechanism is

discussed in Section 7.5. Experimental setup and results on the MPSoC based design

are reported in Section 7.6. A CubeSat payload based on the MPSoC is presented in

Section 7.7.

7.1 Why MPSoC Design?

It is evident from the reviewed literature that fault-tolerance against permanent failures

of distributed system is provided through redundant resources. This replication of the

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

154

hardware resources incurs a very high cost for fault-tolerance. This cost can be reduced

by utilizing over-provisioned resources in each node as presented in Section 6.2.

However over-provisioning resources on a node is not sufficient enough for migrating

all the faulty node’s tasks. This limitation of resources forces us to migrate tasks to

multiple nodes, which creates problems of inter-tasks communication dependencies and

enhances the communication on the network. Due to inter-tasks communication, the

performance of the overall application can be severally degraded. However, a multicore

processor based distributed system design naturally eliminates this problem by

migrating the tasks of the failed node to a single core. In addition, MPSoC reduces the

damage by utilizing the power of multicore embedded processors. So this design is

more cost effective than the others where a complete physically redundant node is used

for fault-tolerance purposes. Furthermore, in an MPSoC design each distributed

computing node acts as a target fail-over node for the other node, achieving much

higher reliability.

The number of cores in a multicore processor depends on the requirements. Each

additional core provides more computing resources, which can be utilized for

computational performance or fault-tolerance. However, managing a large number of

cores requires more design efforts and must be justified in terms of complexity and heat

dissipation.

An MPSoC may be developed as an Application Specific Integrated Circuit (ASIC)

chip or by using an FPGA. Both approaches have their advantages and disadvantages.

ASIC is much faster but it is inflexible for design changes. On the other hand, the

FPGA based approach is more flexible in terms of prototyping and also allows in-orbit

reconfiguration. Therefore, the FPGA based approach is opted for in the design of the

fault-tolerant distributed architecture, proposed in this thesis. Furthermore, a hybrid

FPGA that includes a multicore processor and programmable fabric is selected. Hybrid

FPGA allows mapping of fault management functions in the programmable logic

separate to the Processing Unit. Thus it defines a clear boundary between the

Processing Unit and the fault management functions, which makes the design more

reliable. Additionally, the programmable fabric can also be used for hardware

acceleration of the computational intensive functions. The use of a hybrid FPGA in

space depends on the underlying technology and criticality of the mission. Although, in

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

155

the past, FPGAs have been used in space for many spacecraft missions, the SRAM

based FPGAs are vulnerable to space radiations, particularly the Single Event Upsets

(SEU). An SEU can flip a bit either in the configuration or data memory which may

cause catastrophic effect. Although, the FPGA based approach is adopted but at this

stage, if required, the same design can be used as a way to prototype an ASIC.

The first academic MPSoC design realised a real-time embedded system for

automotive applications, which was prototyped on an FPGA in 2009 as part of the

GENESYS project funded by the European commission [210].

7.2 Description of the MPSoC Based Fault-Tolerant

Distributed Computing Design

A proof of concept for the FTDC architecture and preliminary functional testing was

achieved by the board-level implementation, presented in section 6.2. The intended

functionality was achieved, however, in section 6.2.7 additional issues that would

improve the performance, were also observed, which are taken care of in the MPSoC

design.

 Figure 7.1 shows a distributed computing system, each node which is

implemented as an FPGA based MPSoC. The design of the MPSoC consists of a hard

multicore processor (in this case dual core) and main memory, as well as soft

middleware IP and modules implemented on the FPGA programmable fabric. The

dual-core processor is used for the execution of the application tasks. During normal

operation, one of the cores of the dual-core processor runs a fraction of the application

task set, while its associated core is idle. The idle core can share the workload in case

of failure of a node in the distributed system. The shared memory handles the

communications between the two cores for resource sharing. The middleware for the

fault management functions, as detailed in Chapter 5, is implemented as a soft

hardware IP. A system bus interface for the middleware is provided to access the

memory attached to the multicore processor. This interface allows the middleware to

retrieve data in case of a failure. Two separate networks are used – main network and

AMFT network. The former is used for the communications between the processing

units while the latter is used for the communications of middleware blocks.

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

156

To proceed with the MPSoC design and implementation, operational scenarios are

specified, followed by a Block Diagram to address physical interfaces, and functional

mapping. Then a suitable target FPGA is selected, to map each of the functions

described in the Block Diagram. To have a functional MPSoC, the implementation

follows a prescribed flow and ECAD tool suite associated with the particular FPGA.

Finally, each module is implemented and integrated. The functionality is validated by

performing a series of tests. The implementaion of the MPSoC is characterised by

parameters, such as electrical power and logic resources consumption, which should

ideally be as minimal as possible.

P1 P2

Middleware

Node-1Node-1

Memory

P1 P2

Middleware

Node-2Node-2

Memory

P1 P2

Middleware

Node-3Node-3

Memory

AMFT NetworkAMFT Network

Main NetworkMain Network

P1: Processor core-1 P2: Processor core-2

Figure 7.1: Distributed System Configuration.

7.2.1 MPSoC Operational Scenarios

7.2.1.1 Normal Scenario

The first scenario represents the normal behaviour of the MPSoC operations as

depicted in Figure 7.2. A number marks each operation for this scenario. A complete

data flow is marked from 1 to 3 (red colour circles) representing reception side,

message into the system. Data flow from 1 to 4 (blue colour rectangles) represents

‘transmit direction’. In the receive direction, first CAN messages (Heartbeat, Fault,

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

157

and State Data) were emulated to be sent to the MPSoC under test via CAN AMFT

interface. These messages are periodic and follow the TDMA scheme. Then received

messages are separated into Heartbeat and state update message. A correct receive of

heartbeat message indicates a healthy node that does not require any update in the

node table. The receive data in state message is moved to main memory, indicating

other node state update.

On the transmit side of the node, each task writes its state to the main memory.

Later, this state is read by AMFT and then it is sent to the CAN bus. During the whole

process, task execution, task state data ∆𝑆𝐷 and hardware signals were monitored.

Each task is instrumented to send data on a serial console for monitoring and

debugging purposes during task execution. The hardware signals of the advanced

high-performance bus (AHB), advanced extensible interface (AXI) and advanced

peripheral bus (APB) were also monitored via on chip JTAG on a separate PC, as

shown in Figure 7.2.

Execution of Tasks

Main Memory

Program

Data

Tasks State Data

Receive State Data

Read and Send
State Data

Receive HB?

Node Table

1

Emulating Heartbeat, Fault and State
Messages

2

3
Store State Data

Update node table

SoC Hardware
Signals Monitor

Packet Monitor

HB, State Data

AMFT
(FDIR)

Yes

JTAG
Hardware

Signals

Processing
Unit

Task’s Status

Update State
Data

Serial
Monitor

Chipscope
Pro

1

2

3

4

Figure 7.2: Data Flow in a Normal Scenario.

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

158

7.2.1.2 Task Migration Scenario

This scenario represents the effect of a node failure on the other node. The task

migration scenario, as marked from 1 to 7 steps, is shown in Figure 7.3. The failed

node stops sending HB, which indicates a fault condition in that node. To observe the

same scenario, CAN emulator acts as a failed node and stops sending messages on the

bus. Inside the AMFT, node failure was observed via no HB message within allocated

slot. The first action after no HB, an entry for that particular node was immediately

removed by updating node table. Afterward, action for task migration was started. This

being follows a task list preparation and its transmission to add/drop operation.

Add/drop operation adds tasks into the Scheduler, and simultaneously taking spare

processor core out of sleep mode. The complete operation of task migration was

monitored by hardware monitoring and software packet capturing. To validate the

correct behaviour of this scenario, following test points were observed.

Add/Drop Tasks
into Scheduler

Main Memory

Program

Data

Tasks State Data

Prepare Task
list

Trigger Task
Migration

Receive HB?

Node Table

1

Stop Sending HB from
CAN Emulator

2

5

Update node
table

AMFT
(FDIR)

No

Processing
Unit

New Task
List

Task List
Table

3

4

6 Start Tasks

7

Awake spare
processor

Task Status

Task List

Packet Monitor

Serial
Monitor SoC Hardware

Signals Monitor

JTAG
Hardware

Signals

Chipscope
Pro

Figure 7.3: Task Migration Scenario

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

159

 Task list from AMFT is sent to the processor, which emulates failed node tasks.

This task list is captured on the fly and routed to the serial console for monitoring

AMFT behaviour.

 Each task is instrumented to send messages on the serial console to indicate its

state during execution.

 Task migration also involves hardware signal monitoring such as AHB, APB

activities to ensure all operations. This operation was done using Chipscope Pro as

shown in Figure 7.3.

7.2.1.3 Fault Detection and Isolation

This scenario represents a situation, where a node detects its failure and isolates it

from the rest of the system. Figure 7.4 illustrates this scenario. The health of each node

in the MPSoC implementation consists of one analogue signal (emulating node

temperature) and two digital signals (emulating WDT and main memory error). Both

analogue and digital signals are constantly read and checked to determine fault in the

node. This is carried out in terms of defined limits of temperature values, as soon as a

high or low temperature is reached, a fault signal is generated. WDT status is also

read, if a predefined state (set to low in our case) is received then the processor is

deemed faulty, or in an undetermined state. A fault is injected by intentionally

exceeding one of the signal limits, manually.

To verify the correct behaviour of AMFT for this scenario, Task List Message

(TLM), task status, and hardware signals are monitored. On a fault, an empty TLM

that was generated for processing unit was observed. On receipt of the TLM, all tasks

were immediately deactivated and observed task status was stopped. Also, shutdown

signal was also observed as marked 7 in Figure 7.4.

The detailed verification is carried out as a case study in chapter-8 where a

distributed OBC was designed, implemented and tested.

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

160

Stop All Tasks

Main Memory

Program

Data

Tasks State Data

Stop HB and
States

OR

1a

Empty Task
List

HB, State Data

AMFT
(FDIR)

Processing
Unit

Task’s Status

ADC
Analogue Signal
Emulating Node

Temperature

Read Signal and
Check limit
Exceeded?

GPIOs
GPIOs Emulating

WDT and Memory
Erros

Read Signals
and Check

status

Issue Shutdown
Command

Task list

1b

2a

2b

3

4

5

6

7
Digital Signal to DC/DC

Converter for Shutdown
node power

Packet Monitor

Serial
Monitor

SoC Hardware
Signals Monitor

JTAG

Hardware
Signals

Chipscope
Pro

Figure 7.4: Fault Detection and Isolation Scenario

7.2.2 MPSoC Block Diagram

The functional implementation of proposed approach as an MPSoC design is shown in

Figure 7.5. It represents a block diagram of a distributed computing node, in which

each function of the proposed approach is mapped.

In this design, the single processor of the board level implementation is replaced

with dual processors. One of the processors is usually executing the application tasks

while the other is reserved to share the task load of the faulty node. In this scheme,

each processor has its own task scheduler, thus eliminating the problem of scheduling.

An AMFT block is connected to the on-chip system bus that connects it to main

memory for accessing state data directly. This MPSoC design reduces the time and

resources to transfer state information between the AMFT and processing unit.

The memory scheme of the MPSoC comprises an internal and an external

memory. The internal memory is used for faster access to shared data between the

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

161

processors, while the external memory, accessed by AMFT and the processors via the

memory controller, is used to store the application data.

For connecting peripherals, two separate buses (peripheral bus-1 and peripheral

bus-2) are suggested, which are attached to various on-chip devices. An analogue-to-

digital converter (ADC) is included to monitor the node health for the purpose of

detecting a failure of the node.

Two network interfaces are used for external communication of the processing

units and AMFTs.

Processor Processor

AMFT

Network

Interface

Memory

Controller with

EDAC

Peripheral

Interconnect

Peripherals

Shared

Memory

Network

Interface

Peripherals

System Bus

Peripheral Bus-1

P
e

ri
p

h
e

ra
l B

u
s-

2 Health

Monitoring

Figure 7.5: Block Diagram of the MPSoC Design.

7.2.3 Selection of FPGA Based MPSoC Device

There are primarily three FPGAs manufacturers who support SoC-based design

implementation, namely, Xilinx, Microsemi, and Altera. Each manufacturer has its set

of design tools that support synthesis, which varies in complexity and usage.

Furthermore, all of them support a number of on-chip functions that vary between

families of FPGA. The requirements of proposed MPSoC design are on-chip hard

processor IP and mixed-signal processing. Another important selection criterion is the

availability of Intellectual Property (IP) cores. We compared three FPGAs most suited

to our requirements as tabulated in Table 7.1. Of the many choices, the Xilinx FPGA

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

162

is selected, due to its known heritage in space applications. Also, a vast majority of the

available IP cores, experience in its design tools and lastly for its mixed-signal

processing capability.

Another aspect is the choice of implementation i.e. the use of higher language

used in programming of our functionality. We opted for utilizing readily available IP

cores from Xilinx. The available IP cores helped to reduce significantly the design

effort in mapping the distributed computing functions. This is the key reason for the

successful implementation of the proposed MPSoC scheme on time. The selected

Xilinx FPGA and its development tools are listed in Table 7.2.

Table 7.1: SoC FPGAs

 Xilinx Zynq-7000

FPGAs

Altera SoC FPGAs Microsemi

SmartFusion2 FPGAs

Processor Type ARM Cortex-A9 ARM Cortex-A9 ARM Cortex-M3

Single or Dual Core Dual Single or Dual Single

FPGA Fabric and

Logic Density

Artix-7, Kintex-7,

28 K to 444 K Logic

cells

Arria, Cyclone V,

25 K to 462 K Logic

Elements

Fusion2,

6 K to 146 K Logic

Elements

External Memory

Error Correcting

Code (ECC)

Yes Yes Yes

On-Chip RAM 256 KB, no ECC 64 KB with ECC 64 KB, no ECC

Floating-Point

Unit/NEON

Multimedia Engine

Yes Yes Not Available

Analog Mixed

Signal

2 x 12 Bit, 1 MSPS

Analog-to-digital

converters (ADCs)

Not Available Not Available

Table 7.2: Design and Development Tools and Target Board for MPSoC Implementation

Device/Tool Description

FPGA Xilinx Zynq-7000 EPP FPGA (XC7z020clg484-1) [220]

Implementation Tools Xilinx Platform Studio v 14.5, Software Development Kit

(SDK) v 14.5

Debugging Chipscope Pro [221]

Development Board ZEDBOARD [222]

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

163

7.3 MPSoC Hardware Implementation

Figure 7.6 shows the MPSoC design implementation. The upper part of the MPSoC

implements the design of the processing unit that maps its functions to the processing

system of the Zynq FPGA. The processing unit consists of two hard ARM Cortex A9

processor IP cores. Both cores act as a single distributed processing unit - one is active

while the other is in sleep mode. Each processor core is running an OS, for which a

readily available FreeRTOS [223] was used. The software of each processor follows

the design stack described in section 4.6. To exchange messages among the two

processors, the shared memory of the processing system was used. Central

interconnect was used to allow access to the main memory by both processor IP cores

and AMFT, thus allowing sharing of main memory.

The lower part of Figure 7.6 is the programmable logic where the AMFT is

implemented. AMFT is realized on a Xilinx soft processor MicroBlaze. The

MicroBlaze processor is connected to block RAM (BRAM) and advanced extensible

interface (AXI) interconnect. BRAM contains the program and data for the AMFT

software while the AXI-Interconnect acts as a bus, allowing MicroBlaze access to

peripherals (timers, UART, GPIOs, CAN). All peripherals interrupts are routed via a

central interrupt controller that selects an interrupt source for the processor. For self-

monitoring of the distributed computing node, on-chip ADC (a hard macro) and

GPIOs (emulating watchdog timer, memory error) are used.

For debugging purposes, a debug module, allowing on-chip software debugging

of MicroBlaze via JTAG interface was used. The circuit diagram of the MPSoC

implementation is shown in Figure C.3 (Appendix C). During the implementation,

logic resources, and electrical power consumption were measured.

7.3.1 Logic Resources

After the final mapping, placement and routing of the design, the resource utilization

for MPSoC was determined. These comprise the processing unit and the AMFT

resources. The former mainly consist of the multicore processor, while the latter are

the form of slice lookup table (LUT), slice registers, and memory as reported in Table

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

164

7.3, which shows that very few resources for the AMFT implementation are required.

A detailed report for logic resources is given in Appendix C.

MIO

axi_interrupt
Controller

MicroBlaze
Processor

BRAM

BRAM
Controller

S_AXI_GPO

BRAM
Controller

DLMB ILMB

M
_

A
X

I

DEBUG

AXI_Inter
connect

Clock

PIO
Block

UART-1

CAN

timer

GPIO

UART-0

1
0

0
M

H
z

_
cl

k

Central
Interconnect

Memory Controller with
ECC

axi_timer_0

axi_timer_1

axi_uart16550_0

interrupt

axi_gpio_0

Microblaze
debug

Module

Microblaze_
reset

axi_gpio_1 (Emulating
Hardware Fault

Injection)

axi_gpio_2(Emulating
Hardware Fault

Removal)

CAN

EMIO

OCM
Interconnect

256 KB OCM

BootROM

512KB L2 Cache & Controller

MMU
Cortex-A9 MP Core

CPU-2
32 KB I
cache

32 KB D
Cache

MMU
Cortex-A9 MP Core

CPU-1
32 KB I
cache

32 KB D
Cache

2
0

M
H

z
_

cl
k

Processing System
(Processing Unit)

Programmable Logic
(AMFT)

AXI XADC
Core Logic

GIC

Interrupt

Legends:
BRAM: Block Random Access Memory AXI: Advanced Extensible Interface ROM: Read-only Memory PIO: Peripheral I/O
ADC: Analogue-to-Digital Converter OCM: On-chip Memory UART: Universal Asynchronous Receive Transmit EMIO: Extended Multiplexed I/O
CAN: Controller Area Network MMU: Memory Management Unit GPIO: General Purpose Input Output MIO: Multiplexed IOs
GIC: Generic Interrupt Controller Interrupts General Signals MicroBlaze Memory Signals

XADC (Hard
Macro)

Figure 7.6: MPSoC based Implementation of a Distributed Computing Node.

Table 7.3: Logic Resources.

Computing Unit Resource Utilization Available Utilization %

Processing System (PS) Multicore Processor 2 2 100

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

165

7.3.2 Electrical Power Consumption

The electrical power consumption for the implementation of MPSoC was estimated

using the Xilinx XPower tool [224], as shown in Figure 7.7. Electrical Power was

obtained for the Zynq (Z-7020) Artix-7, 28 nm technology [225]. It is evident from the

results that a small amount of electrical power, approx. 180mW, is required for the

AMFT, while 1384mW is needed for the processing unit, in which the main power is

consumed by the DDR memory.

Figure 7.7: MPSoC Electrical Power Consumption.

7.4 MPSoC Software Implementation

This section describes the MPSoC software development, which consists of two parts:

(i) a processing unit application and (ii) an AMFT application.

7.4.1 Application Software

The processing unit functionality is implemented in C, as a FreeRTOS application

executing on the multicore ARM processor on the Zynq FPGA. The main purpose of

this application is to control the execution of the computing tasks as requested by the

1348

180 200

1728

0

500

1000

1500

2000

Processing
System

AMFT Additional Total

Power
Consumption

(mW)

Programmable Logic (PL)

(AMFT)

Slice LUTs 4855.0 53200.0 9

Slice Registers 4663.0 106400.0 4

Memory 18 140 13

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

166

unit’s associated AMFT. The processing unit application consists of the following

main functional modules:

 AMFT Sender and AMFT Receiver, which handle the communications with the

AMFT unit.

 Mission Task Manager, which controls the execution of the mission tasks based

on the requests of the AMFT unit.

 Mission tasks – in the distributed system prototype, the total number of mission

tasks to be executed by the system can be varied, as well as the characteristics

of each task. The main task characteristics are periodicity, duration, and state

data ∆𝑆𝐷 length. The “state” of a task comprises a set of values that must be

preserved for future execution of the task. The mission tasks are all periodic,

similar to many spacecraft on-board computing tasks. Each mission task

performs an operation which involves incrementing each byte of its state data.

Each processing unit in the distributed computing system has an identical

implementation, and the software code for every mission task is present in every

processing unit. While the code for every task is present, tasks are started and stopped

(by the Mission Task Manager) at run-time as required so that a different sub-set of

tasks executes on each processing unit.

The processing application-specific code is located in 8 source files, as listed in

Table 7.4. This shows the application-specific source files. Also, the FreeRTOS source

code and development board support files are required. Most of the application-

specific source files also have a corresponding header file, which has the same name

as the source file name (e.g. amftReceiverTask.c has a corresponding header file

amftReceiverTask.h). In most cases, the header files contain only function definitions.

Figure 7.8 graphically shows the organization of the software, logically grouping files

into related sets.

Table 7.4: File list for Processing Unit Application.

File Contents

amftReceiverTask.c AMFT Receiver task

amftSenderTask.c AMFT Sender task

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

167

ftdc_lcd.c Code to control output to the board’s LCD

main.c main function; initialization code

missionTaskManagerTask.c Mission Task Manager task

missionTasks.c Code for all mission tasks

missionTaskStates.c Mission task state data

serial.c UART interrupt handler

main.c

int main(void)
void set_shared_mem(void)
void prvSetGpioHardware(void)
void prvCreateQueues(void)
void prvCreateSemaphore(void)
void prvCreateFtdcTasks(void)
void vTaskStartScheduler(void)

dataFormat.h freeRTOSConfig.h

ftdc_config.h
Configuration and

Definitions

Main Application
Entry Point

Real-Time Operating
system

FreeRTOS

List.c
Queue.c
Tasks.c
Timer.c
...

amftReceiverTask.c

void vAmftReceiverTask(void *pvParameters)
void storeStateData(unint8_t taskId, uint8_t* messageBuffer)

amftSenderTask.c

void vAmftSenderTask(void *pvParameters)
void sendDataUsart(unint8_t message, uint32_t* message_Length)

MissionTaskManager.c

void vMissionTaskManager(void *pvParameters)
uint8_t startTask(unint8_t taskId)
Uint8_t stopTask(uint8_t taskId)

MissionTasks.c

void vMissionTask0(void *pvParameters)
void vMissionTask1(void *pvParameters)
void vMissionTask2(void *pvParameters)
void vMissionTask3(void *pvParameters)
void vMissionTask4(void *pvParameters)
void vMissionTask5(void *pvParameters)
void vMissionTask6(void *pvParameters)
void vMissionTask7(void *pvParameters)
...

missionTaskStates.c

FTDC Tasks

Mission Tasks

parTest.c

void vParTestSetLED(unsigned long ulLED, signed portBASE_TYPE xValue)
void vParTestToggleLED(unsigned long ulLED)
Void prvSetGpioHardware(void)

psInterrupt.c

int vInitializeSerialPort0(void)
int vInitializeSerialPort1(void)
void UART_0_Interrupt_Handler(void *CallBackRef,u32 Event, unsigned int EventData)
void UART_1_Interrupt_Handler(void *CallBackRef,u32 Event, unsigned int EventData)

Support Functions

Board Support Package

FreeRTOS BSP
Standalone BSP

Board Support
Package

First Stage Boot Loader First Stage Boot Loader

Figure 7.8: Application Software Structure.

7.4.2 AMFT Software

The AMFT is a FreeRTOS-based software application created in C, which executes

within the MicroBlaze on each MPSoC board. The implementation of AMFT within

each MPSoC board is identical except for a stored node identifier that is used to

identify each AMFT uniquely.

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

168

The AMFT monitors for faults in its associated processing unit and handles the

distributed functionality such as migrating tasks following a node failure. The AMFT

application implements the AMFT algorithms as described in section 5.5. Figure 7.9

shows an overview of the AMFT application structure. The main modules are:

 obcSender and obcReceiver Tasks, which handle the communications with the

processing unit.

 AMFT Sender and AMFT Receiver, which handle the low-level communications

with the other AMFT units via the CAN bus.

 AMFT Comms, which handles the high-level communications with the other

AMFT units, such as communications slot management.

 Task Allocation Manager, which handles determining which mission tasks

should be executed on the node’s processing unit.

 FDIR, which monitors for faults in the processing unit.

The overall AMFT functionality, i.e. the algorithms described in section 5.2, is

implemented through the functions of the above modules and the interactions between

them.

The AMFT application-specific code is located in 13 source files, as listed in Table

7.5. Also, the FreeRTOS source code and development board support files are

required. Most of the application-specific source files also have a corresponding

header file, which has the same name as the source file name (e.g. amftCommsTask.c

has a corresponding header file amftCommsTask.h). In most cases, the header files

contain only function definitions. Figure 7.9 graphically shows the organization of the

software, logically grouping files into related sets.

Table 7.5: File list for the AMFT Application

File Contents

amftCommsTask.c AMFT Comms task

amftReceiverTask.c AMFT Receiver task

amftSenderTask.c AMFT Sender task

AdcInterrupt.c Interrupt handler for reading ADC channels data

com_can.c Interrupt Handlers for CAN transmit and receive, and

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

169

initialization code for CAN interrupts.

com_ser.c Interrupt Handler for UART, and initialization code for

UART interrupts.

parTest.c Initialization code for LEDs

fdirTask.c FDIR task

ftdc_config_data.c Global variables used for system configuration

main.c main function; initialization code

obcReceiverTask.c OBC Receiver task

obcSenderTask.c OBC Sender task

taskAllocationManagerTask.c Task Allocation Manager task

main.c

int main(void)
void prvSetupHardware(void)
void microblaze_disable_dcache(void)
void vInitializeAMFTTasks(void)
void vTaskStartScheduler(void)

ftdc_config_data.c freeRTOSConfig.h

ftdc_config_data.h

Configuration and
Definitions

Main Application
Entry Point

Real-Time Operating
system

FreeRTOS

List.c
Queue.c
Tasks.c
Timer.c
...

amftCommsTask.c

portTASK_FUNCTION(vAmftCommsTask, pvParameters)

amftSenderTask.c

portTASK_FUNCTION(vAmftSenderTask, pvParameters)
void sendSumViaCan(unsigned char taskId)

taskAllocationManagerTask.c

portTASK_FUNCTION(vTaskAllocationManager,*pvParameters)

FTDC Tasks

parTest.c

void vParTestInitialize(void)
void vParTestSetLED(unsigned long ulLED, signed portBASE_TYPE xValue)
void vParTestToggleLED(unsigned long ulLED)
Void prvSetGpioHardware(void)

AdcInterrupt.c

void vInitializeadcInterrupt(void)
void vCurrentChannel_ISRHandle(void)
void vTemperatureChannel_ISRHandle(void)
void vVoltageChannel_ISRHandle(void)

Support Functions

Board Support Package

com_can.c

void vInitializeCAN_0(void)
void xSendCanMessage(xCanMessage message)
void vCAN_TX_ISRHandler(void)
void vCAN_RX_ISRHandler(void)

ftdc_custom_types.h

fdirTask.c

portTASK_FUNCTION(vFDIR, pvParameters)

amftReceiverTask.c

void vAmftReceiverTask(void *pvParameters)
void vStoreSum(xCanMessage message)

obcSenderTask.c

portTASK_FUNCTION(vobcSenderTask, pvParameters)
void sendSum(unsigned char taskId)

obcReceiverTask.c

void vobcReceiverTask(void *pvParameters)

com_ser.c

void vInitializeSerialPort_0(void)
void xSendCanMessage(unsigned char cOutChar)
void vUART_ISRHandler(void)

Board Support Package

FreeRTOS BSP
Standalone BSP

Figure 7.9: Structure of AMFT Software

7.4.3 AMFT Software Overhead

The overhead for the implementation of AMFT in terms of code memory and data

memory is shown in Table 7.6. These sizes were obtained for the case-study of AOCS

application presented in Chapter 8. It concludes that the code memory size remains

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

170

fixed, however, the size of the data memory and non-volatile stable storage depends

upon the checkpointed data volume.

Table 7.6: Overhead of AMFT

7.5 MPSoC Fault Injection Mechanism

A symptom-based approach for the detection of software faults is proposed in section

4.8. To test the fault detection methods in the case of the MPSoC design, a new fault

injection mechanism was required which is capable to inject transient as well as

permanent faults in the MPSoC. Both types of faults are defined in section 2.1.4. Given

this requirement, a fault injection mechanism was developed, which is capable to inject

faults in any of the distributed computing nodes. This mechanism is not only helpful for

the validation of the fault detection algorithms, but it is also useful for the overall

validation of proposed FTDC approach. The following sections present the details of

the both fault injection mechanisms.

To test the approach to software-based fault detection of section 4.8, a mechanism

to inject transient faults was developed, as shown in Figure 7.10. This mechanism

comprises of two parts. The first part is running on the host computer and was

developed as a Windows Form Application in Visual Studio 2013. This provides a

Graphical User Interface (GUI) to inject a fault in the processing unit software. A

snapshot of the GUI is shown in Figure 7.11, which allows a user to select a

distributed computing node, processor core, registers for the injection of faults. After

selecting parameters, the user can send a command by pressing a ‘send’ button. Due to

the bus architecture, this command message is broadcast to all processing units of the

FTDC system. However, the UART of each processing unit can discard the message at

S. No. Component Required Size

(KB)

Implementation

Size (KB)

1 Code Memory 12.316 KB 16 KB

2 Data Memory 5.81 KB 8 KB

3 Non-Volatile

Stable Storage

0.2 KB 1 KB

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

171

a hardware level without interrupting the processor, if the address of the processing

unit inside the message is not matched.

Host Computer
Fault-Injection

Software

Processing Unit
of MPSoC-1

Processing Unit
of MPSoC-n

Processing Unit
of MPSoC-2

RS-422

...
0x11,0x81

Processor ID (9-bit Auto
Address Detection)

Fault Code

Master

Slaves

Figure 7.10: Fault Injection Mechanism.

Figure 7.11: Host Software for Fault Injection.

7.5.1 Transient Fault Injection

To inject transient faults in the running application software, the mechanism shown in

Figure 7.12 was developed. The mechanism can inject faults in the processor registers,

peripheral registers and the data content of the main memory. This mechanism

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

172

receives a fault injection command via the RS-422 interface from the host computer

software. After the command reception, the command message is placed on a queue

‘QueueforFaultMsg’ for later use by the fault injection task. The fault injection task

‘TaskforFaultInject’ is a low priority task that executes only, if no other task is ready

to execute. The execution time for the interrupt service routine (ISR) is carefully

controlled, and it does not last for more than 150 ns. This small period of time does not

affect the execution of the actual application tasks. The execution of

‘TaskforFaultInject’ injects a fault in the processing unit of MPSoC. Once the fault is

injected, the detection method, proposed in section 4.8, gets activated and detects the

fault anomaly.

InterruptEvent

RS-422 Interrupt
Handler for Fault

Registration

QueueforFaultMsg

TaskforFaultInjection
(Low Priority)

Execute and Inject

Fault Code

Targets

CPU Registers

Peripheral
Registers

Data contents of
main memory

Figure 7.12: Transient Fault Injection Mechansim.

7.5.2 Permanent Fault Injection

A permanent fault causes an error that leads to the failure of the system. In case of the

MPSoC distributed computing system, there can be various reasons for permanent

faults. The common causes are the malfunctioning of memory, processor and

watchdog timer (WDT). The malfunctioning of the components can be caused by

internal structural failures, particularly a fault in the processor registers. To develop

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

173

such a fault injection mechanism to cover all components is a very laborious task, and

so in this thesis, we only cover permanent fault injection-related failure of a processor.

This mechanism is essential for the validation of the permanent SDC fault detection

algorithm, presented in section 4.8.2.

Fault injection of permanent SDC errors is not possible in the hard processor.

Therefore, a soft IP MicroBlaze processor was used for that. To test the proposed

permanent fault detection method, a complete embedded system based on the

MicroBlaze processor was designed and implemented on the programmable logic side

of the Zynq FPGA, as shown in Figure 7.13. In order to inject a fault into the

configuration memory of the implemented system, an existing Soft Error Mitigation

(SEM) controller from Xilinx was integrated with the design to provide access to the

internal configuration access port (ICAP) of the Zynq FPGA. This core is capable to

receive commands via a simple UART. Also, it is designed to connect with the ICAP

interface for the injection of a fault at any location of the configuration memory of the

Zynq FPGA. The detailed circuit diagram is shown in Figure C.4 (Appendix C).

MicroBlaze Processor
AXI Bus, and associated Peripherals

Xilinx Soft Error
Mitigation(SEM)

Controller
Serial IF ICAP

Figure 7.13: Permanent Fault Injection Mechanism.

7.6 Experimental Setup and Results

Experimental Setup: The experimental setup for the distributed system demonstrates

the required system behavior, i.e. tasks are migrated to healthy computing nodes when

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

174

a node fails and upon recovery. The details of the configuration for the setup are given

in Table 7.7. It comprises three distributed nodes, implemented on the Xilinx Zynq

FPGA devices of three ZEDBoard, connected via communication networks as shown

in Figure 7.14. Each node is implemented as an MPSoC that includes the Zynq ARM

dual-core processor and MicroBlaze processor. The application software runs on the

ARM dual-core processor, while the fault management software runs on MicroBlaze.

Both the application and fault management software are implemented in C using

FreeRTOS.

Table 7.7: Prototyping System Parameters.

Parameter Value

Number of Nodes 3

Mission Task Set Simulated

AMFT Communication

Slot Time (ms)

100 ms

AMFT TDMA Cycle

Time

(100 x 3) ms

Inter-AMFT

Communication Network

CAN @ 1Mbps

Main Bus/Network CAN @ 1Mbps

Development Board ZEDBoard

Mission Task Set: For the purpose of this prototyping effort, a simulated mission task

set, based on representative spacecraft on-board computing tasks, was implemented,

which is summarized in Table 7.8. The main task characteristics that were considered

were task period T and state data size 𝑡𝑠𝑠𝑖𝑧𝑒. We assumed that all tasks v are periodic

and requires executing after a certain period. Furthermore, the worst case execution

time (WCT) of each task (v 1, v 2 …) is less than or equal to its period T. The state of a

task comprises a set of values that must be check-pointed for the future execution of

the task. It is similar to a priori knowledge, which is required to get the current output

values from a task. The task state size 𝑡𝑠𝑠𝑖𝑧𝑒 and the value of the state depend on the

nature of the task. In the mission task set, we assume that all tasks are periodic with a

different task period, T , and state data sizes 𝑡𝑠𝑠𝑖𝑧𝑒. The data values for each task state

are initially equal to zero. Each mission task periodically updates its state data and

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

175

outputs a condensed form of the current value of the state data on the serial terminal

(the condensed form is generated by summing all the bytes comprising the state data).

Rationale and Assumptions: The proposed approach deals with fault-tolerance at an

architectural level, where the failure of an entire computing node is compensated for.

Fault-tolerance within a node and at the communication level is not considered. We

assume that the network and the implementation of the AMFT are fault-tolerant. A

failure of a node can be a temporary failure caused by single event effects (SEEs), or it

can be a permanent failure caused by malfunction of electrical components. Also, we

assume that the implementation of the AMFT block is dual-redundant, and its failure

behaviour is fail-silent. Furthermore, a failure of an AMFT results in a failure of the

complete node. However, the failure of a processing unit is handled by its associated

AMFT.

UART

Fault Injection Software

AMFT Bus

Main Bus

Figure 7.14: Experimental Setup.

Table 7.8: Mission Task Set

Mission Task

(v)

Task Period

(T) (ms)

State Data Bytes

(𝒕𝒔_𝒔𝒊𝒛𝒆)

Initial State

Values

 (𝒕𝒔𝟎)

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

176

Task-1 50 100 0…0

Task-2 100 200 0…0

Task-3 150 300 0…0

Task-4 200 400 0…0

Task-5 300 500 0…0

Experimental Results: During the experimental testing and validation of the MPSoC

design fault detection latency, reconfiguration time, 𝑡𝑅𝑒𝑐𝑜𝑛𝑓. , and number of state

rollbacks, 𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 , were observed.

Fault Detection: The fault detection algorithms presented in section 4.8 were

implemented and tested by injecting transient as well as permanent SDC faults. For that

the fault injection mechanism, described in section 7.5 was used. In addition to the

SDC fault detection, the AMFT FDIR task, which monitors physical signals;

temperature, voltage, current and WDT for the failure detection of each distributed

node, is also tested. The faults were injected into the various components of an MPSoC

node, and the detection latency was measured as shown in Figure 7.15. The lowest

detection latency value was observed in the case of CPU registers when a transient fault

was injected into the CPU registers. This is due to the transient fault detection

algorithm, proposed in section 4.8.1, which immediately checks processed variables for

errors. For all other faults, the detection mechanism was implemented as a separate

task. The detection latency of all other faults depends on the period of their execution.

The execution period of the fault detection task 𝑡𝐹𝐷_𝑃𝑒𝑟𝑖𝑜𝑑 for various components such

as peripheral registers, data contents of memory, temperature/voltage/current signals,

watchdog timer, CPU microarchitectural elements, was carefully selected, considering

the severity nature of each fault.

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

177

Figure 7.15: Fault Detection Latency.

The fault detection latency results showed that maximum detection latency was

observed for the peripheral registers and CPU microarchitecture elements faults that

should be less than or equal to 100 ms. The fault detection latency values are highly

important as they affect the distributed system reconfiguration time, when tasks are

migrated to other nodes.

Reconfiguration Time: The reconfiguration time tReconfig, defined in section 6.2.1.1 is

the time required to configure the distributed system. It includes detection time and

migration time. Figure 7.16 shows the measured reconfiguration time for the defined

configuration system setup and simulated task set. It is evident from the results that the

reconfiguration time is variable and does not depend on the state data size. However,

the state data size indirectly affects the communications slot time, which increases the

fault message transmission time. For the particular settings of 300 ms communication

cycle and 100 ms slot time, the fault message time can vary from 50 to 300 ms. This is

due to the slot-based communication on the AMFT network, where fault messages can

only be sent during the allocated slot.

The Permanent Fault detection time is the second highest value that directly

contributes to the reconfiguration time. The value of the permanent fault detection 𝑡𝐷

depends on the execution period of the detection task, 𝑡𝐹𝐷_𝑝𝑒𝑟𝑖𝑜𝑑 , and the fault

0

20

40

60

80

100

120

C
P

U
R

e
gi

st
e

rs

D
at

a
C

o
n

te
n

ts
 o

f
M

e
m

o
ry

P
e

ri
p

e
ra

l R
e

gi
st

e
rs

Te
m

p
e

ra
tu

re

V
o

lt
ag

e

C
u

rr
e

n
t

W
at

ch
d

o
g

Ti
m

e
r

C
P

U
M

ic
ro

ar
ch

it
ec

u
re

…

Transient Faults Permanent Faults

Detection
Time(ms)

Fault Detection Latency

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

178

detection processing time, 𝑡𝐹𝐷_𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 . For different faults, the execution period

𝑡𝐹𝐷_𝑝𝑒𝑟𝑖𝑜𝑑 was different, therefore it can vary from 20 to 105 ms.

The third time value that contributes a small increase to the reconfiguration time is

the ‘Scheduling and Task Start time 𝑡𝑇𝑀 . When a task is migrated to another node

following a failure, it needs to be scheduled and started. The value of 𝑡𝑇𝑀 depends on

the processor speed, current workload, and the scheduling scheme used. Figure 7.15

shows that this time is also variable and can vary from 2 to 4 ms.

The upper bound value of the reconfiguration time tReconfig is fixed and should

always be less than 400 ms for this particular system configuration. This value of the

reconfiguration time tReconfig is very less as compared to traditional standby redundant

computing systems used in space applications. In traditional systems, the switching

time from a failed computer to the redundant computer is around 3000 ms [226].

Figure 7.16: Reconfiguration Time.

State Data: The state data 𝛥𝑆𝐷 represents the task’s input values, which are required in

order for the task to generate output values, whenever it is executed. Larger state data

size, 𝑡𝑠𝑠𝑖𝑧𝑒, affects the transmission time, 𝑡𝑇𝑋 , and correspondingly the communication

time slot, 𝑡𝑐𝑠 , of the TDMA cycle. Figure 7.17 shows the measured values for the

transmission time 𝑡𝑇𝑋 and correspondingly the minimum slot time 𝑡𝑐𝑠. This shows a

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

179

linear relationship between the state data size 𝑡𝑠𝑠𝑖𝑧𝑒 and the transmission time 𝑡𝑇𝑋. We

also observed that a node which shares computing load of a failed node will require

more transmission time 𝑡𝑇𝑋 on the communication network due to more number of

states. Therefore, a suitable value for the slot time 𝑡𝑐𝑠 is selected to cover all possible

failure scenarios. Equation 7.1 is used for the theoretical calculation of transmission

time 𝑡𝑇𝑋 on the AMFT CAN network.

𝑡𝑇𝑋 = (
1

𝑅
) ∗ 𝑇𝐵 ∗ 𝑂𝐵 + 𝐼𝐹𝑆 ∗ 𝑁𝐹

7.1

where

𝑅 = 𝐶𝐴𝑁 𝑆𝑝𝑒𝑒𝑑 𝑖𝑛 𝐵𝑖𝑡𝑠/𝑠

𝑇𝐵 = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐵𝑖𝑡𝑠

𝑂𝐵 = 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝐵𝑖𝑡𝑠

𝐼𝐹𝑆 = 𝐼𝑛𝑡𝑒𝑟𝑓𝑟𝑎𝑚𝑒 𝑆𝑝𝑎𝑐𝑖𝑛𝑔

𝑁𝐹 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠/𝑚𝑒𝑠𝑠𝑎𝑔𝑒

State Rollback: During the normal operation of the proposed FTDC system, task’s

states are stored on each node. It is essential to resumes a task when it is started on

another node following a failure. This ensures the integrity of a fault-tolerant

computing system. During the experimental evaluation, state rollbacks 𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 for

the different tasks were observed as shown in Figure 7.18. These observations were

made for the earlier defined mission task set. We observed that state rollbacks

𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 are varied with the task period T. For large task period, T=300 ms, the

number of state rollbacks was small and equal to one state rollback only. However, for

a small task period T=50 ms, the number of state rollbacks was large and equal to

seven rollbacks.

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

180

Figure 7.17: State Data Size, Transmission Time, and Communication Time Slot.

Figure 7.18: Number of State Rollbacks and Task Period.

7.7 Multiprocessor System-on-chip for a CubeSat

Mission

CubeSat is a miniature satellite. It has a mass equal to 1 kilogram and volume equal to

1000 cm
3
. It is mainly used for technology demonstration and educational purposes.

Although its size is small, it requires all the computing functions of a normal satellite.

These functions include satellite control, data handling, power/thermal management,

and the ground communications. Each of these is usually implemented as standalone

printed circuit boards. This makes the CubeSat overcrowded and very small physical

0

2

4

6

8

10

12

100 200 300 400 500

Time (ms)

State Data Size (Bytes)

Transmission Time

Minimum
Communication Slot
Time

0

2

4

6

8

50 100 150 200 250 300

State Rollback

Task Period

Task Period vs State Rollback

Max. Rollback

Min. Rollback

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

181

space is left for the actual payload equipment. Also, it is not possible to make CubeSat

design fault-tolerant by providing extra redundant computing units.

To avoid these problems, the proposed approach to fault-tolerant distributed

computing could be applied to CubeSat. In this section a novel multiprocessor system-

on-chip CubeSat (MPSoC-CubeSat) design for fault-tolerant distributed computing is

proposed. This design implements all the functions on a single chip, reducing its size

significantly in comparison to the traditional board-level design. In addition, it allows

task migration to make the system fault-tolerant. The design of the MPSoC-CubeSat is

shown in Figure 7.19.

Spare Computing
Resource

High-Speed On-chip Main Network

AMFT

Power/Thermal
Management

AMFT

On-chip AMFT Network

On-Board Data
Handling

AMFT

Payload
Processing

AMFT

Attitude
Determination

and Control
AMFT

Communications

AMFT

Ananlogue/
Digital IO

Processing

MPSoC-CubeSat

Sensors
(Health,
Payload) Actuators

RF Based
Band

Figure 7.19: Design of Multiprocessor System-on-chip CubeSat (MPSoC-CubeSat).

It comprises multiple computing modules and communication networks, housed on

a single chip. These modules are similar to the nodes in the proposed FTDC approach.

One of the on-chip networks is used for the communications of the computing

modules while the other is used for the communications of the AMFT blocks. All the

IOs are attached to a single input-output module for digital and analogue data. In the

MPSoC-CubeSat, the functionality of the AMFT block is similar, except the decision

for the chip power-off, which is handled by the OBDH only.

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

182

As the whole satellite computing functions are integrated on a single chip, it

reduces the physical size and electrical power consumption. Unlikes, traditional

CubeSat design, MPSoC-CubeSat design allows rapid integration and modification

adapting to the needs of a particular mission.

7.7.1 Implementation of MPSoC-CubeSat PCB Design

In lieu of a prospective Leicester CubeSat mission, a Printed Circuit Board (PCB)

complying with its specifications was designed. The PCB design was developed in

Altium Designer v10.2 [227] and main features of the PCB design are stated as

follows:

 A 12 Layer PCB which complies with CubeSat specifications.

 The design adapts our proposed MPSoC scheme, i.e. one MPSoC-CubeSat on a

single PCB.

 The majority of components and PCB layout are space qualified.

 It is a standalone unit, with own power regulators, SDRAM (16x128)x2=512MB,

Flash Memory 512Mb, CAN 2561 interfaces, USB 2.0 to UART bridge.

 The main clock is 33.333 MHz. The internal PLL of FPGA takes the main clock

and converts it to 666.67 MHz. The AMFT processing unit takes a separate clock

of 100 MHz clock.

 MPSoC has dedicated ADC interface using analogue inputs and sensor’s data

processing.

 The interface of 20 I/O available for additional daughter cards, e.g. for SpaceWire

and WiFi modules.

 Debugging and Programming interface via JTAG.

The PCB Layout and its Bill of Materials (BoM) is given in Appendix D.

7.8 Summary

A novel MPSoC based approach to fault-tolerant distributed computing system was

proposed for space applications. The proposed MPSoC design was implemented and

http://www.altium.com/

Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing

183

tested for functional validation, for which appropriate experimental setup was

developed. This experimental setup allowed observations of the scheme behaviour at

run-time. For instance, the tasks are being added, dropped or reconfigured and faults

injected at software and hardware level.

A key observation was the behaviour of the proposed system under a failure

scenario of the computing nodes. In the traditional redundant system, a failure of a

computing node can cause degradation or be catastrophic for the whole distributed

system. This failure behaviour depends on the criticality of the functions it holds. The

MPSoC design reduces this damage to a minimum level by utilizing the power of

multiple processors. Thus, making a distributed computing system computationally

efficient and more reliable without the need for a spare computing node for fault-

tolerance. This reduces the overall design cost and makes the overall system

economical. In addition to tolerating faults, an essential aspect of the proposed

architecture is its ability to resume operations on a healthy node with a recent state

data values.

The traditional space computing redundant system requires time-consuming

switching operation from primary to a redundant node in case of a failure. It can take

several minutes if ground commanding is used. The obtained experimental results on

the reconfiguration time are promising. The small, deterministic value of the

reconfiguration time showed that a failure could be immediately masked by migrating

tasks to another healthy node. It reduces the system downtime, thus improving the

overall availability of the system, an essential feature of space computing systems.

184

Chapter 8

8.Case Study: Fault-Tolerant Distributed AOCS

Computer

In this chapter, performance analysis of the proposed approach to fault-tolerant

distributed computing (FTDC) is carried out under near realistic constraints and

requirements using a time critical space application, namely satellite Attitude and

Orbit Control System (AOCS). First, the developed AOCS application is specified

and its task set is defined and adapted to measurable parameters. Then the requisite

AOCS task set is mapped on the distributed computing nodes and the AMFT system is

configured. The AOCS is implemented using three MPSoC based nodes using the

MPSoC design in Chapter 7, which are configured to operate as a distributed

computing system. Experimental results are obtained, which are analysed and

evaluated by a MATLAB AOCS model. The SDC fault detection algorithms, proposed

in section 4.8 are also analysed and compared for performance and efficiency.

8.1 Attitude and Orbit Control System

AOCS controls the attitude and orbit of a spacecraft. Attitude control refers to the

system which checks and corrects the orientation of a spacecraft with reference to an

inertial frame of reference, whereas orbit control refers to a system that checks and

sets the desired spacecraft position in orbit.

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

185

The AOCS computer receives data from sensors and executes complex algorithms

to determine the desired orbit and attitude. It generates appropriate commands for the

actuators to compensate for the errors in the desired and actual orientation and

position, as shown in Figure 8.1. This set of operations is carried out in a control loop

during the entire life of the spacecraft. Also, the AOCS computer has an external

interface to accept commands from On-Board Data Handling (OBDH) Computer as

well as from the Ground Station. AOCS also generates its state (current mode of

operation) in the form of telemetry data, which provides information about the

spacecraft orientation, as well as position in orbit.

Spacecraft Actuators

SensorsEstimator

Control Error

Sensor Noise,
Misalignment

Controller

Estimation
Models

Desired

Estimate

+
-

Disturbances
Attitude & Orbit Control Computer

TelemetryCommand

Figure 8.1: Block Diagram for Attitude and Orbit Control System.

8.2 Rationale for Distributed AOCS

The main requirements which demand a distributed AOCS are as follows:

 In a single spacecraft mission, advanced attitude and orbit control for future

spacecraft are needed to provide improved pointing accuracy, reliability, faster

response, and on-board autonomy. These demands cannot be met with a

centralized design.

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

186

 In a multi-spacecraft mission, to fly spacecraft in a formation, a distributed

spacecraft control is essential. A Spacecraft Formation Flying (SFF) mission

consists of a set of satellites, flying in a close configuration. Their geometry is

accurately measured and controlled, requiring the distributed spacecraft to exert

collaborative control of their relative positions and orientations. Contrary to a

centralized control, distributed maintenance of the spacecraft formation is more

reliable because it reduces the delay in performing the control of formation

geometry and eliminates the chances of a single point of failure. Despite being

very challenging, formation flying missions are the only solution to achieving a

high-quality resolution synthetic aperture that is otherwise impossible to

achieve. Table 8.1 lists a few Spacecraft Formation Flying missions.

Table 8.1: Spacecraft Formation Flying Missions.

Mission Launch

Date

Formation Type # of

Spacecraft

Application

Prisma

[228]

June 2010 Trailing formation with 10

cm distance to each other.

2 Autonomous

Formation Flying

Demonstration

TanDEM-

X [229]

June 2010 Trailing formation with

250/500 m distance to each

other.

2 High-Resolution

Interferometric

SAR

Proba-3

[230]

Scheduled

to be

launched

in 2018

Trailing formation with 25 to

250 m distance to each other.

2 Formation Flying

Technology

Demonstration

8.3 Design of a Distributed Attitude and Orbit

Control

The design of a distributed AOCS starts from the requirement specifications that follow

design processes, application structure, task set and its mapping to actual physical

nodes. The requirement specifications include parameters, such as accuracy,

operational modes, reliability, and computational performance. The functional design

processes involves mapping of the requirement specifications into functional design

units.

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

187

8.3.1 Requirement Specifications

 AOCS shall maintain fine pointing attitude accuracy during the payload

operations, while during the rest of the time it shall maintain coarse pointing

accuracy. Also, AOCS shall be able to correct the orbit, whenever required.

 AOCS should be computationally efficient and able to perform autonomous

attitude and orbit adjustment without ground control.

 AOCS shall accept ground commands to perform attitude and orbit correction. It

shall also provide attitude measurement via telemetry data. Furthermore, it shall

provide information via telemetry to allow diagnostic on board the spacecraft.

 AOCS shall be able to reconfigure itself in the case of a node failure. This

requires that the migration of tasks of a faulty node should be handled timely and

reliably.

8.3.2 AOCS Sensors and Actuators

Based on the requirement specifications in section 8.3.1, three attitude sensors, one

orbit sensor and two types of actuators were selected as detailed in Table 8.2. These

are the minimum sensors and actuators set, i.e. essential to meet the AOCS

requirement specifications.

Table 8.2: AOCS Sensors and Actuators.

Function Sensors/Actuators

Attitude Measurement Sun Sensor, Magnetometer and Rate Gyro

Orbit Measurement GPS

Attitude Control Magnetorquer

Orbit Control Thrusters

8.3.3 Functional Design Processes

In our design process, AOCS application consists of four main processes, as shown in

Figure 8.2. The input process is responsible for reading and formatting the sensor data

in such a way that it is acceptable for the next process. The determination process

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

188

estimates the spacecraft orbit and attitude by using sensor data, an estimation algorithm,

and available models. The output of this process is an estimate of the position in orbit,

angles, and angular rates. The next process is the controller process that can adapt to

multiple configurations depending upon the selected mode of operation. In our AOCS

application design, in total six operational modes of the controller process are possible

as detailed in Table 8.3. The essential modes are detumbling, payload, normal and orbit

control. The detumbling mode is used for initial rate reduction after the spacecraft

separation from the launcher while the payload mode is used for the fine pointing of the

spacecraft. If the error is within the predefined limits, a normal execution mode is

used. The final process is the output process that handles writing commands for

actuators.

Input
Process

estimate_Attitude()

Computer Attitude Angles and
Angular Velocity

SunModel(date,time)

Computer local sun line
vector

FieldModel(date,time)

Computer local
geomagnetic field vector

estimate_orbit()

estimate spacecraft orbit
position

Read_SS
()

Read_MM
()

Read_RateGyro
()

Read_GPS()

Mode Select

Attitude & Orbit Determination
Process

Detumbling_Controller
()

Compute rate and output
torque

Orbit_Controller()

Compute thrust and
corresponding pulse width

Controller Process

Write_Thruste
r()

Output Process

UPSE

Write_MT()

AOCE

Thrusters

Magnetorquer

Attitude Controller

normal_Controller()

Compute torque

Tx, Ty

AOCS Computer

Orbit_Model()

spacecraft orbit position

Mode Select

payload_Controller()

Compute torque

Figure 8.2: Design Processes for Attitude and Orbit Control Application.

Table 8.3: AOCS Modes of Operations.

Mode of Operation Mode Description

Standby mode Only Telecommand and Telemetry tasks are active. There is no attitude

and orbit control, so all the AOCS units are powered off except the

computer itself. This mode is typically used, when the satellite is still

inside the launcher or during the first and second stage after launch.

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

189

Detumbling mode This mode is typically activated after separation from the launcher and

used for angular velocity rate reduction. The b-dot controller is used for

this mode.

Payload Mode This mode is used for fine attitude adjustment for the payload operation.

Safe Mode Entered, when there is no reconfiguration possible.

Normal Mode In normal mode, if the error is within predefined limits, no actuation is

provided.

Orbit Control Mode This mode is used when orbit change is required.

8.3.4 Distributed AOCS Software Structure

The distributed AOCS software structure mainly consists of three parts: application

software, support software and fault management software as shown in Figure 8.3. The

support and fault management software for the distributed AOCS computer are

implemented as presented in section 4.6.1 and section 5.5, respectively. The design

and implementation of the AOCS application, represented as a suitable task set, which

meets the requirements specified in section 8.3.1 and their corresponding mapping to

distributed computing nodes, are explained in the following section.

AOCS Application Software

System Support Software

Fault Management

Software

Processing

Unit

AMFT

Figure 8.3: Distributed AOCS Software Structure.

8.3.4.1 AOCS Task Set

The AOCS computer is responsible for execution of complex algorithms. The

algorithm can be divided into a set of the task, from a computation point of view.

These tasks are computationally intensive, requiring high reliability, high availability,

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

190

and real-time operation throughout their execution. An unfinished task leads to a

failure of AOCS, which jeopardises the space mission, and may cause an in-orbit

collision with other spacecraft. The importance and criticality of the AOCS computer

in spacecraft is the main reason for choosing it for the validation of the proposed

approach. Based on the requirement specifications and chosen sensors/actuators, the

AOCS requisite tasks are derived and measurable parameters are assessed as

summarised in Table 8.4.

Table 8.4: Characteristics of Distributed AOCS Task Set.

AOCS Task Typical

Task

Period, T

(ms)

State Data Size

𝒕𝒔𝒔𝒊𝒛𝒆 (bytes)

Operational

 Modes

Task

Number

Attitude

Measurement and

Anomaly Check

50-300 ms 6 bytes/sensor Detumbling (Only B

Field) Normal and

Payload Mode

Task#1

Attitude

Determination

50-300 ms Attitude angles

and angular rates

(24 bytes)

Normal Mode and

Payload Mode.

Task#2

Attitude Control

- B-dot

50-300 ms

Control Torque,

Tx, Ty, Tz (12

bytes

- Detumbling

Task#3

- PD Control Torque,

Tx, Ty, Tz (12

bytes)

- Normal Mode and

Payload Mode.

Orbit Estimation &

Control

10000 ms 24 bytes Orbit Control Mode Task#4

Telemetry 1000 ms 60 bytes All Task#5

Telecommand Sporadic 8 bytes All Task#6

The common properties of the tasks are:

 Periodic: all tasks are executed periodically with time periods T , which are stated

in Table 8.4. The Telecommand task is an exception.

 Deadline: each task has to be executed within a specified time, considered its

deadline, which is determined from the period T.

 Critical: no single task can be left unexecuted.

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

191

 State Data: State data ∆𝑆𝐷 represents the result on completion of a task, which has

a certain data length, as shown in Table 8.4 and as explained in section 5.3.3.

 Inter-dependant: the outcome of one task can be an input to another task.

 Modes: different modes demand separate tasks and, therefore, have to be

addressed separately.

The above parameters allow us to quantify measures to determine the performance

of the proposed approach. The rest of this section presents a functional description of

the AOCS application tasks.

Attitude Measurement and Anomaly Check Task: Firstly, this task is responsible

for taking attitude sensor data measurements and passing the values to the attitude

determination task. Sun and magnetometer sensors are used for the attitude

measurements. A sun sensor measures the components of the sun vector ‘s’ in body

frame ‘sb’ , while a magnetometer measures the components of the field vector ‘m’ in

the body frame, mb. Secondly, this task detects and isolates the anomalies in the

magnetometer and sun sensors. It can detect an anomaly by a single and a multi-sensor

consistency check.

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒:

1 𝑣𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡_ 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝐶ℎ𝑒𝑐𝑘𝑇𝑎𝑠𝑘 {

2 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

3 𝑤ℎ𝑖𝑙𝑒(1){

4 𝑠𝑏 = 𝑟𝑒𝑎𝑑_𝑠𝑠()

5 𝑚𝑏 = 𝑟𝑒𝑎𝑑_𝑚𝑚()

6 𝑟𝑎𝑡𝑒𝑏 = 𝑟𝑒𝑎𝑑_𝑔𝑦𝑟𝑜𝑟𝑎𝑡𝑒()

7 𝑠𝑠𝑜𝑘 = 𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝐶ℎ𝑒𝑐𝑘𝑆𝑆(𝑠𝑏)

8 𝑚𝑚𝑜𝑘 = 𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝐶ℎ𝑒𝑐𝑘𝑀𝑀(𝑚𝑏)

9 𝑟𝑎𝑡𝑒𝑜𝑘 = 𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝐶ℎ𝑒𝑐𝑘𝐺𝑅(𝑟𝑎𝑡𝑒𝑏)

10 𝑆𝑤𝑖𝑡𝑐ℎ(𝑚𝑜𝑑𝑒){

11 𝑐𝑎𝑠𝑒 𝐷𝐸𝑇𝑈𝑀𝐵𝐿𝐼𝑁𝐺:

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

192

12 𝑠𝑒𝑛𝑑𝑚𝑎𝑖𝑛_𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑀𝑠𝑔(𝑚𝑏)

13 𝑠𝑒𝑛𝑑𝑎𝑚𝑓𝑡_𝑀𝑠𝑔(𝑚𝑏 , 𝑚𝑜𝑑𝑒); 𝑏𝑟𝑒𝑎𝑘;

14 𝑐𝑎𝑠𝑒 𝑁𝑂𝑅𝑀𝐴𝐿&𝑃𝐴𝑌𝐿𝑂𝐴𝐷:

15 𝑠𝑒𝑛𝑑𝑚𝑎𝑖𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑠𝑔
(𝑠𝑏 ,𝑚𝑏 , 𝑟𝑎𝑡𝑒𝑏)

16 𝑠𝑒𝑛𝑑𝑎𝑚𝑓𝑡_𝑀𝑠𝑔(𝑠𝑏, 𝑚𝑏 , 𝑟𝑎𝑡𝑒𝑏 ,𝑚𝑜𝑑𝑒); 𝑏𝑟𝑒𝑎𝑘;

17 𝑑𝑒𝑓𝑎𝑢𝑙𝑡:

18 }

19 }

20 }

Attitude Determination Task: The purpose of this task is to obtain the spacecraft

attitude. The task uses measurements of sensors and mathematical models [231] to

collect components of vectors in the body and inertial reference frames. The

components of these vectors are utilized by the attitude algorithm to obtain the

spacecraft attitude in the form of Euler’s angles or quaternions. Attitude determination

algorithms are broadly classified into non-recursive and recursive methods. Non-

recursive algorithms do not require a priori estimate and determine the attitude based

on the current measurements only. These algorithms require minimum two

measurement vectors to determine the complete attitude. Examples of non-recursive

algorithms are Triad, Quest, and Davenport’s q-method. Recursive algorithms utilize

past information and current measurements to obtain attitude. The most commonly

used recursive algorithm is Kalman filtering. In our implementation of distributed

AOCS, a triad algorithm was selected for the attitude determination task. This task is

periodic and its period of operation depends on the period of the control cycle. The

typical value of the task’s period is given in Table 8.4. The specification of the attitude

task is as follows:

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

193

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒:

1 𝑣𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑇𝑎𝑠𝑘 {

2 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

3
𝑤ℎ𝑖𝑙𝑒(1){

[𝑡𝑖𝑚𝑒, 𝑜𝑟𝑏𝑖𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛] = 𝐺𝑃𝑆()

4 𝑠𝑖 = 𝑠𝑢𝑛_𝑀𝑜𝑑𝑒𝑙(𝑡𝑖𝑚𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

5 𝑚𝑖 = 𝐼𝐺𝑅𝐹_𝑀𝑜𝑑𝑒𝑙(𝑡𝑖𝑚𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

6 𝑆𝑤𝑖𝑡𝑐ℎ(𝑚𝑜𝑑𝑒){

7 𝑐𝑎𝑠𝑒 𝑃𝐴𝑌𝐿𝑂𝐴𝐷:

8 𝑅𝑏𝑖 = 𝑡𝑟𝑖𝑎𝑑(𝑠𝑏, 𝑠𝑖,𝑚𝑏 , 𝑚𝑖)

9 𝑠𝑒𝑛𝑑𝑚𝑎𝑖𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑠𝑔
(𝑅𝑏𝑖)

10 𝑠𝑒𝑛𝑑𝑎𝑚𝑓𝑡𝑀𝑠𝑔
(𝑅𝑏𝑖); 𝑏𝑟𝑒𝑎𝑘;

11 𝑐𝑎𝑠𝑒 𝑁𝑂𝑅𝑀𝐴𝐿:

12 𝑅𝑏𝑖 = 𝑡𝑟𝑖𝑎𝑑(𝑠𝑏, 𝑠𝑖,𝑚𝑏 , 𝑚𝑖)

13 𝑠𝑒𝑛𝑑𝑚𝑎𝑖𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑠𝑔
(𝑅𝑏𝑖)

14 𝑠𝑒𝑛𝑑𝑎𝑚𝑓𝑡𝑀𝑠𝑔
(𝑅𝑏𝑖); 𝑏𝑟𝑒𝑎𝑘;

15 𝑑𝑒𝑓𝑎𝑢𝑙𝑡:

16 }

17 }

18 }

1 𝑣𝑜𝑖𝑑 𝑡𝑟𝑖𝑎𝑑(𝑠𝑏 , 𝑠𝑖,𝑚𝑏 , 𝑚𝑖){

2 𝑡1𝑏 = 𝑠𝑏 ;

3 𝑡2𝑏 =
𝑠𝑏 𝑥 𝑚𝑏

|𝑠𝑏𝑥 𝑚𝑏|
 ;

4 𝑡3𝑏 = 𝑡1𝑏 𝑥 𝑡2𝑏;

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

194

5 𝑡1𝑖 = 𝑠𝑖 ;

6 𝑡2𝑖 =
𝑠𝑖 𝑥 𝑚𝑖

|𝑠𝑖𝑥 𝑚𝑖|
 ;

7 𝑡3𝑖 = 𝑡1𝑖 𝑥 𝑡2𝑖;

8 𝑅𝑏𝑡 = [𝑡1𝑏 , 𝑡2𝑏 , 𝑡3𝑏];

9 𝑅𝑖𝑡 = [𝑡1𝑖, 𝑡2𝑖, 𝑡3𝑖];

10 𝑅𝑏𝑖 = 𝑅𝑏𝑡 𝑥 𝑅𝑖𝑡 = [𝑡1𝑏 , 𝑡2𝑏 , 𝑡3𝑏] [𝑡1𝑖, 𝑡2𝑖, 𝑡3𝑖]
𝑇;

11 }

Attitude Control Task: The attitude control task is responsible to calculating the

applied torque force to spacecraft in order to correct its orientation. The input to this

task can come from the attitude determination task or directly from sensors depending

upon the mode of operation. This task is operational in different modes. A wide

variety of controllers have been used to control the spacecraft attitude. These include

B-dot [232], Constant Gain [233], Proportional Integral Derivative (PID) [234], Linear

Quadratic Regulator [235], and non-linear H∞ controller. For our design of distributed

AOCS, we use a B-dot controller and a PD controller. The B-dot controller is

employed for the detumbling mode, while the PD controller is used for the payload

pointing of the spacecraft. Both controllers are implemented in the attitude control

task, one of these is activated based on the AOCS mode of operation. The attitude

control task is periodic and its typical period T of execution is given in Table 8.4. The

following shows the specification of the task:

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒:

1 𝑣𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑇𝑎𝑠𝑘 {

2 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

3 𝑤ℎ𝑖𝑙𝑒(1){

4 𝑆𝑤𝑖𝑡𝑐ℎ(𝑚𝑜𝑑𝑒){

5 𝑐𝑎𝑠𝑒 𝐷𝐸𝑇𝑈𝑀𝐵𝐿𝐼𝑁𝐺:

6 𝐵𝑡−1
𝑏 = 𝑚𝑏; % 𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 𝑎𝑡 𝑡 − 1

7 𝑑𝑒𝑙𝑎𝑦 (∆𝑡);% 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑑𝑒𝑙𝑡𝑎 𝑡

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

195

8 𝐵𝑡
𝑏 = 𝑚𝑏 ; % 𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 𝑎𝑡 𝑡

9 𝐵𝑑𝑜𝑡 =
[𝐵𝑡

𝑏 − 𝐵𝑡−1
𝑏]

∆𝑡
 ; % 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐵

10
𝑢 = [𝑀𝑥,𝑀𝑦, 𝑀𝑧]

𝑇

= − [𝑘1 𝐵𝑥𝑑𝑜𝑡 , 𝑘2 𝐵𝑦𝑑𝑜𝑡 , 𝑘3 𝐵𝑧𝑑𝑜𝑡]
𝑇;% 𝑡𝑜𝑟𝑞𝑢𝑒, 𝑢

11 𝑠𝑒𝑛𝑑𝑚𝑎𝑖𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑠𝑔
(𝑢) % 𝑆𝑒𝑛𝑑 𝑚𝑠𝑔 𝑓𝑜𝑟 𝑢 𝑜𝑛 𝑚𝑎𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

12 𝑠𝑒𝑛𝑑𝑎𝑚𝑓𝑡𝑀𝑠𝑔
(𝑢); 𝑏𝑟𝑒𝑎𝑘; % 𝑆𝑒𝑛𝑑 𝑚𝑠𝑔 𝑓𝑜𝑟 𝑢 𝑜𝑛 𝐴𝑀𝐹𝑇 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

13 𝑐𝑎𝑠𝑒 𝑁𝑂𝑅𝑀𝐴𝐿&𝑃𝐴𝑌𝐿𝑂𝐴𝐷:

14 % 𝑐𝑎𝑙. 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑎𝑛𝑔𝑙𝑒𝑠

15 𝛼𝑒 = [𝜙 − 𝜙𝑑 ; 𝜃 − 𝜃𝑑 ; 𝛹 − 𝛹𝑑]𝑇

16 % 𝑐𝑎𝑙. 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑎𝑛𝑔𝑙𝑒𝑠

17 𝜔𝑒 = [𝜔𝑥 − 𝜔𝑥
𝒅 ; 𝜔𝑦 − 𝜔𝑦

𝒅 ; 𝜔𝑧 − 𝜔𝑧
𝒅]𝑻

18 % 𝐾𝑝 𝑎𝑛𝑑 𝐾𝑑 𝑎𝑟𝑒 𝑔𝑎𝑖𝑛 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑓𝑜𝑟 𝑃𝐷 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

19 𝑢 = −𝐾𝑝 ∗ 𝛼𝑒 ∗ 𝐾𝑑 𝜔𝑒 % 𝑃𝐷 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑡𝑜𝑟𝑞𝑢𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑢

20 𝑠𝑒𝑛𝑑𝑚𝑎𝑖𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑠𝑔
(𝑢) % 𝑆𝑒𝑛𝑑 𝑚𝑠𝑔 𝑓𝑜𝑟 𝑢 𝑜𝑛 𝑚𝑎𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

21 𝑠𝑒𝑛𝑑𝑎𝑚𝑓𝑡𝑀𝑠𝑔
(𝑢); 𝑏𝑟𝑒𝑎𝑘;% 𝑆𝑒𝑛𝑑 𝑚𝑠𝑔 𝑓𝑜𝑟 𝑢 𝑜𝑛 𝐴𝑀𝐹𝑇 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

22 𝑑𝑒𝑓𝑎𝑢𝑙𝑡:

23 }

24 }

Telemetry Task: The telemetry task gathers health and AOCS parameters. This task is

also of a periodic nature and its telemetry parameters depend on the algorithms. The

details of the telemetry parameters are given in Appendix E. On execution, it acquires

the telemetry data and stores them into the 𝑇𝑀𝐿𝑖𝑠𝑡 data structure, which is transmitted

to the main and the AMFT networks.

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒:

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

196

1 𝑣𝑇𝑒𝑙𝑒𝑚𝑒𝑡𝑟𝑦𝑇𝑎𝑠𝑘 {

2 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

3 𝑤ℎ𝑖𝑙𝑒(1){

4 𝑇𝑀𝐿𝑖𝑠𝑡 = 𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑇𝑀();% 𝑇𝑒𝑙𝑒𝑚𝑒𝑡𝑟𝑦𝐷𝑎𝑡𝑎 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛

5
𝑠𝑒𝑛𝑑𝑚𝑎𝑖𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑠𝑔

(𝑇𝑀𝐿𝑖𝑠𝑡) % 𝑆𝑒𝑛𝑑 𝑚𝑠𝑔 𝑓𝑜𝑟 𝑇𝑀𝐿𝑖𝑠𝑡 𝑜𝑛

𝑚𝑎𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

6 𝑠𝑒𝑛𝑑𝑎𝑚𝑓𝑡𝑀𝑠𝑔
(𝑇𝑀𝐿𝑖𝑠𝑡);% 𝑆𝑒𝑛𝑑 𝑚𝑠𝑔 𝑓𝑜𝑟 𝑇𝑀𝐿𝑖𝑠𝑡 𝑜𝑛 𝐴𝑀𝐹𝑇 𝑛𝑒𝑡𝑤𝑜𝑟𝑘}

7 }

8 }

Telecommand Task: The telecommand task is a sporadic task. Each command can be

issued from the OBDH computer or directly from ground via a Telecommand

decoding system. The pseudo code for the telecommand task is given below. As soon

as the command arrives, it is received by all distributed computing nodes via the main

network. The node responsible for the execution of the telecommand task executes it

and sends a successful execution message on the AMFT network. All the other nodes,

remove the stored command. If a command does not execute within the allocated time

(𝑡 + 𝑑𝑡), the next node responsible for the command executes it.

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒:

1 𝑣𝑇𝑒𝑙𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑇𝑎𝑠𝑘 {

2 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

3 𝑤ℎ𝑖𝑙𝑒(1){

4 𝑖𝑓(𝑇𝐶𝐸𝑉𝐸𝑁𝑇 == 𝑡𝑟𝑢𝑒){ % 𝑇𝑒𝑙𝑒𝑐𝑜𝑚𝑎𝑚𝑛𝑑 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝐸𝑣𝑒𝑛𝑡

5 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑇𝐶); ;% 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑇𝐶

6 𝑠𝑒𝑛𝑑𝑎𝑚𝑓𝑡𝑀𝑠𝑔
(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙); ;% 𝑇𝐶 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙, 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 𝑇𝐶

7 }

8 }

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

197

Orbital Estimation & Control Task: Satellite orbit drift due to atmospheric drag and

gravitational pulls. Orbits can be determined and corrected by ground-based tracking

systems [236, 237], or this can be done on board spacecraft [238]. The former method

has a disadvantage over the later one, because it requires a ground intervention to

control the orbit of a satellite. However, the later method requires complex orbit

determination and control algorithms to be processed on board the spacecraft that are

difficult to run on centralized low-performance computers. Contrary to a centralized, a

distributed AOCS computer can run these complex algorithms easily because of the

inherent computational power of multiple nodes. In the design of the distributed

AOCS computer, the estimation and control task is responsible for correcting the

spacecraft orbit. First, this task determines the spacecraft orbit by extended Kalman

filtering (EKF) and then forces are applied by delta-V actuators. The period of the

orbit estimation and control task is very large and the exact value depends on the

altitude and mission. A typical value of the period T for this task is given in Table 8.4.

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒:

1 𝑣𝑂𝑟𝑏𝑖𝑡𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛&𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑇𝑎𝑠𝑘 {

2 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

3 𝑤ℎ𝑖𝑙𝑒(1){

4 % 𝑂𝑟𝑏𝑖𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

5 𝑟𝑎𝑤𝐺𝑝𝑠𝑑𝑎𝑡𝑎 = 𝐺𝑝𝑠𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡();

6 𝑝𝑟𝑒𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔𝐴𝑛𝑑𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑟𝑎𝑤𝐺𝑝𝑠𝑑𝑎𝑡𝑎, 𝐼𝐺𝑆);

7 𝑠𝑡𝑎𝑡𝑒𝑠𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑜𝑟𝑏𝑖𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔();

8 𝑜𝑟𝑏𝑖𝑡𝑃𝑟𝑖𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑜𝑟𝑏𝑖𝑡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛();

9 % 𝑂𝑟𝑏𝑖𝑡 𝐶𝑜𝑛𝑡𝑟𝑜𝑙

10 𝑢 = −𝑘𝑥

11 }

Now that the AOCS Task Set has been described, their mapping to the distributed

computing nodes is described next, in which three nodes are employed for evaluation

purposes.

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

198

8.3.4.2 Tasks-to-Nodes Mapping

In order to distribute the AOCS task set across the FTDC system, they have to be

mapped correctly to the individual computing nodes. The reason being, that one task

outcome may be used as an input to another task and, therefore, task execution

requires this inter-dependency information to be taken care of unmistakeably.

In our case, there are six tasks listed in Table 8.4, which comprise the AOCS Task

Set and 3 distributed computing nodes are used in the implemented FTDC system.

Figure 8.4 shows how the Task Set can be mapped to these nodes. The mapping

decisions are described below:

 Task # 5 and Task #6 being critical and are mapped to all nodes.

 Task #1 is mapped to node 1. Task #2 cannot execute till Task #1 has completed.

 Task #2 and Task #3 are mapped to node 2. Task #3 cannot execute till Task #2

has completed.

 Task#4 is mapped on node 3.

Attitude

Measurement&

AnamolyCheck

(Task#1)

Attitude

Determination

(Task#2)

Sensors

Telemetry

(Task#5)

Telecommand

(Task#6)

Orbit Estimation

&Control

(Task#4)
Attitude Control

(Task#3)

Telemetry

(Task#5)

Telecommand

(Task#6)

Telemetry

(Task#5)

Telecommand

(Task#6)

Actuators

Actuators

Distributed

Computing

Node-3

Distributed
Computing

Node-1

Distributed

Computing

Node-2

Figure 8.4: Mapping of AOCS Tasks.

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

199

8.4 Distributed AOCS Computer Implementation

and Testing

The fault-tolerant AOCS computer consists of three distributed nodes, which are based

on the MPSoC design presented in 7.3. Each processing unit communicates with its

peers via a separate network, from the network used by AMFT. The targeted network

high data rate time-triggered network (TTEthernet) was not available and therefore,

the lower speed CAN network was used. Since CAN is not time triggered, and to make

its behaviour deterministic, the TDMA scheme was used. A time slot is allocated to

each node, and only that node can communicate during that time slot, i.e. transmit its

information. The time slots are repeated after a set time, known as the TDMA cycle. In

the TDMA cycle, the slot time is based on the size of the data in bits, and the data rate

of the communication network, as well as the minimum time, a node can wait before

its information becomes invalid. The details of the fault-tolerant distributed AOCS

system parameters are given in Table 8.5.

Table 8.5: Distributed AOCS System Parameters.

8.4.1 System Configuration

The following sections discuss the slot allocation separately for the processing unit

and the AMFT block.

TDMA Slot Time: AMFT has to communicate its information to its peers, and the

shared information is the task outcome in the form of the state data ∆𝑆𝐷. For instance,

from Table 8.4, the largest state data size 𝑡𝑠𝑠𝑖𝑧𝑒 is that of Task #5, which is 60 bytes.

Parameter Distributed AOCS

Computer

Number of Nodes 3

Task Set AOCS

AMFT Network Slot Time (ms) 30, 300

AMFT Network Speed (Mbps) CAN @ 1Mbps

Main Network Slot Time (ms) 100

Main Network Speed (Mbps) CAN @ 1Mbps

Development Board ZedBoard

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

200

That state data has to be passed to its peer node within the shortest time possible,

which is determined based on the communication speed as follows. The controller area

network (CAN) used for the AMFT communication is limited to 1 Mbps. According to

Equation 7.1 to transmit state data size 𝑡𝑠𝑠𝑖𝑧𝑒 of 60 bytes on CAN, it requires a

transmission time 𝑡𝑇𝑋 of 1002 µsec. Based on that, a slot duration 𝑡𝑐𝑠 of approximately

2 ms is sufficient to transmit the state data 𝑡𝑠𝑠𝑖𝑧𝑒 of 60 bytes, ensuring that the data is

reliably delivered before the start of the next slot.

The second communication parameter is the slot repetition time, which is derived

from the tasks period T. For example, from Table 8.4, the minimum task period

corresponds to 50 ms, which means that the data must be delivered within 50 ms time

interval before the next execution of the same task. A repetition period, equal to the

task period T, helps to maintain the updated data state of a particular task during the

task migration process.

AMFT Configuration: As the AMFT is deployed in a distributed computing

scenario, additional information has to be incorporated in the AMFT. This information

is in the form of configuration tables, i.e. Node and Task Migration Tables, which are

stored in the AMFT as described in Section 5.3.4.

 Node Table: This table holds information about the active and non-active nodes in

the system. In the initial state, it is assumed that all nodes in the system are active.

and the number of the nodes in the distributed system are known. As soon as the

connection is established, the node table is updated, based on the current status of

each node. The table is also updated in case of a node failure, as necessary.

 Task Migration Table: This table holds critical information about the initial Task

Mapping, as well as possible migration scenarios of tasks in case of faulty nodes.

Therefore, each AMFT knows how to migrate tasks when a certain node fails.

In this case study, all possible scenarios of node failures are defined statically (off-

line). Similarly the above two tables are both set off-line, supporting all scenarios,

which are needed to assess the performance of the proposed architecture.

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

201

8.4.2 Experimental Results

During the testing of the distributed AOCS computer, the following parameters were

measured to evaluate the performance: (i) reconfiguration time, (ii) state rollback and

(iii) computational performance. The rest of this section describes the obtained results

for each of these measurements. For the purpose of testing, faults were injected in the

distributed AOCS computer using the fault injection mechanism presented in section

7.5. Two main scenarios were used, which were based on a TDMA cycle time of 30

ms and 300 ms, respectively

8.4.2.1 Reconfiguration Time

The reconfiguration time is measured for a different number of nodes failures. As

shown in Table 8.6 the reconfiguration time, 𝑡𝑅𝑒𝑐𝑜𝑛𝑓, is largely dependent upon the

TDMA cycle time and its value is always less than or equal to the TDMA cycle time

plus the fault detection time 𝑡𝐷.

Table 8.6: Reconfiguration Time Measurements

8.4.2.2 Task State Rollback

During normal operation, each task state of the AOCS is checkpointed. The task state

checkpointing data is provided to each migrated task, when it restarts its execution on

the target node. The rollback of the task state depends on the reconfiguration time

Failure

Scenario

AMFT

Slot

Time,

𝐭𝐜𝐬 (ms)

AMFT

Networ

k

TDMA

Cycle

Time

(ms)

Fault

Detectio

n Time,

𝐭𝐃 (ms)

Fault

Message

Transmis

sion

Time, 𝐭𝐅𝐌

(ms)

Transmis

sion

Time, 𝐭𝐓𝐗

(ms)

Migratio

n Time,

𝐭𝐓𝐌 (ms)

Reconfiguration Time

(ms),
𝐭𝐑𝐞𝐜𝐨𝐧𝐟 = 𝐭𝐃 + 𝐭𝐅𝐌 +
 𝐭𝐓𝐗 + 𝐭𝐓𝐌

Measured

Value (ms)
Expected

Value

(ms)

One node
Fails

10 30 101 8 to 26 1 ~1 111 to 129 < 140

Two nodes

Fail

102 10 to 28 1 ~1 114 to 132

One node

Fails

100 300 110 98 to 290 1 ~1 210 to 402 < 430

Two nodes
Fail

120 100 to 295 1 ~1 222 to 417

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

202

𝑡𝑅𝑒𝑐𝑜𝑛𝑓 and task period 𝑇. The measured value of the rollback of each task state for

the AOCS is stated in Table 8.7. It is evident from the results that the number of the

task state rollbacks, 𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 , is directly related to the TDMA cycle and the

reconfiguration time. For a large value of TDMA cycle, the rollback increases linearly

considering a constant task period T.

As observed above, the state data, ∆𝑆𝐷 , which is stored on the node following a

node failure may be a few execution cycles old in case of the 300 ms network cycle

time, so the task state would be “rolled back” to the previous state. This rollback only

momentarily affects the AOCS output, which is acceptable for this type of applications

and will be further analysed in section 8.5.1. However, the number of rollbacks,

𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 , can be reduced by employing a high-speed communication protocols for the

AMFT network.

Table 8.7: Rollback of Task State.

8.4.2.3 Computational Performance

To assess the computational performance of the proposed fault-tolerant distributed

AOCS computer, it was compared with a centralized AOCS computer and an AOCS

Task

Task Task

Period, T

(ms)

State Data,

∆𝑺𝑫

State Data

Size

 𝐭𝐬𝐬𝐢𝐳𝐞(𝐛𝐲𝐭𝐞𝐬)

No. of state

Rollback

𝐧𝐫𝐨𝐥𝐥𝐛𝐚𝐜𝐤of

task state

No. of state

Rollback

𝐧𝐫𝐨𝐥𝐥𝐛𝐚𝐜𝐤of

task state

TDMA Cycle

Time= 30

(ms)

TDMA Cycle

Time= 300

(ms)

1 Attitude

Measurement &

Anomaly Check

100 Sun,

Magnetometer

and rate gyro

18 1~2 2~5

2 Attitude

Determination

100 Attitude

Angles and

angular rate

24 1~2 2~5

3 Attitude Control 100 Torque vector 12 1~2 2~5

4 Orbit estimation

and Control

10000 Position,

Velocity

values and

Torque vector

36 0~1 0~1

5 Telemetry 1000 AOCS

Parameters

60 0~1 0~1

6 Telecommand Aperiodic Command 8 N/A N/A

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

203

computer with active replication in terms of Dhrystone Millions Instruction per

Seconds (DMIPS). Both the FT distributed and the replication AOCS computers are

comprised of three computing nodes. In all three cases, the computing nodes of the

AOCS computers were implemented using the MPSoC design, presented in Chapter 7.

For each AOCS computer, the total available DMIPS computing performance was

obtained from Equation 8.1, where 𝐷𝑀𝐼𝑃𝑠𝑛𝑜𝑑𝑒 is a Dhrystone MIPs per MPSoC node

and 𝑛 is the number of nodes per computer. Dhrystone MIPs per second of 2380.95

was obtained by running the Dhrystone code on each individual computing node

(implemented in the Xilinx Zynq FPGA on the ZedBoard).

The computational performance results for the three computer configurations are

shown in Figure 8.5 in terms of (i) total available DMIPS, (ii) utilized DMIPS, (iii)

overhead DMIPS due to fault-tolerance management and (iv) remaining available

DMIPS (calculated by subtracting the total available DMIPS from utilized DMIPS).

As it can be seen from Figure 8.5, compared to the centralized, the active replication

AOCS and the distributed AOCS computers have higher total available DMIPS

because they both are comprised of three computing nodes. The comparison of the

three computers in terms of the utilized DMIPS shows that the computational demand

of the distributed DMIPS is almost equal to the centralised computer DMIPS, while

the active replication AOCS computer is less computationally efficient, which is due

to the replication of the tasks on each node, causing a significant portion of the DMIPS

to be spent on replicas execution and maintenance. The slightly higher utilised DMIPS

in the proposed distributed AOCS computer, compared to the centralised case, is due

to its fault management and task migration support. The active replication computer

requires much higher overhead DMIPS too, as all the three computing nodes execute

the same tasks and further computing resources are required for voting and consensus

among the replicated tasks. Compared to the replication computer, the distributed

computer requires considerably lower overhead DMIPS. The centralized computer has

the lowest overhead DMIPS, which is not surprising, as it uses a single computing

node running an internal FT scheme that does not require interaction among

computing resources. The remaining DMIPS of the distributed AOCS computer are

significantly higher than the two other options, providing additional computing power

that can be utilized for enhancing its reliability or computational performance. Based

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

204

on these results, it can be concluded that the task-oriented fault-tolerant distributed

approach is not only reliable but it is also computationally efficient.

𝐷𝑀𝐼𝑃𝑆𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = 𝐷𝑀𝐼𝑃𝑆𝑛𝑜𝑑𝑒 ∗ 𝑛 (8.1)

Figure 8.5: Comparison of Computational Performance

8.5 Analysis of Experimental Results

This section presents an analysis of the obtained experimental results in terms of

computational integrity and fault coverage.

8.5.1 Computational Integrity

It was mentioned in section 3.6 that the computational integrity of the fault-tolerant

computing system depends on the reconfiguration time, 𝑡𝑅𝑒𝑐𝑜𝑛𝑓 , and the number of

the task state rollbacks, 𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘. In fact, the computational integrity of the FTDC

system increases with decreasing the values of both parameters. Computational

integrity requirements are application specific. This section is dedicated to evaluating

the computational integrity of the implemented FT distributed AOCS.

Reconfiguration Time: The reconfiguration time 𝑡𝑅𝑒𝑐𝑜𝑛𝑓 should be minimized and

ideally should be lower than the minimum task period 𝑇 to achieve high computational

integrity. It is evident from the results given in Table 8.6 that when the cycle time was

set to 30 ms, the reconfiguration time was measured to about 114 ~ 132 ms, and for

0

2000

4000

6000

8000

DMIPS

Computational Performance

Centralized AOCS
Computer, n=1

AOCS Computer with Active
Replication, n = 3

Proposed Fault-Tolerant
Distributed AOCS
Computer, n=3

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

205

the large TDMA bus cycle of 300 ms, reconfiguration time was about 222 to 417 ms,

which is higher than the acceptable limit of 100 ms (minimum task period). Although,

this time value is deterministic, it will cause a task state to rollback, when the task

resumes its function on other node.

To keep the reconfiguration time 𝑡𝑅𝑒𝑐𝑜𝑛𝑓 small, the sum of the network TDMA

cycle time and fault detection time 𝑡𝐷 should be less than the minimum task period 𝑇.

The value of the TDMA cycle time can be reduced by employing a high speed

communication network while the fault detection 𝑡𝐷 time can also be reduced by the

fault detection task period 𝑡𝐹𝐷_𝑃𝑒𝑟𝑖𝑜𝑑 as discussed in section 7.6.

Effect of State Rollback on Computational Integrity: It is evident from Table 8.7,

that a maximum of 5 rollbacks can be observed during the migration process. To

assess the state rollback impact on the AOCS, the associated effects were simulated in

Simulink.

Figure 8.6 shows a Simulink model for the Attitude Determination and Control System

(ADCS). The model is comprised of an attitude proportional derivative (PD)

controller, spacecraft attitude dynamics block, external disturbances block and a set of

sensor blocks. The connections of the each block to the other blocks are as follows:

 The input desired angles, 𝜙𝑑 , 𝜃𝑑, 𝛹𝑑, and angular rates 𝜔𝑥
𝑑 , 𝜔𝑦

𝑑, 𝜔𝑧
𝑑,

are subtracted from the attitude determination angles 𝜙 , 𝜃, 𝛹, and angular rates

𝜔𝑥 , 𝜔𝑦, 𝜔𝑧 by the vector subtraction blocks. The output of these blocks is the

required difference in the desired and actual attitude of the spacecraft which

needs to be corrected.

 The attitude difference in terms of angles [𝜙 − 𝜙𝑑 ; 𝜃 − 𝜃𝑑 ; 𝛹 − 𝛹𝑑]𝑇and

angular rates [𝜔𝑥 − 𝜔𝑥
𝒅 ; 𝜔𝑦 − 𝜔𝑦

𝒅 ; 𝜔𝑧 − 𝜔𝑧
𝒅]𝑻 as obtained in previous

step is passed to the proportional derivative (PD) controller block for attitude

correction.

 The PD controller calculates the required torques 𝑢 = [𝑇𝑥, 𝑇𝑦 , 𝑇𝑧] for the

attitude correction of a spacecraft. However, before applying to spacecraft, the

external disturbances [𝐷𝑥, 𝐷𝑦 , 𝐷𝑧] are added by the disturbance block.

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

206

 The value of the torque 𝑢 is applied to the spacecraft, which represents the

spacecraft attitude dynamics model. The output of the spacecraft dynamics

block is fed back to the attitude sensor and determination blocks.

The following describes the insertion of state rollback in the ADCS Simulink model

and its effects on the performance of the ADCS.

 In order to insert the state rollback into the Simulink ADCS model, the PD

controller input was switched to some fixed attitude angles ϕ , θ,Ψ, and angular

rate ωx , ωy, ωz that are represented as angle error and angular rate error in the

ADCS Simulink model. This momentary pause of the input angles and angular

rates to error angles and angular rates values produces an effect similar to a

node failure in a distributed AOCS Computer.

 The time of the pause depends on the number of the task state rollbacks. From

Table 8.7, a maximum of 5 rollbacks were observed, however to be more

realistic, six rollbacks were inserted into the PD controller input angles and

angular rates, which corresponds to a pause of 1800 ms. The exact instance of

the pause can be anywhere, but in this case a pause of 1800 ms as inserted at the

simulation time of 50 sec, as shown in Figure 8.7.

 The corresponding output observed values of the PD controller are shown in Figure

8.8, where the change due to the state rollbacks is shown by a thin line and the

actual attitude is represented by a thick line. It is evident from the results that the

momentary rollback did not have a significant effect and recovered quickly.

 The simulation results show that six task state rollbacks is acceptable for this type

of application. This result confirms that the experimentally obtained value of 5 state

rollbacks is within the acceptable margin.

Based on the modelling outcomes above, we conclude that the distributed AOCS

computer meets its computational integrity requirements.

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

207

Figure 8.6: Simulink Model of ADCS

Figure 8.7: ADCS Controller Input with a State Rollback of 6 a) Angles b) Angular Rates

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

208

Figure 8.8: Satellite Attitude with a State Rollback of 6 a) Angles b) Angular Rates

8.5.2 Fault Coverage

As stated in section 3.6, a fault-tolerant system is assessed based on the fault coverage.

As mentioned earlier in section 4.8 and section 5.3.1, both a software-based and a

hardware based fault detection mechanisms were employed. The software-based fault

detection covers mainly faults in the application software that may (i) arise due to a

design error or (ii) propagate as a result of hardware faults. Hardware fault detection is

handled by the AMFT block and uses (i) monitoring of the health status (temperature,

current, voltage), (ii) WDT, and (iii) EDAC signals for errors in the main memory. In

the following section, we only cover the SDC and the hardware faults.

From the experimental observation of the distributed AOCS computer, the fault

coverage for the different methods is shown in Figure 8.9. Any abnormality in the

measured values is reported as a fault. The hardware based methods are capable to

detect all faults related to health signals and memory errors as shown in Figure 8.9.

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

209

With regards to software-based fault detection, only the proposed algorithms for

detection of SDC errors were evaluated for fault coverage, as shown in Figure 7.15.

The transient algorithm covers the temporary faults in the CPU registers, data memory,

and peripheral registers. As the memory faults are covered by a hardware EDAC,

therefore, during the implementation of the SDC algorithm, most of the memory was

not covered. Due to this, the memory fault coverage value observed during the

evaluation was only 20 %. Permanent SDC algorithm covers the faults related to stuck-

at-bit faults and bridging faults in microarchitecture elements. Up to 90% of the

permanent SDC errors due to struck-at-bit in the registers and ALU are detected, while,

in case of bridging faults, the lowest detection capability of 70 % was observed for

ALU bridging faults.

It is evident from the results that the proposed algorithms are capable to detect

transient as well as permanent faults. On any of the above fault detection, the AMFT

block starts the task migration process, enabling fault-tolerance at the architectural

level.

Figure 8.9: Fault Coverage of the FT Distributed AOCS Computer

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

210

8.6 Summary

In this chapter, a novel design of a fault-tolerant distributed AOCS computer was

presented, which uses task migration to tolerate the failure of computing nodes. The

functional design process is presented from the point of the distributed computing

required by the AOCS application, which allows us to understand and observe the

interaction between the various AOCS processes. The developed AOCS task set and

its algorithms were presented.

The AOCS tasks were mapped on a three node FTDC architecture. The hardware

and software design of the AOCS distributed computer was then accomplished. The

hardware design of the proposed computer was realized as a three-node MPSoC based

distributed system. The software part comprised of the AOCS application, system

support tasks and fault management functions were implemented in hardware. The

proposed distributed AOCS computer was tested to evaluate of proposed FTDC

approach under a near-realistic scenario.

The observed results on the reconfiguration time, state rollback, and computational

performance are promising. The small, deterministic value of the reconfiguration time

showed that a failure could be immediately masked by migrating tasks to other healthy

nodes. This reduces the system downtime, thus improving the overall availability of

the system. The observations on the state rollback showed that a task could restart its

execution with recent state data ∆𝑆𝐷 values minimizing the amount of computational

loss, thus increases the computational integrity. The observations on the computational

performance showed that a significant improvement is achieved by using task

migration as compared to other approaches.

In the last section, the approach is further evaluated for computational integrity

and fault coverage. This showed that the achieved computational integrity is sufficient

for the proposed AOCS application. The results on the fault coverage showed that

major faults are covered, which are required to detect a node failure at the architectural

level.

In conclusion, the proposed approach to fault-tolerant distributed computing was

demonstrated with regards to a satellite AOCS, demonstrating promising results, and

future applications. However, the approach can easily be extended and made

Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer

211

applicable to intra-spacecraft and inter-spacecraft payload applications, as well as to

other mission critical application domains.

212

Chapter 9

9.Conclusions and Future Work

This thesis addresses current requirements of the space industry for fault tolerant High

Performance Embedded Computing.

9.1 Research Summary

Current and future space missions demand High Performance Embedded Computing

that has to be highly reliable. We propose the use of a distributed computing

architecture to address the high-performance demand, and determine a suitable fault

management scheme to make the computing reliable. To address the proposed

solution, we have investigated the existing literature from the point of view of existing

architectures. However, after a detailed review, it was found that no single solution

could meet the requirements. Although distributed computing has been employed in

space applications, the fault tolerance capability relies on physical redundancy

schemes, rendering them highly inefficient and costly. Therefore, a new approach that

utilizes the best of distributed computing and a novel distributed fault management

scheme is proposed.

The FTDC architecture comprises three main components, a node, a

communication network and a fault management scheme. There are two types of

nodes suggested: a distributed computing node and an input-output node. A high-

speed communication network is recommended to interface all nodes. To determine

Chapter 9. Conclusions and Future Work

213

the faults in the nodes, a fault management scheme based on distributed coordination

is proposed and employed. The fault management scheme requires a separate

hardware in parallel with the processing unit within the distributed computing node.

This enables a high reliability and availability measure of the scheme. The

performance parameters that did not exist in the literature had to be developed to

assess our or any other architecture in question.

The proposed fault management scheme is named AMFT, which has been

designed from scratch, developed and implemented on hardware, and assessed through

newly developed assessment methods. The performance of the AMFT is deemed fully

satisfactory, as a standalone unit, as well as when operating in a distributed computing

application, after performing a rigorous set of tests.

The proposed architecture improves the current state of the art in addressing a gap

in the present knowledge and engineering practice as well providing a design that is

practically realizable. This has been proven by the implementation of an MPSoC based

distributed computing system that was found to perform to specification.

To further examine the performance, the FTDC architecture was mapped to a

realistic space AOCS application, which showed promising results. The system met

the rigorous objectives of the AOCS application performing timely task migration in

the event of a fault. The effect of the critical issue of rollback of state on system

performance was shown to be minimal and sets a baseline for future work.

9.2 Contributions to the State of the Art

The following major contributions to the state-of-the-art have been accomplished in

this research:

 Novel architecture for Fault-Tolerant Distributed Computing is proposed. The

first ever architecture for task oriented fault-tolerant distributed cooperative

computing, which applies to intra-spacecraft and inter-spacecraft fault-tolerant

distributed computing, has several unique features which make it different from

the spacecraft conventional computing architectures. First, it divides a computing

system into multiple groups, where each group has its dedicated TDMA based

communication network, making the system operations more reliable and timely.

Chapter 9. Conclusions and Future Work

214

The segregation of computing and input-output nodes avoids the problems of

isolation. Furthermore, separate networks for application tasks and fault

management functions do not affect the performance of each other. In particular,

the architecture is proposed for space applications, however, numerous other

embedded applications can also benefit from it.

 Novel Adaptive Middleware Design for Distributed Fault-Tolerance Management

is proposed. The adaptive middleware for fault-tolerance (AMFT) block, which

provides the necessary functionality for fault management and seamless

adaptability of a distributed system by tasks migration in case of a failure is the

first work that has addresses fault management by migrating tasks in a distributed

system. In addition, this is the first work that has adopted a novel approach of task

oriented fault-tolerant distributed computing for on-board spacecraft computing

systems.

 Novel MPSoC based Design for Fault-Tolerant Distributed System is designed and

implemented. The MPSoC based approach to the implementation of fault-tolerant

distributed computing system is the first ever MPSoC based design of fault-tolerant

computing node that uses multiprocessor based design to integrate middleware and

application functions. Contrary to traditional design of on-board computing node,

this is more flexible, computational efficient while simultaneously requires less area

and volume. Its design flexibility allows its use for intra or inter-spacecraft

distributed computing applications by just modifying the communication network.

 New Fault-Tolerant Distributed Attitude and Orbit Control System Computer for

use on board satellites is designed. The AOCS design presented in this thesis is the

first ever distributed design of a satellite AOCS computer which is able to migrate

tasks following a failure of a computing node. The new MPSoC based design was

implemented and fully tested and evaluated.

 Novel Fault Detection Algorithms are proposed and designed. The two novel

algorithms for detection of silent data corruption combined with symptom-based

fault detection require a very small amount of detection time. Contrary to other

detection algorithms, are most suited to distributed computing in terms of resource

utilization.

Chapter 9. Conclusions and Future Work

215

 New Reliability and Availability Models for fault-tolerant computing systems are

proposed. The reliability and availability models for the evaluation and

comparison of the proposed approach are the first attempt of using mathematical

models for fault-tolerant computing systems, which allowed comparing it against

the conventional spacecraft architecture and schemes. The evaluation shows that

proposed approach of fault-tolerant distributed computing is more efficient in

terms of factors reflecting reliability, availability and high performance computing.

 A Fault Injection Mechanism is proposed and implemented, which is particularly

suitable to distributed computing. The mechanism to inject faults into distributed

computing system is different to other schemes in that it is particularly designed to

test distributed computing systems. It is capable of injecting a fault in any of the

computing nodes via a software interface on a host computer software. This eases

the testing of a distributed computing system under the influence of faults.

 MPSoC design for a CubeSat mission is designed and implemented. The features

of the MPSoC make it suitable for the computing system design of future very

small satellites, e.g. satellites with a mass < 1 kg. For in-orbit demonstration of the

proposed approach of fault-tolerant distributed computing, a printed circuit board

(PCB) of MPSoC for a CubeSat mission was designed and implemented.

9.3 Future Work

The proposed architecture and the underlying fault management scheme, has shown

promising results in the proof of concept as covered in this thesis. However, due to

limited scope of this research there is room for future studies in the following

directions.

 Extensive performance testing of the Middleware block in the light of scalability,

by adding more nodes, in multiple groups. The various implementation of AMFT

can be further studied and assessed for the performance improvement.

 Fault detection method can be further studied in light of false alarms.

 The communication network can be further researched, both physical aspects as

well as the multiple access scheme employed.

Chapter 9. Conclusions and Future Work

216

 Resource sharing in the multicore processor scenario can be further researched to

minimize access times.

 PCB designed be realized and deployed in future CubeSat based mission, for space

qualification.

 Utilize FPGA on the fly reconfigurability to migrate hardware modules, to address

the task dependency of special hardware.

 Employ an actual application for a spacecraft payload such as image compression

or synthetic aperture radar (SAR), and assess the performance.

 The underlying hardware technology for the implementation of design needs further

investigation in terms of radiation susceptibility.

217

Appendix A.

A.Definitions

Definition A.1: Fault

A fault is a hardware or software defect that can lead to the system entering an

incorrect state. Faults are classified as transient, permanent and intermittent based on

their duration.

Definition A.2: Error

A fault manifests itself as an error, such as a bit that is a zero instead of a one. An error

is that part of the system state which is liable to lead to system failure.

Definition A.3: Failure

A failure is a state in which the system is restricted from performing its required

functions.

Definition A.4: Fault-Tolerant

It is an ability of a computing system to continue its service in the event of failure.

Failures can be a power, memory or processor failure.

Definition A.5: Fault Avoidance

An approach to protect a system so that happening of faults in a system can be

avoided. Common fault avoidance methods in spacecraft are shielding, parts screening

and rigorous testing.

Appendix A

218

Definition A.6: Fault Detection

A system cannot tolerate faults unless it is aware of it. Fault detection is a process,

which enables a system to know its faults.

Definition A.7: Fault Isolation

Fault isolation is the property of a system that when something fails, the effect of the

failure is limited in scope.

Definition A.8: Error Recovery

When a fault is detected, the processor must take action to recover from its effects.

Recovery from errors is characterized as roll forward and roll back.

Definition A.9: Fault Diagnosis

The process of fault identification is called fault diagnosis.

Definition A.10: Fail-Safe

A fail-safe device is one that responds in a way that will cause no harm in case of a

failure.

Definition A.11: Fail-Stop

In case of a fail-stop system, the system stops producing outputs when it fails.

Definition A.12: Fail-Symmetric

The fault results in the same erroneous value being sent to all other redundant units.

Definition A.13: Fail-Asymmetric

The fault results in different erroneous values being sent to other redundant units.

Definition A.14: Real-Time and Non-Real-Time Systems

Real-time systems include safety-critical systems in which correct behaviour depends

upon meeting the real-time requirements of the system. In the Non-Real-Time system,

no strict time limit is required for the computing operations.

Definition A.15: Asynchronous Systems

In asynchronous systems, there is no global clock, and no assumptions about process

execution speeds and message delivery delays are made.

Definition A.16: Synchronous Systems

Appendix A

219

In synchronous systems, where computers share a common notion of time, the relative

speeds of processes and communication latency are bounded.

Definition A.17: Reliability

The reliability of a system at time t is the probability that system is operating correctly

from time zero until time t.

Definition A.18: Availability

The availability of a system at time t is the probability that the system is available for

the time t duration.

Definition A.19: Mean-time-to-failure (MTTF)

It is the amount of the time that a system is available between outages or failures.

Definition A.20: Mean-time-to-Repair (MTTR)

It is the amount of time to repair a system and bring it back online.

Definition A.21: Mean-time-between-failure (MTBF)

It is the amount of time that elapses between one failure and the next failure. It is

mathematically equal to the sum of the MTTF and MTTR.

Definition A.22: Fault Monitoring

Fault monitoring observes the behaviour of the system for checking errors and

malfunctions in the software and hardware of computer system.

Definition A.23: Task Migration

Tasks that were running on a processor that subsequently failed are migrated to other

healthy processor or processors are termed as task migration.

220

Appendix B.

B.Derivation of Reliability

B.1 Reliability of Series System

In the series system, components are connected in a series configuration. A failure of

one of the system components fails the entire system. Conceptually, a series system is

one that is as weak as its weakest link. A graphical description of a series system is

shown in Figure B.1.

1 2 n

Figure B.1: Series System of n Components

In order to calculate the reliability of the system, usually block diagrams are used

whereby each block having its reliability for a given mission T. The reliability of the

series system is described by equation B.1, if each block reliability differs.

 𝑅𝑠 = 𝑅1 × 𝑅2 × . . . 𝑅𝑛 (B.1)

If components are identical, then the reliability is represented by equation B.2

 𝑅𝑠 = [𝑅𝑖]
𝑛(if all 𝑖 = 1, . . . , 𝑛) (B.2)

Appendix B

221

To obtain equation B.2, statistical knowledge for the derivation of equation B.2 is

essential. In the following section, we will derive the equation B.2 using the statistical

knowledge.

In a series system of "n" components, the following are two equivalent "events":

"System Success" = "Success of every individual component."

Therefore, the probability of the two equivalent events, that define total system

reliability for mission time T (denoted R(T)) must be the same:

 𝑅(𝑇) = 𝑃[𝑠𝑦𝑠𝑠𝑢𝑐𝑐𝑒𝑠𝑠] = 𝑃[𝑐𝑜𝑚𝑝1 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝 2…𝑎𝑛𝑑 𝑐𝑜𝑚𝑝 𝑛] (B.3)

 = 𝑃[𝑐𝑜𝑚𝑝1𝑠𝑢𝑐] … 𝑃[𝑐𝑜𝑚𝑝 𝑛𝑠𝑢𝑐] = 𝑅1(𝑇)… 𝑅1(𝑇) (B.4)

 = 𝑒−𝜆𝑇 … 𝑒−𝜆𝑇 = (𝑒−𝜆𝑇)𝑛 (B.5)

All system components are assumed identical and independent with the same failure

rate "λ". Hence, the entire system reliability R(T) is equal to the product of all

component reliability.

B.2 Reliability of Parallel System

In the parallel system configuration, as long as not all of the system components fail,

the entire system works. As all components of a parallel system are connected in a

parallel configuration, therefore total system reliability is higher than the reliability of

any single system component. A graphical description of a parallel system of "n"

components is shown in Figure B.2.

1

2

n

Figure B.2: Parallel System of m Components.

Appendix B

222

Reliability of a parallel system is derived as follows:

 𝑅𝑠 = 1 − (1 − 𝑅𝑖) (B.6)

 = 1 − (1 − 𝑅1) × (1 − 𝑅2) ×. . . (1 − 𝑅𝑛) (B.7)

If the component reliability differ, or

 𝑅𝑠 = 1 − (1 − 𝑅𝑖) = 1 − [1 − 𝑅]𝑛 (B.8)

If all "n" components are identical: [Ri = R; i = 1, ..., n]

To derive equation B.8, a simple parallel system composed of n = 2 identical

components are considered. The system can survive only if the first component, or the

second component, or both components, survive for mission time, T. The same can be

written in terms of statistical "events":

 𝑅(𝑇) = 𝑃[𝑠𝑦𝑠𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑇] = 𝑃[𝑋1 > 𝑇 𝑜𝑟 𝑋2 > 𝑇 𝑜𝑟 𝐵𝑜𝑡ℎ > 𝑇] (B.9)

 = 𝑃 (𝑋1 > 𝑇) + 𝑃(𝑋2 > 𝑇) − 𝑃(𝑋1 > 𝑇 𝑜𝑟 𝑋2 > 𝑇) (B.10)

 = 𝑅1 (𝑇) + 𝑅2 (𝑇) − 𝑅1 (𝑇) 𝑥 𝑅2 (𝑇) (B.11)

 = 𝑅1 (𝑇) [1 − 𝑅2 (𝑇)] + 𝑅2 (𝑇) + (1 − 1) (B.12)

 = 1 + 𝑅1 (𝑇) [1 − 𝑅2 (𝑇)] − [1 − 𝑅2 (𝑇)] (B.13)

 = 1 − [1 − 𝑅1(𝑇)] [1 − 𝑅2 (𝑇)] (B.14)

 = 1 − [1 − 𝑃(𝑋1 > 𝑇)] [1 − 𝑃(𝑋2 > 𝑇)] (B.15)

This same approach can be extended to an arbitrary number of "n" parallel

components which can be identical or different.

B.3 Reliability of Satellite On-Board Computers

In this section, state-of-the-art OBCs and their reliability values are discussed. Firstly,

a centralized OBC design will be presented. Following that, different OBC designs

will be discussed that use redundancy for fault-tolerance purposes.

Appendix B

223

The reliability of the OBCs in this section is evaluated using the binomial

distribution, referred to as the Bernoulli distribution, which is a simplified and suited

to reliability applications [28]. It applies to a situation in which there are n independent

trials, whereby an event can either occur (success) or not occur (failure). The

probability of success on any one trial is b, and that of failure is 1 − b. The number of

successes is denoted by r. Thus, the probability of r successes in n trials with the

probability of one success being b is given by Equation B.16.

 𝐵(𝑟; 𝑛, 𝑏) = (
𝑛

𝑟
) 𝑏𝑟(1 − 𝑏)𝑛−𝑟

(B.16)

𝑓𝑜𝑟 𝑟 = 0,1,2, … , 𝑛

where:

(𝑛
𝑟
) =

𝑛!

𝑟!(𝑛−𝑟)!
 ≡ number of combinations of n things taken r at a time.

B.3.1 Centralized OBC

In the centralized OBC, shown in Figure B.3, one physical internally redundant OBC

unit is used. Although the OBC is internally redundant, physical damage or functional

failure affecting the complete OBC unit can be catastrophic. Failure of the OBC can

lead to either fail-safe mode or it can cause a complete satellite failure. The reliability

of the centralized OBC, Rcent_obc (t), is measured by the success probability b of the

OBC, which follows an exponential distribution. So Rcent_obc(t) can be represented by

Equation B.17 where λ represents the failure rate of the centralized OBC, as follows:

 𝑅𝑐𝑒𝑛𝑡𝑜𝑏𝑐
(𝑡) = 𝑒−𝜆𝑡 (B.17)

Centralized OBC

Figure B.3: Centralized OBC Reliability

Appendix B

224

B.3.2 Cold Standby Redundant OBC

The cold standby OBC, shown in Figure B.4, is the simplest method to provide

redundancy against failures in an OBC design. In a cold standby redundancy, usually

one identical OBC unit is placed in power off state along with the primary OBC. The

redundant back-up OBC unit is powered up in case of failure of the primary OBC. As

the primary and back-up OBC units are not synchronized, a considerable amount of

time is required for the back-up unit to switch on and to reach a known state. In

addition, a supervisory unit is required for the failure detection, isolation and power-up

of the back-up OBC as shown in Figure B.5. The supervisory unit monitors the OBC

parameters for detection of failures. If the parameter values are violated compared

with the predefined limits; it performs switching of power and IOs from the primary to

the redundant OBC unit.

OBC-1
(Active)

OBC-2
(InActive)

Figure B.4: Cold Standby OBC

Supervisory
Unit

R

P

IOs

Power
Input

Input/Output
Isolation Switch

Figure B.5: Supervisory Unit

The reliability of the cold standby redundant OBC, Rcsb_obc(t), is equal to the sum of

the probabilities of 2 out of 2 and 1 out of 2 working OBCs as represented by Equation

Appendix B

225

B.18. After solving Equation B.18 using the exponential distribution for the

probability of success b, we obtain the overall reliability, Rcsb_obc(t) , for the cold

standby redundant OBC as given by Equation B.21.

 𝑅𝑐𝑠𝑏_𝑜𝑏𝑐 = 𝑅𝑠𝑢𝑝 ∗ [𝐵(2; 2, 𝑏) + 𝐵(1; 2, 𝑏)] (B.18)

 𝑅𝑐𝑠𝑏_𝑜𝑏𝑐 = 𝑅𝑠𝑢𝑝 ∗ (
2

2
) 𝑏2(1 − 𝑏)0 + (

2

1
) 𝑏1(1 − 𝑏)1 (B.19)

 𝑅𝑐𝑠𝑏_𝑜𝑏𝑐 = 𝑅𝑠𝑢𝑝 ∗ (2𝑏 − 𝑏2) (B.20)

 𝑅𝑐𝑠𝑏𝑜𝑏𝑐
(𝑡) = 𝑅𝑠𝑢𝑝 ∗ (2𝑒−𝜆𝑡 − 𝑒−2𝜆𝑡) (B.21)

where:

Rcsb_obc Reliability of cold standby OBC

Rsup Reliability of Supervisor Unit

B(r;n,b) Binomial expression showing ‘r’ out of ‘n’ are healthy [28]

b Probability of Success

λ Failure Rate

The reliability of the cold standby OBC, Rcsb_obc(t), is higher than the reliability of

the centralized OBC, Rcent_obc(t), assuming that the supervisory unit is a high reliability

component too. This is because of the inherent availability of a redundant unit which

can be switched on in case of a failure of the main OBC.

B.3.3 Warm Standby Redundant OBC

In case of warm standby redundancy as shown in Figure B.6, both OBCs are in a

powered on-state. However, only the primary OBC is executing tasks while the back-

up OBC unit is in an idle state. Similar to the cold standby redundancy, a supervisor is

required for the detection, isolation and switch over to the back-up OBC unit in case of

a failure. Optionally, the back-up unit can be used as a supervisor and can perform the

fault tolerance management functions. There is a cost versus reliability trade-off of

Appendix B

226

using an external supervisor against an internally implemented supervisor on the back-

up OBC. Usually, it is preferable to have a separate supervisory unit.

The downtime of the warm standby OBC is considerably less than that of the cold

standby OBC. This is because the switching over to the redundant OBC requires very

less time due to its on-state. So, in terms of availability the warm standby is

comparatively a better option than the cold standby redundant OBC. However, the

reliability of the warm standby OBC is similar and can be represented by Equation

B.21 too.

OBC-1
(Active)

OBC-2
(Active)

Figure B.6: Warm Standby OBC

B.3.4 N-Modular Redundant OBC

The N-modular redundant OBC design comprises more than one OBC units, all of

them running in parallel, as depicted in Figure B.7. The choice of N is based on the

required system reliability and usually a minimum three nodes are used because a two-

node system can only detect a fault but it does not know which one of the two units is

faulty. All units are synchronized, processing the same input information and

generating the same output data. In addition, the final output, which is delivered to the

target system, is derived as a result of a majority voting stage. A voter detects a fault

based upon the majority vote of the module outputs [36]. In majority voting the

number of healthy nodes should always be greater than the number of the faulty nodes

in order for the voter to deliver the correct output.

A failure of the voter in an N-modular redundant OBC can be catastrophic,

leading to the failure of the whole OBC. Therefore, the reliability of the voter unit is

very important. A voter can be implemented in hardware or software. A hardware

voter, as shown in Figure B.8, compares the processors’ internal buses. Its placement

is limited by a certain distance from the main processors because of the need for clock

synchronization among the processors at a fine-grained level. On the other hand, a

Appendix B

227

software-based voter works at a message level, as shown in Figure B.9, whereby each

of the processing units exchanges messages with the voter to generate an output.

Software based voters are more relaxed in terms of synchronization among the

processing units. In software based voting, messages are sent to the voter via

network/bus from each processing unit. The voter then compares the messages and

generates an output for the IOs. A software voter called ‘master/slave’ is implemented

on the master processing unit as a software entity [124]. In a ‘master/slave’ voter

configuration, all units send data to the master for the voted output.

The main drawbacks of the N-modular redundant method are strict clock

synchronization, common mode failures, difficult isolation process, increased fan-

in/fan-out, etc. In addition, it is difficult to resynchronize a node after it has recovered

from a fault. Software voters can alleviate these problems, however, the final voted

output has a higher latency due to the exchange of communication messages.

OBC-1
(Active)

OBC-2
(Active)

OBC-N
(Active)

Voter

Sensor-1 Sensor-2 Sensor-3

Figure B.7: N-Modular Redundant OBC

p1

p2

pn

V
O
T
E
R

MEM

IOs

Figure B.8: Hardware Voter

Appendix B

228

p1

p2

pn

Bus/
Network

Voterm2

mn

m1

IOs

m1 … mn

 mc

 mc

Figure B.9: Software Voter

We consider here the Triple Modular Redundant (TMR) OBC, as the most

common case of an N-modular redundant OBC design. We assume that the voter is an

external hardware entity. The overall reliability of the TMR OBC with a hardware

voter, RTMR_HV(3-2), is given by Equation B.24 as follows:

 𝑅𝑇𝑀𝑅−𝐻𝑉(3−2) = 𝑅𝑣𝑜𝑡𝑒𝑟 ∗ [𝐵(3; 3, 𝑏) + 𝐵(2; 3, 𝑏)] (B.22)

 𝑅𝑇𝑀𝑅−𝐻𝑉(3−2) = 𝑅𝑣𝑜𝑡𝑒𝑟 ∗ (
3

3
) 𝑏3(1 − 𝑏)0 + (

3

2
) 𝑏2(1 − 𝑏)1 (B.23)

 𝑅𝑇𝑀𝑅−𝐻𝑉(3−2) = 𝑅𝑣𝑜𝑡𝑒𝑟 ∗ (3𝑏2 − 2𝑏3) (B.24)

where

𝑅𝑣𝑜𝑡𝑒𝑟: 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑉𝑜𝑡𝑒𝑟

Contrary to the hardware voter, if a software voter is embedded inside the redundant

nodes in a master/slave configuration, then the system reliability with a software voter,

RTMR_SV(3-2) , is represented by Equation B.25 below:

 𝑅𝑇𝑀𝑅−𝑆𝑉(3−2) = (3𝑏2 − 2𝑏3) (B.25)

The success probability b is an exponential distribution, so the probability of the

success b is substituted by e
-λt

 and the reliability of the TMR OBC can be represented

by Equations B.26 and B.27, as follows:

Appendix B

229

 𝑅𝑇𝑀𝑅−𝐻𝑉(3−2)(𝑡) = 𝑅𝑣𝑜𝑡𝑒𝑟 ∗ (3𝑒−2𝜆𝑡 − 2𝑒−3𝜆𝑡) (B.26)

 𝑅𝑇𝑀𝑅−𝑆𝑉(3−2)(𝑡) = (3𝑒−2𝜆𝑡 − 2 𝑒−3𝜆𝑡) (B.27)

Generalized expressions for a maximum number of n nodes in a system with a

hardware and a software voter are given by Equations B.28 and B.29 respectively,

where r represents the healthy number of nodes and k is the summation index, as

follows:

 𝑅𝑇𝑀𝑅−𝐻𝑉(𝑡) = 𝑅𝑣𝑜𝑡𝑒𝑟 ∗ ∑ (
𝑛

𝑘
) 𝑒−𝑘𝜆𝑡 (1 − 𝑒−𝜆𝑡)(𝑛−𝑘)

𝑛

𝑘=𝑟

 (B.28)

 𝑅𝑇𝑀𝑅−𝑆𝑉(𝑡) = ∑ (
𝑛

𝑘
) 𝑒−𝑘𝜆𝑡 (1 − 𝑒−𝜆𝑡)(𝑛−𝑘)

𝑛

𝑘=𝑟

 (B.29)

B.3.5 1:N Redundant OBC

The 1:N redundant system comprises multiple computing units along with a standby

unit. All the primary units have similar functions thus allowing the standby unit to

back-up any of the primary units in case of a failure. The switch over to the back-up

unit is decided by one of the spare units called a checker, which continuously steps

through each of the working units. If the checker disagrees with one of the working

unit, it is assumed to be faulty and is replaced by a spare unit.

230

Appendix C.

C.Implementation Details

C.1 Board Level Implementation

C.1.1 Resources

The resources required to implement the fault-tolerant distributed system depend on

the number of computing nodes that are required, which will be determined by the

requirements of the particular system. A greater number of nodes can be employed to

provide a higher level of fault tolerance for environments in which multiple computing

units may be expected to fail. A greater number of nodes may also be utilized to

provide additional processing power. This must be balanced against the additional

resources required, which is an especially important issue for applications such as

spacecraft systems.

Electrical Power Consumption: Electrical Power is a scarce resource in embedded

computing, particularly on board spacecraft. Therefore, it is essential for a distributed

processing system to utilize electrical power as efficiently as possible. We measured

the electrical power for the AMFT and processing unit using the National Instruments

(NI) LabView 2011 and data Acquisition device [239]. As shown in Figure C.1, the

computing load assigned to the individual units did not have a large impact on the

unit’s power consumption and the total power was almost the same. This is an

important result that shows that migration of the tasks to other computing unit does not

http://web.mst.edu/~cottrell/ME240/Homework/transducers/DAQ/NI%20USB-6221.pdf

Appendix C

231

have a large impact on the node electrical power consumption itself. In distributed

computing system, the total power consumption increases linearly with the number of

nodes. It may be possible to reduce power consumption through the use of dynamic

frequency scaling. As shown in Figure C.2, by decreasing the operating frequency 1/4th

for each node, electrical power of the distributed system can be reduced to half value.

Figure C.1: Effect on Electrical Power with Task Load Variation.

Figure C.2: Effect on Electrical Power with Frequency Variation.

Appendix C

232

C.2 MPSoC based Implementation

C.2.1 Electrical Circuit Diagram

Figure C.3: Circuit Diagram of MPSoC Implementation.

C.2.2 Device Utilization

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 3,551 106,400 3%

Number used as Flip Flops 3,516

Number used as Latches 0

Number used as Latch-thrus 0

Appendix C

233

Number used as AND/OR logics 35

Number of Slice LUTs 4,628 53,200 8%

Number used as logic 4,234 53,200 7%

Number using O6 output only 3,263

Number using O5 output only 135

Number using O5 and O6 836

Number used as ROM 0

Number used as Memory 239 17,400 1%

Number used as Dual Port RAM 64

Number using O6 output only 0

Number using O5 output only 0

Number using O5 and O6 64

Number used as Single Port RAM 0

Number used as Shift Register 175

Number using O6 output only 174

Number using O5 output only 1

Number using O5 and O6 0

Number used exclusively as route-thrus
155

Number with same-slice register load 112

Number with same-slice carry load
19

Number with other load 24

Number of occupied Slices 1,971 13,300 14%

Number of LUT Flip Flop pairs used 5,419

Number with an unused Flip Flop 2,124 5,419 39%

Number with an unused LUT 791 5,419 14%

Number of fully used LUT-FF pairs 2,504 5,419 46%

Number of unique control sets 299

Number of slice register sites lost
1,117 106,400 1%

to control set restrictions

Number of bonded IOBs 20 200 10%

Number of LOCed IOBs 20 20 100%

Number of bonded IOPAD 130 130 100%

IOB Flip Flops 4

Number of RAMB36E1/FIFO36E1s 66 140 47%

Number using RAMB36E1 only 66

Number using FIFO36E1 only 0

file:///E:/xapp1079_zedboard_DC/design/edk_system/implementation/system_map.xrpt

Appendix C

234

Number of RAMB18E1/FIFO18E1s 0 280 0%

Number of BUFG/BUFGCTRLs 5 32 15%

Number used as BUFGs 5

Number used as BUFGCTRLs 0

Number of

IDELAYE2/IDELAYE2_FINEDELAYs
0 200 0%

Number of

ILOGICE2/ILOGICE3/ISERDESE2s
0 200 0%

Number of

ODELAYE2/ODELAYE2_FINEDELAYs
0

Number of

OLOGICE2/OLOGICE3/OSERDESE2s
8 200 4%

Number used as OLOGICE2s 8

Number used as OLOGICE3s 0

Number used as OSERDESE2s 0

Number of PHASER_IN/PHASER_IN_PHYs
0 16 0%

Number of

PHASER_OUT/PHASER_OUT_PHYs
0 16 0%

Number of BSCANs 1 4 25%

Number of BUFHCEs 0 72 0%

Number of BUFRs 0 16 0%

Number of CAPTUREs 0 1 0%

Number of DNA_PORTs 0 1 0%

Number of DSP48E1s 3 220 1%

Number of EFUSE_USRs 0 1 0%

Number of FRAME_ECCs 0 1 0%

Number of ICAPs 0 2 0%

Number of IDELAYCTRLs 0 4 0%

Number of IN_FIFOs 0 16 0%

Number of MMCME2_ADVs 1 4 25%

Number of OUT_FIFOs 0 16 0%

Number of PHASER_REFs 0 4 0%

Number of PHY_CONTROLs 0 4 0%

Number of PLLE2_ADVs 0 4 0%

Number of PS7s 1 1 100%

Number of STARTUPs 0 1 0%

Number of XADCs 0 1 0%

Average Fanout of Non-Clock Nets 4.6

Appendix C

235

C.2.3 Permanent Fault Injection Design

 Figure C.4: Permanent Fault Injection Mechanism Implementation.

236

Appendix D.

D.Distributed Computing Node PCB Design Data

D.1 Printed Circuit Board Layout

Figure D.1: Front View.

Appendix D

237

Figure D.2: Back View.

Figure D.3: Top Layer.

Appendix D

238

Figure D.4: Top Overlay.

Figure D.5: Bottom View.

Appendix D

239

D.2 Bill of Materials

.

240

Appendix E.

E.Software

E.1 Application Software Top Level Design

Appendix E

241

Appendix E

242

Appendix E

243

Appendix E

244

Appendix E

245

Appendix E

246

Appendix E

247

Appendix E

248

E.2 AMFT Software Top Level Design

Appendix E

249

Appendix E

250

Appendix E

251

Appendix E

252

Appendix E

253

Appendix E

254

Appendix E

255

Appendix E

256

E.3 AOCS Telemetry List

Unit TM Parameter Qty Minimum Bits

Magnetometer (MGM)

Magnetic Field 3 36

Compensation/Bias 3 24

Scale Factors 3 24

Alignment Matrices 3 24

Sun Sensor (SS)

Pixel Value 4 48

In-FOV flag - SS 4 4

Value Offset-SS 4 24

Appendix E

257

Exposure Time 4 12

Scale Factor-SS 4 24

SS Open Threshold 4 32

Sun Vector - SS 4 56

Current Sensor

Current Value - CS 8 56

Value Offset-CS 8 32

Scale Factor-CS 8 32

Tempertaure Sensor

Temperature Value - TS 8 56

Value Offset-TS 8 32

Scale Factor-TS 8 32

Rate Gyro

Rate 4 64

Value offset 4 64

Scale Factor 4 64

Gyro Speed 4 32

GPS

GPS Time 1 32

GPS Date 1 16

Position 3 63

Velocity 3 54

Valid Flag 1 1

Torquerods (MTR)

MTR Magnitude of Signal applied 3 30

MTR Direction
3 3

 (+ve or -ve)

MTR Mode 3 9

Thruster
Accumulated Firing Duration -
THR

12 192

AOCS Computer Orbit Position 3 63

(ACC) Orbit Velocity 3 54

 Time 1 32

 Quaternion 4 80

 Bias Rate 3 48

 TC Download - -

 RAM Download - -

 Reference Bias 4 64

 Mode Status 1 4

 System Software Message 4 16

 Controller Output 3 48

 Sub-Mode Status 1 4

 Controller Gains/Paramters 18 576

AOCS Mode Attitude Threshold
Values

8 80

 Estimated Angular Rates 3 48

 Selection of Sinking Thrusters 1 4

Appendix E

258

 Thruster Firing Configuration 1 4

Thrusters fire (with count and
time-tagging)

36 576

 Sensor Calibration Parameters 12 96

 Sun Presnece 2 6

 Gyro Integral Angle 4 80

 AOCS Health State 48 48

Memory of System Fault/Alarm
State

1 8

 Faults and anomaly flags 40 40

Total 335 3151

259

Bibliography

[1] A. Helmerich, et al., "Study of Worldwide Trends and R&D Programmes in

Embedded Systems.," Fast GmbH, Munich Germany, 2005.

[2] A. Sehmi, "On distributed embedded systems," J. ACSIJ, vol. 2, Issue 1, No. 2,

Jan. 2013.

[3] H. Kopetz, et al., "Distributed fault-tolerant real-time systems: the Mars

approach," IEEE Micro, vol. 9, pp. 25-40, 1989.

[4] A. S. Tanenbaum and M. v. Steen, "Fault Tolerance," in Distributed systems :

principles and paradigms, 2nd ed Upper Saddle RIiver, N.J.: Pearson Prentice

Hall, 2007.

[5] "Distributed systems," in A Review of Ada Tasking. vol. 262, A. Burns, et al.,

Eds., ed: Springer Berlin Heidelberg, 1987, pp. 63-72.

[6] C. Georgiou and A. A. Shvartsman, Do-All Computing in Distributed Systems:

Cooperation in the Presence of Adversity: Springer, 2008.

[7] C. Georgiou and A. A. Shvartsman, Cooperative Task-Oriented Computing

Algorithm and Complexity, 1st ed.: Morgan & Claypool, 2011.

Bibliography

260

[8] H. J. Kramer. (2014). Copernicus: Sentinel-2 — The Optical Imaging Mission

for Land Services. Available:

https://directory.eoportal.org/web/eoportal/satellite-missions/c-

missions/copernicus-sentinel-2

[9] G. Klančar, et al., "Image-Based Attitude Control of a Remote Sensing

Satellite," J. Intell Robot Syst, vol. 66, pp. 343-357, May 2012.

[10] J. D. Ruiz. (2013). Overcoming the Embedded CPU Performance Wall.

Available: http://www.embedded.com/design/mcus-processors-and-

socs/4405280/Overcoming-the-embedded-CPU-performance-wall-

[11] Y. Xie and B. Zhu, "Architecture design of spaceborne SAR imaging

processing system," in Proc. Int. Conf. of Signal Processing, 2010, pp. 2283-

2286.

[12] Gutierrez-Nava, et al., "TOPMEX-9 DISTRIBUTED SAR MISSION

EMPLOYING NANOSATELLITE CLUSTER," presented at the 63rd Int.

Astronautical Congr., Naples, Italy., 2012.

[13] S. Buckreuss and M. Zink, "The missions TerraSAR-X and TanDEM-X: Status,

challenges, future perspectives," in General Assembly and Scientific Symp.,

XXXth URSI, 2011, pp. 1-1.

[14] M. Zink and A. Moreira, "TanDEM-X mission: Overview, challenges and

status," in Proc. International Geoscience and Remote Sensing Symp., 2013, pp.

1885-1888.

[15] J. Kichun, et al., "Development of Autonomous Car-Part I: Distributed System

Architecture and Development Process," IEEE Trans. Ind. Electron., vol. 61,

pp. 7131-7140, 2014.

http://www.embedded.com/design/mcus-processors-and-socs/4405280/Overcoming-the-embedded-CPU-performance-wall-
http://www.embedded.com/design/mcus-processors-and-socs/4405280/Overcoming-the-embedded-CPU-performance-wall-

Bibliography

261

[16] C. Villalpando, et al., "Reliable multicore processors for NASA space

missions," in Proc. Aerospace Conf., Big Sky, MT, USA, 2011, pp. 1-12.

[17] M. Hudaverdi and I. Baylakoglu, "Space environment and evaluation for

RASAT," in Proc. Recent Advances in Space Technologies, 5th Int. Conf.,

2011, pp. 926-931.

[18] K. L. Bedingfield, et al., "Spacecraft system failures and anomalies atrributed to

the natural space environment," Marshall Space Flight Center, Alabama,USA,

1390, August 1996.

[19] DONALD J. KESSLER, et al., "Limiting future collision to Spacecraft: An

assessment of NASA’s meteoroid and space debris programs," National

Research Council of the National Academies, Washington DC., USA, 2011.

[20] U. Nations, "Technical report on space debris," New York, USA, ISBN: 92-1-

100813-1, 1999.

[21] C. C. H. Stokes, et al., "A detailed impact risk assessment of two low earth

orbiting satellites," presented at the 63rd Int. Astronautical Congr., Naples,

Italy, 2012.

[22] L. L. F. Lansing, A. Walton, G. Bothwell, K. Bhasin, and G. Prescott, "Needs

for communications and onboard processing in the vision era," presented at the

Int. Geosciences and Remote Sensing Symp., 2002.

[23] M. Graziano, "Overview of Distributed Missions," in Distributed Space

Missions for Earth System Monitoring. vol. 31, M. D'Errico, Ed., ed: Springer

New York, 2013, pp. 375-386.

[24] A. S. Tanenbaum and M. v. Steen, Distributed systems : principles and

paradigms, 2nd ed. Upper Saddle RIiver, N.J.: Pearson Prentice Hall, 2007.

Bibliography

262

[25] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded

Applications, 1998 ed.: Kluwer Academic Publishers. , 1997.

[26] P. Thambidurai and P. You-keun, "Interactive consistency with multiple failure

modes," in Proc. Reliable Distributed Systems, Seventh Symp., Columbus, OH,

1988, pp. 93-100.

[27] R. W. Butler, "A primer on architectural level fault tolerance " Langley

Research Center, Hampton, Virginia, 2008.

[28] M. L. Shooman, Reliability of Computer Systems and Networks; Fault

Tolerance, Analysis and Design. New York: John Wiley & Sons, Inc., 2002.

[29] H. Kopetz, et al., "Tolerating transient faults in MARS," in Dig. of papers

Fault-Tolerant Computing, 20th Int. Symp., Newcastle Upon Tyne, UK, 1990,

pp. 466-473.

[30] C. Liming and A. Avizienis, "N-Version Programming: A Fault-Tolerance

Approach to Reliability of Software Operation," in Proc. Fault-Tolerant

Computing, 1995, Highlights from Twenty-Five Years., Twenty-Fifth Int. Symp.,

1995, p. 113.

[31] J. Aidemark, et al., "Experimental evaluation of time-redundant execution for a

brake-by-wire application," in Proc. Dependable Systems and Networks Conf.,

2002, pp. 210-215.

[32] A. Avizienis, et al., "The STAR (Self-Testing And Repairing) Computer: An

Investigation of the Theory and Practice of Fault-Tolerant Computer Design,"

IEEE Trans. Comput., vol. C-20, pp. 1312-1321, 1971.

[33] A. Avizienis, "Design of fault-tolerant computers," in Proc. Fall Joint

Computer Conf., Anaheim, California, 1967, pp. 733-743.

Bibliography

263

[34] J. F. Wakerly, "Transient Failures in Triple Modular Redundancy Systems with

Sequential Modules," IEEE Trans. Comput., vol. C-24, pp. 570-573, 1975.

[35] S. D'Angelo, et al., "Transient and permanent fault diagnosis for FPGA-based

TMR systems," in Proc. Defect and Fault Tolerance in VLSI Systems, Int.

Symp., Albuquerque, NM 1999, pp. 330-338.

[36] R. E. Lyons and W. Vanderkulk, "The Use of Triple-Modular Redundancy to

Improve Computer Reliability," J. IBM Research and Development, vol. 6, pp.

200-209, 1962.

[37] A. L. Hopkins, Jr., et al., "FTMP- A highly reliable fault-tolerant multiprocess

for aircraft," Proc. IEEE, vol. 66, pp. 1221-1239, 1978.

[38] J. H. Wensley, et al., "SIFT: Design and analysis of a fault-tolerant computer

for aircraft control," Proc. IEEE, vol. 66, pp. 1240-1255, 1978.

[39] S. Y. Yu and E. J. McCluskey, "On-line testing and recovery in TMR systems

for real-time applications," in Proc. of Int.Test Conf., 2001, pp. 240-249.

[40] J. R. Sklaroff, "Redundancy Management Technique for Space Shuttle

Computers," J. IBM Research and Development, vol. 20, pp. 20-28, 1976.

[41] H. Pham, "Optimal design of hybrid fault-tolerant computer systems," J.

Mathematical and Computer Modelling, vol. 16, pp. 29-33, 1992.

[42] W. Xinsheng and S. Hanxu, "Fault tolerance design on onboard computer using

COTS components," in Proc. Systems and Control in Aerospace and

Astronautics, 1st Int. Symp., 2006, pp. 3 pp.-1224.

Bibliography

264

[43] P. K. Samudrala, et al., "Selective triple Modular redundancy (STMR) based

single-event upset (SEU) tolerant synthesis for FPGAs," IEEE Trans. Nucl. Sci.,

vol. 51, pp. 2957-2969, 2004.

[44] B. Pratt, et al., "Improving FPGA Design Robustness with Partial TMR," in

Proc. Reliability Physics, 44th Annu. Symp., 2006, pp. 226-232.

[45] F. L. Kastensmidt, et al., "On the optimal design of triple modular redundancy

logic for SRAM-based FPGAs," in Proc. Design, Automation and Test in

Europe, 2005, pp. 1290-1295 Vol. 2.

[46] F. Lima, et al., "Designing fault tolerant systems into SRAM-based FPGAs," in

Proc. Design Automation Conf., 2003, pp. 650-655.

[47] R. Guerraoui and A. Schiper, "Fault-Tolerance by replication in Distributed

systems " in Proc. Reliable Software Technologies, Ada-Europe, 1996, pp. 38-

57.

[48] A. Girault, et al., "An Active Replication Scheme That Tolerates Failures in

Distributed Embedded Real-Time Systems," in Design Methods and

Applications for Distributed Embedded Systems. vol. 150, B. Kleinjohann, et

al., Eds., ed: Springer US, 2004, pp. 83-92.

[49] M. Pease, et al., "Reaching Agreement in the Presence of Faults," J. ACM, vol.

27, pp. 228-234, 1980.

[50] L. Lamport, et al., "The Byzantine Generals Problem," ACM Trans. Program.

Lang. Syst., vol. 4, pp. 382-401, 1982.

[51] U. Schmid, et al., "Formally verified Byzantine agreement in presence of link

faults," in Proc. Distributed Computing Systems conf., 2002, pp. 608-616.

Bibliography

265

[52] S. Hin-Sing, et al., "Byzantine agreement in the presence of mixed faults on

processors and links," IEEE Trans. Parallel and Distrib. Syste., vol. 9, pp. 335-

345, 1998.

[53] F. B. Schneider and Z. Lidong, "Implementing trustworthy services using

replicated state machines," IEEE J. Security & Privacy vol. 3, pp. 34-43, 2005.

[54] M. Chereque, et al., "Active replication in Delta-4," in Proc. Fault-Tolerant

Computing Twenty-Second Int. Symp., 1992, pp. 28-37.

[55] C. Marchetti, et al., "Fully distributed three-tier active software replication,"

IEEE Trans. Parallel and Distrib. Syste. , vol. 17, pp. 633-645, 2006.

[56] R. Baldoni, et al., "Asynchronous active replication in three-tier distributed

systems," in Proc. Dependable Computing, Pacific Rim Int. Symp., 2002, pp.

19-26.

[57] R. Baldoni, et al., "Active software replication through a three-tier approach," in

Proc. Reliable Distributed Systems, 21st IEEE Symp., 2002, pp. 109-118.

[58] D. Powell, "Distributed Fault-Tolerance," in Delta-4: A Generic Architecture

for Dependable Distributed Computing. vol. 1, D. Powell, Ed., ed: Springer

Berlin Heidelberg, 1991, pp. 89-124.

[59] R. Guerraoui and A. Schiper, "Fault-tolerance by replication in distributed

systems," in Reliable Software Technologies — Ada-Europe '96. vol. 1088, A.

Strohmeier, Ed., ed: Springer Berlin Heidelberg, 1996, pp. 38-57.

[60] X. Defago, et al., "Semi-passive replication," in Proc. Reliable Distributed

Systems, Seventeenth IEEE Symp., 1998, pp. 43-50.

Bibliography

266

[61] N. Budhiraja and K. Marzullo, "Tradeoffs in implementing primary-backup

protocols," in Proc. Parallel and Distributed Processing, Seventh IEEE Symp.,

1995, pp. 280-288.

[62] Z. Hengming and F. Jahanian, "A real-time primary-backup replication

service," IEEE Trans. Parallel and Distrib. Syste., vol. 10, pp. 533-548, 1999.

[63] A. M. Deplanche, et al., "Implementing a semi-active replication strategy in

CHORUS/ClassiX, a distributed real-time executive," in Proc. Reliable

Distributed Systems, 18th IEEE Symp., 1999, pp. 90-101.

[64] X. Défago and A. Schiper, "Semi-passive replication and Lazy Consensus," J.

Parallel Distrib. Comp., vol. 64, pp. 1380-1398, 2004.

[65] X. Défago and A. Schiper, "Specification of replication techniques, semi-

passive replication, and lazy consensus. ," Japan Advanced Institute of Science

and Technology, Ishikawa, Japan KS-RR-2002-001, 2002.

[66] T. D. Chandra and S. Toueg, "Unreliable failure detectors for reliable

distributed systems," J. ACM, vol. 43, pp. 225-267, 1996.

[67] M. Hecht, et al., "A distributed fault tolerant architecture for nuclear reactor and

other critical process control applications," in Proc. Twenty-First Int. Fault-

Tolerant Computing Symp., 1991, pp. 462-498.

[68] D. Nguyen and L. Dar-Biau, "Recovery blocks in real-time distributed

systems," in Proc. Reliability and Maintainability Annu. Symp. , 1998, pp. 149-

154.

[69] V. Izosimov, et al., "Design optimization of time- and cost-constrained fault-

tolerant distributed embedded systems," in Proc. Design, Automation and Test

in Europe, 2005, pp. 864-869 Vol. 2.

Bibliography

267

[70] M. N. Lovellette, et al., "Strategies for fault-tolerant, space-based computing:

Lessons learned from the ARGOS testbed," in Proc. Aerospace IEEE Conf. ,

2002, pp. 5-2109-5-2119 vol.5.

[71] P. Subramanyan, et al., "Multiplexed redundant execution: A technique for

efficient fault tolerance in chip multiprocessors," in Proc. Design, Automation

& Test in Europe Conf., 2010, pp. 1572-1577.

[72] H. Kopetz, et al., "Fault-Tolerant Membership Service in a Synchronous

Distributed Real-Time System," in Dependable Computing for Critical

Applications. vol. 4, A. Avižienis and J.-C. Laprie, Eds., ed: Springer Vienna,

1991, pp. 411-429.

[73] K. H. Kim and E. Shokri, "Minimal-delay decentralized maintenance of

processor-group membership in TDMA-bus LAN systems," in Proc.

Distributed Computing Systems, 13th Int. Conf., 1993, pp. 410-419.

[74] K. H. Kim and C. Subbaraman, "Dynamic configuration management in reliable

distributed real-time information systems," IEEE Trans. Knowl. Data Eng., vol.

11, pp. 239-254, 1999.

[75] G. J. Nutt, "Tutorial: computer system monitors," IEEE Computer, vol. 8, pp.

51-61, 1975.

[76] J. J. P. Tsai, et al., "A noninterference monitoring and replay mechanism for

real-time software testing and debugging," IEEE Trans. Softw. Eng., vol. 16, pp.

897-916, 1990.

[77] P. Calingaert, "System performance evaluation: survey and appraisal,"

Commun. ACM, vol. 10, pp. 12-18, 1967.

Bibliography

268

[78] J. Henry Lucas, "Performance Evaluation and Monitoring," ACM Comput.

Surv., vol. 3, pp. 79-91, 1971.

[79] J. P. Calvez and O. Pasquier, "Performance Monitoring and Assessment of

Embedded HW/SW Systems," J. Design Automation for Embedded Systems,

vol. 3, pp. 5-22, 1998/01/01 1998.

[80] M. El Shobaki and L. Lindh, "A hardware and software monitor for high-level

system-on-chip verification," in Proc. Quality Electronic Design, Int. Symp.,

2001, pp. 56-61.

[81] H. Thane, "Monitoring, Testing and Debugging of distributed real-time

systems," Kungliga Techkniska Hogkolan, Stockholm, 2000.

[82] D. A. Rennels, "Architectures for fault-tolerant spacecraft computers," Proc.

IEEE, vol. 66, pp. 1255-1268, 1978.

[83] A. H. Bhagyashree, et al., "A hierarchical fault detection and recovery in a

computational grid using watchdog timers," in Proc. Communication and

Computational Intelligence Conf., 2010, pp. 467-471.

[84] A. Mahmood and E. J. McCluskey, "Concurrent error detection using watchdog

processors-a survey," IEEE Trans. Comput., vol. 37, pp. 160-174, 1988.

[85] M. Namjoo and E. J. HcCluskey, "Watchdog Processors and Capability

Checking," in Proc. Fault-Tolerant Computing, 1995, ' Highlights from Twenty-

Five Years'., Twenty-Fifth Int. Symp., 1995, pp. 94-97.

[86] D. S. Rosenblum, "Correction to 'A Practical Approach to Programming with

Assertions'," IEEE Trans. Softw. Eng., vol. 21, pp. 265-265, 1995.

[87] B. Meyer, Object Oriented Software Construction: Prentice-Hall, 1998.

Bibliography

269

[88] D. Bartetzko, et al., "Jass — Java with Assertions," Electronic Notes in

Theoretical Computer Science, vol. 55, pp. 103-117, 2001.

[89] M. Boul and Z. Zilic, Generating Hardware Assertion Checkers: For Hardware

Verification, Emulation, Post-Fabrication Debugging and On-Line Monitoring:

Springer Publishing Company, Incorporated, 2008.

[90] G. Leavens, et al., "How the Design of JML Accommodates Both Runtime

Assertion Checking and Formal Verification," in Formal Methods for

Components and Objects. vol. 2852, F. Boer, et al., Eds., ed: Springer Berlin

Heidelberg, 2003, pp. 262-284.

[91] C. Jeffery, et al., "A lightweight architecture for program execution

monitoring," SIGPLAN Not., vol. 33, pp. 67-74, 1998.

[92] B. Bruegge, et al., "A framework for dynamic program analyzers," SIGPLAN

Not., vol. 28, pp. 65-82, 1993.

[93] G. Lyle, et al., "An end-to-end approach for the automatic derivation of

application-aware error detectors," in Proc. Dependable Systems & Networks,

Int. Conf., 2009, pp. 584-589.

[94] U. Schiffel, et al., "Software-Implemented Hardware Error Detection: Costs and

Gains," in Proc. Dependability, Third Int. Conf., 2010, pp. 51-57.

[95] A. Paschalis and D. Gizopoulos, "Effective software-based self-test strategies

for on-line periodic testing of embedded processors," IEEE Trans. Comput.-

Aided Des. of Integr. Circuits and Syst. , vol. 24, pp. 88-99, 2005.

[96] K. M. Zick, et al., "Silent Data Corruption and Embedded Processing With

NASA's SpaceCube," IEEE Embedded Syst. Lett., vol. 4, pp. 33-36, 2012.

Bibliography

270

[97] M.-L. Li, et al., "Understanding the propagation of hard errors to software and

implications for resilient system design," SIGARCH Comput. Archit. News, vol.

36, pp. 265-276, 2008.

[98] M. Li, et al., "SWAT: An error resilient system," in Proc. SELSE4, 2008, pp. 8-

13.

[99] M.-l. Li, et al., "Towards a Software-Hardware Co-Designed Resilient System,"

presented at the 3rd Workshop on Silicon Errors in Logic-System Effects, 2007.

[100] G. Yalcin, et al., "SymptomTM: Symptom-Based Error Detection and Recovery

Using Hardware Transactional Memory," in Proc. Parallel Architectures and

Compilation Techniques, Int. Conf., 2011, pp. 199-200.

[101] N. J. Wang and S. J. Patel, "ReStore: Symptom-Based Soft Error Detection in

Microprocessors," IEEE Trans. Dependable Secure Comput., vol. 3, pp. 188-

201, 2006.

[102] R. A. Maxion and K. M. C. Tan, "Anomaly detection in embedded systems,"

IEEE Trans. Comput., vol. 51, pp. 108-120, 2002.

[103] L. Fei, et al., "Argus: Online Statistical Bug Detection," in Fundamental

Approaches to Software Engineering. vol. 3922, L. Baresi and R. Heckel, Eds.,

ed: Springer Berlin Heidelberg, 2006, pp. 308-323.

[104] N. Nakka, et al., "An Architectural Framework for Detecting Process

Hangs/Crashes," in Dependable Computing - EDCC 5. vol. 3463, M. Cin, et al.,

Eds., ed: Springer Berlin Heidelberg, 2005, pp. 103-121.

[105] H. Chunping, et al., "Performance analysis of high-speed MIL-STD-1553 bus

system using DMT technology," in Proc. Computer Science & Education, 8th

Int. Conf., Colombo 2013, pp. 533-536.

Bibliography

271

[106] M. G. Hegarty, "High performance 1553: a feasibility study," in Proc. Digital

Avionics Systems Conf., 2004, pp. 7.D.4-7.1-9 Vol.2.

[107] G. D. Racca, et al., "SMART-1 mission description and development status," J.

Planetary and Space Science, vol. 50, pp. 1323-1337, 2002.

[108] Y. Kobayashi, et al., "Nano-JASMINE: a 10-kilogram satellite for space

astrometry," in Proc. SPIE 6265, Space Telescopes and Instrumentation I:

Optical, Infrared, and Millimeter, 2006, pp. 626544-626544-10.

[109] A. M. Woodroffe and P. Madle, "Application and experience of CAN as a low

cost OBDH bus system " presented at the MAPLD, Washington D.C. USA,

2004.

[110] M. Bertoluzzo, "Experimental Activities on TTCAN Protocol," in Proc.

Intelligent Data Acquisition and Advanced Computing Systems: Technology

and Applications Conf., Sofia 2005, pp. 22-27.

[111] A. Emrich, "CAN application in avionics," OmniSys Instruments, Goteborg,

Sweden, July 2001.

[112] I. Broster and A. Burns, "An analysable bus-guardian for event-triggered

communication," in Proc. Real-Time Systems, 24th IEEE Symp., 2003, pp. 410-

419.

[113] E. Webb, "Ethernet for space flight applications," in Proc. Aerospace IEEE

Conf., 2002, pp. 4-1927-4-1934 vol.4.

[114] "TTEthernet – A Powerful Network Solution for All Purposes," TTTech

Computertechnik AG, Andover, 2009.

Bibliography

272

[115] E. S. Agency, "SpaceWire - Links, nodes, routers and network," ed. Noordwijk,

The Netherlands: ESA Publications Division, 2003.

[116] S. Parkes and A. Ferrer, "SpaceWire-RT," in Proc. Int. SpaceWire Conf., Nara,

2008.

[117] S. Fowell, et al., "The Adaptation and Implementation of SpaceWire-RT for the

MARC Project," in Proc. 3rd Int. SpaceWire Conf., St. Petersburg, 2010, pp.

397-401.

[118] M. Pignol, "COTS-based applications in space avionics," in Proc. Design,

Automation & Test in Europe Conf. and Exhibition, 2010, pp. 1213-1219.

[119] A. T. Tai, et al., "COTS-based fault tolerance in deep space: Qualitative and

quantitative analyses of a bus network architecture," in Proc. High-Assurance

Systems Engineering, 4th IEEE Int. Symp. , 1999, pp. 97-104.

[120] G. S. Aglietti, et al., Spacecraft Systems Engineering, 4th ed.: John Wiley &

Sons, Ltd, 2011.

[121] J. Eickhoff, Onboard Computers, Onboard Software and Satellite Operations,

An Introduction: Springer-Verlag Berlin Heidelberg 2012.

[122] D. D. Stott, et al. (1996) The MSX Command and Data Handling System.

Johns Hopkins APL Technical Digest. 143-152.

[123] D.-G. Alejandro, et al., "A Comparison of GN&C Architectural Approaches for

Robotic and Human-Rated Spacecraft," in AIAA Guidance, Navigation and

Control Confernce and Exhibit, ed: American Institute of Aeronautics and

Astronautics, 2007.

Bibliography

273

[124] D. A. Rennels, et al., "A fault-tolerant embedded microcontroller testbed," in

Proc. Fault-Tolerant Systems Pacific Rim Int. Symp., 1997, pp. 7-14.

[125] X. Olive, "FDI(R) for satellites: How to deal with high availability and

robustness in the space domain?," Int. J. Appl. Math. Comput. Sci., vol. 22, pp.

99-107, 2012.

[126] W. Harkin, "Utilize FDIR Design Techniques to provide for Safe and

Maintainable On-Orbit Systems," Johnson Space Center, Technique DFE-7,

1994.

[127] O. Emam, et al., "A fault detection, isolation and recovery (FDIR) strategy

based on a message exchange approach to implement autonomous FDIR

management on the MARC system.," in Proc. Data Systems In Aerospace,

Budapest, 2010, p. 33.

[128] B. Jackson, "A robust fault protection architecture for low-cost nanosatellites,"

in Proc. IEEE Aerospace Conf., 2014, pp. 1-8.

[129] R. E. Kuehn, "Computer Redundancy: Design, Performance, and Future," IEEE

Trans. Reliab., vol. R-18, pp. 3-11, 1969.

[130] D. W. Caldwell and D. A. Rennels, "A minimalist hardware architecture for

using commercial microcontrollers in space," in Proc. AIAA/IEEE 16th Digital

Avionics Systems Conf., 1997, pp. 5.2-26-33 vol.1.

[131] D. A. Rennels and R. Hwang, "Recovery in fault-tolerant distributed

microcontrollers," in Proc. Dependable Systems and Networks Int. Conf., 2001,

pp. 475-480.

Bibliography

274

[132] D. W. Caldwell and D. A. Rennels, "Minimalist recovery techniques for single

event effects in spaceborne microcontrollers," in Proc. Dependable Computing

for Critical Applications 7, San Jose, CA, USA 1999, pp. 47-65.

[133] R. M. Keichafer, et al., "The MAFT architecture for distributed fault tolerance,"

IEEE Trans. Comput., vol. 37, pp. 398-404, 1988.

[134] H. Yashiro, et al., "A high assurance on-line recovery technology for a space

on-board computer," in Proc. 5th Int. Autonomous Decentralized Systems

Symp., 2001, pp. 47-56.

[135] R. Schlichting, et al., "A Linguistic Approach to Failure Handling in

Distributed Systems," in Dependable Computing for Critical Applications. vol.

4, A. Avižienis and J.-C. Laprie, Eds., ed: Springer Vienna, 1991, pp. 387-409.

[136] D. A. Rennels, "Fault tolerant computing: Issues, examples, and methodology,"

University of California, Los Angeles1987.

[137] J. H. Lala, et al., "Advanced Information Processing System (AIPS)-based fault

tolerant avionics architecture for launch vehicles," in Proc. IEEE/AIAA/NASA

9th Digital Avionics Systems Conf., 1990, pp. 125-132.

[138] D. A. Rennels, "Reconfigurable Modular Computer Networks for Spacecraft

On-Board Processing," IEEE Computer, vol. 11, pp. 49-59, 1978.

[139] S. N. Chau, et al., "Design of a fault-tolerant COTS-based bus architecture,"

IEEE Trans. Reliab., vol. 48, pp. 351-359, 1999.

[140] S. N. Chau, et al., "Analysis of a multi-layer fault-tolerant COTS architecture

for deep space missions," in Proc. IEEE 3rd Application-Specific Systems and

Software Engineering Technology Symp., 2000, pp. 70-76.

Bibliography

275

[141] C. Plummer and P. Planck, "Spacecraft harness reduction," in Proc. Data

Systems In Aerospace Conf., Dublin, Ireland, 2002.

[142] L. Jianhua, et al., "Communication schemes for aerospace wireless sensors," in

Proc. IEEE/AIAA 27th Digital Avionics Systems Conf., 2008, pp. 5.D.4-1-

5.D.4-9.

[143] Fink and P. W., "Wireless Network Communications Overview for Space

Mission Operations," NASA CCDS 880.0-G-0.169, 2009.

[144] J. Sangeetha and S. Kumar, "A comparative study on WiFi and WiMAX

networks," in Proc. IEEE Int. Computational Intelligence and Computing

Research Conf., 2010, pp. 1-5.

[145] J. Jansons and T. Dorins, "Analyzing IEEE 802.11n standard: outdoor

performanace," in Proc. 2nd Int. Digital Information Processing and

Communications Conf., 2012, pp. 26-30.

[146] Z. Alliance, "ZigBee Specification," vol. 2012, ed. San Ramon, CA: ZigBee

Alliance Inc., 2008, p. 604.

[147] Y. Morisawa, et al., "A computing model for distributed processing systems

and its application," in Proc. Asia Pacific Software Engineering Conf., 1998,

pp. 314-321.

[148] K. Sidibeh and T. Vladimirova, "IEEE 802.11 Optimisation Techniques for

Inter-Satellite Links in LEO Networks," in Proc. 8th Int. Advanced

Communication Technology Conf., 2006, pp. 1177-1182.

[149] K. Sidibeh and T. Vladimirova, "Wireless Communication in LEO Satellite

Formations," in Proc. 8th Adaptive Hardware and Systems Conf., 2008, pp.

255-262.

Bibliography

276

[150] S. Li, et al., "A modified 802.11 protocol applicated in space wireless local area

network," in Proc. Int. Computer Design and Applications Conf., 2010, pp. V2-

585-V2-588.

[151] T. Vladimirova and K. Sidibeh, "WLAN for Earth Observation Satellite

Formations in LEO," in Proc. 8th Bio-inspired Learning and Intelligent Systems

for Security Symp., 2008, pp. 119-124.

[152] P. P. Rodger Magness, "An Assesment of Wireless Proximity Networks for

Space Application," in Proc. ESA 9th Advanced Space Technologies for

Robotics and Automation Workshop, Noordwijk, The Netherlands, 2006.

[153] T. Vladimirova and M. Fayyaz, "Wireless Fault-Tolerant Distributed

Architecture for Satellite Platform Computing," in Convergence and Hybrid

Information Technology, ed: Springer, 2012, pp. 428-436.

[154] C. Ye and C. Li, "Using Bluetooth wireless technology in vehicles," in Proc.

IEEE Int. Vehicular Electronics and Safety Conf., 2005, pp. 344-347.

[155] L. Jianhua, et al., "Feasibility study of IEEE 802.15.4 for aerospace wireless

sensor networks," in Proc. IEEE/AIAA 28th Digital Avionics Systems Conf.,

2009, pp. 1.B.3-1-1.B.3-10.

[156] L. M. L. Oliveira, et al., "A WSN solution for light aircraft pilot health

monitoring," in Proc. IEEE Wireless Communications and Networking Conf.,

2012, pp. 119-124.

[157] J. Culbertson, et al., "Application of wireless technology to CALVEIN launch

vehicles," in Proc. Fly by Wireless Workshop (FBW), 2010, pp. 12-13.

Bibliography

277

[158] Y. Tachwali and H. H. Refai, "System prototype for vehicle collision avoidance

using wireless sensors embedded at intersections," J. Franklin Institute, vol.

346, pp. 488-499, 2009.

[159] P. N. Ravichandran, et al., "Wireless Telecommand and Telemetry Systems for

Satellite Communication Using ZigBee Network," in Advances in Recent

Technologies in Communication and Computing, 2009. ARTCom '09.

International Conference on, 2009, pp. 274-278.

[160] W. Wilson and G. Atkinson, "Wireless Sensors for Space Applications," J.

Sensors & Tranducers, vol. 13, pp. 1-9, 2011.

[161] S. Sathyamurthy, et al., "Blue tooth intercommunication system [BTICS] for

combat vehicle application," in Proc. Int. ElectroMagnetic Interference and

Compatibility Conf., 2006, pp. 148-150.

[162] B. Neil and A. Dawood, "Reconfigurable Computers in Space: Problems,

Solutions and Future Directions," presented at the Military and Aerospace

Applications of Programmable Logic Devices, Laurel, Maryland, 1999.

[163] M. M. Ibrahim, et al., "Reconfigurable fault tolerant avionics system," in Proc.

IEEE Aerospace Conf., 2013, pp. 1-12.

[164] A. Jacobs, et al., "Reconfigurable Fault Tolerance: A Comprehensive

Framework for Reliable and Adaptive FPGA-Based Space Computing," ACM

Trans. Reconfigurable Technol. Syst., vol. 5, pp. 1-30, 2012.

[165] I. Herrera-Alzu and M. Lopez-Vallejo, "Design Techniques for Xilinx Virtex

FPGA Configuration Memory Scrubbers," Nuclear Science, IEEE Transactions

on, vol. 60, pp. 376-385, 2013.

Bibliography

278

[166] A. Shye, et al., "PLR: A Software Approach to Transient Fault Tolerance for

Multicore Architectures," IEEE Trans. Dependable Secure Comput., vol. 6, pp.

135-148, 2009.

[167] N. Aggarwal, et al., "Configurable isolation: building high availability systems

with commodity multi-core processors," SIGARCH Comput. Archit. News, vol.

35, pp. 470-481, 2007.

[168] C. LaFrieda, et al., "Utilizing Dynamically Coupled Cores to Form a Resilient

Chip Multiprocessor," in Proc. IEEE/IFIP Int. Dependable Systems and

Networks Conf., 2007, pp. 317-326.

[169] S. S. Mukherjee, et al., "Detailed design and evaluation of redundant multi-

threading alternatives," in Proc. 29th Annu Int. Computer Architecture Symp.,

2002, pp. 99-110.

[170] K. P. Gostelow, "The design of a fault-tolerant, real-time, multi-core computer

system," in Proc. IEEE Aerospace Conf., 2011, pp. 1-8.

[171] A. Lofwenmark and S. Nadjm-Tehrani, "Challenges in Future Avionic Systems

on Multi-Core Platforms," in Software Reliability Engineering Workshops

(ISSREW), 2014 IEEE International Symposium on, 2014, pp. 115-119.

[172] N. Aggarwal, et al., "Isolation in commodity multicore processors," Computer,

vol. 40, pp. 49-59, 2007.

[173] Y. A. Nanehkaran and S. B. B. Ahmadi, "The Challenges of Multi-Core

Processor," International Journal of Advancements in Research & Technology

vol. 2, June-2013

[174] J. Ramos, et al., "High-performance, Dependable Multiprocessor," in Proc.

IEEE Aerospace Conf., 2006, p. 13 pp.

Bibliography

279

[175] J. Samson, et al., "High Performance Dependable Multiprocessor II," in IEEE

Aerospace Conf., 2007, pp. 1-22.

[176] J. Samson, et al., "Technology Validation: NMP ST8 Dependable

Multiprocessor Project II," in IEEE Aerospace Conf., 2007, pp. 1-18.

[177] J. R. Samson, Jr., "Implementation of a Dependable Multiprocessor CubeSat,"

in IEEE Aerospace Conf., 2011, pp. 1-10.

[178] W. Gropp, et al., Beowulf Cluster Computing with Linux, 2nd ed.: MIT Press,

2003.

[179] I. V. McLoughlin and T. R. Bretschneider, "Reliability through redundant

parallelism for micro-satellite computing," ACM Trans. Embed. Comput. Syst.,

vol. 9, pp. 1-25, 2010.

[180] D. S. Katz and P. L. Springer, "Development of a spaceborne embedded

cluster," in Proc. IEEE Int. Cluster Computing Conf., 2000, pp. 119-123.

[181] D. Ngo and M. Harris, "A reliable infrastructure based on COTS technology for

affordable space application," in IEEE Aerospace Conf., 2001, pp. 2435-2441

vol.5.

[182] C. Steiger, et al., "GOCE end-of-mission operations report," ESA2014.

[183] L. D. Friedman, "Phobos-Grunt Failure Report Released," vol. 2015, ed, 2012.

[184] S. Fuchs and A. J. Wardrop, "Fault Tolerant Computer System," USA Patent,

2000.

[185] J. K. Kishore, et al., "A real time fault tolerant microprocessor based On-Board

Computer System for INSAT-2 spacecraft," in Formal Techniques in Real-Time

Bibliography

280

and Fault-Tolerant Systems. vol. 863, H. Langmaack, et al., Eds., ed: Springer

Berlin Heidelberg, 1994, pp. 476-487.

[186] M. Campola, et al., "Single Event Effects (SEE) Testing of the Memtek

Asynchronous Electronically Erasable Programmable Read-Only Memory

(EEPROM) 4096x16 " MEI Technologies, Inc., 2007.

[187] D. Krawzsenek, et al., "Single event effects and total ionizing dose results of a

low voltage EEPROM," in Proc. IEEE Radiation Effects Data Workshop, 2000,

pp. 64-67.

[188] J. L. Barth, et al., "Single event effects on commercial SRAMs and power

MOSFETs: final results of the CRUX flight experiment on APEX," in Proc.

IEEE Radiation Effects Data Workshop, 1998, pp. 1-10.

[189] P. Milliken, et al., "Single Event Effects of commercial and Hardened by design

SRAM," in Proc. 12th European Radiation and Its Effects on Components and

Systems Conf., 2011, pp. 913-917.

[190] T. Noergaard, "Chapter 3 - Middleware and Standards in Embedded Systems,"

in Demystifying Embedded Systems Middleware, T. Noergaard, Ed., ed

Burlington: Newnes, 2010, pp. 59-92.

[191] K. Birman and R. Cooper, "The ISIS project: real experience with a fault

tolerant programming system," in Proc. 4th ACM SIGOPS European workshop,

Bologna, Italy, 1990, pp. 1-5.

[192] O. Babaoglu, "Fault-tolerant computing based on Mach," J. SIGOPS Oper. Syst.

Rev., vol. 24, pp. 27-39, 1990.

[193] D. Powell, "Distributed fault tolerance: lessons from Delta-4," IEEE Micro, vol.

14, pp. 36-47, 1994.

Bibliography

281

[194] J. Balasubramanian, et al., "Adaptive Failover for Real-Time Middleware with

Passive Replication," in Proc. IEEE 15th Real-Time and Embedded Technology

and Applications Symp., 2009, pp. 118-127.

[195] M. Fayyaz, et al., "Adaptive middleware design for satellite fault-tolerant

distributed computing," in Proc. IEEE NASA/ESA Adaptive Hardware and

Systems (AHS) Conf., 2012, pp. 23-30.

[196] M. Fayyaz and T. Vladimirova, "Fault-Tolerant Distributed approach to satellite

On-Board Computer design," in Proc. IEEE Aerospace Conf., 2014, pp. 1-12.

[197] Tanya Vladimirova, et al., "A report on Distributed Architectures” Contributing

to D3.1 on WP3: System Level Solutions of FP7 ReVuS Project. ," 2012.

[198] S.M. Sadjadi, "A Survey of Adaptive Middleware," Michigan State University,

East Lansing Michigan.,2003.

[199] W. River, "Product note on Wind River’s VxWork," Wind River CA 2006.

[200] R. Mall, Real-Time Systems: Theory and Practice: Prentice Hall Press, 2009.

[201] "An Architectural Overview of QNX," in Usenix Workshop on Micro-Kernels

& Other Kernel Architectures, Seattle, April-1992.

[202] (10th October-2015). uClinux-dev Forum Website [Online]. Available:

http://mailman.uclinux.org/pipermail/uclinux-dev/2009-February/048040.html

[203] K. Andersson and R. Andersson, "A comparison between FreeRTOS and

RTLinux in embedded real-time systems," 2005.

[204] D. Caban, "Efficiency and memory footprint of Xilkernel for the Microblaze

soft processor," ed. Poland: EDN Networks, June 18, 2014.

http://mailman.uclinux.org/pipermail/uclinux-dev/2009-February/048040.html

Bibliography

282

[205] P. Felber and P. Narasimhan, "Experiences, strategies, and challenges in

building fault-tolerant CORBA systems," IEEE Trans. Comput., vol. 53, pp.

497-511, 2004.

[206] O. M. Group, "Fault Tolerant CORBA," in The Common Object Request

Broker: Architecture and Specification, Sept. 2001 ed, 2001.

[207] P. Narasimhan, et al., "MEAD: support for Real-Time Fault-Tolerant CORBA,"

J. Concurrency Comput.: Pract. Exper., vol. 17, pp. 1527-1545, 2005.

[208] J. Balasubramanian, "FLARe: a Fault-tolerant Lightweight Adaptive Real-time

middleware for distributed real-time and embedded systems," presented at the

Middleware doctoral symp., Newport Beach, California, 2007.

[209] J. Balasubramanian, et al., "Towards Middleware for Fault-Tolerance in

Distributed Real-Time and Embedded Systems," in Distributed Applications

and Interoperable Systems. vol. 5053, R. Meier and S. Terzis, Eds., ed: Springer

Berlin Heidelberg, 2008, pp. 72-85.

[210] H. Kopetz, "The Time-Triggered Architecture," in Real-Time Systems, ed:

Springer US, 2011, pp. 325-339.

[211] M. L. Shooman, "N-MODULAR REDUNDANCY," in Reliability of Computer

Systems and Networks, ed: John Wiley & Sons Inc., 2002, pp. 145-196.

[212] I. A. Zimmermann, "Software Tool for the Performability Evaluation with

Stochastic and Colored Petri Nets," TU Berlin, Germany, 2013.

[213] S. Bernardi, et al., "Petri Nets and Dependability," in Lectures on Concurrency

and Petri Nets. vol. 3098, J. Desel, et al., Eds., ed: Springer Berlin Heidelberg,

2004, pp. 125-179.

Bibliography

283

[214] (2012, June). STM-3240G-EVAL Evaluation Board (4th ed.). Available:

http://www.st.com/st-web-

ui/static/active/en/resource/technical/document/user_manual/DM00036746.pdf

[215] IAR-Systems, "IDE Project Management and Building Guide for Advanced

RISC Machines Ltd’s ARM Cores," 2011.

[216] S. LLC, "Saleae User Guide 1.1.15, Logic and Logic16 User's Guide.," 2012.

[217] A. Alonso, et al., "Design of On-Board Software for an Experimental Satellite,"

presented at the Real-Time Conference, 2013.

[218] J. Garrido, et al., "Analysis of WCET in an experimental satellite software

development " presented at the 12th International Workshop on Worst-Case

Execution Time Analysis (WCET 2012), 2012.

[219] H. Topcuouglu, et al., "Performance-Effective and Low-Complexity Task

Scheduling for Heterogeneous Computing," IEEE Trans. Parallel Distrib. Syst.,

vol. 13, pp. 260-274, 2002.

[220] Xilinx. (2014, DS190). Zynq-7000 All Programmable SoC Overview.

Available: http://www.xilinx.com/support/documentation/data_sheets/ds190-

Zynq-7000-Overview.pdf

[221] Xilinx. (2012, Jan.). ChipScope Pro Software and Cores User guide. Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/chipsco

pe_pro_sw_cores_ug029.pdf

[222] Avnet. (2012, November). ZEDBAORD, Zynq Evaluation and Development

Harware User's Guide. Available:

http://zedboard.org/sites/default/files/ZedBoard_HW_UG_v1_1.pdf

http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00036746.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00036746.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/chipscope_pro_sw_cores_ug029.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/chipscope_pro_sw_cores_ug029.pdf
http://zedboard.org/sites/default/files/ZedBoard_HW_UG_v1_1.pdf

Bibliography

284

[223] R. Barry, "FreeRTOS, A Free RTOS for small real time embedded systems,"

FreeRTOS, 2005.

[224] Xilinx, "Power Analysis and Optimization (UG907)," 2014.

[225] Xilinx. (25th October). XILINX ARTIX-7 FPGAS: A New Performance

Standard for Power-Limited, Cost-Sensitive Markets. Available:

http://www.xilinx.com/support/documentation/product-briefs/artix7-product-

brief.pdf

[226] A. E. Cooper and W. T. Chow, "Development of On-board Space Computer

Systems," J. IBM Research and Development, vol. 20, pp. 5-19, 1976.

[227] Altium. (2008, December). Tutorial: Getting Started with PCB Design

Available:

http://www.altium.com/files/altiumdesigner/s08/learningguides/tu0117%20getti

ng%20started%20with%20pcb%20design.pdf

[228] T. Grelier, et al., "Formation flying radio frequency instrument: First flight

results from the PRISMA mission," in Proc. 5th ESA Satellite Navigation

Technologies and European Workshop on GNSS Signals and Signal Processing,

2010, pp. 1-8.

[229] G. Krieger, et al., "Interferometric Synthetic Aperture Radar (SAR) Missions

Employing Formation Flying," Proc. IEEE, vol. 98, pp. 816-843, 2010.

[230] P. J. Buist, et al., "Functional model for spacecraft formation flying using non-

dedicated GPS/Galileo receivers," in Proc. 5th ESA Satellite Navigation

Technologies and European Workshop on GNSS Signals and Signal Processing,

2010, pp. 1-6.

http://www.xilinx.com/support/documentation/product-briefs/artix7-product-brief.pdf
http://www.xilinx.com/support/documentation/product-briefs/artix7-product-brief.pdf
http://www.altium.com/files/altiumdesigner/s08/learningguides/tu0117%20getting%20started%20with%20pcb%20design.pdf
http://www.altium.com/files/altiumdesigner/s08/learningguides/tu0117%20getting%20started%20with%20pcb%20design.pdf

Bibliography

285

[231] J. Davis, "Mathematical Modeling of Earth's Magnetic Field," Virginia Tech,

Blacksbury2004.

[232] W. M. T. Flatley, A.Reth and F. Bauer,, "A B-Dot Acquisition Controller for

the RADARSAT Spacecraft," presented at the NASA Conf. publication, 1997.

[233] M. K. F. Torben Graversen, Søren Vejlgaard Vedstesen, Attitude Control

system for AAU CubeSat: Aalborg University. Department of Control

Engineering, 2002.

[234] L. L. Show, et al., "Spacecraft robust attitude tracking design: PID control

approach," in Proc. American Control Conf., 2002, pp. 1360-1365 vol.2.

[235] S. Beatty, "Comparison of PD and LQR Methods for Spacecraft Attitude

Control Using Star Trackers," in Proc. 6th World Automation Congr., 2006, pp.

1-6.

[236] M. O. Karslioglu, et al., "A ground-based orbit determination for BILSAT," in

Proc. 2nd Int. Recent Advances in Space Technologies Conf., 2005, pp. 155-

158.

[237] S. Sgubini and G. B. Palmerini, "Ground-based orbit determination for

spacecraft formations," in Proc. IEEE Aerospace Conf., 2010, pp. 1-7.

[238] N. Zhuo, "Onboard Orbit Determination using GPS Measurements for Low

Earth Orbit Satellites," Cooperative Research Centre for Satellite Systems,

Queensland University of Technology, 2004.

[239] N. Instruments, "M Series Multifunction DAQ for USB - 16-Bit, 250 kS/s, up to

80 Analog Inputs," 2008.

