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Abstract 

Current and future space missions demand highly reliable, High Performance 

Embedded Computing (HPEC). The review of the literature has shown that no single 

solution could meet both issues efficiently at present addressing HPEC as well as 

reliability. Furthermore, there is no suitable method of assessing performance for such 

a scheme. 

In this thesis a novel cooperative task-oriented fault-tolerant distributed computing 

(FTDC) architecture is proposed, which caters for high performance and reliability in 

systems on board spacecraft. In a nut shell, the architecture comprises two types of 

nodes, a computing node and an input-output node, interfaced together through a high-

speed network with bus topology. To detect faults in the nodes, a fault management 

scheme specifically designed to support the cooperative task-oriented distributed 

computing concept is proposed and employed, which is referred to as Adaptive 

Middleware for Fault-Tolerance (AMFT). AMFT is implemented as a separate 

hardware block and operates in parallel with the processing unit within the computing 

node. A set of metrics is designed and mathematical models of availability and 

reliability are developed, which are used to evaluate the proposed distributed 

computing architecture and fault management scheme.  

As a new development, extending the current state of the art, the proposed fault-

tolerant distributed architecture has been subjected to a rigorous assessment through 

hardware implementation. Implementation approaches at two levels were adopted to 

provide a proof of concept: a board level and a Multiprocessor System-on-Chip 

(MPSoC) level. Both distributed computing system implementations were evaluated 

for functional validity and performance. 

To examine the FTDC architecture performance under a realistic space related 

distributed computing scenario a case-study application, representing a satellite 

Attitude and Orbit Control System (AOCS), was developed. The AOCS application 

was selected because it features a time critical task execution, in which system failure 

and reconfiguration time must be kept minimal. Based on the case-study application, it 

was demonstrated that the FTDC architecture is capable of fully meeting the desired 

requirements by timely migrating tasks to functional nodes and keeping rollback of 

task states minimal, which proves the advantages of the adopted cooperative 

distributed approach for use on board spacecraft. 
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Chapter 1 

1.Introduction 

Distributed embedded systems are ubiquitous and have deeply penetrated into our 

society [1]. Major sectors targeted by distributed systems are telecommunications, 

automotive, avionics, industrial automation, robotics, consumer electronics, medical, 

and aerospace. The overall value of the embedded sector market worldwide is about 

1600 billion € per year [2], a large part of which is attributable to distributed systems. 

The widespread deployment of distributed embedded systems is due to them being able 

to support important system properties, such as high reliability, scalability, high 

performance [3]. A single processor failure in a distributed embedded system can be 

avoided by distributing the system computing workload among multiple processors [4] 

[5]. For critical applications, such as spacecraft, control of nuclear reactors, etc., using a 

distributed system could increase the system reliability significantly.  

In general, a distributed computing system is any computing system that involves 

multiple processors, remotely located from each other, where each processor plays a 

particular role in the execution of a computation or control problem. This type of 

distributed computing is referred to as physically distributed computing.  An advanced 

form of distributed computing, which is referred to as cooperative distributed 

computing, involves collaboration among processors, in which an individual processor 

solves a part of a larger problem. Cooperative distributed computing is achieved via a 

distributed computing system that comprises a set of p processors connected via a 

network. A computing problem is then divided into v tasks, and each processor is 
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assigned a subset of v tasks [6, 7].  Cooperation among processors can make the 

distributed computing approach more efficient and reliable in comparison with just 

physically distributed computing units.  

In this thesis a novel cooperative task-oriented fault-tolerant distributed computing 

(FTDC) architecture is proposed, which utilizes the advantages of cooperative 

distributed computing. Therefore, in the rest of the thesis the term “distributed 

computing” refers to “cooperative distributed computing”. An example of a legacy 

centralized on-board computer (OBC) [8] on board the Sentinel-2 spacecraft is depicted 

in Figure 1.1. However, in high precision spacecraft control, a significant amount of 

data processing is required, which a centralised OBC is not able to support [9]. In 

addition, the physical redundancy scheme used in current spacecraft on-board 

computers is limited to a single processor failure, and its performance is constrained 

by the operating frequency that cannot be increased beyond a certain limit [10]. To 

address these and other requirements of modern spacecraft, the use of distributed 

computing is essential. The aim of this thesis is to propose a viable distributed OBC 

design, capable of achieving a significantly higher computing performance and 

reliability, to replace the traditional centralised OBC design, exemplified in Figure 1.1. 

The intra-spacecraft application of distributed computing, outlined above, could be 

extended to serve the purpose of supporting emerging modern distributed space 

systems. For example, it can be employed in a constellation of spacecraft for 

applications requiring inter-spacecraft links, such as synthetic aperture radar (SAR), 

high precision spacecraft control, real-time optical imaging etc.. To illustrate this 

concept a SAR distributed space system is shown in Figure 1.2. Synthetic Aperture 

Radar is a well-known remote sensing technique that captures images of target objects 

on Earth using the motion of antenna to control image resolution. The SAR that is 

usually mounted on an aircraft or spacecraft, is referred to as monolithic SAR. The 

monolithic SAR is limited in terms of resolution. Contrary to the monolithic SAR, on-

going research on distributed SAR proved that it is capable of producing a large 

synthetic aperture [11, 12]. To create such a large synthetic antenna aperture, a 

spacecraft cluster is used as shown in Figure 1.2. One of the satellites acts as a master, 

while the others act as slaves. The master spacecraft is equipped with a transmitting 

antenna for the transmission of the SAR signal, while the slave spacecraft are used to 
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receive and process the signal. Each spacecraft has its own processor for the execution 

of tasks. Each processor is assigned tasks accompanied with a chunk of data for 

processing. Cooperative distributed computing among these spacecraft is necessary, as 

the spacecraft cluster is required to work collaboratively to achieve an outcome. A 

distributed SAR imaging system, based on two satellites, where each satellite can 

acquire, divide and distribute data chunks to the other satellite for onward transmission 

to the ground station, is described in [13, 14]. Distributed computing in such a system 

will allow improving revisit time, image resolution and targeting viewing.  
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Figure 1.1: Block Diagram of the Sentinel-2 Centralized Computing System [8]. 

Other emerging space applications in which distributed computing is essential 

include space weather monitoring, fractionated spacecraft and distributed imaging. 

These applications are inherently distributed and must employ distributed computing 

among the spacecraft to achieve the overall mission objective. At present there are a 



Chapter-1. Introduction 

4 
 

few technological challenges, particularly in the design of wireless inter-satellite 

communication links that need to be overcome in order to implement distributed 

computing among spacecraft. 

 

Figure 1.2: Distributed Synthetic Aperture Radar [12]. 

This thesis addresses space applications, however many other applications may 

directly benefit from the distributed computing approach. A number of terrestrial 

applications, such as autonomous cars [15] and distributed robots can also profit from 

this approach in comparison to a tightly coupled design [16]. Autonomous cars, for 

example, rely on a real-time sensor data processing and interpretation of complex 

control and navigation algorithms and in addition the underlying computing platform 

must support fault tolerance. The traditional standalone dual redundant embedded 

computing units (ECUs) are not sufficient to support such fault-tolerant data-driven 
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driverless operations. Therefore, a distributed computing system that provides 

enhanced performance and reliability is essential.  

An on-board embedded distributed computing system has to operate under the 

influence of severe environmental conditions, which could cause a failure of a 

processor or a network. A main reason of a failure in space systems is radiation [17, 

18]. Radiation can damage electronic components via total ionizing dose (TID) and 

single event effects (SEEs). TID is a slow phenomenon and can be overcome by 

suitable metallic shielding. SEEs, which are caused by high-energy particles, can 

instigate bit flipping that can lead to a temporary failure of a processor. Furthermore, 

physical damage by space debris, particularly in low earth orbit (LEO), is another cause 

of systems failures [19-21].   

The efficiency of a computing application, running on a distributed computing 

platform is severally degraded in the presence of failures. A distributed computing 

system comprised of p processors can tolerate up to p-1 failures, and then the overall 

system performance would be equal to a uniprocessor system. Similarly, a ‘p’ 

processors system can achieve a p-fold increase in computational efficiency (speed-up) 

[6]. Thus both computational efficiency and fault-tolerance, cannot be achieved 

simultaneously. Thus, the challenge is to develop an efficient fault-tolerant technique 

that can achieve fault-tolerance by graceful degradation in computational efficiency. 

Distributed computing can support such a fault-tolerant technique, as it inherently 

consists of multiple processors that can either be utilized for high computational 

efficiency or fault-tolerance purpose. Failure related issues, which are intrinsic to 

distributed computing systems, are as follows: 

 A crash of a processor can lead to a loss of all tasks that belong to it. 

 A malicious failure of a processor can disguise itself, “giving a wrong 

impression” to the other processors that it operates in normal mode.  

 After a processor restart, following a failure, it needs to be made aware of the 

state of the overall computation progress.  
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 To minimise the loss of efficiency, processors should not only perform their 

assigned tasks but they must be able to detect the occurrence of a failure of a 

processor in coordination with the other processors.  

In this thesis, a novel approach to fault-tolerant distributed computing is presented. 

It provides high computational efficiency during normal operation and supports 

graceful degradation in case of failures. This approach is particularly designed for space 

applications but, in general, it can be applied to any distributed embedded computing 

application.      

1.1 Motivation 

The motivation behind this research is threefold:  

 Demands for high-performance on-board processing in a single spacecraft mission, 

is continuously increasing and could not be met with by a standalone dual 

redundant processor [22]. By distributing a computational problem to multiple 

processors, these demands can easily be met.  

 Traditional redundancy-based approaches could not be utilized in design of a fault-

tolerant distributed computing system because in such approaches the peer 

redundant processor achieves 2:1 redundancy only. Distributed computing systems 

are inherently redundant, comprising multiple processors that can be intelligently 

used to achieve higher reliability.  

 The same fault-tolerant distributed computing approach can be directly or indirectly 

applied to future multiple spacecraft missions [23]. 

1.2 Scope and Objectives 

In this thesis a novel cooperative task-oriented fault-tolerant distributed computing 

(FTDC) architecture is proposed, which caters for high performance and reliability in 

systems on board spacecraft. In a nut shell, the architecture comprises two types of 

nodes, a computing node and an input-output node, interfaced together through a high-

speed network with bus topology. To detect faults in the nodes, a fault management 
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scheme specifically designed to support the cooperative task-oriented distributed 

computing concept is proposed and employed, which is referred to as Adaptive 

Middleware for Fault-Tolerance (AMFT). AMFT is implemented as a separate 

hardware block and operates in parallel with the processing unit within the computing 

node. A set of metrics is designed and mathematical models of availability and 

reliability are developed, which are used to evaluate the proposed distributed 

computing architecture and fault management scheme. 

The scope of the thesis is limited to a fault-tolerant technique for distributed computing 

employed in a single spacecraft only.  

The main objectives of this research are: 

 To assess existing approaches/methods/architectures for fault-tolerant distributed 

computing through investigation of the current state of the art.  

 To propose a suitable fault management scheme for distributed computing on board 

spacecraft.  

 To analyse, evaluate, test and demonstrate the proposed scheme through hardware 

implementation and a realistic space related case-study.  

1.3 Methodology  

We began our research by identifying existing distributed computing architectures in 

general, and fault tolerant schemes in particular. The architectures were evaluated in 

terms of their performance for reliability. Furthermore, shortcomings were identified, 

pros and cons compared, and finally it was observed that existing schemes were not 

efficient and suitable to meet our requisite performance and reliability. Therefore, a 

novel distributed fault-tolerant computing (FTDC) architecture, incorporating a new 

fault management scheme was designed, developed and finally implemented. 

For validation of the proposed concept performance measuring metrics were 

identified and requirements were set that could serve as the appropriate criteria to 

assess operational success. 

The proposed fault-tolerant distributed architecture was realised using system level 

hardware-software co-design principles and its performance was assessed by two 



Chapter-1. Introduction 

8 
 

implementation approaches. Firstly, the distributed computing system was 

implemented and tested as a printed circuit board level design. Secondly, a novel 

MPSoC design was proposed, implemented and tested. Both distributed computing 

system implementations were evaluated for functional validity and performance.  

To examine the FTDC architecture performance under a realistic space related 

distributed computing scenario a case-study application, representing a satellite 

Attitude and Orbit Control System (AOCS), was developed. The AOCS application 

was selected because it features a time critical task execution, in which system failure 

and reconfiguration time must be kept minimal. Based on the case-study application, it 

was demonstrated that the FTDC architecture is capable of fully meeting the desired 

requirements by timely migrating tasks to functional nodes and keeping rollback of 

task states minimal, which proves the advantages of the adopted cooperative 

distributed approach for use on board spacecraft. 

1.4 Novelty Contributions 

As a result of the research described in this thesis a novel concept for fault-tolerant 

distributed computing was developed and applied to a single spacecraft. The proposed 

scalable model is aimed at a single satellite subsystem as well as at the entire intra-

satellite computing system. An assessment of the suitability of the approach to satellite 

on-board computing was carried out, which is accomplished for the first time. A 

demonstration of the fault-tolerant distributed computing concept was undertaken 

through a case-study aimed at the development of a new On-board Distributed 

Computer. 

Specific novelty aspects of the work are as follows: 

 A novel architecture for fault-tolerant distributed computing on board spacecraft is 

proposed, which is highly reliable and can provide high computing performance by 

running tasks concurrently on multiple nodes.  

 A novel adaptive middleware design that is used for fault management of 

distributed system is proposed, designed and implemented.  
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 A novel MPSoC based approach to implement fault-tolerant distributed computing 

system is proposed, designed and implemented. An MPSoC based distributed 

computing system is designed, implemented and validated for the proposed fault 

management scheme. 

 The proposed architecture and fault management scheme are validated by a case 

study of a new distributed design of satellite AOCS computer.  

 Mathematical models for comparative evaluation of fault-tolerant computing 

system are developed. 

 Novel algorithms for detection of silent data corruption for on board the spacecraft 

distributed computing are proposed and designed. 

 Fault Injection mechanism, particularly suitable for assessment of distributed 

computing system is proposed, designed and implemented.  

1.5 Thesis Structure 

This thesis consists of nine chapters as shown in Figure 1.3. The structure of the thesis 

is carefully organized to show the complete picture from motivation to the final 

research outcome. The rest of thesis is divided into three parts – (1) background and 

related work, (2) research contribution of the thesis and (3) final conclusions and 

future work.  

The next two chapters - Chapter 2 and 3 - present the background and research 

work done in the area of fault-tolerant computing and current applications.  In 

particular, Chapter 2 discusses the basics of fault-tolerance techniques, fault detection 

methods, and communication protocols for fault-tolerant distributed computing in 

embedded systems. Chapter 3 gives a detailed overview of fault-tolerant computing 

for space applications. The current challenges and existing solutions are also 

discussed. It highlights the research gap and presents the research question that is 

addressed throughout the rest of the chapters.  

The next five chapters (chapter 4-8) present the design, assessment and 

implementation of a novel reliable and efficient fault-tolerant distributed computing 

platform.  Chapter 4 proposes a novel distributed computing architecture, where a 



Chapter-1. Introduction 

10 
 

processor failure is resolved by migration of tasks to other processors. Chapter 5 

presents a middleware design for fault management of the distributed computing 

platform. Fault management includes failure detection, failure coordination, and 

reconfiguration of distributed computing platform. This chapter includes algorithms, 

design and implementation details of the middleware. 

In chapter 6, reliability and availability analysis of the proposed architecture and 

fault management scheme is presented. For reliability modeling, Markov models─ 

centralized, TMR, distributed system - were developed and compared. Following that 

fault management schemes - centralized and distributed - are analyzed and compared. 

Then functional verification is carried out by prototyping the fault-tolerant distributed 

system at a board level. Experimental results are reported and implementation issues 

are highlighted. Chapter 7 documents a Multiprocessor System-on-chip (MPSoC) 

based design and implementation of the distributed computing system. A separate 

dedicated hardware for the AMFT block and processing unit allows concurrent 

execution of the fault management functions and application tasks, thus achieving 

better reliability and performance. The outcome of this chapter is a reliable and 

efficient distributed computing system, particularly suitable for spacecraft on-board 

applications. Chapter 8 presents a case study of the satellite attitude and orbit control 

system (AOCS) distributed computer that is a most suitable example for the validation 

of proposed concept of distributed computing. 

Chapter 9 summarizes the final results of this thesis. The research outcomes are 

assessed against the objectives. The key novelty contributions to the state-of-the-art 

are presented. Finally, future directions of the research are highlighted. 
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Chapter 2  

2.Fault-Tolerant Distributed Computing in 

Embedded Systems 

This chapter presents a detailed review of fault-tolerant distributed computing in 

embedded systems. Section 2.1 covers the terminology and definitions used in fault-

tolerant distributed computing. In section 2.2, a detailed review of fault-tolerance 

techniques employed in distributed computing systems is presented. Fault detection 

methods are covered in section 2.3. Issues related to communication among distributed 

nodes are covered in 2.4. 

2.1 General Overview and Concept 

2.1.1 Distributed Computing 

Distributed Computing refers to any decentralizing of the computing power of a 

system. This means moving the centralized computing responsibilities away from a 

central location and distributing it between multiple locations, typically for some form 

of performance improvement or fault-tolerance purposes [24]. According to this 

definition, the computational problem is divided into tasks (processes) and is equally 

shared between the processors.  
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2.1.2 Distributed Embedded Systems 

A distributed system is a collection of independent computing nodes, connected via a 

network, that appears to its users as a single coherent system  [24]. A characteristic 

feature of a distributed system that distinguishes it from a centralized single computer  

system is the notion of partial failure. An important goal of distributed system is to 

recover from failures automatically without seriously affecting the overall 

performance. A distributed system should continue operations, even in the presence of 

a failure. A distributed system that provides this service is called a fault-tolerant 

distributed system. The same definition applies to a distributed embedded system. 

However, a distributed embedded system is a resource constrained specially designed 

system, usually placed inside or near the physical system that it controls or provides 

data to. It is constrained in terms of electrical power, computational performance, and 

physical size.  

2.1.3 Fault-Tolerance 

Fault-Tolerance is generally addressed via redundancy, i.e. providing backup 

resources that can be used in place of a failed resource.  Fault-tolerance in a distributed 

system can be implemented at the architectural level, or at the node level.  At the 

architectural level, failure of a node within a distributed system is masked by a 

redundant node.  At this level, the failed node should display a simple failure mode 

(fail-stop). In the optimal case, a node exhibits only a fail-stop failure, i.e. the node is 

either operational or not.  At the node level, the node implementation must ensure that 

the failure assumption that has been made at architectural level holds with a high 

probability [25].  

2.1.4 Faults, Errors, and Failures 

The terms ‘fault’, ‘error’ and ‘failure’ are extensively used in the context of fault-

tolerant systems. A fault is a hardware or software defect that can lead to a system 

entering into an incorrect state. An error is a part of the system state which is liable to 

lead to system failure, while a failure is a state in which the system is restricted from 
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performing its required functions. When designing a fault-tolerant system, a designer 

makes some assumptions about the types of faults that must be handled. This is 

denoted as a system fault model. A fault model elaborates all the assumptions of a 

system failure. A designer will often design a system under the assumption that 

processors are failed in a fail-stop manner [26]. In general, the following types of 

faults are often considered [27]. 

 Fail-Stop (Fail-Silent) Faults:  a processor stops producing outputs when 

it fails. 

 Byzantine (Malicious) Faults:  a processor sends erroneous output when it 

fails. Byzantine fault can be either symmetric or asymmetric.  

o Fail Symmetric: the fault results in the same erroneous value being 

sent to all other processors. 

o Fail Asymmetric: the fault results in different erroneous values 

being sent to other processors. 

Faults may also be classified based on duration: 

 Transient Faults:  a processor fails and recovers after a short duration. 

 Permanent Faults: a processor fails and disappears.  

 Intermittent Faults: a processor fails and recovers sporadically.   

2.1.5 Concept of Redundancy 

Redundancy allows a computer system to work under the condition of faults or 

failures. A basic concept of redundancy is to provide alternative paths to allow the 

system to continue its operation, even in the presence of failures [28]. Redundancy can 

be implemented in either the time or spatial domain.  

2.1.5.1 Time Redundancy 

In time redundant systems (also called software redundancy), a software task is 

executed multiple times, consecutively to avoid temporary faults. It is used to detect 

transient faults in a software program [29].The disadvantages of this method include 
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performance loss and additional power consumption. Common examples of time 

redundancy are N-version programming [30], and redundant execution. In N-version 

programming, multiple versions of the same program are running sequentially to mask 

out a faulty version. In contrast, redundant execution can mask or detect transient 

faults by execution of the same program multiple times [31]. 

2.1.5.2 Spatial Redundancy 

In spatial redundancy (also called hardware redundancy), physical spare resources are 

provided. Spatial redundant computers can be internal redundant, comprising 

internally redundant units [32],  or externally redundant, comprising a set of two or 

more processors configured as dual modular redundant (DMR), triple modular 

redundant (TMR) or N-Modular redundant (NMR) configuration [33]. Spatial 

redundancy can be implemented as static redundancy, dynamic redundancy or hybrid 

redundancy. 

Static redundancy relies on the fault masking approach. In this scheme, a set of 

multiple processors (e.g. triple or quad) are voted to mask single or double failures. 

Static redundancy is suitable for applications where maintenance during operation is 

impractical and is equally applicable to transient [34] and permanent faults [35]. In 

static redundancy [36], all processors are clock synchronized, processing the same 

input information and generating the same output data. The final output delivered to 

the target system, is derived from majority voting. In this scheme, it is assumed that no 

two processors can fail simultaneously. TMR computers are conceptually simple, but 

some issues arise in their implementation. These issues are due to the use of common 

circuits for clock synchronization circuit, voting, and common interfaces. A failure of 

common circuits in the TMR scheme can be catastrophic, leading to the failure of the 

whole computer. Therefore, these circuits have to be extremely reliable. Highly 

redundant implementations for these circuits can be used as adopted as in the Fault-

Tolerant Multiprocessor (FTMP) [37] and Software Implemented Fault-Tolerant 

(SIFT) scheme [38].  An issue in TMR with repair computer (recoverable systems), 

which restricts its usage only to small duration missions, is the integration of a faulty 

processor after its successful recovery. There are two recovery techniques—rollback 

and forward recovery— which can be employed. Rollback Recovery is not a 
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preferable method for TMR computers, as it requires additional mechanisms for the 

saving and restoring of the execution context. [39]. Therefore, forward recovery to 

integrate with the other two running computers is employed. Forward Recovery is a 

difficult process, which requires all processor register values to be copied prior to 

reintegrating a recovered processor. Another disadvantage of the TMR redundancy 

scheme is its limited tolerance to a single processor failure. If one of the three 

processors fails, the fault-tolerance mechanism of the TMR computer is no longer 

effective. In order to overcome this problem, a hybrid redundancy is suggested [40, 

41]. Hybrid redundancy includes the features of static and dynamic redundancy 

schemes. Hybrid redundancy is comparatively efficient in terms of fault coverage as 

compared to static and dynamic redundancy schemes; however it adds additional 

complexities in the computing system design to manage both types of redundancies.  

In dynamic (standby) redundancy, a fault is first detected, and then a spare is 

substituted in its place. The following section explains the different types of dynamic 

redundancy schemes.  

Simplex Processing with Backup Spare: This redundancy allows a program to run 

on a single processor while backup processors are available to take over the task load 

in case of a primary failure. Each processor has its own concurrent fault detection 

mechanism, which enables it to detect faults. Standby redundancy can be implemented 

as warm standby redundancy or cold standby redundancy.  

In the case of warm standby redundancy, both the primary and redundant 

processors are powered  [42]. Normally, only the primary processor executes tasks, 

while the redundant processor is in idle state. The downtime of the warm standby 

redundancy is considerably less because of its backup power up state. In cold standby 

redundancy, the redundant processor is placed in a power down state. In case of failure 

of a primary processor, the redundant processor is powered up. As the primary and 

redundant processors execution is not synchronized, a considerable amount of time is 

required for the redundant processor to reach a known state.  

There are two main drawbacks of the standby redundancy. Firstly, a delay in 

switching the operation loses some of the computation, which gives a lower 

computational integrity. Secondly, due to single execution, it also has low fault 
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coverage. Nonetheless, it reduces electrical power consumption, and its simple design 

makes it favorable for long-life missions such as spacecraft and space rovers.   

Duplicated Processing without Backup Spare: In the design of Dual Modular 

Redundant (DMR) computers, two processors run the same computation and their 

outputs are compared. On disagreement, diagnostics are executed to find the failed 

processor. To identify a faulty processor, it relies on a diagnostic test, which cannot 

ensure high computational integrity and fault coverage. A fault of an unknown nature 

can easily be missed, if it is not considered in the diagnostic test routine. 

Later DMR designs include two self-checking processors. Both of them are running 

the same program. Each self-checking processor has its fault detection circuit, which 

can signal an error as soon as it appears. The outputs of the two processors are 

compared. On disagreement, the processor signals an error is ignored while the other 

completes its computation. This type of DMR computer has higher computational 

integrity due to its redundant execution. However, it has lower fault coverage because 

of the internal fault detection circuitry that may not detect all errors. In that case, an 

erroneous output could be delivered to the system. 

2.1.5.3 Discussion 

We conclude our discussion by comparing the two redundancy schemes as shown in 

Figure 2.1. The time redundancy approach is preferably employed for non-critical 

systems while spatial redundancy is employed for critical systems. The various forms 

of spatial redundancy have their advantages and disadvantages. In dynamic 

redundancy, all spare processors are operated in standby mode. Therefore, it requires 

less electrical power, which is very important for long-life applications. It does not 

require synchronization of the primary and spare processors. Design diversity between 

the primary and redundant processor is also possible. However, it uses Simplex 

processing, which provides poor fault coverage and computational integrity. On the 

other hand, static redundancy (TMR computer) provides better fault coverage and 

computational integrity but requires more electrical power and computational 

resources. Another drawback is when a single processor, out of three, fails, resulting in 

no further failure masking.  Static redundancy is suitable for short duration applications 

(such as aircraft applications) that requires high fault coverage and able to bear high 
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electrical power consumption. The hybrid scheme, which utilizes the features of static 

and dynamic redundancy, includes spares to protect a system against more than one 

processor failure. However, designing such a system is significantly more complex. Its 

complex design enhances the design cost and introduces the possibility of more faults 

into the system [43-46]. All of the above redundancy based approaches can only protect 

a system against a single processor failure, and thus requires additional processors and 

support circuitry for enhancing reliability. Furthermore, these additions require an 

intelligent decision for integration/disintegration of a processor in existing systems. 
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Figure 2.1: Redundancy Schemes. 

2.2 Fault-Tolerance Techniques 

In the previous section, we discussed that the redundancy based approaches are limited 

in terms of reliability. This section presents the various fault-tolerance approaches that 

utilize multiple processors for enhancing the reliability of computing systems. The 

main focus of this review is to analyse the techniques, particularly designed for 

reliable distributed embedded systems. 



Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems 

20 
 

2.2.1 Replication 

Replication involves information sharing to ensure data consistency between the 

redundant resources. These redundant resources can be hardware or software 

components. Replication is one of the most well-known solutions to fault-tolerance in 

distributed systems [47]. This technique is initially derived from highly reliable back-

end servers where loss of service availability is very critical. Nowadays, it has 

widespread applications in distributed embedded systems. Replication has two main 

types called active and passive replication. The other variants are semi-active and 

semi-passive replications, which are derived from active and passive replications and 

retain their features, respectively. 

2.2.1.1 Active Replication 

In the active replication scheme [48], processes are replicated to multiple processors 

for fault-tolerance. The invocating process (client process) does not call a particular 

process. Instead, it addresses replicas as a process group. After sending a request to all 

replicas, the invocating process waits for a reply. If the replicas do not behave 

maliciously, then the invocating process can decide on the first reply. Otherwise, it 

waits for at least k+1 replicas in a k fault tolerant system. In the first case, the 

invocating process assumes fail-silent process failure while in the second case, it 

assumes Byzantine failure (behave maliciously when sick). The correct decision in the 

presence of a Byzantine failure is difficult, and various protocols are used [49-52]. To 

ensure the consistent replicas state, the totally-ordered multicast mechanism is used. 

This can be implemented using Lamport’s logical clock that is suitable for small 

distributed systems. Most of the implementation techniques of active replicas [53, 54] 

assume partial synchrony of the underlying communication where the messages are 

communicated with certain time bound limits. In case of a large physical distributed 

system, partial synchrony cannot be achievable, and three-tier architecture is the only 

solution as reported in [55-57]. In three-tier architectures, instead of sending a request 

directly to replica’s processes by the invocating process, an intermediate process is 

introduced for maintaining the consistency of replicas. The main advantages of the 

active replication scheme are its failure transparency and deterministic timing response 



Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems 

21 
 

to the invocating process. However, it consumes more resources, as active replication 

requires processing at all nodes. 

The practical example of the active replication approach is the design of 

Maintainable Real-Time System (Mars) [3]. Mars uses active redundancy for fault-

tolerance whereby two or more components executes the same tasks. Communication 

between any two components is also protected against errors by sending messages 

twice. Components are self-checked and behave silently on the occurrence of a fault. 

This fail-stop feature restricts components to either sending correct message or no 

message. Mars components are arranged in a cluster. Communication between the 

different components is based upon the time division multiple access (TDMA) 

scheme.  

Another example of active replication is the Delta-4 architecture [58], which 

consists of multiple computing nodes connected via a local area network (LAN). An 

individual node can be a uni-processor, a multiprocessor system or a specialized 

system comprised of array processors. Software components are replicated to multiple 

nodes to provide active redundancy against faults or failures. Each node has a network 

attachment controller (NAC) that provides services related to communication and 

message self-checking comparison. Also, the NAC provides multicast and fail-stop 

node operation. 

Active replication is a useful scheme, which is employed in many applications. 

However, it has two main drawbacks: (1) it requires high resources due to redundant 

processing and (2) all requests have to be handled in a deterministic way.  

Furthermore, it requires voting among the replicas for systems in which byzantine 

failures can happen. [59, 60]. 

2.2.1.2 Passive Replication 

In passive replication, also called primary-backup, only the primary node processes 

input messages and provides outputs. To make the replicas consistent, the internal 

state of the replicas is regularly updated from the primary replica. So, in the primary-

backup scheme, contacting process communicates only with the primary node. If a 

primary node sends a reply immediately to the contacting process, it is called as a non-
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blocking primary-backup scheme, while in a blocking primary-backup scheme, the 

primary waits for an acknowledgment from the backup nodes before sending a reply to 

the contacting process. In [61], trade-off analysis between the blocking and non-

blocking scheme is presented. The response time for the non-blocking scheme is small 

in comparison to the non-blocking scheme. However, this is not always true, 

particularly in a scenario, when nodes are connected via a point-to-point 

communications network. In this case, a delay at the intermediate nodes causes an 

overall increase in the response time. Therefore, broadcast communication networks 

are preferred for achieving a small response time in non-blocking protocols.  

In [62] a primary-backup scheme is proposed for real-time distributed systems, 

which unlike the active replication scheme, does not require a strong determinism. 

However, frequent state updates between the primary and the backups are necessary to 

achieve consistency among the replicas. To accomplish a timely response, a temporal 

consistency is suggested. Two objects or events are said to be temporally consistent 

with each other if their corresponding time stamps are within a predefined time 

interval. In a real-time primary-backup scheme the frequent state updates must be 

compliant with the predefined time bound of the application. In other words, a backup 

should have sufficient data information that can safely replace a failed primary node. 

Therefore, such a primary-backup scheme can be used in real-time distributed systems. 

The major drawback of primary-backup replication is its slower response to 

failures. It is particularly the case when the primary replica crashes and a selection of a 

new primary is initiated.   

2.2.1.3 Semi-Active Replication 

In the semi-active replication scheme [63], which is also called “leader-follower”, only 

one replica, i.e. the leader, outputs messages, while the follower replicas perform the 

same computation autonomously as the leader does but do not produce output. 

However for the non-deterministic decision, they must follow the instructions from the 

leader replica, thus relaxing the requirement of determinism.  
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2.2.1.4 Semi-Passive Replication 

A new style of replication, called semi-passive replication [60, 64, 65], is devised to 

overcome the slow response problem of passive replication. In semi-passive 

replication, the request is sent to all the replicas and only one replica processes the 

request. After processing the request, it generates a reply message for the client and an 

update message for the other replicas. Semi-passive replication is a variant of the 

passive replication and retains the characteristics of passive replication. However, it 

uses a rotating coordinator approach [66] for the selection of the new primary instead 

of group membership service. If the primary node crashes or a incorrectly suspected of 

having crashed, then the backup acts as the primary node.  

Figure 2.2 shows the characteristic features of each of the replication techniques. 

The active replication technique provides a faster response to invocating process, but it 

requires a strong replica consistency and consumes more energy due to the execution 

of multiple replicas. On the other hand, passive replication requires less energy but it 

does not maintain a full consistency among the replicas. The semi-active replication 

scheme does not require a strong replica consistency, however, it consumes more 

energy. Similar to the passive replication scheme, the semi-passive replication scheme 

requires state messages for replica consistency. In addition, it has a lower response 

time to the invocating process as compared to the semi-active replication. To 

conclude, the replication based schemes are not efficient in terms of the utilization of 

resources, as they require excessive computing resources (processors, memory) for 

execution and maintenance of the replicas. This makes a replication based distributed 

system costly and inefficient for resource constraint applications.  

2.2.2 Distributed Recovery Block 

In the distributed recovery technique [67, 68], two copies of the same program are 

executing simultaneously on the processors of a node pair. A node pair is a set of dual 

redundant operational nodes. In a node pair, one node is active, called an operational 

node, while the other node is inactive, and called the shadow node. Under normal 

conditions, the active operational node executes a primary version of the tasks while 

the shadow node executes an alternative version of the same tasks. On each node, 
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correctness of the result is checked by an acceptance test. If the acceptance test is 

passed, executive layer routine outputs the results of the primary routine. On failure of 

the acceptance test inside the primary node, the shadow node is informed either by the 

primary node executive layer or by the shadow node time-out value (for the case 

where the primary node fails silently). In that case, the shadow node becomes an 

active node and sends output results. Similar to the redundancy based approaches, 

discussed in section 2.1.5, this technique has limited reliability and can only protect a 

computing system against a single processor failure.  
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Figure 2.2: Comparison of Replication Techniques in Distributed Systems. 

2.2.3 Redundant Execution 

Redundant execution (also called time redundancy) is another fault-tolerance 

technique for distributed embedded systems [69]. Redundant execution can be done at 

the instruction level or the task level. At instruction level [70], each instruction of the 

executing program is duplicated and, after each duplicated instructions, results are 

compared for errors. On the other hand, at task level redundant execution, a software 

task is executed twice or more in time to avoid temporary faults. Contrary to 

replications, it does not require additional hardware to run the redundant copy. Instead, 

it uses extra time to do redundant execution of the same program. As the primary and 
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redundant execution of a program running on a similar hardware can only protect the 

system against the transient faults.  

A single program executing multiple times reduces the overall computing 

performance. Additionally, it also consumes more electrical power. However, a recent 

form of redundant execution called multiplexed redundant execution, as suggested in 

[71] overcomes this problem to some extent. The basic scheme is the same as 

redundant implementation, but it uses chip multiprocessor (CMP) for the execution of 

leading and trailing threads.  

2.2.4 Network Surveillance 

Network Surveillance is a technique that uses a communication network for the fault 

detection and configuration of distributed components [72]. In its simplest form, 

network surveillance includes a master that periodically calls other nodes for the 

detection of a failure.  The master confirms a node failure if it does not receive a reply 

message. In order to avoid a single point of failure, K. H. Kim and E. Shokri propose a 

decentralized approach, called periodic reception history broadcast  (PRHB) [73]. In 

PRHB, each node broadcasts a periodic reception history, which is gathered during the 

last two TDMA cycles, that includes the health status of the available nodes. 

Disadvantage of the PRHB scheme is the large reconfiguration time of up to two 

TDMA cycles, which causes the scheme less responsive in case of a node failure. Both 

network surveillance schemes ─ simple master/slave and PRHB ─ are used for 

broadcast networks only. K.H. Kim and C. Subbaraman propose a scheme called 

supervisory-based network surveillance (SNS) for point-to-point networks [74]. This 

scheme utilizes two types of nodes; worker nodes and supervisor nodes. Worker nodes 

pass the health statuses of its neighbour nodes to a supervisor node, which sends status 

messages to all the other nodes in the network. In this scheme, each node has complete 

health information of all the other nodes irrespective of the availability of a direct 

connection. There are two main problems with this scheme: firstly, it requires election 

in case of a supervisor node failure, which can take a considerable time; secondly, 

messages traverse the network via several links in a store and forward fashion, 

resulting in an additional processing overhead on each node and adding extra fault 

sources.   
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2.3 Fault Detection Methods for Embedded 

Distributed Computing Systems 

In fault-tolerant computing systems, fault detection is a very important element of the 

overall tolerance process. The fault-tolerant process cannot start unless a fault is 

detected. In distributed system, before applying prevention to tolerant a processor 

failure, a faulty processor must be identified. A fault in a processor can be detected by 

either hardware or software based detection methods. Hardware based fault detection 

requires extra hardware to detect faults and might not be feasible for distributed 

system comprising of the several processors. Therefore, software-based fault detection 

is usually preferable. The following section will critically review both methods from 

the point of fault detection of a processor in a distributed system.  

2.3.1 Hardware Based Fault Detection 

A comparison of two or more than two hardware computing elements is one such fault 

detection that relies on physical redundancy. In its simplest form, two elements are 

compared by (Exclusive OR) XOR operation. A mismatch of any of these indicates a 

fault that requires further diagnosis to find out the exact faulty element.  

Monitoring for fault detection is used as an alternative to physical redundancy [75-

81]. In monitoring, a separate hardware module called monitor is used to detect faults 

in the actual computing modules. A similar approach is employed in the Self-Testing 

and Repairing (STAR) computer that was developed by the Jet Propulsion Laboratory 

(JPL) [82]. This computer consists of multiple redundant units, connected via a 4-wire 

internal bus that is monitored by a special unit called Test and Repair Processor 

(TARP). The TARP is connected to the internal bus and uses error-detecting codes and 

status messages for fault detection of the computing units. On detection of a fault, it 

first rolls back the program and, if a problem persists, it replaces the faulty unit with a 

spare.  

Watchdog Timers (WDT) are an additional monitoring based fault detection 

method that is widely used in embedded systems. A processor of an embedded system 

can go into an undefined state if an error appears in the program flow. The WDT 
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monitors a processor for a pre-defined timeout value. If there is no received signal 

from a processor during the timeout period, it signals the processor to go into its initial 

reset state or to run a processor in diagnostic mode. In some cases, it may switch to a 

redundant system. The WDT method is simple, but it is very obvious that malfunctions 

can happen, even if the processor generates the right timing signal for the watchdog 

timer [83]. During this situation, the simple watchdog timer is not very helpful into 

detecting system failures. In [84], a watchdog processor is dedicated to detect faults in 

the main processor. It splits the fault-detection process into a setup and a checking 

phase. In the setup phase, checked values for the detection of faults in the main 

processor are provided while, in the checking phase, the watchdog processor monitors 

the main processor against the checked values. These checked values can be control 

flow information, memory access behaviour, or the reasonableness of the results. In 

control flow monitoring, watchdog processor has to check signatures values and their 

associated relationship. During the program execution of the main processor, the 

watchdog processor computes the signature and compares it with a concurrently 

provided signature. It indicates an error if the two signatures are mismatched. In [85], 

authors propose a watchdog processor for a memory access behaviour that is called 

capability checking. In that case, the watchdog processor checks the memory 

accessibility at the processor/memory interface using physical addresses. If an illegal 

access to the memory is detected, the processor is informed, and a recovery process is 

initiated. In conclusion, watchdog based methods provide a basic level of fault 

detection and are limited to timing violation and illegal access. Therefore, the WDT 

based fault detection is preferably used in conjunction with other methods.  

2.3.2 Software Based Fault Detection 

Assertion is a basic technique for software fault detection, where a programmer inserts 

a small hand written code called an assertion for checking of the original program [86-

90]. If a subprogram passes the acceptance test written as an assertion, it proceeds to 

the next subprogram. Otherwise, failure of the acceptance test is an indication of a 

fault. Assertions act as a barrier between the two sub-programs.   

Unlike assertions, a separate non-distributed [91] and distributed monitor [92] is an 

alternative way of software-based monitoring. These software-based fault detectors as 
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demonstrated in [93, 94], they consume much higher resources than the execution of 

the task itself to support high-coverage of faults. The implementation of these 

methods, such as software-based monitors [91, 92] and software-based detectors [93, 

94], sometimes consumes more resources than the application itself.   

Another technique is called off-line periodic test. In which, the normal operation of 

the system is temporally suspended and a diagnostic program is used to monitor the 

system health. Contrary to off-line periodic checking, Software-based Self-Test 

(SBST), as suggested in [95], provides an online mechanism to self-test a system. In 

this case, a separate task is assigned to run with an actual program. This task 

periodically executes and its period controls the detection latency. For smaller values 

of the period, the detection latency is low.  

Symptom-Based Fault Detection: A symptom is a departure from the normal 

function or execution of a computer system, indicating the presence of a fault [96]. 

Symptom-based anomaly detection techniques focus on monitoring key parameters 

within the software that can indicate abnormal behaviour due to either hardware or 

software faults. These key parameters are evaluated during runtime, maximizing the 

effectiveness while keeping the overhead to a minimum.  

Man Li presented, in [97-99] a symptom-based anomaly detection system, named 

software anomaly treatment (SWAT). The system performs hardware and software 

anomaly detection by observing software behaviour. It employs four abnormal 

behaviours as symptoms of an anomaly: (i) fatal traps, (ii) abnormal application exits, 

(iii) hangs, (iv) high contiguous Operating System (OS) activities. The fatal trap is a 

common fault that is usually detected by the built-in detection mechanism of a 

commercial off-the-shelf (COTS) processor. Fatal traps detect faults like divide-by-

zero, out of bound memory access, misaligned memory access, illegal instructions and 

watchdog expiration. Abnormal application exits are errors, which are not detected by 

hardware but are visible to the OS. The third abnormal behaviour symptom, hangs, is 

detected through a heuristic approach to monitoring all the executed branches in the 

application and OS. The fourth symptom is related to the time spent in executing the 

OS. If the execution takes longer than a certain number of instructions in the OS, then 

it is considered as a symptom of anomalous behaviour. The last two symptoms are 

effective but prone to false positives as their detection is based on heuristic 



Chapter-2. Fault-Tolerant Distributed Computing in Embedded Systems 

29 
 

approaches. A similar fault detection method for multicore systems, named 

SymptomTM, is proposed by Gulay in [100]. This method uses transactional memory 

to isolate faults by first writing the results into a local hardware transaction memory 

and monitoring symptoms such as fatal traps. If there is a fatal trap, then the 

transaction is executed again, and if the fault persists, then the transaction is executed 

on another processor core. If the software runs correctly on the second core, then the 

first core is marked as damaged. If the transaction fails on the second core, this 

indicates a software error. Thus, faults are isolated, and a system can tolerate more 

latency, however, only faults that cause fatal traps are targeted.  

Detection of conditional branching anomalies is addressed in a symptom-based soft 

error detection scheme named ReStore [101]. In this scheme, a checkpoint is created 

after every 10 to 1000 instructions and in case of soft errors, a rollback is executed. In 

case of a false positive the effect is a slight performance loss due to the repeated 

execution from the previous checkpoint. The proposed method makes use of built-in 

pipeline branch predictors. These predictors are highly accurate and can achieve up to 

95 % accuracy [101]. To further reduce the overhead caused by the false positives, a 

confidence level indicator in the predictors is also utilized by setting a confidence 

threshold. Cache misses are normal behaviours; however, they can also be used for 

detection of anomaly symptoms. The existing hardware used for anomaly detection in 

[101] results in a large number of false positives, since it is not designed or optimized 

for this purpose.  

Statistical anomaly detection schemes are suggested in [102, 103]. Finite state 

automata is used to define states of the software programs as runtime events. These 

states include program start, procedure start, loop start, compound statement start, 

program end, procedure end, loop end and compound statement end. In the training 

mode, the transition frequency of each event is calculated as a baseline. For example, 

assume that the frequency of a certain loop execution cycle is calculated during the 

test run, and its mean and variance values are x and y, respectively. If, during the 

software execution, the x or y value exceeds a certain threshold then, it will be 

considered as a symptom of an anomaly. This method can be effective. However, it 

requires dividing the program into states and an accurate calculation of the statistical 

parameters during test runs. Ensuring correspondence between the test runs and the 
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actual operation is critical to the success of the detection scheme. Also, dynamic 

operation environments can cause a large number of false positives. 

Correctly detecting software crashes and hangs is very important for high 

availability systems. Nakka  proposed three fault detection techniques to detect 

software crashes and hangs [104]. An Instruction Count Heartbeat (ICH) signal detects 

abnormal process termination and hangs. It monitors whether the processor executing 

the instructions has the right context by finding a particular fixed number of 

instructions in a fixed time. This functionality is already present in modern high-end 

processors. An Infinite Loop Hang Detector (ILHD) module detects hangs due to 

infinite execution in a loop. A compiler is used to instrument the entry and exit points 

in each loop with a different timeout for each loop. A Sequence Code Hang Detector 

(SCHD) module detects the infinite loop hangs due to illegal loops by maintaining a 

log of recent instructions and looking up the same instruction sequence. In this way, 

repeated instruction can be detected. However, the implementation of this technique 

on embedded processors requires additional hardware modules. 

2.4 Communication Network 

In fault-tolerant distributed computing, selecting the right communication network and 

protocol are essential. In general, the networks for critical systems have to meet the 

following broad functional requirements: fault-tolerant operation, determinism and 

reliable data delivery. In addition to these minimal requirements, features such as 

high-speed, multi-master, and power consumption are also important. Fault-tolerance 

is the most important feature for a mission critical distributed system. A single 

network failure ─babbling, network partitioning─ can be catastrophic for the entire 

communication process and result in the loss of the whole mission. Errors in a network 

such as an invalid message, a non-responsive message, and node conflicts are usually 

protected. The following section discusses these aspects of network communication 

protocols in the light of fault-tolerant distributed computing. 

MIL-STD-1553 is a widely used protocol configured in bus topology and was 

initially developed for avionics systems. In MIL-STD-1553, three types of messages 

─command, data, and status─ are used. A word is a smallest entity in a message and 
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contains 20 bits. Each transmitted word is protected by a parity bit for the detection of 

invalid messages. In addition to the parity bit, each word is also protected by a 3-bit 

sync pattern. The pattern for command and status words is identical, while a separate 

inverted sync pattern is used for data words. A failure of a non-responsive node is 

handled by the status messages. MIL-STD-1553 is a dual redundant bus, but during 

normal operation, data is only transmitted on one bus while the other bus is kept as a 

hot backup. The Bus Controller (BC) can use the other redundant bus when a babbling 

node on the primary bus prevents normal communication. In this case, the BC would 

send a stopping command for shutting down the babbling node’s transmitter. The 

redundant bus can also be used for the normal communication in case of physical 

damage to the primary bus.  In MIL-STD-1553, all the data movement is controlled by 

the BC, which ensures deterministic and real-time bus access. Although, MIL-STD-

1553 proves it heritage in many avionics and space projects, but it has limited speed 

(up to 1 Mbps). Thus, it cannot meet the high-speed requirements of current and future 

applications. Although further researched [105, 106], no considerable performance in 

terms of speed is achieved. Another limitation of the MIL-STD-1553 bus is that it only 

supports master/slave communication model for distributed computing.  

Controller Area Network (CAN) is an event-triggered network, originally 

developed for the automotive control applications. However, CAN and its variants 

have also been developed for other applications [107-109]. CAN is a multi-master, 

prioritized, short messaging, and medium speed data network. Reliability of a 

communication network is validated through its bit error rate, fault localization, and 

immunity to radiation. In the case of CAN, a 15 bit CRC and frame format/size 

checking is used for data integrity at the message layer. At the physical layer, two 

mechanisms─ bus monitoring and bit stuffing─ are implemented for the detection of 

errors. Each transmitter checks the transmitted signals on the network to ensure 

reliable communication. The CAN network is capable of switching-off a node if a 

node sends erroneous messages on the network greater than the pre-defined limit. The 

CAN communication protocol cannot, however, switch-off a babbling node while it is 

transmitting correct messages. While a CAN network is operated in a dual redundant 

bus topology, there is no provision in the protocol to switch to the redundant bus. 

Also, the CAN protocol uses priority-driven Carrier Sense Multiple Access/Collision 
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Detection (CSMA/CD) medium access scheme, so deterministic behaviour cannot be 

guaranteed. A modified CAN protocol that meets the real-time deadline of critical 

systems is a Time-Triggered Controller Area Network (TTCAN) [110]. TTCAN is 

highly reliable and suitable for critical applications [111]. It divides the bus access into 

multiple slots that guarantee real-time data delivery. TTCAN allows a node to write on 

the bus at a particular time. Therefore, it is relatively easy to detect the existence of  

babbling nodes by watching the relevant  time slots [112].  

Nowadays, Ethernet is rapidly emerging in embedded computing due to its 

widespread availability and cheaper cost [113]. Ethernet uses an event triggered 

Carrier Sense Multiple Access/Collision Detection (CSMA/CD) scheme for medium 

access, in which arbitration is based on a back-off mechanism. On contention, each 

node waits for a random amount of time and then attempt to re-transmit on the 

network. Due to this back-off mechanism for arbitration, the timeline for 

communication cannot be guaranteed. To ensure a timeline, TTTech suggested a new 

Ethernet protocol called the Time-Triggered Ethernet (TTEthernet) [114]. This 

protocol combines the event and time-triggered scheme to support rate constraints, 

best-effort and real-time traffics. Also, it uses redundant path, switches, and end 

systems to ensure fault-tolerant operation of the network. It concludes that a failure of 

a single node or messages in a network can be tolerated without affecting the 

application. Also, each node and the network switch are protected by guardians that 

ensure the communication compliance within the TTEthernet network, according to 

predefined parameters.  

SpaceWire is a point-to-point standard that was developed to provide high data rate 

communication for on board space systems. Under this system, mass storage units, 

processing units and subsystems are interconnected via a SpaceWire router that allows 

multiple devices to communicate simultaneously. SpaceWire uses Low Voltage 

Differential Signalling (LVDS), which consumes very low electrical power at very 

high speed [115]. LVDS isolates its physical interface to avoid damages during a short 

circuit condition. SpaceWire supports group adaptive routing for isolating a failure 

link. The communication over SpaceWire is non-deterministic. Therefore a  

SpaceWireRT [116, 117] was proposed. SpaceWireRT allows a Quality of Service 

(QoS) layer over SpaceWire to support deterministic, reliable real-time data delivery. 
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Although the original SpaceWire protocol is non-deterministic, due to its simplicity, 

adaptable topology and high-speed communication, it has been used on many NASA 

and ESA missions.  

Few other COTS communication protocols, such as I2C and IEEE-1394, are also 

suggested for network bus-based communication for various applications [118, 119]. 

To make these communications protocols fault-tolerant, necessary modifications are 

adopted in the X2000 program. However, due to lack of network layer support, these 

cannot be appropriate options for future scalable missions. Also, the limited speed of 

the I2C bus restricts its use for CubeSats and other similar space applications.  

A network can be configured in different topologies─ such as bus, line, star, ring, 

mesh and point-to-point. The mesh topology has the best redundancy, even when a 

link is down. However, it becomes very complex as the number of nodes increases. 

Star is centralized and has a single point of failure; therefore it is not at all considered. 

The ring topology is more complex than the bus, and most of the communication 

protocols support a bus topology. Therefore, it is a more appropriate option for 

broadcast/multicast communication in fault-tolerant distributed computing systems. 

To support current and future distributed applications, key features for each 

protocol are tabulated in Table 2.1. It includes features of fault-tolerance, high data 

rate, scalable topology, real-time and reliable data delivery, and multi-master support 

for comparison. This comparison shows that SpaceWireRT and TTEthernet are the 

two appropriate options for supporting all these features. However, TTCAN can also 

be used for low data rate applications. 

 Table 2.1: Comparison of Wired Communication Protocol 

Parameters TTCAN Bus MIL-STD-

1553/1773 

SpaceWireRT TTEthernet 

Max. Speed 1 Mbps 1 Mbps 400 Mbps 10/100 Mbps 

Power 

Consumption 

0.75 W (COTs)/ 

1W (RadCAN) 

High 0.5 W > 1 W 

Topology Bus Bus Point-to-

point/Network 

Bus/Network 

Architecture Multi-master Master-slave Any Any 
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2.5 Summary 

Replication allocates the same tasks to multiple physical nodes. The disadvantage of 

this is the underutilization of computing resources for the sake of achieving a higher 

reliability. The techniques reviewed in the literature are not well suited for adapting to 

other applications. 

One important aspect of the active replication-based system is that it uses the 

method of majority voting, in which a consensus is carried out to ascertain the most 

reliable outcome amongst each other. However, if one of the nodes fails (either 

through functional failure or damage), consensus cannot be established, which is a 

particular limitation only in a three node system. A consensus based system also 

suffers from a large inter-node communications overhead, which also demands higher 

processing power, indirectly consuming more power, and demanding a fast 

communication network. Therefore, fault-tolerance by replication can be suitable for a 

general purpose system, but not for a resource-constrained embedded distributed 

system.  

Fault detection is an important element of fault-tolerant distributed computing, 

which is carried out commonly at two levels, hardware and software, both of which 

have been discussed. It is evident that both the hardware and the software level fault 

detection methods are imminent in a fault-tolerant computing system. It is observed 

that software-based fault detection is commonly used, since it utilizes fewer resources 

(and resources are scarce in embedded systems). 

Distributed computing system requires some means of communication amongst its 

peer computing nodes. Communications protocols in light of distributed computing 

systems requirements were reviewed. The focus of this review was to analyse 

Max. Data/Packet 8 bytes 64 bytes Variable Variable 

Real-Time 

Delivery 

Deterministic Deterministic Deterministic Deterministic 

Fault-Tolerance Good Best Good Good 

Scalability Not Not Yes Yes 
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protocols from three aspects— fault-tolerance, real-time and reliable data delivery— 

for the employment in embedded distributed computing systems.  

In conclusion, replication is a tried and tested technique, which is widely used in 

distributed computing systems. However, emerging demands for high performance 

distributed computing require a fault-tolerance technique that utilizes the inherent 

availability of multiple processing units.  
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Chapter 3 

3.Fault-Tolerant On-Board Computing  

This chapter reviews the existing fault-tolerant computing schemes in space 

applications. In section 3.1, the general concept of space fault-tolerant computing is 

introduced. State-of-the-art fault-tolerant mechanisms employed in existing spacecraft 

and aircraft are surveyed in section 3.2, covering computing models, fault 

management schemes, and existing fault-tolerant distributed systems. In section 3.3, 

the importance and suitability of commercial off-the-shelf (COTS) wireless protocols 

are discussed in terms of spacecraft distributed computing. A brief overview of current 

non-distributed fault-tolerant systems, in terms of high-reliability and high-

performance demands, is discussed in section 3.4. The main issues and research gaps 

in the existing fault-tolerant schemes are highlighted in section 3.5. A problem 

statement consisting of a main definition, fault model and performance metrics is 

defined in section 3.6. 

3.1 Related Definitions 

3.1.1 Spacecraft 

Spacecraft is a vehicle that is designed to fly in outer space. It has the capability to 

travel in the free space while satellites are intended to orbit a planet. Both of these are 

designed to provide a particular service. Both are used for a variety of purposes 
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including communication, navigation, Earth observation, planetary exploration, 

transportation of humans and cargo. The internal functionality of each 

spacecraft/satellite is divided into platform (also called Bus System) and payload 

systems. The payload system is used to provide the intended service while the platform 

system is for the support of the payload system [120]. The spacecraft platform system 

consists of many subsystems including structure and mechanisms, thermal, attitude and 

orbit control (AOC), propulsion, power, telemetry and command, and on-board data 

handling (OBDH). Although, all subsystems of a spacecraft are important, the on-board 

data handling, AOC and the payload itself are very important from a computational 

point of view. All three are responsible carrying out computationally intensive tasks 

and huge data processing in the presence of severe environmental conditions.  

3.1.2 On-Board Computer 

The On-Board Computers (OBCs) of a spacecraft provide computational service to 

platform data processing, vehicle control (AOC) and payload data processing. These 

functions are very critical, so OBCs must be able to withstand the effects of thermal, 

mechanical, high energetic particle radiation and other environmental hazards. These 

implications significantly influence the design of OBCs and make them largely 

different from the traditional computers used on Earth [121]. 

3.1.3 Computer, Node, Unit, and Module 

Throughout this chapter, four terms are often used to represents the physical entities of 

fault-tolerant computing systems. These terms are defined as: 

 A ‘computing node’ is viewed as consisting of a processor connected to some 

network or communications medium.  

 A ‘unit’ represents a computing entity within a node. According to this 

definition, a computing node can include multiple units. 

 A ‘module’ can or cannot be a part of the computing unit. Each module is 

required to do some useful functions.  
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 A ‘computer’ consists of one or multiple nodes that are attached to each other by a 

communication network. This same definition applies to the fault-tolerant 

computer comprised of primary and redundant nodes.  

3.2 Fault-Tolerant Computing for Aerospace 

Applications 

This section reviews fault-tolerant computing from an aerospace application point of 

view. Existing fault-tolerant mechanisms are surveyed to get an idea of the current state 

of the art, covering computing models as well as fault management level schemes. 

Furthermore, a detailed design overview of fault-tolerant systems is also presented.  

3.2.1 Computing Models 

This section will present how the primary and redundant nodes of a fault-tolerant 

computer are connected to form a fault-tolerant computing architecture. There are 

mainly three architectures, which are explained in the following section. 

3.2.1.1 Centralized Model 

In a centralized computing model, all computing functions are executed on a single 

computer. This computer is internally redundant and usually designed using module-

level redundancy [32]. In this computing model, only one module is active at any time, 

which can be replaced by the redundant module in case of a fault. For fault detection ─ 

arithmetic codes, product, and residue ─ are used. The reconfiguration module, which 

knows the health state of each module via a fault status signal, itself is triplicated. The 

reliability of the centralized computer depends on the failure rate of its components, 

whereas its computational performance depends on the processor’s operating 

frequency.  

3.2.1.2 Cross-Strapped Model 

The cross-strapping model is a widely used in on-board computing systems [122]. It is 

employed between two similar pairs of nodes or units as shown in Figure 3.1. Cross-
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strapping is not dealt with at the internal node level of redundancy. It is an approach to 

provide a dual redundant communication path to ensure system reliability. In cross-

strapping, multiple functional components/modules are connected in series to form a 

string or chain to achieve overall functionality. Components of one string are cross-

strapped with the other string to build a cross-strapped computing system. This scheme 

is better in terms of failure isolation because it can isolate a unit without disabling the 

other units in a string. It is different from the non-cross-strapped case, where a failure 

of one computing unit will disable all the other units in the same string. However, the 

cross-strapped scheme has poor failure containment and fault detection, isolation and 

recovery (FDIR) testability [123]. A single failure may affect all the cross-strapped 

strings. In terms of FDIR testability, it is very difficult to test the overall cross-

strapped computing system. Furthermore, each cross-strapped unit requires fault 

detection algorithm to isolate a particular unit.   

OBDH (P)

Mass 
Memory

ADCS
Computer (P)

ADCS
Computer (R)
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OBDH Bus
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Figure 3.1: Cross-Strapped Satellite Platform Computing Model. 
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3.2.1.3 Distributed Model 

A distributed model takes advantage of the underlying network. The three distributed 

computing models─ client-server, master-slave [124] and node pair [67]─ can be used 

for the implementation of fault-tolerant distributed systems. The client-server model is 

mostly used for general purpose fault-tolerant computing, where there is no need of 

absolute time bound, and enough computing resources are available. On the other 

hand, the master-slave design is widely employed in embedded fault-tolerant system. 

The main advantage of the master-slave model over the client-server model is a zero 

connection setup time. In the node pair model, a computing system consists of a single 

supervisor node and multiple operational nodes operating in a node pair configuration. 

A node pair is a set of dual redundant nodes. In a set pair, one operational node is 

active while its peer node is in a shadow mode, which operates on a failure of a 

primary.  

3.2.2 Fault Management Scheme 

Often a fault management scheme is identified using different terms, such as health 

management, fault detection, isolation, and recovery (FDIR), and redundancy 

management. In this thesis, we will use the term fault management scheme to 

represent all these terms. In general, the fault management scheme would apply to all 

parts of a spacecraft but here fault management at the architectural level to cater for a 

failure of a computing node is discussed. A computing node’s failure can be handled 

by a manual or an autonomous fault management scheme. In the manual fault 

management scheme, a ground command is required for activation of the redundant 

node. The disadvantage of the manual fault management scheme is its long response 

time because of the long delay encountered during the communication and operator 

intervention. While an autonomous fault management scheme eliminates this delay by 

making local decisions on board. These decisions can be made by hard-coded or by 

table-driven algorithms. Hard-coded algorithms are coded as an integral part of the 

flight software and are verified in the same way as the flight code. Table-driven 

algorithms use a database for defining and monitoring parameter and, their failure pre-

set thresholds. The table driven approach allows easier modification, however, full 

testing and verification are still required for each database change. There are four main 
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schemes based on the location of the algorithms: half satellite, centralized, 

decentralized, and hierarchical, which can be used for fault management of a 

computing system at the architectural level.  

3.2.2.1 Half Satellite Fault Management Scheme 

The half satellite fault management scheme is a simple form of fault management 

[125]. This scheme comprises of primary and redundant computing chains. The 

primary chain includes a set of primary computing nodes, while the redundant chain 

includes a set of redundant computing nodes. The scheme is not able to make 

decisions on isolation and reconfiguration of an individual computing subsystem. In 

case of a fault, it simply switches to the redundant computing chain irrespective of the 

remaining healthy computing nodes. Later on, the fault is analysed on ground, and 

possible commands for a particular configuration are initiated. This scheme is not a 

suitable option for current and future space missions, which are geared towards on-

board autonomy.  

3.2.2.2 Centralized Fault Management Scheme 

In case of a centralized fault management (FM) scheme [126], all the functions related 

to fault detection, isolation and reconfiguration of a system are located on a single 

computing subsystem called on-board data handling (OBDH), as shown in Figure 3.2. 

This scheme is simpler in terms of the implementation of the fault management 

algorithms because all fault management related activities are executed on a single 

processor. Due to the centralized implementation of the fault management functions, it 

is much easier to verify the overall scheme. The main disadvantage of this scheme is 

that all the telemetry and telecommand signals are routed via a central computing node 

that introduces additional failures paths. Also, it may overload the central computing 

node.  

3.2.2.3 Decentralized Fault Management Scheme  

In the decentralized approach, the fault monitoring functions are moved to the 

individual computing nodes as shown in Figure 3.3. Each node monitors itself and 

passes the data to the centralized computing node that is the on-board data handling 
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(OBDH) node. The centralized computing node examines the telemetry data for 

detecting a fault in a node. If there is a severe fault, a particular node is replaced by a 

redundant node.  However, on a minor fault, it is reported in the telemetry data for on-

ground analysis.  

The Modular Architecture for Robust Computing (MARC), proposed in [127], is 

based on a similar decentralized scheme. In this architecture, a Core Computing 

Module (CCM) is designated to run the main fault management algorithms. All the 

other computing nodes periodically send health telemetry data to CCM via SpaceWire 

[115] , which is used for detection of faults. On failure detection of a node, CCM 

reconfigures a redundant node to assign the lost tasks.  

The decentralized FM scheme is better than centralized FM because it reduces the 

workload of the central computing node by shifting the monitoring functions close to 

the subsystems. It does not reduce the complexity but improves monitoring of 

parameters. However, similar to the centralized FM scheme, a failure of the 

centralized node can lead to the loss of the whole mission. 
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Figure 3.2: Centralized Fault Management Scheme. 
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3.2.2.4 Hierarchical Fault Management Scheme 

In the hierarchical fault management scheme, shown in Figure 3.4, the system is 

divided into multiple levels [128]. Each level has its fault management mechanism for 

failure detection, isolation, and reconfiguration. Instead of a central controller, the 

hierarchical strategy spreads the fault management functions throughout the 

spacecraft. This off-loading of the fault management functions to multiple units results 

in a better performance. However, involving multiple levels of fault management 

makes the overall satellite system much more complex and vulnerable to failure, if not 

properly designed. Also, much more efforts will be required on the testing and 

verification of the fault management design.  
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Figure 3.3: Decentralized Fault Management Scheme. 
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Figure 3.4: Hierarchical Fault Management Scheme. 

3.2.3 Fault-Tolerant Computing Systems 

Since 1960, various fault-tolerant computers have been designed and developed. In 

this section, we will first discuss centralized fault-tolerant computers. A centralized 

fault-tolerant computer executes a particular task set either by a Simplex execution, 

dual redundant execution or TMR execution. Then, we will discuss distributed fault-

tolerant computing systems, where multiple sets of tasks are executed on different sites 

where each site is comprised of a single, dual or TMR computer.  

3.2.3.1 Centralized Fault-Tolerant Computing Systems 

The Apollo and SATURN V launch vehicle guidance computers were developed to 

use a static and dynamic redundancy scheme [33, 129]. Static redundancy has been 

adapted for the processors, while dynamic redundancy was used for the memory 

system. A processor set comprises three processors, running the same program and 

their outputs are voted to mask a single error. Two memories with error detecting 

codes were employed. If one memory fails, then a processor can access the other 

memory.  
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A self-testing and repairing (STAR) computer was developed by the Jet 

Propulsion Laboratory (JPL) [32]. The architecture of the STAR computer comprises 

multiple redundant functional modules, connected via a 4-wire internal bus and 

monitored by a special module called Test and Repair Processor (TARP). TARP 

monitors all the other modules by their messages on an internal bus. For detection, it 

relies on the arithmetic coding or uses simple comparison among the modules. Each 

transaction on the bus uses arithmetic codes (product code, residue code).  In case of a 

failure, TARP first rollbacks a program in the faulty module. If the problem persists; it 

replaces the faulty module with a spare. The TARP itself has more than three 

redundant modules, but three of these are powered up at any time. The use of standby 

redundancy in the STAR computer is advantageous for long life missions. However,  

the overall design is much more bulky and consumes more electrical power due to its 

modular design, where each module has spares. Also, due to its Simplex execution, it 

can skip faults that are beyond the boundary of its self-detection logic.  

The Fault-Tolerant Multiprocessor (FTMP) computer was designed for deep space 

missions in which maintenance is subject to a delay and a loss of control functions 

leads to a high cost in terms of life [37]. It is designed for a rate of 10
-10

 failures per 

hour due to random failures on ten-hour flights, where no on-board maintenance is 

available. The design consists of fully synchronous hardware units partitioned into 

processor cache modules, memory modules, and input-output modules, which 

communicate via redundant serial buses. All information processing and transmission 

is triplicated in the FTMP. A voter in each triad handles error correction and tolerance 

renewal. The tolerance renewal mechanism replaces a faulty module with a spare 

module. The FTMP redundancy scheme is not based on a simple TMR, it is a parallel 

hybrid redundancy, where any other similar module can substitute a major module. 

The Software Implemented Fault-Tolerance (SIFT) computer was similar to 

FTMP in terms of functional specifications [38]. The two designs differ in the 

hardware and software fault-tolerance implementations. Unlike FTMP, SIFT mostly 

relies on software-based fault detection, correction and reconfiguration process. SIFT 

uses the concept of tasks execution in the form of iterations. A set of three processors 

runs the same task. Each processor executes tasks and places the data in its memory. 

After all the three processors place the output data in the memory, before the execution 

of the next task, all the three results are voted. If one of the three disagrees, a log event 
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is reported to the configuration module, which retires the faulty module and integrates 

a new module. The modules do not require a strict time synchronization. They only 

require different processors running the same iteration of the task within a 50 us 

boundary.  

The space shuttle computer uses a hybrid redundancy approach, where each 

computing node communicates with the other computing node at the interface level for 

consistency, data voting, and synchronization [40]. This computer comprises of five 

general-purpose computing nodes. Four of these are reserved for flight-critical 

functions while the fifth is dedicated to non-critical functions. In normal operation, all 

four computing nodes are operated in a static redundancy mode whereby all nodes 

simultaneously process the same input and produce the same output. All computing 

nodes are loosely connected, and periodic messages are required to keep nodes within 

tolerable limits. For fault detection techniques like compare word testing, bus channel 

time out, self-testing and watchdog are used. On failure of two of the computing 

nodes, static redundancy is not possible, so dynamic redundancy mode is enabled. In 

this mode, only two nodes are included in the redundant set. Thus, failure 

identification is performed by self-testing of each machine. Due to the complex hybrid 

redundancy scheme and complex IOs design, the mean-time-to-failure (MTTF) for this 

computer is very small and it is not suitable for long-duration missions. 

In [124, 130-132], the master-slave model is used for the implementation of a 

fault-tolerant computer for space applications, the design of which uses low cost 

embedded microcontrollers. Each embedded microcontroller module has three states; 

master, slave and off-line. In the initial configuration, one master, two slaves and one 

off-line embedded microcontroller modules are used. Master and slave modules have 

the same application program to provide masking against failures. Master and slaves 

are the active modules while off-line modules do not participate in the computation. 

During normal operation, the master sends computed result values to the slaves for 

voting whereas the slaves reply with an “agree” or a “disagree” decision. If any of the 

slaves disagree, the master sends an off-line command to that slave. In the off-line 

state, a slave can only execute diagnostic routines to detect the cause of failure. If an 

off-line slave cannot compute correct diagnostic computation, it turns off immediately. 

In case of a master failure, detection is a difficult process. If the majority of the slaves 

disagree with the master, then they confirm the master failure. In that case, a new 
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master is selected from the slaves. Thus, the master-slave model has a single point of 

failure. Also, critical functions such as clock synchronization, fault management, and 

consensus are all handled by a single computing node ‘master’, which potentially 

limits scalability and performance.   

The Multicomputer Architecture for Fault-Tolerance (MAFT) was designed to 

provide extremely reliable computation in real-time control systems [133]. It divides 

each node into two separate processors: an Operational Controller (OC) and an 

Application Processor (AP). The OC handles the system executive tasks (the operating 

system tasks). These include inter-node communication and synchronization, data 

voting, task scheduling, error detection, and system reconfiguration. The AP runs only 

application tasks that include reading sensor data, executing control law functions and 

sending commands to actuators. In the MAFT computing system, application tasks are 

redistributed to account for changes after a node failure. Tasks are static to nodes, and 

can be run as an individual copy or through the use of replication. MAFT uses voting 

to detect a faulty task or faults / failures of a particular node. Also, a voted replicas 

system requires a minimum amount of healthy replicas to reach a consensus that is not 

possible if one of the nodes fails in a three node system. For communication, each 

node has its broadcast bus with the other nodes and number of communication buses 

depends on the number of nodes. On each additional node, an additional 

communication bus will be required which adds more overhead on the electrical power 

and weight. 

A high assurance on-line recovery technology for an on-board computer design is 

presented in [134]. The on-line recovery computing system comprises multiple nodes, 

connected via a CAN network. The main objective of this computing system is to 

present a self-recovery mechanism of a computing node following a fault. In case of a 

fault, the faulty node can recover itself by only looking at messages on the 

communication network. It satisfies the requirements for a short control cycle and tries 

to maintain the degree of redundancy of the overall system. Similar to other 

approaches, this computer requires redundant computing nodes to mask a fault. Also, 

the computer uses a timeout for each computational step that requires perfect timing 

among the different nodes. Furthermore, the fault-tolerant scheme is not designed to 

work for Byzantine failures.  
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3.2.3.2 Fault-Tolerant Distributed Computing Systems 

Distributed computing systems have gained significant acceptance in the area of 

mission critical applications. These systems offer substantial fault-tolerance features. 

Contrary to a centralized computing system, a single failure does not lead to the loss of 

the whole system [135].  

Fault-Tolerant Distributed systems are classified into two main classes, (i) life 

critical and (ii) non-life critical systems as shown in Figure 3.5. Life critical systems 

involve human life directly or indirectly while the non-life critical do not. These are 

further divided into computationally critical, high availability, and high-performance 

systems. Computationally critical systems are those systems that require real-time hard 

or soft deadline for their operation. Missing a deadline can be catastrophic resulting in 

the loss of the whole mission. In high availability system, occasional loss of one 

computing unit is acceptable but the entire system outage is not acceptable. HPEC 

systems demand higher throughput but do not require a hard deadline. In the following 

section, we will review Fault-Tolerant Distributed Systems for computationally critical 

systems with particular emphasis on satellite systems [136]. 

The concept of FTMP [34] is extended to a distributed system in the Advance 

Information Processing System (AIPS) [137]. The computer system is divided into 

multiple sites. Each site consists of a triplex, duplex, or simplex configuration 

depending upon the criticality of its tasks. These sites are connected via an 

intercommunication network, which is also triplicated. Each processing site has its 

local clock for synchronization. Hardware voting is used throughout the system. 

Hardware voting within a site is easy and managed by the local clock. However, a 

synchronizer is required for triplicated data send between the processing sites. 

In [82, 138], D. A. Rennels extended the master/slave approach proposing a 

distributed hierarchical computer, consisting of low-level and high-level computers. 

Although, the design is similar in nature to the master/slave approach in terms of 

physical architecture, it is different in terms of the functional behaviour. In the 

master/slave model, discussed in section 3.2.3.1, each computing node is assigned the 

same tasks, and the final output is delivered by the master only. In a hierarchical 

design, each low-level computer has its task set while the high-level computers store 

commands from ground, direct processing in the low-level computers and control the 
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communication on the network. For multiple low-level computers, one high-level 

computer is designated. For hardware redundancy, each computer (high, low) is 

duplicated. However, each duplicated computer is dedicated to a particular function 

and is assumed to run only a specific task set. In other words, it cannot reconfigure for 

other functions that make this approach inflexible.  
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Figure 3.5: Classification of Fault-Tolerant Distributed Systems. 

In 2000, NASA started to develop a low-cost distributed computing architecture 

for deep space applications [139, 140]. The main objective was to build multi-mission 

spacecraft systems using COTS technologies. Similar to the traditional computing 

architectures, the ‘X2000’ architecture is comprised of multiple nodes connected via 

two dual redundant networks in a bus topology (IEEE 1394, I2C).  Due to COTS 

communication protocols in the design, extra efforts were required to implement a 

fault-tolerant network design. This design includes an enhanced fault detection and 
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recovery mechanism that includes fault isolation and recovery by design diversity. As 

the main focus of X2000 was to build a robust network, fault-tolerance is provided by 

the use of dual redundant nodes. The number of redundant nodes increases with the 

increase in actual computing nodes which is an underutilization of computing 

resources.  

The design of the Maintainable Real-Time System (Mars) started in 1980 [3]. The 

first Mars prototype, which was targeted to real-time control applications, was 

developed in 1984 at the University of Berlin. Mars uses active redundancy for fault-

tolerance whereby two or more components executes the same tasks. Communication 

between any two components is protected against errors by sending the messages 

twice. The components are self-checked and behave silently on the occurrence of a 

fault. This fail-stop feature restricts components to either sending the correct message 

or no message. Mars components are arranged in a cluster. Within each cluster, an 

interface component provides extensibility of the cluster. The communication between 

the different components is based upon the time division multiple access (TDMA) 

scheme. Although, Mars has useful features of self-checked components, all the 

redundant resources reside in the idle state and are only activated in case of a failure of 

their primary peer computing node.   

The Delta-4 project [55] defines an open, fault-tolerant distributed computing 

architecture. It consists of multiple computing nodes connected via a local area 

network. An individual node can be a processor, a multiprocessor system or a 

specialized system comprised of an array of processors. Software components 

replicate to multiple nodes to provide active redundancy against faults or failures. 

Each node has a Network Attachment Controller (NAC) that provides services related 

to communication and message self-checking comparison. Also, the NAC provides a 

multicast and fail-stop node operation. 

3.2.4 Discussion 

It is evident from the summary of the reviewed centralized fault-tolerant computing 

systems in Table 3.1 that most of the computers, particularly designed for short 

duration applications (aircraft and space shuttle) rely on hardware and software TMR 

based approaches for fault-tolerance. Although, TMR has a better fault coverage, but 
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adding a spare node or reintegrating an existing node requires synchronization. Also, 

the use of TMR is more costly and consumes more electrical power. For long duration 

missions such as spacecraft, where a temporary pause in computation is tolerable, 

standby redundancy is considered a better option than TMR.  

The reviewed distributed computing systems are summarised by rows 1 to 5 in 

Table 3.2, row 6 is related to the work proposed in this thesis. It is evident from Table 

3.2 that for short duration missions, the highly redundant distributed system (AIPS) 

that includes DMR or TMR is the preferred option. While for long duration control 

applications, EDRB and triplication are the preferable methods. The third category of 

distributed systems is related to space applications where Simplex processing with a 

standby redundancy is used. Standby Redundancy requires less physical hardware 

resources and electrical power, both of which are limited on board spacecraft. As the 

space system is tolerable to lost computation without damage, the standby redundancy 

is the most appropriate option for these unattended systems.  

It can be seen from Table 3.2 that distributed computing has been employed in 

spacecraft in one form or another. Especially, it can be noted that multiple processors 

are used to carry out a set of tasks in existing systems, however, the tasks are not 

executed in a collaborative way. The reliability is ensured via physical hardware 

redundancy of each processor. Therefore, if one processor fails its redundant backup 

takes over, and even if that fails, then there is no provision for transferring its set of 

tasks to another processor. In these circumstances, the spacecraft has to limit its 

functionality by operating in a safe mode. The distributed computing architecture 

summarised in the bottom row of Table 3.2 aims to address the above deficiencies. It 

is introduced in Chapter 4 and a system-on-a-chip multi-core implementation is 

described in Chapter 7. A distributed FDIR strategy is used, in which each node has its 

own FDIR mechanism, embedded inside a dedicated block. This approach provides 

architectural-level cost effective fault-tolerance by enabling tasks’ migration among 

the computing nodes.  
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Table 3.1: Fault-Tolerant Centralized Computers. 
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Table 3.2: Fault-Tolerant Distributed Systems. 

Fault-

Tolerant 

Distributed 

Systems 

Site 

Redundancy 

Redundancy Management Communication 

Bus/Network 

Application 

Fault 

Detection 

Recovery & 

Reconfiguration 

AIPS Simplex, 

DMR, and 

TMR 

Hardware 

TMR Voting, 

DMR 

Comparison 

Primary / 

Backup global 

computers 

Network, 

comprise of 

redundant links 

and switching 

nodes. 

Short 

Duration 

missions 

FTD 

Computer 

by JPL  

Simplex for  

Low-Level 

and High-

Level 

Computers 

Arithmetic 

Codes 

High-Level 

Computers 

Multiple 

Redundant Buses  

Long-life 

Missions( 

Spacecraft) 

Mars  Hardware / 

Software 

replication 

with fail-

silent node. 

Self-Checking 

Nodes 

- TDMA over 

Ethernet with 

message 

redundancy 

Process 

Control 

Delta-4 Hardware / 

Software 

replication 

with fail-

silent node. 

Software 

Voting / 

System 

Monitoring 

System 

Administration  

Software 

Local Area 

Network 

(Duplex 

channels) 

General 

purpose 

applications 

EDRB FTD 

Computer  

Extended 

Distributed 

recovery 

block 

Acceptance 

Test,  

Message 

Timeout 

Supervisor node 

 

Dual redundant 

supervisor and 

node pair 

Networks. 

Process 

Control 

Fault-

Tolerant 

Distributed 

Computing 

Over-

Provisioned 

Resources 

Hybrid 

(Symptom-

based Fault 

Detection + 

Monitoring) 

Distributed 

Coordination 

Dual redundant 

Time Triggered 

Networks  

Space 

Applications 

3.3 Wireless Protocols for Spacecraft Fault-Tolerant 

Computing  

Systems such as traffic control, industrial automation, aerial vehicles, satellites and 

space shuttles heavily rely on data communications, both for normal operations as well 

as for diagnostics. Using wireless links instead of wired bus harnesses, has several 

advantages. Relocation of sub-systems becomes easy since there is no need for 

rerouting data cables. No special connectors are needed for additional diagnostics, and 

the data link is inherently immune to wear and tear. Furthermore, once the wireless link 
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is properly designed, system integration, testing, and operational diagnostics are faster 

and easier, which is a significant issue in critical systems comprising many integrated 

sub-systems. 

Spacecraft, in particular, can benefit from using wireless communication links on 

board. Wireless interfaces can help reduce the overall mass, as the harness can weigh as 

high as 10 % of the total mass of the satellites [141]. Wireless links are less vulnerable 

to debris impact when these are deployed in LEO. It is because of the number of 

objects in these altitudes is drastically increasing with time [19, 20]. It is also relevant 

to other safety critical applications. A system failed in navy ships due to damaged 

harness and its cost analysis for its diagnostics is reported in [142]. Despite several 

benefits, wireless COTS protocols in its current form cannot be deployed for space 

fault-tolerant distributed systems. It is because COTS technologies are not inherently 

designed for critical applications.   

Wireless links are inherently unreliable and often characterized by higher message 

loss. For reliable data delivery, forward error correction (FEC) and assured delivery are 

usually used. Additional bits in the form of FEC are appended with data for the 

correction of transmission errors while assured delivery assumes acknowledgment on 

each message from the recipient. FEC is better than the assured delivery because it not 

only assures reliable data delivery but also helps to maintain timeliness of the 

distributed application. FEC can only work if a packet receives at the receiver site. 

However, in case of packet loss, retransmission of data is essential. Packet loss may be 

worse when wireless distributed nodes place at a short distance in a close metallic 

structure of the spacecraft.     

Electromagnetic Compatibility and Electromagnetic Interference (EMC/EMI) is 

another problem in the employment of wireless technologies for space applications. In 

[143], various wireless technologies for space applications are investigated. Among 

these, WiFi (IEEE 802.11) standard was analysed for satellite on-board communication 

for EMC/EMI at frequency bands of 2.4 GHz and 5.0 GHz. No interference was 

reported with the Telemetry/Telecommand S-band at 2.4 GHz, but it does interfere with 

the payload instrument, Doris, operated in the S-band range. Interference also occurred 

with the spaceborne Synthetic Aperture Radar (SAR) and X-band radar harmonics 

when operated in the 5.0 GHz band. It shows that the adoption of wireless 
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communication as OBDH bus requires careful frequency selection among the payload, 

TM/TC, and the wireless standard.  

In fault-tolerant distributed systems, devices need to communicate with each other 

through the exchange of data which requires topology. The star topology in the 

infrastructure mode is proposed for Wi-Max/Wi-Fi [144] [145]. Star Topology is not 

suitable for fault-tolerant computing because all the computing nodes are connected via 

the access point rather than directly connected to each other.  Another topology based 

on the tree structure as suggested for ZigBee [146], which can make direct 

communication possible but it may susceptible to a single point of failure. On the other 

hand, Mesh Topology avoids such single point of failure problems, is most suitable 

option for the spacecraft distributed computing.  

In fault-tolerant distributed systems, a deterministic access on the network is 

essential which cannot meet with the non-deterministic CSMA/CA medium access 

protocol currently employed in wireless communications protocols. In IEEE 802.15.4 

Standard, the channel is divided into slotted and non-slotted mode. In the slotted mode, 

the channel is accessed on a turn basis whereas non-slotted mode allows anyone access 

on the channel. The slotted scheme of IEEE 802.15.4 standard can be useful for the 

deterministic access.  

Fail-stop node behaviour when sick is an important concern for critical 

applications. If this does not address properly, a faulty node can send erroneous 

messages that subsequently jam the rest of the nodes’ communications.  However, due 

to the availability of multiple channels in current wireless technologies, such failures 

can be handled very easily.  

The IEEE-802.11 protocol [145] is the most researched and widely adopted to 

emerging applications. It has been used in military mobile ad-hoc networks, railways 

(ALARP) [147], aerospace, medical, and commercially almost every household and 

office. It has been evaluated for a constellation of satellites, operating in a network 

[148-152] and also proposed as the main data handling bus within the spacecraft [153]. 

Another wireless protocol, ZigBee [146] [154]  is developed for very low power data 

sensing applications. ZigBee has been used in many applications. It includes  

Aerospace Wireless Sensor Network (AWSN) [155], Physical environmental and 

Physiologic [156], Electrical Ground Support Equipment  (EGSE) [157], and  Vehicle 
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Collision Avoidance System [158].  ZigBee is also found its usage in spacecraft 

telemetry/telecommand system [159], launch vehicles, and space shuttles system [160]. 

It is evident that ZigBee can deploy in critical applications. However, its adaptation 

requires further investigation of the requirements for critical systems 

Bluetooth is analyzed as a replacement for existing CAN networks for intra-vehicle 

and inter-vehicle non-critical applications. Bluetooth is also suggested for combat 

vehicles as reported in [161] where wireless Bluetooth replaces wired communication 

between crew stations.  A major hindrance to its adoption for critical applications is the 

connection setup time that in some cases is as much as 5-6 seconds. The main features 

of COTS wireless protocols are stated in Table 3.3. These features act as a basis for the 

selection of wireless protocol, over which further modifications can be made. The use 

of COTS protocols as a baseline design for fault-tolerant computing reduces the design 

cost and time.  

Table 3.3: Features of Existing Wireless COTS Technologies. 

Wireless 

Technologies 

WiFi (IEEE 

802.11b) 

WiFi (IEEE 

802.11a/g) 

ZigBee (IEEE 802.15.4) Bluetooth (IEEE 

802.15.1) 

Modulation DSSS OFDM DSSS FHSS 

Encryption Optional 

RC4(AES in 

802.11i) 

Optional 

RC4(AES in 

802.11i) 

AES Block Cipher(CTR, 

counter mode) 

EO Stream 

Cipher 

Topology Infrastructure/

Ad hoc 

Infrastructure/A

d hoc 

Star/ Mesh/Cluster Tree Point-to-point, 

point-to-

multipoint 

Access 

Protocol 

CSMA/CA CSMA/CA Slotted/Un-slotted  

CSMA/CA 

Master/Slave 

Transmission 

Range 

30 m(indoor) 

@ 11 Mbps 

30 m(indoor) 

@ 54 Mbps 

10 to 100 m but for 

ZigBee Pro is 1500 m 

1 to 100 m 

Freq. Band 2.4 GHz ISM 2.4 GHz ISM 

(g) 

5.0 GHz U-

NII(a) 

868 MHz Europe, 915 

MHz USA/Australia; 

2.4 GHz 

2.4 GHz 

Data Rate 11 Mbps 54 Mbps 20 to 250 Kbps 0.723 to 2.1Mbps 

Power 

Consumption 

< 1 W < 1 W < 1 mW < 100 mW 

Channel BW 25 MHz 20 MHz Multiple channels in each 

band 

1 MHz/channel 

Duplex Half Half -- Half/Full 
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3.4 Modern Implementation Approaches to Fault-

Tolerant Computing Systems 

This section will overview other modern implementation approaches to fault-tolerant 

computing, particularly focusing on the design of space computing systems. It will 

briefly discuss reconfigurable computing systems, multicore systems and cluster 

computing systems. The main focus of this review is to highlight the advantages and 

disadvantages of each approach.  

Reconfigurable Fault-Tolerant Computing:  A reconfigurable computing platform 

is a platform that can be repaired or reconfigured. To achieve a reconfigurable 

computing platform, static random access memory (SRAM) based field programmable 

gate arrays (FPGAs) are used. The inherent reconfigurable feature of these FPGAs 

provides a computing platform that can be repaired to tolerate hardware failures.  

These FPGAs can accommodate redundant logic such as a processor, input-output 

blocks, and memory system, and can load a module to repair or upgrade an existing 

computing system. The reconfigurability feature of FPGAs is particularly suitable for 

remote systems, where it is hard to repair after the initial installation. The spacecraft is 

one such example of these systems [162].   

In [163], a reconfigurable fault-tolerant (RFT) avionics system for a Nanosatellite 

has been proposed. A node based on an SRAM based FPGA was designed which 

allows switching between Simplex and TMR based redundancy scheme. The main 

objective is to save electrical power by switching different redundancy schemes. The 

selection of simplex or TMR scheme is based on the orbital parameters.  

In [164], another method that includes Simplex, DMR and TMR redundancy 

scheme has been presented. Instead of using orbital parameters, selection of 

redundancy scheme is selected on the severity level of radiations which is monitored 

by a MicroBlaze processor. Each time a pre-set threshold is reached; configuration bits 

related to the particular redundant scheme are loaded. During the normal operation, it 

utilizes scrubbing to mitigate the effects of Single Event Upsets (SEUs). 

FPGAs devices wear out with use and can fail due to two types of failure 

mechanisms ─ physical and functional failures. Physical failures are permanent and 

due to defect in processing, packaging, die attachment failure, bonding or particle 
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contamination. Functional failures are temporary or intermittent and due to striking of 

high energy proton or neutron. It is evident that fault-tolerance by a reconfigurable 

computing platform can only protect the system from functional failures or partial 

physical device failures. In the former case, scrubbing and in-circuit redundancy are 

employed. Scrubbing is an error correction technique, which is based on rewriting the 

FPGA configuration to avoid accumulation of errors induced by radiation [165]. In the 

latter case, the configuration affected by the partial device failure can be relocated. 

However, protection against a full device failure is essential, which can only be 

provided by a fault-tolerant distributed computing approach.   

Multicore Fault-Tolerant Computing: Another recent trend for enhancing the 

reliability of on-board computing systems is the use of multicore or manycore 

processors [16]. Multicore processors are inherently redundant in terms of processor’s 

cores, I/O, power supply pins and memory ports. Thus, a system can utilize these 

resources for improving the reliability of on-board computing systems. In a multicore 

system, multiple available cores are used for fault-tolerant computing. Either software 

or hardware provides fault-tolerance in multicore systems. Software-based fault-

tolerance is preferably suitable for commercial-off-the-shelf (COTS) processors, 

where hardware modification is impossible. While the hardware based fault-tolerance 

is employed for custom design of multicore processors, which can be designed as 

ASIC (Application Specific Integrated Chip) or it can be implemented on an FPGA.    

In the software-based fault tolerance, redundant execution approaches, which 

exploit the inherent replication of processor cores, are used [166-169]. Redundant 

execution of a process can be done in time or in the spatial domain. In the time 

domain, a single core is used to execute the multiple copies of the same process. The 

utilization of the single core for replication is simple, but it is limits to transient faults 

only. On the other hand, in the spatial domain, multiple cores are used to execute 

replicated processes. Each replicated process runs in a separate core and results from 

all are compared or voted to produce a result. A software implemented fault tolerance 

(SIFT) approach is demonstrated in Maestro [170], in which a processor consists of 49 

cores interconnected via switch engines. The Control and Fault Management (CFM) 

software that is used to manage the cores collects the error messages and restarts the 

applications runs on three cores. CFM sends a heartbeat message to the external 
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hardened state machine, where they are voted. If any two of the three fails to deliver 

an ‘OK’ heartbeat message, the whole system is restarted by the external sequencer.    

Common circuitry of COTS multicore processors, such as clock and control, are 

not inherently designed to be fault-tolerant. Also, a fault in a single core can stop the 

whole chip. Furthermore, shared memory among the cores is a potential bottleneck to 

achieve high performance [171] [172]. Lastly, heat dissipation per small chip, 

particularly in the presence of vacuum is another issue [173].  

To solve these problems, various solutions have been proposed, which include the 

custom design of multicore processors. For fault containment, one approach is to 

isolate all the cores completely on a chip. Each core has its memory controller and 

input-output connection. This approach is efficient for fault containment, but hard 

partitioning of resources such as cache, memory controller, and input-output 

significantly reduce the overall performance. To overcome this problem, another 

partially partitioned design for the multicore processor is proposed in [167]. This 

design divides the overall resources into multiple groups, and each group is bound to 

share its resources. For fault-tolerance, such as in the case of DMR or TMR 

implementation, each computing core must be from a different group to isolate 

primary from the redundant core. 

A non-shared memory based architecture of the multicore processor is presented 

in [170]. This architecture eliminates the shared memory access latency. In this 

architecture, each core has its dedicated memory and sharing of data accomplishes via 

message passing over a network among the cores. For fault-tolerance, TMR based 

software replication is suggested.  

Instead of considerable efforts to solve multicore issues, heat dissipation is still a 

problem, particularly for space applications. Also, a single node of a multicore 

processor is a single point of failure. Therefore, an approach that exploits features of 

the multicore processor and avoids the problems of a single point of failure and heat 

dissipation is essential. 

Cluster-based Fault-Tolerant Computing: The NASA’s New Millennium (NMP) 

ST8 project was aimed to develop a COTS-based dependable multiprocessor systems 

[174-177]. The architecture consists of dual redundant system controller and n data 

computing nodes; all are connected to a dual redundant gigabit Ethernet. The whole 
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assembly forms a cluster computer for parallel data processing. All type of messages 

(data, control), a single Ethernet, is used which can potentially delay the cluster’s 

reconfiguration process in case of failure.  

One such example of Linux-based Beowulf cluster computer for terrestrial 

applications is proposed [178]. In [179], a similar Beowulf cluster approach is adopted 

for the satellite imaging payload application. This cluster computer comprises of 20 

StrongARM controllers that are connected by four FPGAs. This cluster is merged as a 

single computing node to form a homogenous cluster and require some mechanism to 

dissipate a large amount of heat. Heat dissipation is a serious issue in embedded 

clusters architectures for on-board computing systems. It will require system designers 

to solve problems ranging from how to house, power, and cool the machine.  

Remote Exploration and Experimentation project (REE) is one such effort, 

particularly designed for deep space missions [180, 181]. The main goal of the REE 

project is to develop a low cost very high-performance computer system comparable 

to a supercomputer for space applications. The main motivation behind this project is 

to provide on-board autonomy so that more science objectives can achieve with the 

help of low-cost commercial-off-the-shelf components. Unlike fault-tolerant systems, 

it is allowed to fail occasionally similarly to the sample data computation systems. It is 

primarily designed for science data processing rather than the mission critical and hard 

real-time data processing; therefore software based triple mode redundancy for fault-

tolerance was used.  

3.5 Issues of Current Fault-Tolerant Computing 

Approaches 

Legacy fault-tolerant computing systems aimed at space applications were designed 

with high reliability as an uncompromised objective. Employing a redundancy scheme 

is a common practice. It is evident that physical redundancy alone cannot be a cost 

effective solution to achieving higher reliability as well as High Performance 

Embedded Computing. Also, recent failures of On-Board Computers in GOCE-2013 

[182] and Phobos-Grunt-2012 [183] revealed that centralized and dual redundant 

computers may fail resulting in the loss of the complete mission. Other issues related 

to computational integrity, adaptability, resource underutilization, provision of task 
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migration, and isolation of the input-output interfaces also demand a new approach to 

designing fault-tolerant computing systems for space applications.  

Computational Integrity: In a fault-tolerant computing system, computation integrity 

refers to a loss free computation. Computational integrity is maintained by periodic 

storing of the task states during the normal operation that are provided to a redundant 

node in case of failure of a primary node.  In a review of the state-of-the-art schemes 

and methods, only a few fault-tolerant schemes consider state storing while most of 

them do not. However, due to a large amount of primary to redundant switching and 

state transfer time, a considerable amount of computation is lost that would result in 

compromised computational integrity.   

The two main approaches to computational state storing use: i) a separate internal 

module attached to the system bus, ii) a centralized module connected to a network, 

can be used [121]. The need to design a separate internal module adds additional 

design complexity in terms of isolation between the powered and unpowered nodes, 

particularly in case of a cold redundant system. On the other hand, a centralized 

module attached to the network provides a complete isolation between the primary and 

the redundant node, but the state transfer time due to the communications is 

considerably high.  Furthermore, both approaches can cause a single point of failure. 

Adaptability: The second important issue is the lack of adaptability in current fault-

tolerant systems. In current on-board systems, redundant resources are fixed to a 

particular subsystem and sharing of these resources among the different subsystems is 

not possible. Emerging demands for High Performance Embedded Computing require 

a fault-tolerance technique that utilizes the inherent availability of multiple processing 

units. In other words, instead of placing idle resources for each subsystem, resources 

need to be shared for the purpose of high reliability, performance, and computing load 

balancing.  

Also, demands of space missions ─ space probes, space robotics ─ vary 

throughout the mission life. In some phases, High Performance Embedded Computing 

is required for a very short duration, such as in the case of a Lander. Autonomous 

landing requires High Performance Embedded Computing for real-time range and 

range rate estimation algorithms, as well as terrain visualisation and trajectory 

calculations. Additional dedicated processors are used for this computation. However, 
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as soon as the Lander completes its landing manoeuvre, these computers are put in the 

idle state and are not utilizable for another purpose. The provision of dedicated 

computing resources for such a short duration is not a good solution because it 

increases the cost, weight and size of the spacecraft. The same demand can be met 

with the idle redundant computing resources if a system is provisioned to adapt to such 

scenarios.  

Furthermore, current computing systems are not capable of adapting their 

operation to achieve thermal balancing or compensation against environmental 

radiation. This makes thermal and radiation design of High Performance Embedded 

Computing systems rather complex.  

Inefficient Utilization of Resources: In the state-of-the-art redundant space fault-

tolerant computing systems, discussed in section 3.2.3, resources are reserved for 

fault-tolerant operation. For example in the TMR computer, a set of three processors is 

running the same tasks to achieve high reliability. It results in a resource utilization 

efficiency of only 33 % because three processors do the work of one processor. 

Compared to TMR, the internal redundant centralized and dual redundant standby 

computers are relatively more efficient, where one processor is dedicated to the 

execution of the tasks, while the other processor in the idle state, consuming only 50 % 

of the total available resources.  

On the other hand, physically distributed computing systems, which are usually 

comprised of three nodes requires three redundant nodes. In this scenario of three 

nodes, three redundant nodes are in the idle state, thus making the system inefficient in 

terms of resource utilization. It is because computing resources are grouped in a pair of 

two nodes (primary, redundant), and a node failure is only masked with its peer 

redundant node. The reliability of a distributed system can be enhanced if the system is 

provisioned to reconfigure all available nodes in case of a failure of any of the 

distributed nodes.  

No provision for Task Migration: Task migration is supported in general purpose 

desktop based distributed systems. However, there is no such technique which could 

be directly employed in safety critical distributed embedded systems. The lack of the 

task migration capability for such critical systems binds the computing tasks with a 
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particular node, thus making a distributed embedded computing system inflexible to 

achieving reliability and performance simultaneously.  

Isolation of Input-output Interfaces: In fault-tolerant computing systems, both the 

primary and the redundant computing nodes need to be connected with the various 

input-output signals. These signals correspond to the sensors, actuators or health status 

of the different modules. In case of a failure, a switch-off is essential for isolating a 

faulty primary node. Although standard methods are employed for input-output 

isolations of the primary and redundant node [184, 185], the power-off faulty node can 

accidently be back-powered from the common logic signals, thus causing unexpected 

behaviour in the running node.  

3.6 Problem Definition 

Distributed computing is achieved via the use of distributed systems to solve 

computational problems. In a distributed system, a bigger computation problem, such 

as satellite attitude and orbit control, is divided into v tasks, and each processor is 

assigned a subset of the v tasks. All v tasks are executed collaboratively to produce the 

final result. 

On board spacecraft, each task has to be executed timely, and in a coherent 

manner. For instance, consider an example of an AOCS system. In some missions, 

AOCS handles firing of the thrusters at exact times. The time slot is limited, and the 

task has to be executed within the time available, otherwise the wrong firing of the 

thrusters would result in the satellite moving in an unwanted orbit, and may cause a 

collision with existing satellites. This emphasises the following points: 

 Tasks must be executed timely. 

 No task can be left incomplete. Otherwise, the overall outcome will be incorrect, 

leading to erroneous computational results, which can cause a disaster. 

Consider a set of tasks being executed on the distributed computing system shown 

in Figure 3.6. Firstly the tasks will be distributed amongst the processors by some 

algorithmic means and then each processor will perform its tasks. Eventually, the 

system output is the overall outcome from all processors. In a normal operation, all 

processors would be working as desired. Now consider a scenario, when one or more 
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processors fail, as depicted in Figure 3.6, leading to an erroneous result. In order for 

the system to be able to recover from this unacceptable situation the following is 

required: 

 A fault detection (FD) mechanism must be in place. 

 The fault should be isolated, i.e. the faulty processor should be correctly identified, 

and removed from the system. 

 Finally the system should be reconfigured via re-allocation and migration of the 

tasks of the failed processor(s) to other healthy processors.  

The needs stated above necessitate the incorporation of a fault management 

capability. The existing fault management schemes, reviewed in this chapter, do not 

fulfil the requirements of high-performance mission critical embedded systems. To 

address this gap in the present state-of-the-art, in this thesis a novel approach to fault 

management is proposed, the fault model and performance metrics for which are 

detailed below.  

Fault Model: We define the targeted fault model that is representative of typical 

problems occurring in distributed computing systems in the presence of failures. We 

assume that failures could manifest themselves as temporary or permanent processors 

failures. We assume that the underlying network is reliable and messages are shared via 

synchronous communication semantics. We consider the following processor failures. 

 Processor Fail-Stop or Crash Failures: A processor may crash, and once it 

crashes, it can be restarted and reintegrated. The crash failure of a processor in 

our synchronous model of communication is detected by timeout messages.  

 Processor Crash and Restart: In this scenario, a processor restarts after having 

a crash failure. The crashed processor loses its current state, but its operation is 

resumed from a known state after restart.  
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Figure 3.6: Operations of a Distributed Computing System under Fault  

Performance Measures: For evaluation of the proposed fault management scheme, 

reliability and availability metrics are identified as detailed in chapter-6. The 

performance of the fault management scheme will be measured by the fault coverage 

and computational integrity of the system as follows:   

 Fault coverage: We define fault coverage in terms of qualitative and 

quantitative parameters. The qualitative parameter specifies the type of the 

faults (transient, permanent) that the system can handle. The quantitative 

parameter expresses the conditional probability that the system will recover 

appropriately in the event of a fault occurrence of a particular type. For each 

fault type, its quantitative parameter gives a measure of how well the fault 

protection mechanism work.  

 Computational integrity: Computational integrity has two main components, (i) 

the time period when the computation is not available, referred to as 

reconfiguration time, and (ii) the degree of protection of critical state data  ∆𝑆𝐷 , 
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referred to as check-pointing and state rollback. Both are defined and explained 

in chapter-6.  

3.7 Summary 

In this chapter existing redundancy schemes, architectures and fault management 

approaches in computing systems were reviewed and analysed. It is concluded that for 

long term missions, it is appropriate to use the standby redundancy scheme due to its 

reduced electrical power and area. An on-board distributed architecture requires a 

redundancy management scheme to make the computing system fault tolerant. Various 

redundancy management schemes were critically reviewed— Half Satellite, 

Centralized, Decentralized, and Hierarchical—commonly employed in space 

computing systems, highlighting the advantages and disadvantages of each scheme.  It 

was concluded that the decentralized and the hierarchical scheme have an edge over 

the other schemes in terms of reliability. However, current redundancy based designs, 

where a task is bound to execute on a primary node or its peer redundant node, can 

only utilize the primary and redundant node computing resources. Also, they do not 

allow other subsystems to make use of their idle redundant resources either for 

performance or fault-tolerance purposes. In future computing systems, where a 

computing system is comprised of several computing nodes, subsystem level 

redundancy in the form of primary/redundant node is not feasible. If the same legacy 

approach is adopted, it will be very expensive and would result in underutilization of 

computing resources. 

Conventional space-borne fault-tolerant systems— centralized, and distributed— 

were also systematically reviewed and analysed. It was concluded from this study that 

the proposed system approaches were limited and could not be used to directly 

enhance high performance and reliability in mission critical embedded systems. 

Furthermore, significant issues of current fault-tolerant computing systems were 

highlighted and discussed.    

An overview of wireless protocols and their suitability for on board spacecraft 

fault-tolerant computing was also presented in view of the benefits that intra-satellite 

wireless communication can bring to distributed systems. Two COTs wireless 

protocols (WiFi and ZigBee) were found suitable for further improvement and their 
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deployment as a fault-tolerant network. A brief review of modern implementation 

approaches to fault-tolerant computing systems was also presented. The suitability of 

each design was critically reviewed by presenting advantages and disadvantages.  

To summarise, legacy computing architectures and approaches are designed to 

meet only one objective, either performance or reliability. No single computing system 

meets both objectives simultaneously. The outcome of this review emphasized the 

importance of the current research topic of task oriented fault-tolerant distributed 

computing and highlighted the need for a feasible, efficient solution that is not 

available in the known literature and engineering practice. Following from that a new 

approach to fault tolerance management in distributed systems was conceived, which 

requires architecture level changes and enhancements, thus leading to a novel 

distributed computing architecture and fault management scheme. 
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Chapter 4 

4.Novel Architecture for Fault-Tolerant 

Distributed Computing 

In this chapter, the proposed architecture for fault-tolerant distributed computing is 

presented. The architecture covers the hardware as well as the software part. In section 

4.1, preliminary details of the architecture are introduced while the system hierarchy 

of the proposed architecture is discussed in section 4.2. Details of the design of the 

distributed computing node are presented in section 4.3, while the input-output node is 

discussed in section 4.4. Nodes are connected via a network that is discussed in section 

4.5. The software stack of the distributed computing node is presented in section 4.6, 

which primarily includes the software design of the processing unit and the fault 

management block. Details of the fault management scheme are covered in section 

4.7, while section 4.8 describes algorithms proposed for fault detection. 

4.1 Introduction 

The proposed architecture addresses High Performance Embedded Computing 

requirements and the need for a fault-tolerant capability of the current mission critical 

applications as discussed in Chapter 1. High Performance Embedded Computing is 

achieved via the incorporation of multiple processors, which communicate with each 

other over a network. The multiple processors work in collaboration and, therefore, the 

system falls under the category of collaborative distributed computing systems. To 
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make the distributed architecture resilient to failures, a Fault Management Scheme 

must be incorporated as stated in section 3.6.  

The three main components of the architecture are: 

1. Nodes, 

2. Communication Network, and  

3. Fault Management Scheme. 

Any processor attached to the communication network is termed as a node. A 

node is further distinguished based on its functionality as: (i) a distributed computing 

node and, (ii) an input-output (I/O) node. The distributed computing node handles the 

computation, whereas, the I/O node allows the interface to sensors and actuators for 

acquisition and commanding.  

The reason for including a separate I/O node is primarily, to permit access to all 

distributed computing nodes, as needed by the system. For instance consider the 

example of AOCS, where, sensors and actuators need a direct dedicated interface to its 

processors. In our case, sensors and actuators are attached to the network, not directly 

to processors. Therefore the I/O nodes provide the necessary conversion of the 

dedicated interface to the network interface. Removing the direct interface in our 

architecture addresses several issues, namely, the question of isolation on interfaces, 

back-powered, and lack of adaptability as discussed in section 3.5. 

As discussed in section 2.4, a network can be implemented, using four main 

topologies, i.e. the mesh, star, ring, and bus. The bus topology is more appropriate 

because of its simple design and widely used in spacecraft network. Therefore, we opt 

for a bus topology in our architecture.  

To make a distributed computing architecture fault-tolerant, a fault management 

scheme is required. From the literature as discussed in section 3.2.2, it was evident that 

there are two broad schemes in use i.e. centralized and decentralized. Centralized 

scheme is a single point of failure. Therefore, it is not considered further. In the 

decentralized scheme, decision power is available with a few distributed computing 

nodes. To elaborate this point, consider a hypothetical scenario of 10 nodes. With the 

decentralized scheme, suppose the decision for the fault management scheme handles 

on only three nodes. These nodes monitor all other nodes, and itself, for faults, by 
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reading node’s health status. The node’s health parameters comprise temperature, 

voltage, current values, which are included in a message being sent via the 

communications network, thus has a time delay. The message is read, and if it shows 

an error, a fault is detected. A decision is made to isolate the faulty node. This decision 

is broadcasted to all nodes (broadcast). The faulty node is isolated by powering it off, 

whose control is with the decision node. Thus, the system recovers via reconfiguring 

itself.  

A considerable time will be required to reconfigure the system (complete the 

whole FDIR process) due to inherent communication delays over the network. If the 

decision-making control is distributed to all nodes, the communication delay can 

automatically be eliminated, as a node would be able to isolates itself in the case of a 

fault. Other nodes could reconfigure themselves as soon as the node is isolated. 

Furthermore, the distribution of the decision making control to all nodes makes the 

system more reliable than a decentralized scheme.  

With this argument, we proceeded to implement a Distributed Fault Management 

Scheme, which was not readily available in the literature. This scheme is distinguished 

from the Decentralized one, in the sense, that the responsibility for making decisions is 

not limited to a few nodes but is available to all nodes.  

Another distinguishing point is the integration of the proposed new fault 

management scheme with the corresponding processor. It is possible to provide this 

functionality within the processor or use a separate hardware block outside the 

processor. We opted for the second option, details of which are discussed in section 

5.3.2.  

4.2 System Hierarchy of the Proposed Architecture   

The generic view of the proposed distributed computing hardware architecture for 

Fault-Tolerant Distributed Computing (FTDC) is depicted in Figure 4.1. The 

architecture can be extended to variable depth hierarchies, starting from the top level 

to the group level. At the top level, it is comprised of multiple groups connected via 

switches. The role of the switch is to route the data from one group to another group. 
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Also, it divides the physical network into multiple physical networks enhancing the 

communication bandwidth per node.   

A computing group comprises multiple nodes (processing / IO nodes), connected 

via two separate networks using a bus topology. Figure 4.2 shows a group view of the 

architecture, where two dual redundant networks, main network and AMFT network, 

are used. The main network is used for communication between the processing units, 

while the AMFT network is dedicated to communication for the purpose of fault 

management. Separate networks do not only reduce the response time in case of a 

node failure but also provide better performance for the applications tasks. A group 

executes the tasks corresponding to one (or more than one) spacecraft subsystem (e.g. 

OBC/OBDH) and is responsible for their successful execution.  

For input-output (I/O) operations such as acquiring data from sensors, and 

commanding actuators, no direct I/O is routed through the distributed computing 

nodes. It is essential to off-load the I/O operations from the distributed computing 

node for achieving high reliability as described earlier. Therefore, all sensors and 

actuators are accessed via dedicated input-output nodes.  
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Figure 4.1: Hardware Architecture for Fault-Tolerant Distributed Computing. 
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4.3 Distributed Computing Node 

In the proposed architecture, a Distributed Computing Node (DCN) consists of a 

Processing Unit (PU) and a Fault Management (FM) block as shown in Figure 4.3. 

The Processing Unit runs the actual application tasks while the Fault Management 

block is used for the fault detection, isolation, and reconfiguration of the distributed 

system. Unlike other techniques, we adopt a different approach whereby the fault 

management block is implemented on a separate physical medium, outside the host 

processor and is connected to a different network. In this way, the fault management 

block retains the detection, isolation and reconfiguration functions in case of faults in 

the processing units. Also, being detached from the processing units, it does not 

interfere with real-time requirements. 
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Figure 4.2: A Group View of Architecture for Fault-Tolerant Distributed Computing. 

A Processing Unit consists of a processor that can be a single core or a dual-core 

processor.  The memory system for each DCN includes a boot Read-only Memory 
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(ROM), Non-volatile Random Access Memory (NVRAM), Static Random Access 

Memory (SRAM), and Error Correcting Code (ECC) memory. The boot ROM is used 

to store the boot image that is needed for the initial booting of the DCN. The main 

program is stored in the NVRAM while the data is stored in the SRAM. An ECC 

protects the data stored in SRAM. Internal Random Access Memory (RAM) on each 

Processing Unit is used for faster data access to its processor.  

As shown in Figure 4.3, the Fault Management block requires analogue and 

digital signals for failure monitoring. Analogue signals monitoring include 

temperature, current, and voltage of DCN while the digital signals monitoring includes 

watchdog and memory error status signals. On detection of a fault of a Distributed 

Computing Node, the Fault Management block generates a shutdown signal to turn off 

the node power, which can be turn-on later via a ground command.  

Legend:
BOOT ROM: Boot Read-only Memory NVRAM: Non-Volatile Random Access Memory
SRAM: Static Random Access Memory ECC: Error Correcting Code
EDAC: Error Detection & Correction FM: Fault Management
DC : Direct Current
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Figure 4.3: Fault-Tolerant Distributed Computing Node. 
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4.4 Input-Output Node 

Input-Output (I/O) node is used for the purpose of sensor data acquisition and 

actuators commanding. Failure in the Input-Output node can be catastrophic because it 

is the only interface that connects the Distributed Computing Node with the sensors 

and actuators. Therefore, the design of the Input-Output node should be highly reliable 

and should have a compact size.  

Figure 4.4 shows the block diagram of the proposed design for the I/O node. The 

design comprises a processor, Error Detection and Correction (EDAC) module, a triple 

modular voter for program memory, watchdog timer (WDT), an oscillator (OSC.) and 

a communication controller. The memory used for the program storage is based on 

erasable programmable read-only memory (EPROM)/electrical erasable 

programmable read-only memory (EEPROM) technologies. These technologies are 

susceptible to total ionising dose [186, 187] and may cause a functional failure. 

Therefore, a triple modular redundant design for the program memory is suggested 

that can mask such a failure. The data memory is based on the SRAM technology is 

more vulnerable to soft errors caused by Single Event Upsets (SEUs) [188, 189]. Soft 

errors are temporary and cannot cause a functional failure of the memory. Therefore, 

an EDAC module is included to detect and correct these soft errors in the data 

memory. On each data word read operation, the EDAC module checks and corrects a 

single bit error caused by SEUs while, during a write operation, each data word with 

its checksum is written to the data memory.  

The network controller is attached to the processor for communication on the 

network. The type of the controller depends on the network and will be discussed in 

section 4.5. The Input-Output node runs small software routines for acquiring sensors 

data and commanding actuators. A watchdog timer handles hangs in the software 

routines. Analogue inputs correspond to the analogue sensor’s input data while the 

digital IOs are used for the digital sensor’s input and actuator’s commanding. Both 

analogue inputs and digital IOs are routed to the glue logic that supports the necessary 

conversion circuitry before connecting it to the processor.  
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Figure 4.4: Design of Input-Output Node 

4.5 Communication Network 

As shown in Figure 4.5, the communication network of the proposed architecture is 

comprised of dual redundant networks, which are connected by multiple switches to 

combine two networks together to achieve a scalable fault-tolerant design. The 

purpose of the separate networks is to provide a dedicated bandwidth for the fault 

management functions and application tasks e.g. OBC/OBDH. Both networks are 

configured in a bus topology. To ensure deterministic access on the network, the Time 

Division Multiple Access (TDMA) protocol is proposed, where each bus has its own 

time-triggered communications Scheduler for the bus access. The redundant network 

is provided for fault-tolerant purposes and is only activated in case of a failure of the 

primary network.  

The main reasons for the use of switches in the proposed architecture are: (i) to 

provide a separate collision domain for each group, (ii) for on-board clock 

synchronization and time distribution and furthermore, (iii) switches allow easier 
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expandability to achieve a scalable distributed computing system. The rationale behind 

(i) and (ii) is explained next. In the proposed hardware architecture, the bus topology 

of the network is a shared communication channel. If multiple computing groups are 

connected to such a communication medium, the effective available bandwidth per 

node will be decreased. To avoid this problem, switches are used to partition the 

overall network allowing a separate collision domain for each computing group. Also, 

switches are used to maintain clock synchronization and time distribution to all the 

nodes of a distributed system.  

The communication Scheduler of each network (in a bus topology) consists of 64 

time slots, as shown in Figure 4.6. Slot number 0 is reserved for the distribution of the 

network time and slots number 1-61 are reserved for the communication of the DCN 

tasks, while slots number 62-63 allow communication among two groups via the 

network switches.  
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Figure 4.5: Network for the Proposed Architecture. 

To fulfil the requirements, TTEthernet is selected as the most appropriate network 

technology because of its inherent features as discussed in section 2.4. The main 

characteristics of the TTEthernet are derived from the Ethernet and a large set of 

protocols are available, which can be tailored for adaptation to space applications. 
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Furthermore, high speed, multi-master, and embedded in a large number of devices, 

makes it a suitable choice for the future on-board computing networking. TTCAN can 

also be used for the proposed architecture, but its limited speed of 1Mbps cannot meet 

the high-speed demands of future applications. However, for low-speed network 

demands, it can also be employed. 
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Figure 4.6: Time Slots for Network Communication in Bus Topology. 

4.6 Software Stack 

The software stack for a DCN, supporting fault-tolerant distributed computing is 

shown in Figure 4.7. It comprises two main parts: (i) a Processing Unit and (ii) a Fault 

Management software block. The software of the Processing Unit is further divided 

into the following layers: 

 Application layer: This layer includes functions that facilitate the implementation 

of a distributed application. The details of these functions are given in section 

4.6.1. 

 Fault detection layer: This layer handles the detection of faults in the application 

software. It detects a fault and passes its information to a fault management block 

via a software monitoring (SM) interface. The detail of fault detection layer is 

covered in section 4.8. 

 Both the above layers run on top of a Real-Time Operating System (RTOS) such 

as FreeRTOS or threadX. The use of RTOS makes it easier to manage resources 

and schedule tasks timely. Otherwise that would require considerable 

programming efforts. 

 The application tasks are distributed to multiple nodes that require communication 

among themselves. For this purpose, the communication on the main bus is made 
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via a message passing interface (MPI). This interface provides send/receives 

functions to communicate on the bus.  

The software stack of the Fault Management block consists of three layers. The 

function of each layer is explained below: 

 The first layer corresponds to the implementation of the Fault Management 

functions. It is responsible to detect a failure via either the hardware monitoring 

(HM) interface or via the software monitoring (SM) interface.  

 The second layer supports task migration. It manages task state data, node/task 

tables, and coordination among the fault management layer and the communication 

layer.  

 The third layer handles communication among the Fault Management blocks. It 

allows each Fault Management block to access the bus in its dedicated time slot.   

Details of the Fault Management (also called AMFT) algorithms and their software 

implementation are given in Chapter 5. 

Legend:
HM I/F: Hardware Monitoring Interface MPI: Message Passing Interface
RTOS: Real-Time Operating System SM I/F: Software Monitoring Interface
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Figure 4.7: Software Stack. 
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4.6.1 Distributed Computing Application 

A distributed application decomposes into smaller tasks that are distributed to the 

multiple processing units. The code for every task is present on every DCN, but a task 

only activates/runs on a single node at any one time. A simplified block diagram for 

the application software is shown in Figure 4.8, which shows a top-level view of the 

DCN application layer. The distributed application comprises application tasks and 

support tasks. Application tasks represent the actual distributed application and the 

total number of tasks to be executed by the system can be varied, as well as the 

characteristics of each task. The main task characteristics are periodicity, duration and 

state data length. The state of a task comprises a set of values that must be preserved 

for future execution of the task. Support tasks are the tasks which provide support in 

terms of communication and activation/deactivation of the main tasks. 
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Figure 4.8: Distributed Application Software Block Diagram. 
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4.6.1.1 Application Tasks 

Each application task is used to represent an activity to be carried out by the 

distributed system, to fulfil the intended system functionality such as OBDH, AOCS 

or payload functions. Whenever a task runs, it output results in the form of state data 

values, which are stored, and the support task ‘sender task’ is informed via a queue to 

send a message to the fault management block regarding the updated data values.   

For the purpose of the prototyping in section 7.4, the particular function 

performed by each application task is not taken into account. It is sufficient that each 

task is required to run for a given duration, with a given periodicity, which may be 

different for each task. Also, each task has a “state” which is updated when the task 

executes. It may be, for example, the previous values of the AOCS angles or velocities 

that are required for future calculations. In prototyping, the state data ΔSD consists of a 

series of bytes, and the operation performed is to increment the value of each of these 

bytes one by one each time the task executes.  

To enable task states to be transferred between nodes for task migration using 

State Update Messages (SUMs) are used. The task state is saved to a location which is 

accessible by the AMFT Sender task that creates and sends the SUMs containing the 

state data, 𝛥𝑆𝐷. Once the application task updates its state, it notifies the AMFT Sender 

task that a new state is available, so the state can be sent to the other nodes. It is also 

required that the task state data is initialized within its assigned memory locations 

prior to starting a task on the node following migration of the task from a failed node. 

This is done by the application Task Manager task. A template pseudo code for an 

application task is given below: 

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒: 

1 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇𝑎𝑠𝑘 (𝑡𝑎𝑠𝑘 𝑖) { 

2 𝑤ℎ𝑖𝑙𝑒(1){ 

3 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝑥 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

4 𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑒 𝑑𝑎𝑡𝑎, 𝑖. 𝑒. 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑎𝑐ℎ 𝑏𝑦𝑡𝑒 𝑐𝑜𝑚𝑝𝑟𝑖𝑠𝑖𝑛𝑔 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 

5 𝑠𝑒𝑛𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝐴𝑀𝐹𝑇 𝑆𝑒𝑛𝑑𝑒𝑟 𝑡𝑎𝑠𝑘: 𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

6 } 

7 } 
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4.6.1.2 System Support Tasks 

System support tasks provide support to the application tasks. They consist of 

communication tasks (sender and receiver tasks) and an activation/deactivation task. 

Communication tasks handle the communications with the AMFT and the distributed 

processing unit while the activation/deactivation task controls the execution of the 

application tasks based on the requests of the AMFT unit. 

Activation/deactivation: The Task Manager task activates and deactivates application 

tasks as required, based on task lists received from the AMFT Receiver task. For each 

application task in the received task list that is not already running on the node, it 

initializes the task’s state data 𝛥𝑆𝐷 using the data received in the State Update Message 

following the Task List Message, and then starts the application task. It stops any tasks 

that are running but are not included in the received task list. For the transfer and 

receipt of state data values and Task List Messages (TLMs), various queues are used. 

Data queues enable safe communication among the two tasks.   

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒: 

1 𝑇𝑎𝑠𝑘 𝑀𝑎𝑛𝑎𝑔𝑒𝑟 𝑇𝑎𝑠𝑘(𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡) { 

2 𝑤ℎ𝑖𝑙𝑒(1){ 

3 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝐴𝑀𝐹𝑇 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑇𝑎𝑠𝑘: 𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

4 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑎𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

5 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑎𝑠𝑘 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 

6 { 

7 𝑖𝑓 𝑡ℎ𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑎𝑠𝑘 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑟𝑡𝑒𝑑 

8 { 

9 𝐺𝑒𝑡 𝑠𝑡𝑎𝑡𝑒 𝑓𝑟𝑜𝑚 𝑆𝑈𝑀 (𝑖𝑓 𝑎𝑛𝑦) 

10 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡𝑎𝑠𝑘 𝑠𝑡𝑎𝑡𝑒 𝑑𝑎𝑡𝑎 

11 𝑠𝑡𝑎𝑟𝑡 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 

12 } 

13 } 

14 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑎𝑠𝑘 𝑛𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 

15 { 

16 𝑠𝑡𝑜𝑝 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 

17 } 

18 } 
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Communication Tasks: The communication tasks handle the transfer of data. There 

are two primary interfaces that handle communication.  

Processing Unit Network Communication: This interface is used for the 

communication of application tasks over the main network. It is a software interface 

that is accessible from each of the application tasks. It enables all tasks to execute in 

parallel by exchanging data messages to complete an overall task.  The following 

shows the pseudo code for this task. 

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒: 

1 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑃𝑎𝑠𝑠𝑖𝑛𝑔 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑇𝑎𝑠𝑘(𝑡𝑎𝑠𝑘 𝑖, 𝑑𝑎𝑡𝑎) { 

2 𝑤ℎ𝑖𝑙𝑒(1){ 

3 𝑀𝑠𝑔 = 𝑓𝑜𝑟𝑚𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑡𝑎𝑠𝑘 𝑖, 𝑑𝑎𝑡𝑎) 

4 𝑠𝑒𝑛𝑑(𝑀𝑠𝑔) 

5 𝑖𝑓(𝑚𝑠𝑔𝑅𝑒𝑐𝑒𝑖𝑣𝑒 == 𝑡𝑟𝑢𝑒){ 

6 𝑝𝑙𝑎𝑐𝑒 𝑖𝑛 𝑏𝑢𝑓𝑓𝑒𝑟 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑜𝑟 𝑡𝑎𝑠𝑘 𝑖 

7 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑡ℎ𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑡𝑎𝑠𝑘 𝑖 𝑓𝑜𝑟 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

8 } 

9 } 

10 } 

 

AMFT and Processing Unit Communication: This software interface sends and 

receives data between the processing unit and fault management block (AMFT). This 

interface depends on the physical hardware interface between the Fault Management 

block and a Processing Unit. It is mainly includes two tasks; AMFT Receiver Task and 

AMFT Sender Task.  

AMFT Receiver Task: The AMFT Receiver task waits for data to be received from the 

AMFT via the Processing Unit-AMFT interface. If this data is a followed by State 

Update Messages, these data are passed to the Task Manager for 

activation/deactivation of tasks. The following shows the pseudo code for this task. 
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𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒: 

1 𝐴𝑀𝐹𝑇 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑇𝑎𝑠𝑘{ 

2 𝑤ℎ𝑖𝑙𝑒(1){ 

3 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝐴𝑀𝐹𝑇 

4 𝑖𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑖𝑠 𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

5 { 

6 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 𝑎𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 

7 𝑠𝑒𝑛𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑡𝑜 𝑇𝑎𝑠𝑘 𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

8 } 

9 } 

10 } 

 

AMFT Sender Task: The AMFT Sender task sends State Update Messages to the 

AMFT, created from state data sent to it from application tasks. The following shows 

the pseudo code for this task. 

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒: 

1 𝐴𝑀𝐹𝑇 𝑆𝑒𝑛𝑑𝑒𝑟 𝑇𝑎𝑠𝑘 { 

2 𝑤ℎ𝑖𝑙𝑒(1){ 

3 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑎𝑠𝑘: 𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒 𝑑𝑎𝑡𝑎 

4 𝑐𝑟𝑒𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

5 𝑠𝑒𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

6 } 

7 } 

 

The detail of the application software implementation is given in Appendix E.  

4.7 Fault Management Scheme 

In the proposed architecture, fault management functions are distributed locally to 

each node as shown in Figure 4.9 and implemented as a separate block named 

Adaptive Middleware for Fault Tolerance (AMFT). This distribution of fault 

management functions allows each node to detect and isolate its faults locally without 
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the intervention of a centralized/decentralized node. It reduces the amount of time 

involved in the decision, thus making the system more responsive by reducing the 

reconfiguration time as desired. 

To achieve high reliability, a hybrid fault detection method based on hardware and 

software is proposed in this thesis. This method covers hardware as well the software 

faults. In case of hardware fault detection, the health status of each node is monitored 

to identify a fault condition. Health monitoring includes observing the analogue 

(temperature, current and voltage) and digital signals (watchdog, IO) of each node. For 

fault detection, these monitored values are compared with pre-defined values and 

statuses. Violation of any pre-defined thresholds or combination of these is considered 

as an indication of a fault.  

In case of software fault detection, symptom-based anomaly detection methods 

are used. In our case, we applied this method to detect faults in the application 

software as well as hardware faults propagated to software, as described in section 4.6. 

Details of this method are given in section 2.3.2. The symptom-based detection 

method has a limitation which is that it does not protect the processor from silent data 

corruption errors. Therefore to overcome this, new algorithms for silent data 

corruption are proposed and explained in section 4.8. 

The next step after detection is fault isolation. Fault isolation means to disconnect 

the faulty node from the rest of the system. There are two options either to power off 

the faulty node or to disconnect it from its interfaces (IOs). We adopted the former 

approach for its simplicity. 

Now that the fault is isolated, the tasks must be migrated to other nodes within a 

minimal period of time. Each task should be executed starting from the point where 

the processing was interrupted by the node failure. This information is stored in the 

form of information about program states. The corresponding technique, which is 

called program checkpointing, is computationally intensive and requires a very high 

speed communication network to transfer frequent checkpoints. Another method is to 

monitor the outcomes of each task and store the state information, which is called data 

checkpointing. In this method, the task is not executed from the point where it was 

interrupted, in fact, the task is re-executed. During the re-execution the task know its 

data, whose information is provided in the form of data checkpointing. This method is 
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much simpler than program checkpointing, in terms of a reduced amount of state 

variables that need to be stored and, therefore, it was adopted in the proposed scheme. 

In the suggested scheme, the migrated task outcome is passed to other nodes via 

the AMFT network, where the checkpointed data (states) is being maintained. The 

other node has access to the task outcome, which serves as its input now to execute the 

migrated task. However, when the fault occurred, the task outcome was not updated, 

and, therefore, the other node gets the previous task outcome and executes the 

migrated task based on that. Therefore, after the first task execution on the new node 

there will be a slight deviation from the actual task outcome and results, which may 

also affect any dependant tasks. Task migration for inter-dependant tasks is application 

specific, and we consider this issue in our case study for AOCS in section 8.5.1.  

During subsequent re-executions the migrated tasks are able to compensate for 

any deviations caused by the node failure and normal operations are resumed. This 

functionality (correct state storage/management) is carried out by AMFT. The details 

of the AMFT design and implementation are given in chapter-5. 
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Figure 4.9: Fault Management Scheme. 

4.8 Fault Detection 

The symptom-based fault detection approach to detect software faults is adopted 

among the various methods as discussed in Section 2.3.2. It requires fewer resources 

because current processors are inherently designed to detect symptoms. However, this 

method is limited to known symptoms only. This includes fatal traps─illegal memory 

access, misaligned memory access, illegal instruction execution. Symptom-based 
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detection method could not handle errors caused by silent data corruption (SDC). SDC 

errors are those errors, which could affect the program flow and its data contents, if 

they persist. This may cause a system to produce the wrong output. To detect these 

errors, two algorithms are proposed. The first one is a selective duplication algorithm 

that protects the software against transient SDC errors. The second algorithm detects 

permanent SDC faults by explicitly moving data patterns in storage / functional 

elements. 

4.8.1 Transient SDC Error Detection 

In the transient SDC detection algorithm, proposed here, it is assumed that the 

application program consists of multiple functions, where each function is protected 

against SDC errors. The objective is to detect a fault in the processor 

microarchitecture, and so it is further assumed that the memory is fully protected. 

Figure 4.10 shows the description of the algorithm. In this algorithm, all global and 

formal variables, including the loop index involved in the computation, are stored on a 

spare storage before being used for execution. Run the program for both the formal 

and stored variables. If they produce different results, a transient SDC error in the 

computation of microarchitecture is reported. Contrary to full duplication, the adopted 

selective duplication method only selects a particular part of the program and its 

variables at any time. Once the program executes, the storage for duplication is 

released. This method improves performance and consumes small data memory. 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚: 

1 𝑠𝑝𝑎𝑟𝑒 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ′𝑠′ = 𝑐𝑜𝑝𝑦 𝑟𝑒𝑎𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴 

2 𝑐𝑎𝑙𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴 𝑤𝑖𝑡ℎ 𝑠𝑡𝑜𝑟𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑠𝑒𝑡 ′𝑠′’ 

3 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎 𝐴 (𝑓𝑜𝑟𝑚𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ′𝑓′){ 

4     𝑒𝑥𝑒𝑐𝑢𝑡𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴 𝑜𝑛 𝑓𝑜𝑟𝑚𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑠𝑒𝑡 ′𝑓′ 

5     𝑐𝑜𝑚𝑝𝑎𝑟𝑒 𝑏𝑜𝑡ℎ 𝑒𝑥𝑒𝑐𝑢𝑎𝑡𝑖𝑜𝑛 ( 𝑓𝑜𝑟𝑚𝑎𝑙 𝑠𝑒𝑡 ′𝑓′ 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 ′𝑠′) 

6    𝑖𝑓 (∀ ′𝑓′ ≠ ∀ ′𝑠′) 

7       𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑑𝑐_𝑒𝑟𝑟𝑜𝑟; 

8   𝑒𝑙𝑠𝑒 

9     𝑟𝑒𝑡𝑢𝑒𝑛 0; 

Figure 4.10: Algorithm  for Transient SDC Errors. 
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4.8.2 Permanent SDC Fault Detection 

This section presents an algorithm for detection of permanent SDC faults. These faults 

include stuck-at-bit and bridging faults. Stuck-at-bit faults are those faults where a bit 

is stuck at logic one or zero, irrespective of the actual value of the element. While a 

bridging fault is a crossing of two signals that results in an ‘OR’ or ‘AND’ logic 

operation, which forces adjacent bits to change to either logic ‘1’ or logic ‘0’. Bridging 

faults are difficult to detect because they depend upon the physical routing of the 

connections. To detect these faults, the following data patterns are selected. 

 For stuck-at-bit faults, data patterns of all zeroes ‘0x00000000’ and ones 

‘0xFFFFFFFF’ are used. These patterns can easily detect errors in registers/ 

latches caused by bits stuck at zero and one. 

 For bridging faults, data pattern of ‘0x55555555’ and ‘0xAAAAAAAA’ are used. 

This pattern of alternating zeroes and ones is suitable to detect the crossing of bits.   

Figure 4.11 shows the proposed algorithm for detection of permanent SDC faults. 

The input of the algorithm is the contents of functional elements such as registers, 

latches and arithmetic logic unit (ALU), while the output of the algorithm is the faulty 

components.  In an iteration of the algorithm, storage/functional elements are checked 

by explicitly moving a pattern. The element is considered faulty if the defined 

conditions in the algorithm are not met. This process repeats for the rest of the data 

patterns with all storage /functional elements. At the end of the algorithm, numbers of 

identified faulty elements are returned to the calling function as a signature value. In 

order to improve the performance of algorithm, it is recommended that storage 

registers─R1, R2, A, B, data_pattern─ and a comparator, which are being used in the 

execution of the algorithm, should be triplicated. 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡  𝑆𝐷𝐶 𝐹𝑎𝑢𝑙𝑡𝑠: 

1 Input =  𝑀𝑖𝑐𝑟𝑜𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 (𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠, 𝐿𝑎𝑡𝑐ℎ𝑒𝑠, 𝐴𝐿𝑈 𝑒𝑡𝑐. )  

2 output = 𝐹𝑎𝑢𝑙𝑡𝑦 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

3 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ←  0; 

5 
𝐹𝑈𝑁𝐶𝑇𝐼𝑂𝑁𝐴𝐿_𝐸𝐿𝐸𝑀𝐸𝑁𝑇 ←  𝐴𝐿𝑈   𝑆𝑇𝑂𝑅𝐼𝑁𝐺_𝐸𝐿𝐸𝑀𝐸𝑁𝑇

←  𝑅𝐸𝐺𝐼𝑆𝑇𝐸𝑅/𝐿𝐴𝑇𝐶𝐻 

6 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑖 <  𝑑𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛 
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7      𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑗 <   𝑛𝑢𝑚_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

8             𝑖𝑓(𝑒𝑙𝑒𝑚𝑒𝑛𝑡[𝑗] == 𝑆𝑇𝑂𝑅𝐼𝑁𝐺_𝐸𝐿𝐸𝑀𝐸𝑁𝑇) 

9                  𝑒𝑙𝑒𝑚𝑒𝑛𝑡[𝑗]  ←  𝑑𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛[𝑖] 

10                    𝑖𝑓(𝑒𝑙𝑒𝑚𝑒𝑛𝑡[𝑗]  ≠  𝑑𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛[𝑖] 

11                            𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 + +; 

12            𝑒𝑙𝑠𝑒 𝑖𝑓(𝑒𝑙𝑒𝑚𝑒𝑛𝑡[𝑗] == 𝐹𝑈𝑁𝐶𝑇𝐼𝑂𝑁𝐴𝐿_𝐸𝐿𝐸𝑀𝐸𝑁𝑇)                  

13                𝐴 ←  𝑑𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛      𝐵 ←  𝑑𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛    

14                      𝑅1 ←  0;  𝑅2 ←  0; // 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 

15                      𝑅1 ←  𝐴 ^ 𝐵;  𝑅2 =  𝐴 ~^ 𝐵; 

16                     𝑖𝑓( 𝑅1 ≠   0𝑥00000000 || 𝑅2 ≠   0𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 

17                             𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 + +; 

18 𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒; 

Figure 4.11: Algorithm for Permanent SDC Faults. 

4.9 Summary 

A novel distributed computing architecture is proposed in this chapter, which 

addresses the primary objective of providing both reliability and High Performance 

Embedded Computing for mission critical applications. It overcomes the issues of 

current fault-tolerant computing approaches, described in section 3.5. The main 

features of the architecture are its cooperative distributed behaviour, distributed nodes, 

communication bus, and a new fault management scheme. The system has a hierarchal 

structure, which is modular and scalable.  

The core components are the DCNs, which are segregated into separate 

application and fault management functions. This enables the high-performance 

activities carried out by the processing unit and the fault management to be executed 

in parallel. Other peripherals interface to the DCNs via I/O nodes.  

Two communication networks are used, separating the network for processing and 

fault management, thus incorporating high reliability, without compromising 

performance. Standard high data rate (reliable) networks are identified as candidates 

for the network implementation. The network follows a deterministic behaviour by 

deploying a TDMA scheme. 
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A novel fault management scheme is proposed, where tasks are seamlessly 

migrated to other nodes in the case if one of the nodes fails. To implement these 

features, an AMFT block is proposed, the design of which will be discussed in the next 

Chapter 5.  

The design of the whole software architecture is described, which enables the 

correct functionality of the proposed architecture for a given distributed embedded 

computing scenario. Faults occurring in the application are also detected, for which 

new algorithms have been designed.  

To conclude, a reliable High Performance Embedded Computing architecture is 

proposed. This architecture is further assessed and analysed in Chapter 6.  
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Chapter 5   

5.Adaptive Middleware for Fault-Tolerant 

Distributed Computing 

In this chapter, an adaptive middleware is proposed to implement the fault 

management functions as briefly described in section 4.7. The goals of the middleware 

design are discussed in section 5.1. In section 5.2, algorithms for the middleware 

functionality to enable distributed computing are presented. Details on the design of 

the middleware will be described in section 5.3. In section 5.4, failure scenarios in 

case of distributed processing are covered. The implementation of proposed 

middleware for the fault management scheme is described in section 5.5.  Section 5.6 

is devoted to general discussion. Section 5.7 concludes the chapter by presenting 

contributions towards the state of the art.  

5.1 Design Goals 

Middleware manages interactions between the application and the underlying system 

software such as the Operating System and the device driver [190], thus acting as an 

intermediate layer. In general, it provides Quality of Service (QoS) management, fault-

tolerance, resource allocation and timeliness guarantees to distributed applications., 

Each middleware component is specifically designed to support a particular 

application.  
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The various implementations of middleware design for distributed fault-tolerant 

systems are proposed as part of the ISIS, Mars, Delta-4 and Mach OS projects [191], 

[3], [192],[193]. These middleware have been designed to suit the replication based 

approach (see section 2.2.1) and require a large memory size. The object-based 

middleware implementation─ referred to as fault-tolerant Common Object Request 

Broker Architecture (FT-CORBA)─ was proposed by the Object Management Group 

(OMG). The design of FT-CORBA was aimed to operate in a client-server model and 

support active and passive replication styles. Another implementation of middleware, 

focused on providing an adaptive failover strategy and overhead management 

approach is described in [194]. This middleware is designed for passive replication to 

handle soft real-time applications. As discussed in section 2.2.1, replications cannot 

meet the  emerging demand for high-performance distributed computing. These 

demands require a fault-tolerance technique that utilizes the inherent availability of 

multiple processors. Unlike redundancy, fault-tolerance by task migration is a new 

concept for critical distributed embedded systems. It is a promising technique that can 

provide a balanced approach to high-performance and high reliability under the 

constraints of limited resources.  

 The proposed fault management scheme uses a middleware concept and falls in 

the category of embedded system employing distributed computing with fault tolerant 

capabilities, meeting soft real-time requirements, which are essential in space 

applications. Contrary to the traditional fault-tolerant middleware for distributed 

systems as discussed earlier, the proposed adaptive middleware for fault-tolerance 

(AMFT) is novel, and it is the first effort to support task migration for distributed 

computing applications.  

The objective is to design a middleware that should have the following features. 

 The middleware design should be adaptive, up to a considerable extent without 

comprising system reliability and deterministic behaviour. The design should 

support static, adaptive behaviour, whereby for each possible failure scenario, a 

distributed system configuration is pre-stored in the form of tables.  

 Instead of the replication approach, discussed in section 2.2.1, tasks are migrated 

to compensate for failures in the distributed system. It eliminates the amount of 
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computational resources used during the normal operation by executing only one 

copy of the task at any time. 

 The middleware should be able to support state resumption of a task when it is 

migrated to another node in the case of a failure. 

 A TDMA based communication protocol is implemented in the middleware to 

support a deterministic channel access and a bounded distributed system 

reconfiguration time in the event of a failure.  

 Due to its deterministic communication protocol, the middleware can run on top of 

any wired or wireless communication protocols.  

5.2 Algorithms 

Algorithms that are based on the master-slave approach for fault detection, isolation 

and reconfiguration of a distributed system were presented in [195]. Due to a single 

point of failure, the algorithms were modified, and a new set of algorithms based on a 

distributed coordination were developed [196, 197]. In the distributed coordination 

approach, each AMFT has a complete knowledge of the working nodes in a group. As 

described in section 4.2, a group is a set of nodes working collaboratively to 

accomplish a bigger task. Within a group, each AMFT has a node table stored in its 

local memory. This node table contains an entry for each distributed computing node 

with the current operating status of that node (active or inactive) and the relative 

communications time slot for that node to communicate on the AMFT network. Each 

AMFT maintains its node table based on the messages it receives from other group 

members via the AMFT network. All messages are multicast, so all group nodes 

connected to the network are expected to receive these messages and update their node 

tables accordingly. On receipt of a HeartBeat Message (HBM) from an AMFT block, 

it is known that the sending node must be active. Conversely, a node is determined to 

be inactive if it sends no message during its allocated communications slot or if it 

sends a message in another slot or sends a fault message.  

The functionality of the AMFT is divided into four different phases; start-up, 

normal operation, AMFT fault handling, and task migration.  After the start of a node, 

the start-up phase is the first phase where a node knows about the rest of nodes and 
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connects itself with the other computing nodes. In normal operations, each node runs 

tasks and sends messages to other nodes about its health status in the form of 

HeartBeat messages. The third phase is fault handling phase that is only activated on 

detection of a failure in a node. Following the fault handling phase, a node entered into 

the task migration phase where it migrates the tasks of the faulty node to other nodes. 

To accomplish these phases, algorithms are proposed and explained in section 5.2.1 to 

5.2.4.  

5.2.1 Start-up  

Figure 5.1 shows the AMFT start-up algorithm. Upon start-up of the AMFT block, it 

attempts to establish a connection with its processing unit. If the processing unit is not 

available (e.g. it is switched off or has failed), the AMFT will enter a fault handling 

mode, using the fault handling algorithm as shown in . If a connection is established 

successfully, the AMFT network communications slots for each node are read from 

the Node Table stored in local memory. These time slots are relative and, therefore, 

provide no absolute timing information for inter-AMFT communication. An additional 

step is required for a node to determine when it is allowed to transmit on the AMFT 

network, and this is the final stage of the start-up algorithm. The AMFT listens for 

heartbeat messages from other nodes on the AMFT network for a time equal to one 

complete communications cycle. If a heartbeat message is received, this provides the 

absolute timing information required. When combined with the relative slot times 

stored in the Node Table, the AMFT has knowledge of the absolute communications 

time slots for every node. If no heartbeat message is received during the listening time, 

the AMFT assumes no other nodes are active and transmits its heartbeat message 

immediately. The start-up time depends on the number of nodes and slot time per 

node. The more the node or slot time, more will be the start-up time.   

5.2.2 Normal Operations  

Figure 5.2 shows the AMFT algorithm used during normal operation. During normal 

operation, in every communications cycle, the AMFT sends its heartbeat message via 

the AMFT network during its communications slot. Each AMFT block is restricted to 

send messages to other AMFTs in its communication time slot. If a fault has been 
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detected in the AMFT’s processing unit, a fault message is sent instead of a heartbeat 

message. AMFT also listens for messages received from other AMFTs in their 

allocated communications slots, and updates its Node Table based on whether a 

particular node has sent a heartbeat message, a fault message or no message at all. If a 

node’s status has changed, i.e. it has just become active or inactive, tasks will need to 

be migrated based on the new group configuration using the task migration algorithm. 

Communications slot timing within the AMFT is also updated when messages are 

received from other nodes, to maintain synchronization between all the nodes. 

Following its heartbeat message, each AMFT sends a State Update Message containing 

the most recent state data for each task being executed on the AMFT’s corresponding 

processing unit. 
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Figure 5.1: Algorithm for AMFT Start-up. 
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Figure 5.2: Algorithm for AMFT Normal Operations. 

5.2.3 AMFT Fault Handling 

Figure 5.3 shows the fault handling algorithm. The fault handling algorithm is used 

when a fault has been detected in the AMFT’s processing unit. Processing unit itself 
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uses symptom-based fault detection mechanism [139]. An interface between the 

processing unit and AMFT is used to indicate a fault condition inside the processing 

unit.   

The first step taken following fault detection is to isolate the processing unit from 

the network so that it cannot interact with the rest of the system. The exact actions to 

be taken will depend on the nature and severity of the fault, e.g. double bits error in 

program memory, failure of on-board WDT, and extreme condition on temperature. 

Once a severe fault is detected, campaign for the task migration is immediately started.    

It then sets a flag to indicate that the AMFT should send a fault message on the 

AMFT network rather than a heartbeat message so that the other nodes are aware of 

the fault. Once the fault flag has been set, measures may be taken to attempt recovery 

of the processing unit. If autonomous recovery steps are permitted, then these may be 

attempted first. However, it may be preferred to take manual recovery steps following 

an investigation of the fault, which may be carried out sometime after the fault occurs. 

If the processing unit is recovered, either autonomously or manually, processing unit is 

reconnected to the network. The AMFT’s fault flag is reset so that heartbeat messages 

are again transmitted on the AMFT network, and the node can be reintegrated into the 

group. However, a failed node is powered off after the recovery attempt.  
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Figure 5.3: Algorithm for Fault and Recovery Handling. 

5.2.4 Tasks Migration   

The migration of tasks to nodes within the distributed architecture is achieved through 

the use of Task Migration Tables. The allocation and scheduling of tasks across the 

nodes are determined through analysis at design time, and the resulting distribution of 

tasks to nodes is stored in a table that is accessed at run-time. An alternative approach 

would be to determine dynamically the distribution of tasks to nodes and scheduling at 

run-time, but a static approach requires less processing and provides greater assurance 

that the system can meet real-time deadlines. One Task Migration Table is created for 
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each possible group configuration. The complete Task Migration Table is stored in 

each AMFT unit’s local memory. 

Figure 5.4 shows the algorithm used for task migration. It is entered into task 

migration whenever a change is detected in the operational status of a node (e.g. if a 

fault message has been received from an AMFT via the AMFT bus). The Task 

Migration Table to be used is selected based on the current operational status of all 

nodes. By reading the table, each AMFT can then determine which tasks are to be 

executed by its processing unit. An AMFT unit then informs its processing unit of the 

tasks to be executed by sending it a Task List Message (TLM). It also sends the most 

recent state data for the tasks in the task list, so that the processing unit can execute the 

tasks with their latest states.  

Read Task Migration Table 
associated with current 

node statuses

Task 
Migration

Send Task List Message 
and state update 

messages to Processing 
Unit

Normal 
Operation

Create Task List Message 
based on contents of Task 

Migration Table

 

 Figure 5.4: Task Migration. 

5.3 AMFT Design  

This section describes the design of the AMFT, a middleware that is proposed for the 

on-board spacecraft distributed computing.   
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5.3.1 Top-Level Design 

Figure 5.5 shows the top-level design of the AMFT, which consists of four main 

modules; 1) Fault Monitoring and Detection Module 2) Target Fail-Over Node 

Selection 3) State Checkpointing 4) Communication Module.  

Fault Monitoring and Detection Module: The Fault Monitoring and Detection 

module is used to detect the failure of the processing unit within each distributed node. 

As shown in Figure 5.5, this module is used to monitor the software and hardware 

faults of the processing unit. For software faults, symptom-based detection method, as 

described in section 4.8, is proposed to be implemented inside the processing unit that 

inform the AMFT for any abnormality via a software monitoring (SM) interface. This 

interface can be a shared memory interface or a simple UART interface. Also to the 

software faults, this module also monitors the temperature, current, watchdog and 

double bit errors signals. The final decision of a node failure depends on the fusion of 

information provided by software and hardware fault detection. 

Target Fail-Over Node Selection Module: This module is capable to select the target 

node for migration of the tasks. A selection of the target node for task migration is 

static [198], whereby the preconfigured tables are used. Based on the fault of a 

particular node, this module determines the tasks that need to be run by its associated 

processing unit. After this, a TLM is sent to the processing unit for execution of the 

tasks. 

State Check-pointing Module: State check-pointing is a mechanism in which a 

consistent state of a task is stored. If a task or its associated processor fails, then the 

task needs to be started on another node. In that case, the stored state helps the task to 

resume its execution from that point onward rather than reset from the initial point. 

Inside the AMFT block, a module State Checkpointing is dedicated to this type of 

functionality. This module handles sending, receiving and storing the check-pointing 

information. This module receives checkpointing information from its associated 

processor and AMFT network. This information is stored on each node and later 

transmitted to other AMFTs. 

Communication Module: The communication mechanism adopted inside the AMFT 

over the AMFT network is TDMA. Each node has its time slot for communication on 
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the AMFT network, which is allocated at each node start-up. TDMA mechanism 

ensures deterministic system behaviour in case of a failure. It also eliminates the need 

for underlying deterministic communication protocol that enables the AMFT to use 

with any non-deterministic protocols. 
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Figure 5.5: AMFT Top-Level Design.  

5.3.2 Implementation Approaches 

AMFT is particularly designed to support distributed computing of resource constraint 

distributed embedded systems, such as spacecraft distributed computing. AMFT is 

attached to each distributed processing unit as a separate hardware block, or it can be 

integrated within a Multiprocessor System-on-chip (MPSoC) of a distributed node as 
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shown in Figure 5.6. An MPSoC based approach is more beneficial because it requires 

less area, size, mass and also consumes less electrical power.  

As mentioned earlier, the client-server approach is not suitable for resource 

constraint distributed embedded systems due to its connection setup time, It also 

allows only one way service from server to client and its server can act as a single 

point of failure. Therefore, a distributed coordination approach was adopted for the 

communication among the AMFT blocks via a separate network. This distributed 

coordination is accomplished through consistent messages among the AMFT blocks 

which will be explained later in this Chapter. 
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Figure 5.6: AMFT Block: Implementation Approaches. 

5.3.3 AMFT Messages and Formats 

This section describes the messages transferred between the AMFT blocks via the 

AMFT network, and between the AMFT and the processing unit. The following are 

the messages: 

 HeartBeat Message (HBM) 

 Fault Message (FM) 

 State Update Message (SUM) 
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 Task List Message 

HeartBeat Message: A HeartBeat Message is transmitted by a node’s AMFT block 

via the AMFT network at the start of the node allocated communications slot. Its 

purpose is to indicate the other nodes that the local node is active. 

Format. Table 5.1 shows the format of the HeartBeat Message. Table 5.2 provides a 

description of each field in the message. 

Fault Message: A Fault Message is sent by an AMFT unit via the AMFT at the start 

of the node allocated communications slot instead of a HeartBeat Message to indicate 

the other nodes that a fault has occurred in the node processing unit. 

Format. Table 5.3 shows the format of a Fault Message. Table 5.4 provides a 

description of each field in the message. 

Table 5.1: HeartBeat Message Format. 

Bits 0 7 8 15 

Field Node Identifier Heartbeat code (0x48) 

Table 5.2: HeartBeat Message Fields. 

Field Length Description Value 

Node Identifier 8 bits Unique identifier of the sending node 0 to 255 

Heartbeat code 8 bits Constant value identifying message 

as a HeartBeat Message 

0x48 

Table 5.3: Fault Message Format. 

Bits: 0 7 8 15 

Field: Node Identifier Fault code (0x46) 

Table 5.4: Fault Message Fields. 

Field Length Description Value 

Node Identifier 8 bits Unique identifier of the sending node 0 to 255 

Fault code 8 bits Constant value identifying message as 

a Fault Message 

0x46 
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State Update Message: State Update Messages (SUMs) are transmitted to provide the 

most recent state data 𝛥𝑆𝐷 from an application task. The exact nature of the state data 

will be task-specific, but may include values for quantities such as angles or velocity 

data to be used in future calculations. SUMs are sent from a processing unit to its 

associated AMFT block. SUMs are then passed between AMFT block via the AMFT 

network after every HBM to ensure all nodes have up-to-date state data. They are also 

sent from the AMFT to the processing unit, if necessary when task migration is 

required, to ensure a node taking over responsibility for executing a task uses the most 

recent state data 𝛥𝑆𝐷. A SUM contains state data 𝛥𝑆𝐷  for a single task, consisting of a 

set of state values. The length in bits of each state value depends on the nature of the 

data, e.g. a Boolean or a double-precision floating point value. Therefore the 

delimitation of state value fields within a SUM will vary for each task, and the correct 

interpretation of the SUM depends on each node having knowledge of the state values 

format for each task. The SUM contains a Task Identifier field enabling a node to 

determine the correct state values format for that task, and to correctly store the values 

in the correct memory locations for use by the mission task.  

Format: State Update Messages are sent between AMFTs on the AMFT network, and 

also between an AMFT and its processing unit. For the messages sent between an 

AMFT and its processing unit, a Node Identifier field is not required, so these State 

Update Messages do not include this field. Table 5.5 shows the format for a State 

Update Message sent on the AMFT network. Table 5.6 shows the format for a State 

Update Message sent between an AMFT to the processing unit while Table 5.7 shows 

the message format for a processing unit to AMFT. Table 5.8  provides a description 

of each field in the message. 

Task List Message: A Task List Message (TLM) consists of a set of Task Identifiers, 

indicating the set of tasks to be executed by a processing unit. The AMFT block 

always transmits this message to the processing unit.  

Format:  Table 5.9 shows the format for a TLM. Table 5.10 provides a description of 

each field in the message. 
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Table 5.5: State Update Message Format for Inter-AMFT Communication. 

Bits: 0 7 8 15 16 23 24       variable 

Field: Node 

Identifier 

SUM 

code 

(0x53) 

Task 

Identifier 

State 

value 0 

State 

value 1 

… State value n 

Table 5.6: State Update Message for AMFT and Processing Unit Communication. 

Bits: 0 7 8 15 16       variable 

Field: SUM code 

(0x53) 

Task 

Identifier 

State 

value 0 

State 

value 1 

… State value n 

Table 5.7: State Update Message Format: Processing Unit and AMFT Communication. 

Field: Sync 

Byte-1 

(0xEB) 

Sync 

Byte-2 

(0x90) 

Message 

Length 

SUM 

code 

(0x53) 

Task 

Identifier 

State 

value 0 

State 

value 1 

… State 

value 

n 

Table 5.8: State Update Message Fields. 

Field Length Description Value 

Sync Byte-1 8 bits Required for Packet Synchronization 0xEB 

Sync Byte-2 8 bits Required for Packet Synchronization 0x90 

Packet Length 8 bits Packet Length for Processing Unit-AMFT 0 to 255 

Node Identifier 8 bits Unique identifier of the sending node 0 to 255 

SUM code 8 bits Constant value identifying message as a 

State Update Message 

0x53 

Task Identifier 8 bits Unique identifier of the task to which the 

state update applies 

0 to 255 

State value 

fields 

8 bits Set of bytes containing the state data for the 

task 

Variable 

Table 5.9: Task List Message Format. 

Bits: 0 7 8 15 16 23 24 31 Task 

Data 

variable 

  

Field

: 

TLM code 

(0x54) 

Number 

of tasks 

in TLM 

Task Identifier 

0 

Task Identifier 

1 

… Task 

Identifier n 
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Table 5.10: Task List Message Fields. 

5.3.4 AMFT Tables 

There are two types of tables inside the AMFT: (i) Node Table and (ii) Task Migration 

Table. The following explains each of these:  

Node Table: The Node Table contains a single entry for each DCN present in the 

Fault-Tolerant Distributed system. Each entry contains the Node Identifier, and the 

node’s communication slot start time, which are both fixed at design time. The status 

of the node (active/inactive) which is updated by the Target Fail-Over Selection 

Module within the AMFT when a node’s status changes (e.g. when a node fails). The 

format for the Node Table is given in Table 5.11, which shows a communication slot 

time of 1000 ms and status of the nodes (‘0/1’).  The communications slot time of 

1000 ms is for demonstration purposes only and the actual slot time depends on the 

application tasks period and their data sizes. Further details on the selection of the 

communications slot time is given in section 8.4.1. 

Table 5.11: Node Table. 

Node Identifier Communications 

Slot Start Time 

(ms) 

Active (1) / Inactive 

(0) 

0 0 1 

1 1000 1 

2 2000 0 

 

Field Length Description Value 

TLM code 8 bits Constant value identifying message as 

a TLM 

0x54 

Number of tasks in 

TLM 

8 bits The number of Task Identifier fields 

following this field 

Variable 

Task Identifier fields 8 bits for 

each 

field 

Set of fields containing the unique 

identifier of each task to be included in 

the task list 

0 to 255 
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Task Migration Table: A Task Migration Table maps each mission task to be 

executed by the Fault-Tolerant Distributed system, to one of the distributed computing 

nodes. One Task Migration Table exists for each possible active node set, e.g. one 

table contains the task migrations for the case where all nodes are active. Another table 

contains the task migrations where one of the nodes is inactive, and so on. Each table 

contains one entry for each application task referenced by its Task Identifier, and a 

corresponding Node Identifier indicating the node on which the task is to execute. 

Multiple tasks may run on a single node, but at any time only one instance of a given 

task will be executed by the Fault-Tolerant Distributed system. The Target Fail-Over 

Selection Module within the AMFT uses the Task Migration Table corresponding with 

the current node statuses to inform its processing unit of which application tasks it 

must run. The format of the Task Migration Table is shown in Table 5.12, with 

example entries. These entries represent a particular scenario for three nodes and five 

tasks distributed system. This shows that in the presence of all three nodes, task-0 and 

2 are assigned to node-0 while the task-1 is assigned to node-1 and task-3 and 4 are 

assigned to node-2.  

Table 5.12: Task Migration Table. 

Task Identifier Node Identifier 

0 0 

1 1 

2 0 

3 2 

4 2 

 

5.4 AMFT Scenarios and Network Communication 

This section describes the working of different components of the middleware in terms 

of fault detection, isolation and tasks migration. 

Normal Operation: During the normal operation of AMFT as shown in Figure 5.7, 

each node’s AMFT is bound to send a periodic HeartBeat message in its own time slot 

via the AMFT network for the health of each node. Inside the AMFT, Communication 
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module handles sending and receiving these HeartBeat messages. A reception of 

HeartBeat message indicates that a node is healthy, and no configuration is required 

while a missing HeartBeat message indicates that node is failed. Also to HeartBeat, 

Communication module also sends and receives the tasks state data messages that are 

periodically checkpointed from processing unit by the state check-pointing module. 

The mechanism inside the state check-pointing module discards the previous state’s 

values when it receives new state values. The details on these task’s state data values 

depend on the nature of running task while the number of time slots depends on the 

number of distributed computing nodes of a distributed system.   

Slot-2 Slot-3Slot-1

HBM

AMFT-1

SUM

SUM

SUM
SUM

SUM

HBM HBM

Normal Operations

Slot-0 Slot-n

Allocated Slots
Control

Slot
Unallocated

Slot

AMFT-2

AMFT-3

SUM: State Update 
Message
HBM: HeartBeat Message

 

Figure 5.7: Network Communication in case of Normal Operations. 

Processing Unit Fault: On the occurrence of a fault, AMFT communicates this 

information to the Communications Module and Target Fail-Over Node Selection 

module. On receipt of fault message from ‘Fault Monitoring and Detection’ module, 

communication module sends a fault message on the network as shown in Figure 5.8. 

All the healthy nodes of a group, which can share the tasks load, receive this message 

and reconfigure its associated processing unit based on the node table entries. On the 

healthy nodes, each AMFT ‘Target Fail-Over Node Selection’ module sends Task List 

Message and state data values for the lost tasks predefined to be shared with this 

processing unit.  Then processing unit starts the lost tasks with the provided state 

values. While on the faulty node, all tasks assigned to its processing unit are stopped. 
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Slot-2 Slot-3Slot-1

FM

AMFT-1

SUM

SUM

SUM

SUM
HBM HBM

Fault in Processing Unit

Slot-0 Slot-n

Allocated Slots
Control

Slot
Unallocated

Slot

AMFT-2

AMFT-3

Fault in 
Processing 

Unit-1

SUM: State Update 
Message
HBM: HeartBeat Message
FM: Fault Message

 

Figure 5.8: Network Communication in case of Processing Unit Failure. 

AMFT Failure: Figure 5.9 shows a scenario when one of the AMFTs fails. During 

normal mode, the AMFTs exchange periodic HBM messages to indicate their 

presence. If there is no HBM from one of the AMFTs during its respective slot, the 

receiving AMFTs consider it to be a failed AMFT, and reconfiguration process is 

started.  

Slot-2 Slot-3Slot-1

AMFT-1

SUM

SUM

SUM

SUM
HBM HBM

AMFT Failure

Slot-0 Slot-n

Allocated Slots
Control

Slot
Unallocated

Slot

AMFT-2

AMFT-3

SUM: State Update Message
HBM: HeartBeat Message

Fail-Silent AMFT 
Behaviour on 

Failure

 

Figure 5.9: Network Communication in case of AMFT Failure. 
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5.5 AMFT Software Structure 

The AMFT functionality, based on the fault management algorithms, presented in 

section 5.2, was mapped to software for the purpose of prototyping the proposed fault 

management scheme. The structure the AMFT software implementation is shown in 

Figure 5.10. The design of the middleware is mapped to several tasks whereas ‘FDIR’, 

‘TargetFailOverNodeSelection’, and ‘TDMA communication’ are considered as the 

most important tasks. FDIR task complements the functionality of Fault Monitoring 

and Detection module of the top-level design of AMFT. As shown in Figure 5.10, the 

FDIR task is connected to the SM and HW interface message queues for monitoring 

the abnormal condition in a DCN. Data from SM and HW interfaces is passed to FDIR 

via software queues. FDIR task analyses the data and detects a fault if the pre-stored 

threshold limits for the monitored data is crossed. 
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Interrupt 
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QueueRxBusMessage
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SM 
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Figure 5.10: AMFT Software Implementation. 
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For simplicity and portability, the AMFT functions were implemented as a 

representative task of an operating system (OS). Table 5.13 shows the footprint 

comparison among the various Real-Time Operating System (RTOS). The real-time 

operating system ‘FreeRTOS’ [188] was selected for the prototyping, because of its 

small footprint and free availability for many embedded processors. However, the 

middleware functions can be ported to any operating system or can be implemented as 

a standalone application. In addition, these functions can also be implemented as 

hardware modules. 

Table 5.13: Footprint Comparison for Real-Time Operating Systems.   

Real-Time 

Operating System 

(RTOS) 

Footprint (kB) License Type 

VxWorks Code Size Min: 36/Basic:150/Full:250 

[199] 

License required 

Windows 

Embedded CE 

400 (minimum code size) [200] License required 

QNX 7-204 [201] License required 

uCLinux 2 MB (ROM)/4MB (RAM) [202] Open Source 

FreeRTOS 4.4 (code size)/200 bytes (data size) [203] Free for Educational and 

Commercial use.  

RTEMS Basic: 64-128 (code size)/Complex: 512 

(code size) 

Free for Educational and 

Commercial use. 

XilKernel 12-20 (code size) /46.5-59 (data size) [204] Free (Integrated with Xilinx 

Embedded Development Kit) 

5.5.1 FDIR Task 

Description—The FDIR task monitors for processing unit faults. If a fault is detected, 

a message is sent to the other AMFT blocks, via the AMFT Comms task, indicating 

that the unit has failed. Attempts are then made to recover the processing unit.  

The process of fault detection, isolation and recovery is implemented by the FDIR 

task inside the AMFT. FDIR informs other modules about the health of processing 

unit by a status flag. Other modules inside the AMFT read the status flag and sends 

messages accordingly. If there is a fault (software or hardware), FDIR detects a fault 

and switches its mode to faulty ‘1’ and starts the recovery process. Meanwhile, 

communication service of the AMFT associated with the faulty processing unit reads 
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the status flag and starts sending Fault Detection message on the AMFT network. 

Afterward, an attempt for the autonomous recovery of the faulty processing unit is 

made if recovered; the processing unit is reintegrated into a distributed system. If not 

recovered, a faulty node (Processing Unit + AMFT) is shutdown. The pseudo code for 

the FDIR task is as follows: 

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒: 

1 𝐹𝐷𝐼𝑅 𝑇𝑎𝑠𝑘 { 

2 𝑤ℎ𝑖𝑙𝑒(1){ 

3 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝑓𝑎𝑢𝑙𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 

4 𝑠𝑒𝑡 𝑓𝑎𝑢𝑙𝑡 𝑓𝑙𝑎𝑔 

5 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑜𝑢𝑠 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦  

6 𝑖𝑓 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 {  

7 𝑟𝑒𝑠𝑒𝑡 𝑓𝑎𝑢𝑙𝑡 𝑓𝑙𝑎𝑔 

8 𝑟𝑒𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 

9 } 

10 𝑒𝑙𝑠𝑒{ 

11 𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛 

12 } 

13 } 

14 } 

5.5.2 Target Fail-Over Node Selection Task 

Description— The “TargetFailOverNodeSelection” responds to messages from the 

AMFT Comms task indicating a change in the status of a node. It updates the Node 

Table to account for the node status change. It then reads the Task Migration Table 

associated with the updated group configuration. Based on the contents of the Task 

Migration Table, it sends a Task List Message, It follows by State Update Messages 

for each task in the task list, to the “Processing Unit Sender Task” to be sent to the 

Processing Unit. The pseudo code for the “TargetFail-Over Node Selection Task” task 

is as follows: 
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𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒: 

1 𝑇𝑎𝑟𝑔𝑒𝑡 𝐹𝑎𝑖𝑙 − 𝑂𝑣𝑒𝑟 𝑁𝑜𝑑𝑒 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑇𝑎𝑠𝑘 { 

2 𝑤ℎ𝑖𝑙𝑒(1){ 

3 

𝑊𝑎𝑖𝑡 𝑓𝑜𝑟 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝐴𝑀𝐹𝑇 𝐶𝑜𝑚𝑚. 𝑇𝑎𝑠𝑘 𝑓𝑜𝑟  

𝑁𝑜𝑑𝑒 𝑆𝑡𝑎𝑡𝑢𝑠 𝑐ℎ𝑎𝑛𝑔𝑒 

4 𝑀𝑜𝑑𝑖𝑓𝑦 𝑁𝑜𝑑𝑒 𝑆𝑡𝑎𝑡𝑢𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑁𝑜𝑑𝑒 𝑇𝑎𝑏𝑙𝑒 

5 𝑅𝑒𝑎𝑑 𝑇𝑎𝑠𝑘 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑎𝑏𝑙𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 𝑠𝑒𝑡  

6 

𝐶𝑟𝑒𝑎𝑡𝑒 𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑎𝑠𝑘𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡ℎ𝑖𝑠 

 𝑁𝑜𝑑𝑒   

7 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑈𝑛𝑖𝑡 𝑆𝑒𝑛𝑑𝑒𝑟 𝑇𝑎𝑠𝑘  

8 𝑆𝑒𝑛𝑑 𝑇𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑈𝑛𝑖𝑡 

9 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑎𝑠𝑘 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡 { 

10 𝐺𝑒𝑡 𝑆𝑡𝑜𝑟𝑒𝑑 𝑆𝑈𝑀 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 

11 𝑆𝑒𝑛𝑑 𝑆𝑈𝑀 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑡𝑜 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑈𝑛𝑖𝑡 

12 } 

13 } 

5.5.3 AMFT Communications Task 

Description—The “AMFT Comms task” handles the communications with other 

AMFT blocks via the AMFT network. It includes a start-up period during which any 

HeartBeat Messages from already-transmitting nodes are detected. The local node’s 

communication slot timing is then synchronized with the received HBMs during this 

phase. If no HBMs are received, i.e. no other nodes have been activated, then the 

AMFT Comms task immediately sends the local node’s own HBM. It sets the 

communications slot timing based on the time at which it sent its HBM. In this way, 

the communications slot timing is always determined by the first node to start up. The 

AMFT Comms task handles the overall communications, e.g. slot timing, but the 

actual sending and receiving is delegated to the AMFT Sender and AMFT Receiver 

tasks, which pass information to and from the AMFT Comms task using message 

queues. 
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After the start-up phase, the AMFT Comms task enters an infinite loop of sending 

its HBM and SUMs during its communications slot. In each subsequent 

communications slot, receiving an HBM and SUMs from the other nodes. On receipt 

of an SUM, the relevant state data is updated within the AMFT’s local memory. 

During each communications period, the local communications slot timing is updated 

based on the HBM reception time for the node with the lowest ID in the group (if the 

local node does not have the lowest ID). 

If the AMFT Comms task receives a message from the FDIR task indicating a 

fault in the Processing Unit, the AMFT Comms task stops sending HBMs and instead 

sends a fault message via the AMFT bus. It does this until the FDIR task indicates 

recovery of the Processing Unit. 

The AMFT Comms task informs the Task Migration Manager task that a group 

update is required in the following circumstances: 

 A fault message is received from a node that is marked as active in the Node 

Table; 

 An HBM is not received from a node which is marked as active in the Node Table, 

during its allocated communications slot; 

 An HBM is received from a node that is marked as inactive in the Node Table. 

This may occur, for example, when a failed node has been recovered. 

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒: 

1 𝐴𝑀𝐹𝑇 𝐶𝑜𝑚𝑚. 𝑇𝑎𝑠𝑘 { 

2 𝑅𝑒𝑎𝑑 𝑁𝑜𝑑𝑒 𝑇𝑎𝑏𝑙𝑒 𝑡𝑜 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑠𝑙𝑜𝑡 𝑡𝑖𝑚𝑒𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 

3 𝐿𝑖𝑠𝑡𝑒𝑛 𝑓𝑜𝑟 𝐻𝐵𝑀 𝑜𝑛 𝑡ℎ𝑒 𝐴𝑀𝐹𝑇 𝑏𝑢𝑠 𝑓𝑜𝑟 𝑎 𝑡𝑖𝑚𝑒 𝐶𝑜𝑚𝑚.  𝐶𝑦𝑐𝑙𝑒  

4 𝐼𝑓 𝐻𝐵𝑀 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 

5 𝑢𝑠𝑒 𝑡ℎ𝑖𝑠 𝑡𝑜 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑜𝑚𝑚. 𝐶𝑦𝑐𝑙𝑒 

6 𝑒𝑙𝑠𝑒  

7 
𝑠𝑒𝑛𝑑 𝐻𝐵𝑀 𝑎𝑛𝑑 𝑠𝑒𝑡 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑜𝑚𝑚.  𝐶𝑦𝑐𝑙𝑒 𝑡𝑜 

 𝑟𝑒𝑓𝑙𝑒𝑐𝑡 𝑠𝑒𝑛𝑑 𝑡𝑖𝑚𝑒. 

8 𝑤ℎ𝑖𝑙𝑒 (1)  

9 𝑤𝑎𝑖𝑡 𝑢𝑛𝑡𝑖𝑙 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑁𝑜𝑑𝑒′𝑠𝐶𝑜𝑚𝑚. 𝑆𝑙𝑜𝑡  

10 𝐼𝑓 𝐹𝐷𝐼𝑅 𝑡𝑎𝑠𝑘 ℎ𝑎𝑠 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑑, 𝑡ℎ𝑒𝑟𝑒 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑎 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 
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𝑈𝑛𝑖𝑡 𝑓𝑎𝑢𝑙𝑡, 𝑎𝑛𝑑 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑦𝑒𝑡 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 { 

11 𝑆𝑒𝑛𝑑 𝐹𝑎𝑢𝑙𝑡 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 

12 } 

13 𝑒𝑙𝑠𝑒 

14 𝑆𝑒𝑛𝑑 𝐻𝐵𝑀 

15 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑆𝑈𝑀 𝑆𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑚𝑒𝑚𝑜𝑟𝑦{ 

16 𝑆𝑒𝑛𝑑 𝑆𝑈𝑀 

17 } 

18 } 

19 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟 𝑛𝑜𝑑𝑒 𝑖𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚{ 

20 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝐻𝐵𝑀 

21 𝑖𝑓 𝐻𝐵𝑀 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑{ 

22 𝑖𝑓 𝐻𝐵𝑀 𝑖𝑠 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑤𝑖𝑡ℎ 𝑙𝑜𝑤𝑒𝑠𝑡 𝐼𝐷{ 

23 
𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑜𝑐𝑎𝑙 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒 𝑤𝑖𝑡ℎ 

𝑡𝑖𝑚𝑒 𝐻𝐵𝑀 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.  

24 } 

25 
𝑖𝑓 𝑛𝑜𝑑𝑒 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝐻𝐵𝑀 𝑖𝑠 𝑚𝑎𝑟𝑘𝑒𝑑 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑖𝑛  

𝑡ℎ𝑒 𝑁𝑜𝑑𝑒 𝑇𝑎𝑏𝑙𝑒{  

26 
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝑇𝑎𝑠𝑘 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑛𝑎𝑔𝑒𝑟  

𝑛𝑜𝑑𝑒 𝐼𝐷 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 

27 } 

28 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝑆𝑈𝑀𝑠 

29 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑆𝑈𝑀 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑{ 

30 𝑠𝑡𝑜𝑟𝑒𝑑 𝑡ℎ𝑒 𝑆𝑈𝑀 𝑖𝑛 𝑚𝑒𝑚𝑜𝑟𝑦 

31 } 

32 
𝑒𝑙𝑠𝑒 𝑖𝑓 𝑓𝑎𝑢𝑙𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑜𝑟 𝑛𝑜 𝐻𝐵𝑀 𝑤𝑖𝑡ℎ𝑖𝑛  

𝑐𝑜𝑚𝑚.  𝑠𝑙𝑜𝑡 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑚𝑎𝑟𝑘𝑒𝑑 𝑎𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 𝑖𝑛 𝑁𝑜𝑑𝑒 𝑇𝑎𝑏𝑙𝑒{ 

33 
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝑇𝑎𝑠𝑘 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑛𝑎𝑔𝑒𝑟  

𝑛𝑜𝑑𝑒 𝐼𝐷 𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 

34 } 

35 } 

36 } 

37 } 
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5.5.4 AMFT Receiver Task 

Description: The AMFT Receiver task processes messages received on AMFT 

network from other AMFT units. The messages are received from the network 

interrupt routine via a message queue. If the message received is a Heartbeat message 

or a Fault message, this information is sent to the AMFT Comms task. If the message 

is an SUM, the state data within the message is stored in memory. The pseudo code for 

the “AMFT Receiver Task” is as follows: 

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒: 

1 𝐴𝑀𝐹𝑇 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑇𝑎𝑠𝑘 { 

2 𝑤ℎ𝑖𝑙𝑒(1) { 

3 

𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐶𝐴𝑁 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 𝑟𝑜𝑢𝑡𝑖𝑛𝑒 

𝑖𝑓 𝑠𝑡𝑎𝑡𝑒 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑖. 𝑒. 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  

𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 { 

4 𝑠𝑡𝑜𝑟𝑒𝑑 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑑𝑎𝑡𝑎 

5 }  

6 𝑒𝑙𝑠𝑒 {   

7 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑖𝑠 𝐻𝐵𝑀 𝑜𝑟 𝑓𝑎𝑢𝑙𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒  

8 
𝑠𝑒𝑛𝑑 𝑎 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝐴𝑀𝐹𝑇 𝑐𝑜𝑚𝑚.  𝑇𝑎𝑠𝑘: 

𝐻𝐵𝑀 𝑓𝑎𝑢𝑙𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 

9 } 

10 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑖𝑠 𝑎 𝑆𝑈𝑀 { 

11 
𝑔𝑒𝑡 𝑡𝑎𝑠𝑘 𝐼𝐷 𝑓𝑟𝑜𝑚 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑎𝑛𝑑 𝑐ℎ𝑒𝑐𝑘 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑆𝑈𝑀 

12 } 

13 } 

14 } 

5.5.5 AMFT Sender Task 

Description: The AMFT Sender task sends messages on the AMFT network to other 

AMFT units. The AMFT Comms task specifies a message type to be sent 

(communicated to the AMFT Sender task via a message queue). Based on the type, the 

AMFT Sender task sends a message using the correct message format. This includes 
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the current state data for an application task if the message to be sent an SUM. The 

pseudo code for the “AMFT Sender Task” is as follows: 

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒: 

1 𝐴𝑀𝐹𝑇 𝑆𝑒𝑛𝑑𝑒𝑟 𝑇𝑎𝑠𝑘 { 

2 𝑤ℎ𝑖𝑙𝑒(1) { 

3 

𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐴𝑀𝐹𝑇 𝑐𝑜𝑚𝑚. 𝑇𝑎𝑠𝑘  

 𝑠𝑒𝑛𝑑 𝑎 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑜𝑓 𝑡𝑦𝑝𝑒 < 𝑡𝑦𝑝𝑒 > 

𝑐𝑟𝑒𝑎𝑡𝑒 𝑎𝑛𝑑 𝑠𝑒𝑛𝑑 𝑎 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑡𝑦𝑝𝑒  

 

4 } 

5 } 

5.6 Discussion 

In this section, we discuss the salient features that make the proposed AMFT design 

different and more efficient than the existing middleware. 

Employed middleware, as stated in the literature, uses client-server model [205-

208]. In the client-server model, the client sends a request to the server asking for a 

service and the server process the request and returns a reply. There are two drawbacks 

to this approach: (i) for each request, the client has to establish a connection before 

sending a request to server, (ii) the client can request but the server cannot. Since a 

two-way communication is required for real-time applications, this connection 

arrangement causes an additional time delay, therefore, the typical client-server model 

was not suitable for our application. However, it can be employed for desktop 

distributed computing systems. 

In middleware designs [3, 62, 191, 193], processes are replicated for fault 

tolerance in distributed systems. If the middleware of the running process fails to send 

a ping message within the timeout interval, then the process is considered as failed and 

campaign for the failover target node selection is launched. This failure can be a 

middleware failure, or it can be a process failure. The behaviour of this type of failure 

can be fail-silent or Byzantine. Current middleware failure’s assumption of fail-silent 
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is simple and does not consider hardware failures (processor failure common in space). 

Therefore, we adapted an additional level of fault detection as deemed essential to 

ensure the fail-silent node behaviour. 

Applications require data consistency among the primary and backup computing 

nodes. This is useful to start the process or task from that point onward when it is 

started on another node. This feature is very difficult to achieve, and usually the fault 

tolerant middleware designers ignore this feature as mentioned in [208, 209]. In [62], 

where an exact match (Complete Task State – State Data)  between the primary and 

redundant data contents is suggested. It is not necessary because it wastes network 

resources, particularly in case of large size data in distributed systems. In our 

approach, the State Data is reduced to necessary state information, and therefore 

reducing the communication overhead required for state information management, 

between AMFTs. 

It is important to state here, that the middleware is designed to cater to desktop 

applications, whereas the proposed design is for embedded applications. JAVA 

language is commonly used for programming, which is inherently not efficient for 

real-time applications. Therefore, we used C programming language for its known 

heritage.  

5.7 Summary 

The chapter discusses the proposed new fault management scheme, which is named 

Adaptive Middleware for Fault-Tolerance (AMFT), in depth.  Novel algorithms for 

fault detection, isolation and task migration are developed. The algorithms provide 

fault-tolerance in a distributed system by tasks migration rather than task replication. 

This feature improves the overall cost efficiency by making the system reliable with 

little resource utilization. 

AMFT runs on a separate hardware module, alongside the main processing unit, 

thus enabling local decision control in case of fault occurrence. AMFT utilizes pre-

assigned node and task list tables, ensuring high reliability, in contrast to dynamic 

allocation. 
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AMFT is capable of monitoring both hardware as well as software faults, working 

in conjunction with the application software in DCN. The software faults are 

supervised by the application software via a special software monitoring interface 

(SM). The hardware is monitored via analogue and digital signal monitoring. 

The software code for the main AMFT operations is described. The beauty of 

AMFT is that it can be hardwired as a VHDL module.  The analysis of the architecture 

is carried out in chapter 6. The physical implementation and its issues are highlighted 

in Chapter 7. 
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Chapter 6  

6.Evaluation of the Proposed Approach 

The design of the proposed fault tolerant distributed (FTDC) architecture and the 

functionality of the fault management scheme were explained in chapter 4 and chapter 

5 respectively. This chapter is dedicated to the analysis and evaluation of the proposed 

approach. The first part of the chapter presents analysis of the architecture and the 

fault management scheme. The second part of the chapter provides a functional 

verification through prototyping at board level of the system. In section 6.1.1, 

performance metrics are defined, the proposed architecture is analysed and compared 

with a centralized and a TMR-based systems and fault management schemes are 

analysed in terms of their performance. In section 6.2, details on the functional 

verification are presented, in which experimental results are reported and 

implementation issues are highlighted. Section 6.3 concludes the chapter.  

6.1 Dependability Analysis of the Distributed 

Computing Approach 

“The notion of dependability covers the meta-functional attributes of a computer 

system that relate to the quality of service a system delivers to its users during an 

extended interval of time” [210]. A task-oriented distributed computing system 

provides the necessary services for execution of an application, which is represented by 

a set of tasks. Reliability and availability are essential criteria to judge the fault-
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tolerance performance of a computing system. In this section, a reliability evaluation of 

the computing architectures is presented. These architectures are analysed and 

compared by their developed mathematical Markov models. The fault management 

scheme is also analysed in terms of reliability and availability. 

6.1.1 Performance Metrics 

Since there were no performance metrics, metrics most suited to dependability 

analysis were identified. The performance of the computing architecture and fault 

management scheme is evaluated by analysing two main parameters: reliability and 

availability.   

6.1.1.1 Reliability 

Reliability R is the probability of a system to produce the correct (acceptable) output 

for a specified period of time t. The reliability of a system, which is used as a 

performance metric in computing systems, degrades with system-level failures. Thus, 

a reliable computing system should be able to recover from a failure condition. The 

system reliability R is an exponential function [28], which decreases with time t as 

shown in Figure 6.1. An expression for 𝑅(𝑡) is given by:  

 𝑅 (𝑡) =  𝑒−𝜆𝑡 (6.1) 

where 

𝜆 Failure rate per unit time t  

𝑡 Time duration, measured as per requirements (ranging 

from sec, min, weeks to years)  

6.1.1.2 Availability 

Availability represents the probability that a system is operational during a given 

period of time. Availability A is measured by the ratio of the uptime (during which the 

system is operational) to the total time including the downtime (repair time) and can 

be expressed by [28]: 
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 𝐴 =
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
  (6.2) 

 

Figure 6.1: System Reliability. 

6.1.2 Reliability Analysis of Computing Architectures 

In this section, we analyse and compare three computer system configurations: (i) 

centralized, (ii) TMR and (iii) the proposed FTDC and evaluate their reliability. The 

centralized and the TMR-based systems are chosen for the comparison because these 

are state-of-the-art computing systems, which are widely used in mission critical 

applications and, in particular, on board spacecraft, as discussed in 3.2.3. The reliability 

derivation for satellite OBCs is presented in Appendix B, using the Bernoulli 

distribution, which is a simplified method and suitable for computing systems with 

independent computing nodes. However, if the nodes are statistically dependant and the 

failure or repair process of any one of them is dependent on the state the other, a more 

sophisticated technique, which is able to incorporate these dependencies, is required. In 
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this section, a more elegant approach to reliability analysis of computing systems, 

based on the Markov mathematical model is presented, where the fault model includes 

failure detection, isolation and repair processes. A node in the model (i) is considered 

dependent and (ii) can fail with a failure rate of λ and a repair rate of μ. A three years 

mission lifetime is assumed with a failure rate λ of 1x10
-3

 per hour and a recovery rate 

μ of 1x10
-5

 per hour. 

6.1.2.1 Centralized Computing System 

A Markov model for the centralized computing system with repair is shown in Figure 

6.2. It consists of two states; S0 and S1. The transition probability from state S0 to S1 is 

given by λ.∆t, where λ is the failure rate, and ∆t represents the time interval in which 

failure is probable. Similarly, transition probability from state S1 to S0 is given μ.∆t 

where μ represents the repair rate, and ∆t represents the time interval in which repair is 

probable. Each Markov equation represents a particular state of the system and is 

expressed by the differential equations (6.3) and (6.4) below. 

s0 s1

1
1-λ∆t

λ∆t

μ∆t

S0 = n1 S1 = ~n1

Zero Fails One Fails
  

Figure 6.2: Markov Model for Centralized System. 

 
𝑑𝑃𝑠𝑜(𝑡)

𝑑𝑡
= − 𝜆 𝑃𝑠𝑜(𝑡) +  𝜇 𝑃𝑠1(𝑡) (6.3) 

 
𝑑𝑃𝑠1(𝑡)

𝑑𝑡
= + 𝜆 𝑃𝑠𝑜(𝑡) −  𝜇 𝑃𝑠1(𝑡) (6.4) 

Applying the Laplace transform to Equation 6.3 and 6.4 results in: 
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 𝑠𝑃𝑠𝑜(𝑠) − 𝑝𝑠0(0) = − 𝜆 𝑃𝑠𝑜(𝑠) +  𝜇 𝑃𝑠1(𝑠) (6.5) 

 𝑠𝑃𝑠1(𝑠) − 𝑝𝑠1(0) =  𝜆 𝑃𝑠𝑜(𝑠) −  𝜇 𝑃𝑠1(𝑠) (6.6) 

Initially, the centralized system is in working state S0, So, ps0(0) =1 and ps1(0) =0. By 

substituting initial values and rearranging the Equations 6.5 and 6.6, we obtained 

linear equations, Equation 6.7 and Equation 6.8, which can be easily solved for Ps0(t) 

and  Ps1(t):   

 (𝑠 +  𝜆)𝑃𝑠𝑜(𝑠) −  𝜇 𝑃𝑠1(𝑠) = 1 (6.7) 

 (− 𝜆)𝑃𝑠𝑜(𝑠) + (𝑠 + 𝜇) 𝑃𝑠1(𝑠) = 0 (6.8) 

Equation 6.7 and 6.8 can also be represented in a (2x2) matrix form, as follows: 

 [
𝑠 + 𝜆 −𝜇
−𝜆 𝑠 + 𝜇

] [
𝑃𝑠𝑜(𝑠)

𝑃𝑠1(𝑠)
] =  [  

1
0 

 ] (6.9) 

Solving the above equations yields an expression for the reliability of the centralized 

system, Rcent_sys (t), given by Equation 6.10. 

 𝑅𝑐𝑒𝑛𝑡_𝑠𝑦𝑠(𝑡) =
1

(𝜆 + 𝜇)
[𝜇 +  𝜆𝑒−(𝜆+𝜇)𝑡] (6.10) 

6.1.2.2 Triple Modular Redundant System 

A Markov model for the TMR-based system is shown in Figure 6.3. This model 

comprises three identical nodes n1, n2, and n3 with the same failure rate λ and recovery 

rate μ. Initially, all the nodes are in state S0, and the probability of the transition from 

state S0 to S1 is given by 3λ.∆t. The probability of each state is represented by three 

Markov equations as follows: 

 
𝑑𝑃𝑠𝑜(𝑡)

𝑑𝑡
= − 3𝜆 𝑃𝑠𝑜(𝑡) +  𝜇 𝑃𝑠1(𝑡) (6.11) 

 
𝑑𝑃𝑠1(𝑡)

𝑑𝑡
= + 3𝜆 𝑃𝑠𝑜(𝑡) − (𝜇 + 2𝜆)𝑃𝑠1(𝑡) (6.12) 
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𝑑𝑃𝑠2(𝑡)

𝑑𝑡
= 2 𝜆 𝑃𝑠1(𝑡) (6.13) 

s0 s1 s2

1-(2λ+μ) ∆t1-3λ ∆t
1

3λ ∆t
2λ ∆t

μ ∆t

S0 = n1n2n3

S1 = ~n1.n2.n3 +

n1.~n2.n3 + 

n1.n2.~n3 

S2 = ~n1.~n2.n3 +

n1.~n2.~n3 + 

~n1.n2.~n3 + 

~n1.~n2.~n3

Zero Fails One node Fails two or three nodes Fail
 

Figure 6.3: Markov Model for TMR-based System [211]. 

Applying the Laplace transform to Equation 6.11, Equation 6.12, and Equation 6.13 

gives: 

 𝑠𝑃𝑠𝑜(𝑠) − 𝑝𝑠𝑜(0) = − 3𝜆 𝑃𝑠𝑜(𝑠) +  𝜇 𝑃𝑠1(𝑠) (6.14) 

 sPs1(s) − ps1(0) = 3λ Pso(s) − (μ + 2λ) Ps1(s) (6.15) 

 𝑠𝑃𝑠2(𝑠) − 𝑝𝑠2(0) = 2𝜆  𝑃𝑠1(𝑠) (6.16) 

 [
𝑠 + 3𝜆 −𝜇 0

3𝜆 𝑠 + 𝜇 + 2𝜆 0
0 −2𝜆 𝑠

] [

𝑃𝑠𝑜(𝑠)

𝑃𝑠1(𝑠)

𝑃𝑠2(𝑠)
] =  [

1
0
0
] (6.17) 

Solving the equations 6.14 to 6.17 for the probabilities of the operational states, Ps0(t) 

and Ps1(t), gives the reliability of the TMR system, Rtmr_sys(t), which is represented by 

Equation 6.18. 

 𝑅𝑡𝑚𝑟_𝑠𝑦𝑠(𝑡) = (3 +
𝜇

𝜆
) 𝑒−2𝜆𝑡 − (2 +

𝜇

𝜆
) 𝑒−3𝜆𝑡 (6.18) 
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6.1.2.3 Fault-Tolerant Distributed System with Two Nodes 

A Markov model for a two-node FTDC system, which uses a task migration scheme, 

is shown in Figure 6.4. This model comprises two identical nodes n1, and n2.  Initially, 

both nodes are in state S0. Upon a failure, the transition from state S0 to S1 is activated 

and the tasks running on the faulty node are migrated to the healthy node. In state S1, 

one of the nodes is working and sharing the workload of the faulty node tasks. The 

probability of each state is represented by Equations 6.19, 6.20 and 6.21 below: 

 
𝑑𝑃𝑠𝑜(𝑡)

𝑑𝑡
= − 2𝜆 𝑃𝑠𝑜(𝑡) +  𝜇 𝑃𝑠1(𝑡) (6.19) 

 
𝑑𝑃𝑠1(𝑡)

𝑑𝑡
= + 2𝜆 𝑃𝑠𝑜(𝑡) − (𝜇 + 𝜆)𝑃𝑠1(𝑡) (6.20) 

 
𝑑𝑃𝑠2(𝑡)

𝑑𝑡
=  𝜆 𝑃𝑠1(𝑡) (6.21) 

Applying the Laplace transform gives: 

 𝑠𝑃𝑠𝑜(𝑠) − 𝑝𝑠𝑜(0) = − 2𝜆 𝑃𝑠𝑜(𝑠) +  𝜇 𝑃𝑠1(𝑠) (6.22) 

 𝑠𝑃𝑠1(𝑠) − 𝑝𝑠1(0) = 2𝜆 𝑃𝑠𝑜(𝑠) − (𝜇 + 𝜆) 𝑃𝑠1(𝑠) (6.23) 

 𝑠𝑃𝑠2(𝑠) − 𝑝𝑠2(0) = 𝜆  𝑃𝑠1(𝑠) (6.24) 

 [
𝑠 + 2𝜆 −𝜇 0

2𝜆 𝑠 + 𝜇 + 𝜆 0
0 −𝜆 𝑠

] [

𝑃𝑠𝑜(𝑠)

𝑃𝑠1(𝑠)

𝑃𝑠2(𝑠)
] =  [

1
0
0
] (6.25) 

Solving the above equations for the probabilities of the operational states, Ps0(t) and 

Ps1(t), gives the reliability of the distributed system, RDis_sys(t), as follows: 

 𝑅𝐷𝑖𝑠_𝑠𝑦𝑠(𝑡) = (2 +
𝜇

𝜆
) 𝑒−𝜆𝑡 − (1 +

𝜇

𝜆
) 𝑒−2𝜆𝑡 (6.26) 
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s0 s1 s2

1-(λ+μ) ∆t1-2λ ∆t
1

2λ ∆t λ ∆t

μ ∆t

S0 = n1n2 S1 = ~n1.n2+ n1.~n2 
S2 = ~n1.~n2

Zero Fails One node Fails two nodes Fail
 

Figure 6.4: Markov Model for a Two-Node Distributed System. 

6.1.2.4 Fault-Tolerant Distributed System with Three Nodes 

A Markov model for the three-node distributed system is shown in Figure 6.5. 

Compared to the two nodes distributed model, one additional state is added to 

represent the third node in the system. State S0 represents normal operation while state 

S3 represents a complete system failure. One and two nodes failures are represented by 

state S1 and S2 respectively. The corresponding Markov equations (6.27) – (6.30) are 

given below: 

 
𝑑𝑃𝑠𝑜(𝑡)

𝑑𝑡
= − 3𝜆 𝑃𝑠𝑜(𝑡) +  𝜇 𝑃𝑠1(𝑡) (6.27) 

 
𝑑𝑃𝑠1(𝑡)

𝑑𝑡
= + 3𝜆 𝑃𝑠𝑜(𝑡) − (𝜇 + 2𝜆)𝑃𝑠1(𝑡) (6.28) 

 
𝑑𝑃𝑠2(𝑡)

𝑑𝑡
= 2𝜆 𝑃𝑠1(𝑡) − (𝜇 + 𝜆)𝑃𝑠2(𝑡) (6.29) 

 
𝑑𝑃𝑠3(𝑡)

𝑑𝑡
= 𝜆 𝑃𝑠2(𝑡) (6.30) 

Applying the Laplace transform gives: 

 𝑠𝑃𝑠𝑜(𝑠) − 𝑝𝑠𝑜(0) = − 3𝜆 𝑃𝑠𝑜(𝑠) +  𝜇 𝑃𝑠1(𝑠) (6.31) 
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 𝑠𝑃𝑠1(𝑠) − 𝑝𝑠1(0) = 3𝜆 𝑃𝑠𝑜(𝑠) − (𝜇 + 2𝜆) 𝑃𝑠1(𝑠) (6.32) 

 𝑠𝑃𝑠2(𝑠) − 𝑝𝑠2(0) = 2𝜆  𝑃𝑠1(𝑠) − (𝜇 + 𝜆) 𝑃𝑠2(𝑠) (6.33) 

 𝑠𝑃𝑠3(𝑠) = 𝜆 𝑃𝑠2(𝑡) (6.34) 

 [

𝑠 + 3𝜆 −𝜇 0 0
3𝜆 𝑠 + 𝜇 + 2𝜆 0 0
0 −2𝜆 𝑠 + 𝜇 + 𝜆 0
0 0 −𝜆 𝑠

]

[
 
 
 
𝑃𝑠𝑜(𝑠)

𝑃𝑠1(𝑠)

𝑃𝑠2(𝑠)

𝑃𝑠3(𝑠)]
 
 
 

=  [

1
0
0
0

] (6.35) 

Solving the above equations for the probabilities of the operational states, Ps0(t), 

Ps1(t), and Ps2(t), gives the reliability of the distributed system with three nodes, 

RDis_sys (t) , expressed by Equation 6.37.  

 𝑅𝐷𝑖𝑠_𝑠𝑦𝑠(𝑡) = 𝑃𝑠0 (𝑡) + 𝑃𝑠1(𝑡) + 𝑃𝑠2 (𝑡) (6.36) 

 𝑅𝐷𝑖𝑠_𝑠𝑦𝑠(𝑡) = (1 +
𝜇

𝜆
) 𝑒−3𝜆𝑡 − (3 +

𝜇

𝜆
) 𝑒−2𝜆𝑡 + (3 +

𝜇

𝜆
) 𝑒−𝜆𝑡 (6.37) 

s0 s1 s2

1-(3λ+μ) ∆t1-3λ ∆t
1

3λ ∆t 2λ ∆t

μ ∆t

S0 = n1n2 n3 
S3 = ~n1.~n2.~n3

s3

1-(2λ+μ) ∆t

λ ∆t

S1 = ~n1.n2.n3 +

n1.~n2.n3 + 

n1.n2.~n3 

S2 = ~n1.~n2.n3 +

n1.~n2.~n3 + 

~n1.n2.~n3 

μ ∆t

Zero Fails One node Fails
two or three 

nodes Fail

two or three 

nodes Fails
 

Figure 6.5: Markov Model for a Three-Node Distributed System. 

6.1.2.5 Discussion 

The reliability for each system (Centralized, TMR, and FDTC) is calculated using 

equations 6.10, 6.18, 6.26 and 6.37 and presented graphically in Figure 6.6. From the 

graphs in Figure 6.6 it can be seen that the proposed scheme is more reliable than the 
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other two systems. The centralized system’s reliability graph crosses that of TMR after 

about 0.6x10
4
 hours. This is due to the TMR system inherent dependency on three 

nodes and a voter circuit - as soon as one node fails, the reliability performance falls 

drastically. One of the reasons that the proposed FTDC system outperforms the others 

is due to the fact that the lost tasks are compensated for by migrating tasks from a 

faulty node to healthy nodes, whereas, this functionality is not present in the other 

systems. It can also be seen from the Figure 6.6 that the reliability of the distributed 

architecture increases with the increase of the number of nodes. It is also evident that 

the reliability degrades relatively more gracefully compared to the other systems, 

which is desired in mission critical systems.  

Figure 6.7 shows the relative improvement in reliability values of the FTDC 

system compared to centralized and TMR-based systems. First the centralized system 

is compared with the two and three nodes distributed system and their relative 

improvement in reliability values (marked with rectangles and circles) are plotted as 

shown in Figure 6.7. Then, the TMR-based system is compared with two and three 

nodes distributed system and their relative improvement in reliability values (marked 

with triangles and asterisk) are plotted as shown in Figure 6.7.  

 

Figure 6.6: Reliability Curves for Centralized, TMR-based and Distributed Systems. 
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Figure 6.7: Relative Improvement in Reliability Values for Distributed Computing Approach. 

6.1.3 Fault Management Scheme Analysis: Distributed vs 

Centralized 

In this section, the proposed fault management scheme is compared with the 

centralized scheme of section 3.2.2.2 in terms of reliability and availability values. A 

three-year mission lifetime with a failure rate λ of 1x10
-3 

per hour is assumed. For a 

fair comparison, equal reliability of each node was assumed.  

Both schemes include a number of computing nodes, which could correspond to an 

individual subsystem or a set of subsystems, such as OBDH, Thermal, 

Telemetry/Telecommand (TMTC) subsystems. However, in the case of the centralized 

scheme, only a single computing node and its pair redundant peer are responsible for 

the overall fault management, while in the proposed approach, each individual 

computing node is responsible for its fault detection and the reconfiguration of the 

system by migrating tasks to other nodes. In the proposed fault management scheme, 

each computing node is attached to an AMFT block to serve as distributed fault 

management scheme. By distributing the fault management to each individual 

computing node, much higher reliability can be achieved as it is evident from the 

following evaluation.  
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6.1.3.1 Reliability Assessment 

In order to simplify the reliability evaluation, a straightforward reliability assessment 

method is adopted in this section, whereby the system is broken down into sub-

systems, represented as blocks in a block diagram. The blocks are connected either in 

series, parallel or a combination of both. The Reliability is the probabilistic description 

of the success of the system. In other words, the assessment is carried out by 

determining the relationship of how the node failure, which is dealt with by the fault 

management functions, affects the complete system. The detailed derivation of each 

block connection (series, parallel) is given in Appendix B. 

6.1.3.1.1. Centralized Fault Management Scheme   

Consider a traditional centralised on-board computing system, which consists of a 

central node and a set of other nodes, with all nodes being dual redundant. The central 

node is responsible for the fault management (FM) functions. Upon detection of a 

node failure the central node reconfigures the system by switching off the primary 

node and switching on the redundant node of the failed dual redundant pair. In this 

scheme, the reliability of the complete system depends on the reliability of the central 

node. Therefore, it can be represented as follows; 

 𝑅𝑠𝑦𝑠_𝑐𝑒𝑛𝑡_𝑓𝑚 = 𝑅𝑐𝑒𝑛𝑡_𝑛𝑜𝑑𝑒 (6.38) 

Whereas, the reliability of the central node depends on its configuration and in general, 

is expressed as,  

 R𝑐𝑒𝑛𝑡_𝑛𝑜𝑑𝑒 = 1 − (1 − e−λt )m (6.39) 

where (1 − e−λt )𝑚  is the failure probability of m identical parallel nodes. Therefore, 

m = 2, for the case of a dual redundant central node. Hence the centralized scheme 

reliability depends on the reliability of the dual redundant central node configuration. 

As the centralized node manages all the fault management functions, therefore its 

failure could be catastrophic for the whole computing system. However, for m=3 in a 

centralized fault management scheme, additional two redundant computing nodes will 

be required which increases the overall system cost. The detailed derivation of 

reliability is carried out in Appendix B. 
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6.1.3.1.2. Distributed Fault Management Scheme   

In the proposed distributed fault management scheme, unlike centralized scheme, the 

fault management functionality is not limited to a single node but distributed to an m 

number of nodes in the computing system. The distributed scheme can be represented 

as parallel reliability blocks; therefore, the reliability is increased and is directly 

dependent on the number of nodes in the system. Therefore, unlike centralized fault 

management scheme, where m = 2, depends on the configuration of the centralized 

node only, the proposed scheme reliability depends on the total number of available 

nodes in the system. The same formula as given in equation 6.39 is also applicable to 

the distributed fault management scheme, but m represents the total number of nodes 

in a system. 

6.1.3.1.3. Discussion of Reliability Results 

Figure 6.8 shows the reliability curves that were obtained from the reliability Equation 

6.39. The reliability curve R1 as shown in Figure 6.8 is plotted for the centralized fault 

management scheme where m=2 is assumed.  

 

Figure 6.8: Comparison between Centralized and Distributed Fault Management Scheme. 
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In the case of centralized fault management scheme, as the centralized node is 

mainly responsible for the fault management functions, so Rsys_cent_fm, is severely 

degraded by the reliability value of the centralized node. On the other hand, the 

reliability for the distributed scheme is much higher because of the absence of a 

centralized node. The distributed scheme reliability is plotted for different m values 

(m=2, m=3, m=4, m=5, m=6, m=7, m=8) as shown in Figure 6.8. It is evident from the 

reliability curves in Figure 6.8 that the reliability of the distributed scheme is higher in 

comparison to the centralized scheme and depends on the value of m.  

6.1.3.2 Availability Evaluation 

In this section, a set of stochastic models was developed for the availability evaluation 

of the distributed fault management scheme. The models, which are based on the 

Extended Deterministic and Stochastic Petri Nets (EDSPN) method, are designed with 

TimeNet v4.02 [212]. We choose Petri Nets, because it allows to represent structural 

modelling of complex systems easier. Also, Petri Nets can express statistical 

dependency that cannot be expressed by reliability block diagrams (RBD) or fault-tree 

analysis [213].  

Availability models for both the centralized and distributed fault management 

schemes were developed for comparison. Assumptions for the failure recovery and 

failure transition apply. The followings terms are used for the description of models: 

 Probust: Normal working state of a node. 

 Pfailure: Failed state of a node. 

 trecovery (tR): The time for a node to recover from a failed state to a healthy state. 

 tfailure (tF): A failure transition time (tF) from a normal operation to a failed 

state.  

 tswitch (tS): Switching time from a primary to a spare and vice versa. 

6.1.3.2.1. Centralized Fault Management Scheme 

As shown in Figure 6.9, the centralized fault management availability model 

comprises a central node and a subsystem. The centralized node is the main node 

responsible for the fault management functions, while the primary and spare represent 

the nodes of an on-board computing subsystem. The details of the transition times (tR, 
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tF, tS) and trigger condition are given in Table 6.1. The values of the transition times 

are extracted from the open literature and are based on the previous experience.  

For a fair comparison, the centralized node is considered more reliable, and its failure 

transition time tF, from robust state to faulty state, is four times that of the other nodes. 

Also, it is assumed that the centralized node is hot redundant with 2:1 redundancy.  To 

represent hot redundancy of the centralized node, two tokens in the 𝑃𝑟𝑜𝑏𝑢𝑠𝑡 state are 

used.  

As shown in Figure 6.9, each subsystem robust state contains only one token. In case 

of a failure of the primary, a spare token is moved to the primary space to cater for the 

effect of the failure. This operation requires a switching time tS, equal to 0.3 min. On 

recovery of the primary node, the spare token is moved back to the node-3 space.  

The centralized fault management scheme is available, if the total numbers of tokens 

in the 𝑃𝑟𝑜𝑏𝑢𝑠𝑡 state are greater than or equal to two as expressed by:  

 A𝑐𝑒𝑛𝑡_𝐹𝑀_𝑠𝑐ℎ𝑒𝑚𝑒 = P[ #𝑃𝑐𝑒𝑛𝑡 + #𝑃𝑛𝑜𝑑𝑒 ≥ 2] (6.40) 

Table 6.1: Parameters for the Centralized Fault Management Scheme Model. 

𝐂𝐞𝐧𝐭𝐫𝐚𝐥𝐢𝐳𝐞𝐝 𝐍𝐨𝐝𝐞 

𝑃𝑟𝑜𝑏𝑢𝑠𝑡  Robust state of the centralized node representing two tokens 

 due to its hot redundant configuration. 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒  Failure state of the centralized node 

𝑡𝑅 Recovery transition time =  106 𝑚𝑠𝑒𝑐. 

𝑡𝐹 Failure transition time = 4 x 2628000 min 

𝐒𝐮𝐛𝐬𝐲𝐬𝐭𝐞𝐦 (Primary and spare node) 

𝐍𝐨𝐝𝐞 − 𝟐 

𝑃𝑟𝑜𝑏𝑢𝑠𝑡  Robust state of the node − 2 representing one token 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒  Failure state of the node − 2 

𝑡𝑅 Recovery transition time =  106 𝑚𝑠𝑒𝑐 

𝑡𝐹 Failure transition time = 2628000 min. 

𝐍𝐨𝐝𝐞 − 𝟑 

𝑃𝑟𝑜𝑏𝑢𝑠𝑡  Robust state of the node − 3 representing one token 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒  Failure state of the node − 3 

𝑡𝑅 Recovery transition time =  106 𝑚𝑠𝑒𝑐. 
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Figure 6.9: Availability Model for Centralized Fault Management Scheme. 

6.1.3.2.2. Distributed Fault Management Scheme 

Figure 6.10 shows the availability model for the proposed distributed fault 

management scheme, which comprises three nodes. Two tokens represent each node, 

one represents its active processor core, while the other one represents its spare 

𝑡𝐹 Failure transition time = 2628000 min. 

𝐌𝐢𝐬𝐜𝐞𝐥𝐥𝐚𝐧𝐞𝐨𝐮𝐬 

𝑡1 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (#𝑃𝑠𝑝𝑎𝑟𝑒 ≥ 1) 𝑜𝑓 𝑡𝑜𝑘𝑒𝑛 𝑓𝑟𝑜𝑚 𝑠𝑝𝑎𝑟𝑒 𝑛𝑜𝑑𝑒 

 𝑡𝑜 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑛𝑜𝑑𝑒 𝑜𝑛 𝑎 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑜𝑓 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 

𝑡2 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (#𝑃𝑝𝑟𝑖𝑚𝑎𝑟𝑦 ≥ 1) 𝑜𝑓 𝑡𝑜𝑘𝑒𝑛 𝑓𝑟𝑜𝑚 𝑝𝑟𝑖𝑚𝑎𝑟𝑦  

𝑛𝑜𝑑𝑒 𝑡𝑜 𝑠𝑝𝑎𝑟𝑒 𝑛𝑜𝑑𝑒 𝑜𝑛 𝑎 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑜𝑓 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 

𝑡𝑠 Switching time = 0.3 min. from primary to redudant node and  

vice versa. 

# Number of tokens 
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computing resources. These spare computing resources can be a complete spare core, 

or over-provisioned resources for a computing node. During normal operation, the 

active core token executes the tasks workload. On the failure of one of the nodes, the 

spare computing resources are utilized for the migration of the faulty node’s tasks. The 

details of the transition times (tR, tF) are given in Table 6.2. 

The proposed scheme is available if the total numbers of tokens in the 𝑃𝑟𝑜𝑏𝑢𝑠𝑡 state are 

greater than or equal to three as expressed by:  

 A𝐷𝑖𝑠𝑡_𝐹𝑀_𝑠𝑐ℎ𝑒𝑚𝑒 = P[ #𝑃𝑛𝑜𝑑𝑒−1 + #𝑃𝑛𝑜𝑑𝑒−2#𝑃𝑛𝑜𝑑𝑒−3 ≥ 3] (6.41) 

Table 6.2: Parameters for Proposed Distributed Fault Management Scheme Model. 

𝑵𝒐𝒅𝒆 − 𝟏 

𝑃𝑟𝑜𝑏𝑢𝑠𝑡  Robust state of the node − 1, representing a token 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒  Failure state of the node − 1 

𝑡𝑅 Recovery transition time =  106 𝑚𝑠𝑒𝑐 

𝑡𝐹 Failure transition time = 2628000 min. 

𝐍𝐨𝐝𝐞 − 𝟐 

𝑃𝑟𝑜𝑏𝑢𝑠𝑡  Robust state of the node − 2 representing one token 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒  Failure state of the node − 2 

𝑡𝑅 Recovery transition time =  106 𝑚𝑠𝑒𝑐 

𝑡𝐹 Failure transition time = 2628000 min. 

𝐍𝐨𝐝𝐞 − 𝟑 

𝑃𝑟𝑜𝑏𝑢𝑠𝑡  Robust state of the node − 3 representing one token 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒  Failure state of the node − 3 

𝑡𝑅 Recovery transition time =  106 𝑚𝑠𝑒𝑐. 

𝑡𝐹 Failure transition time = 2628000 min. 

𝐌𝐢𝐬𝐜𝐞𝐥𝐥𝐚𝐧𝐞𝐨𝐮𝐬 

# Number of tokens 
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Figure 6.10: Availability Model for Distributed Fault Management Scheme. 

6.1.3.3 Discussion of Availability Results 

To compare the two fault management schemes, fair transition times and triggering 

conditions are assumed. Both models are run for several iterations with a different 

number of nodes. Based on the obtained availability results shown in Table 6.3 it can 

be concluded that the distributed scheme has a higher availability value compared to 

the centralized scheme.  

This is obvious, because of the availability of spare computing resources at each 

node in the distributed case. This allows to immediately take over the lost tasks while 

in centralized method availability largely depends upon redundant physical nodes.  It 

can further be concluded that the availability values increase with the number of nodes 

while, in the centralized scheme, availability decreases with the increase in the number 

of nodes.  
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Table 6.3: Availability Values for Centralized and Distributed FM Schemes.  

 

 

 

 

 

6.2 Functional Verification 

The proposed FTDC architecture was verified functionally through prototyping, which 

was carried out at a board level using commercial off-the-shelf microcontroller boards 

and purpose-built software. A 3-node FTDC system was implemented and tested. This 

section provides details of the implementation setup and the testing results. 

6.2.1 Distributed System Performance Metrics 

The performance of the proposed FTDC architecture is evaluated in terms of 

Reconfiguration Time and State rollback (state age).  

6.2.1.1 Reconfiguration Time 

Definition: The time required to migrate tasks and resume execution following a node 

failure is termed as the “reconfiguration time”. This is measured from the time at 

which a fault first happened in a node, to the time at which all the tasks of the faulty 

node are made runnable on other nodes.  

The reconfiguration time following a node failure, tReconf, is stated as a sum of the 

following components. 

 𝑡𝑅𝑒𝑐𝑜𝑛𝑓 = 𝑡𝐷 + 𝑡𝐹𝑀 + 𝑡𝑇𝑋 + 𝑡𝑇𝑀  (6.42) 

Where tD is the fault detection time; tFM  is the time that starts from fault detection 

to begin sending a fault message on the AMFT network; tTX is the time required to 

transmit the message; and tTM is the time taken for the other nodes to receive the fault 

 Availability of Fault Management (FM) Scheme 

Number 

Of Nodes 

Centralized 

FM Scheme 

Distributed FM 

Scheme 

3 0.87174681 0.99240057 

5 0.73916847 0.99909247 
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message and schedule the migrated tasks. These timing parameters are defined as 

follows: 

𝑡𝐷 = 𝑡𝐹𝐷_𝑃𝑒𝑟𝑖𝑜𝑑 + 𝑡𝐹𝐷_𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 

𝑡𝐹𝑀 = (𝑛 − 1) ∗ 𝑡𝑐𝑠  

𝑡𝑇𝑋 = 
𝑚𝑠𝑔_𝑙𝑒𝑛𝑔𝑡ℎ( 𝑏𝑖𝑡𝑠)

𝑠𝑝𝑒𝑒𝑑(𝑏𝑖𝑡𝑠/𝑠𝑒𝑐)
 

𝑡𝑇𝑀 = 𝑡𝑥𝐴𝑀𝐹𝑇2𝑃𝑈 + 𝑡𝑠𝑐ℎ. 

𝑤ℎ𝑒𝑟𝑒 

𝑡𝐹𝐷_𝑃𝑒𝑟𝑖𝑜𝑑 𝑃𝑒𝑟𝑖𝑜𝑑 𝑓𝑜𝑟 𝑓𝑎𝑢𝑙𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑎𝑠𝑘 

𝑡𝐹𝐷_𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑓𝑎𝑢𝑙𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 

𝑛 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑜𝑑𝑒𝑠 

𝑡𝑐𝑠 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑇𝑖𝑚𝑒 𝑆𝑙𝑜𝑡 

𝑡𝑥𝐴𝑀𝐹𝑇2𝑃𝑈 𝑇𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑓𝑟𝑜𝑚 𝐴𝑀𝐹𝑇 𝑡𝑜 𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑 

 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑢𝑛𝑖𝑡. 

𝑡𝑠𝑐ℎ. 𝑇𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑡ℎ𝑒 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑 𝑡𝑎𝑠𝑘𝑠. 

 

Adhering to the time slot-based communications on the AMFT network, fault 

messages can only be sent during the allocated slot. It is, therefore, possible that the 

time before a fault message is sent, tFM, may be up to (n-1) tCS. The reconfiguration 

time, which depends on tFM, may, therefore, be large if the time slot duration is large. 

The system reconfiguration time should be as small as possible. 

6.2.1.2 State Rollback 

Definition: State rollback is caused by a temporary pause in the computation during 

the migration process, during which a task may rollback to a previous state when it 

restarts on another node. It is represented by equation 6.43.  

 
𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 =

𝑡𝑅𝑒𝑐𝑜𝑛𝑓

𝑇
 

(6.43) 

𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 =  Number of task′s State rollback 

𝑡𝑟𝑒𝑐𝑜𝑛𝑓   =  Reconfiguration Time 
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𝑇 = Task Period 

State rollback is unitless, and ideally it should be minimal. Consider an example,  

Where,  

𝑡𝑟𝑒𝑐𝑜𝑛𝑓   =  30 ms,  𝑡𝑡𝑎𝑠𝑘_𝑝𝑒𝑟𝑖𝑜𝑑 = 10 ms 

𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 =
𝑡𝑅𝑒𝑐𝑜𝑛𝑓

𝑡𝑡𝑎𝑠𝑘_𝑝𝑒𝑟𝑖𝑜𝑑
=

30

10
= 3    

6.2.2 FTDC Prototype Design 

As shown in Figure 6.11, the board-level prototyping design consisting of three 

distributed nodes. The processing unit and AMFT in each DCN are implemented on 

two separate COTS microcontroller boards interconnected via a point-to-point 

interface (PPIF) which is used for the exchange of various messages between  the 

Processing Unit and AMFT.    

6.2.3 Distributed Node Prototype  

The implementation of the distributed node was carried out using two STM3240G-

Eval boards [214] as shown in Figure 6.12. The STM3240G board includes an ARM® 

CortexTM-M4F 32-bit microcontroller, memory, and peripherals. ARM CortexTM-

M4F 32-bit microcontroller has a rich set of peripherals and also includes floating 

point unit that can be used for real numbers operations. One board is dedicated to the 

application tasks while the other board is used for implementation of AMFT functions. 

The communication between the processing unit and its associated AMFT block is 

through a UART interface (the PPIF). Processing Units and AMFTs have two separate 

CAN buses for communication.  

The objective of the AMFT block is to monitor the health of the processing unit 

(Critical IOs, Memory Error, Watchdog timer (WDT)) and to indicate a fault 

condition. For such monitoring, on-chip ADC and IOs of the AMFT’s microcontroller 

were used.  Also, there is a UART (Universal Asynchronous Receiver Transmitter) 

interface between the processing unit and AMFT that is used for the transmission of 

State Update Messages and Task List Messages.  
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For the development of the application and the AMFT functions, the IAR 

Embedded Workbench (v6.3) [215] was used. First software code of an application, 

comprised of five tasks was developed, then the AMFT functionality, as described in 

Chapter 5, was coded too. The both software were developed in C using the 

FreeRTOS Operating System. The software was downloaded to the STM3240 boards, 

and testing was carried out as explained in the following section. 

PPIF PPIF PPIF

STM3240G 
Boards

for Distributed 
Processing Unit

STM3240G Boards 
for AMFT 
Functions

Main Network for Communication

AMFT Network for Communication  

Figure 6.11: Board Level Design of Distributed Computing System. 
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A

D

C

WDT

Analog 
Signals

Digital IOs

 

Figure 6.12: Board Level Implementation of Distributed Computing Node. 
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6.2.4 Distributed Computing Node Testing 

Functional testing was done to verify the processing unit and AMFT functionality. 

Before experimenting with the overall fault-tolerant distributed system, each 

processing unit and AMFT were individually tested. The UART interface is used to 

generate test vectors and monitor the status of both the application and AMFT 

software. Test vectors are commands given in Table 6.4, which are required to test 

each testing scenario. For functional validation, status is generated which is observed 

in a terminal (HyperTerminal) running on a remote PC. These status messages are 

programmed within the application software and are named software instrumentation. 

A similar process is used for the AMFT functional testing; however, its critical 

internal variables are also monitored. For this purpose, a JTAG interface is used along 

with the IAR workbench. IAR supports a live watch window facility, which allows us 

to monitor the internal registers of a processor running on AMFT. In this manner, we 

can pinpoint the exact state of the AMFT process, and also debug when necessary. 

In the integrated testing, AMFT and the Processing Unit are tested as one unit. 

Test vectors are generated by emulating CAN messages (Heartbeat / SUM) and the 

states of AMFT and the Processing Unit are monitored on the Saleae Logic Analyzer 

[216]. The faults are injected manually on the board by pressing a button on 

development boards.  

Table 6.4: Test Vectors. 

 

 

 

 

 

Processing Unit Functional Testing: In the first scenario, the Processing Unit 

functionality is verified by activating/deactivating tasks. As shown in Figure 6.13, the 

experimental setup for the testing includes a STM3240G-Eval board and a laptop. The 

actual application software was run on the STM3240G-Eval board, while the laptop 

Testing Scenario Test Vectors  Interface 

Processing Unit only Task List Messages UART 

AMFT only CAN emulated message (Heartbeat and State 

Update Messages) 

CAN bus 

Integrated  

(Processing Unit and 

AMFT) 

CAN emulated message (Heartbeat and State 

Update Messages)  

CAN bus 
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was executing the hyper-terminal software that allows us to give commands for 

activation and deactivation of the tasks. The successful activation and deactivation of a 

single, dual and five tasks are shown in Figure 6.14, Figure 6.15, and Figure 6.16 

respectively.  

Executing
Application 

Tasks

Laptop

HyperTerminal  for issuing 
command (task list) and 

receive State data

UART

Processing 
Unit

 

Figure 6.13: Setup for Testing of Processing Unit. 

Task State Data from 
Processing Unit Task-1

Simulating AMFT 
Command for Task list

 

Figure 6.14: Processing Unit Functional Testing with Task-1. 
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Task-1 is executing

Task list command for 
executing task-1 and 

task-2

Task-2 is also started 
after task list 

command

 

Figure 6.15: Processing Unit Functional Testing with Task-1 and Task-2. 

Task-2 is executing

Task list command for 
executing task-0 to 4

Task-1 is executing

Task-0 is executing

Task-4 is executing

Task-3 is executing

 

Figure 6.16: Processing Unit Functional Testing with Task-1 to 5. 
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AMFT Functional Testing: In the second scenario, an experimental setup was 

developed to test the AMFT functional behaviour as shown in Figure 6.17. To emulate 

the faults caused by WDT and memory (digital IOs), two buttons were used. One 

button was used to inject a fault while the other was used to remove a fault. A 

potentiometer was used to emulate the node temperature variation that indirectly 

provides node health information. On either of the failures (over temperature, WDT, 

memory error) AMFT detects a failure and deactivate tasks running on the processing 

unit. To capture the internal behaviour of the AMFT, variables corresponding to state 

data ∆𝑆𝐷 , node status (ucFaultStatus) and task allocation were observed in the live 

watch window as shown in Figure 6.18 (IAR debugging). This depicts the true internal 

state of the AMFT, when no fault. Figure 6.19 shows a situation when a fault is 

injected. On a fault, AMFT deactivates all the tasks and changes its node’s status to 

faulty (ucFaultStatus=0x01). 

Executing
FDIR 

Functionality

Laptop

Live Watch for AMFT 
in IAR Embedded 

Workbench

UART

AMFT

Fault Injection Button 
(to emulate WDT, 

Memory Error)

Fault Removal Button

Potentiometer to 
emulate board 

temperature

CAN Bus

Emulating CAN 
Messages

 

Figure 6.17: Setup for Functional Testing of AMFT Unit. 

Task 
State 
Data

All Task 
Allocated

Node 
Status 

(Healthy)

 

Figure 6.18: AMFT Memory View Captured by IAR, when node was healthy. 
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Task 
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Data

No Task 
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(Failed)

 

Figure 6.19: AMFT Memory View Captured by IAR, when node was faulty. 

6.2.5 Fault-Tolerant Distributed System Prototyping 

Table 6.5 shows the configuration setup for the implementation of the distributed 

system with three nodes, five mission tasks and 1000 ms slot time for TDMA 

communication over Controller Area Network (CAN) at 1Mbps. It is prototyped with 

six STM3240G [214] evaluation boards as shown in Figure 6.11. Three STM3240G 

evaluation boards are used to implement the processing units (top of the picture) and 

three boards are used to implement the AMFT block. All three boards of the AMFT 

blocks communicate through a CAN bus interface referred to as AMFT network while 

the STM3240G containing the application software communicates through another 

CAN bus interface called main network. The communication between the Processing 

Unit and its associated AMFT block is through a UART interface (the PPIF). 

Software Setup: The AMFT block running on each board STM3240G implements the 

algorithms as described in section 5.2. We use FreeRTOS for the AMFT 

implementation to exploit parallelism in software. The software stack includes 

applications software and fault management software as outlined in section 4.6. The 

application software mainly includes five application tasks: Attitude determination & 

control, power management, thermal management, payload management, 

telemetry/telecommand. However, the total number of application tasks to be executed 

by the system can be varied, as well as the characteristics of each task. The main task 

characteristics are periodicity, duration and state data length. The “state” of a task 

comprises a set of values that must be preserved for a future execution of the task. The 

application tasks are all periodic, similar to many spacecraft on-board computing tasks 



Chapter 6. Evaluation of the Proposed Approach 

146 
 

[217]. For the purposes of this prototyping effort, each application task is periodic with 

a period of 1000 ms [218] and includes 150 bytes of state data ∆𝑆𝐷. The main option 

requiring a trade-off to be made is the number of distributed nodes to be used. For the 

on-board computing architecture, increasing the number of processing nodes will 

increase the reliability of the system. This is traded against the increased resources 

required for additional nodes, such as power consumption and mass. For prototyping 

purposes, the tasks are mapped to a three node distributed computing system. The 

communications slot time depends on the nature of the tasks, which is explained in 

section 8.4.1. The fault management functions are implemented according to the 

software structure, introduced in section 5.5. For the software development, the 

embedded workbench (v6.3) from IAR Systems aas selected. The software 

development is written in the C programming language.  

Table 6.5: Configuration Setup for Prototyping of FTDC System. 

Parameter  Value  

Number of Nodes  3  

Total Number of Mission Tasks  5  

Communication Slot Time (ms)  1000 ms 

TDMA Cycle Time (1000 x 3) ms 

Internode Communication  CAN Bus, 1 Mbps  

6.2.6 Experimental Results 

Key aspects of the distributed system that have been investigated including the ability 

to migrate successfully tasks and resume execution following the failure of a node.  The 

reconfiguration time required to migrate tasks is an important performance parameter 

that is recorded for each possible scenario. In addition, during the migration, state 

rollback for each task is also recorded. 

6.2.6.1 Scenario-I: Processing Start-up 

The time required after the power-up to the final execution of the tasks is called Start-

up time. For the measurement of this time, two pins are used as follows: 
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 AMFT Board: ARM CORTEX STM32F407 GPIO (GPIOA-PIN-7)  

 Processing Unit Board:  ARM CORTEX STM32F407 GPIO (GPIOA-PIN-8) 

An oscilloscope monitors the time duration between the two pins just after the Start-

up. Table 6.6 shows the start-up time measurements for the three nodes. 

Table 6.6: Scenario-I: Results on Start-up Time Measurements. 

Node  Time (seconds)  

1  6  

2  5  

3  5  

6.2.6.2 Scenario-II: Failure 

6.2.6.2.1. Failure of One Processing Unit 

The AMFT block performs monitoring of the processing unit failures. To emulate 

hardware failures within the processing unit, we use two I/O switches on the AMFT 

board to represent failure within a processing unit. Also, two GPIO pins are used for 

the measurement of reconfiguration time as follows: 

 AMFT Board: ARM CORTEX STM32F407 GPIO (GPIOA-PIN-7) 

 Processing Unit Board:  ARM CORTEX STM32F407 GPIO (GPIOA-PIN-8) 

Failure of a processing unit is inserted by pressing one push button on the AMFT 

board. The AMFT detects this failure and toggles the output to PIN-7 to indicate a 

failure condition. This is the start of the reconfiguration time.  The reconfiguration 

ends when the failed processing unit tasks are successfully migrated to other units. We 

toggle the output of another pin on the healthy processing units to indicate that tasks 

have been successfully migrated. The time between these two conditions is observed 

by oscilloscope and is given in Table 6.7. We observed that the reconfiguration time is 

always less than the TDMA cycle (3000 ms).  

In case of a failure, ideally each task has to resume its state from the point at which 

execution ended on the failed processing unit. However, due to the TDMA cycle time 
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of 3000 ms, it is not possible to resume the state from that point onward if a task 

period is short. This effect is worse for tasks having very short periods. 

6.2.6.2.2. Failure of AMFT Block 

In this scenario, an AMFT is considered to be failed in a fail-stop manner.  During 

normal operation, each AMFT is required to send Heart Beat Messages to the other 

AMFTs to communicate its presence. If there is no Heart Beat Message from an 

AMFT when it expects it, that AMFT is considered to be failed and a reconfiguration 

of the distributed system begins which ends with the successful migration of tasks to 

other processing Units.  

As can be seen from Table 6.8, the reconfiguration time and task state rollback are 

similar to those obtained for the OBC unit failure case above. 

Table 6.7: Scenario-II: One Processing Unit Failure. 

Processing Unit 

Failure  

Reconfiguration Time 

(ms)  

Migrated Mission 

Task  

Task State Rollback 

Processing Unit-1  1110 Mission Task-1 

Period = 1000 ms 

1 to 3 

840 Mission Task-2 

Period = 1000 ms 

1 to 3 

Processing Unit-2 2020  Mission Task-3 

Period = 1000 ms 

1 to 3 

2100 Mission Task-4 

Period = 1000 ms 

1 to 3 

Processing Unit-3 2800  Mission Task-5 

Period = 1000 ms 

1 to 3 

Table 6.8: Scenario-II: Failure of AMFT Block. 

AMFT Unit  Reconfiguration Time 

(ms)  

Task State Rollback 

AMFT-1 ≈ 200 to 2300 1 to 3  

AMFT-2 ≈ 1000 to 2180 1 to 3 

AMFT-3 ≈ 300 to 2900 

 

1 to 3 
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6.2.6.2.3. Failure of Two Processing Units 

The simultaneous failure of two processing units is considered in this scenario. In this 

case, we simultaneously insert a failure in both Processing Units. The failure insertion 

is emulated by pressing two push buttons on the two AMFTs. Similar to the one 

processing Unit failure scenario, the reconfiguration time is observed by oscilloscope 

using the same pins, and the LCD display observes the state age. The results of our 

observations are again the same as those presented for the one processing unit and 

AMFT failure scenario. 

6.2.6.3 Scenario-III: Recovery 

If a processing unit is recovered after failure, it can be reintegrated into the distributed 

system. We emulate the recovery process by pressing another button on the AMFT. 

When the button is pressed, the AMFT assumes that its processing unit has been 

recovered following a failure and starts the reconfiguration process by sending a 

Heartbeat Messages to the other AMFTs via the CAN Bus.  

6.2.6.3.1. Recovery of One OBC Unit 

This scenario represents the recovery of one processing unit after a failure. The 

recovery process starts by pressing a button on the AMFT. This shows that its 

associated AMFT is recovered. After this, the AMFT starts sending Heartbeat 

messages to the other AMFTs. The other AMFTs update their node tables and send 

updated task lists to their Processing Units. Similarly, the recovered node’s AMFT 

sends an updated task list to its recovered Processing Unit. The results obtained for 

reconfiguration time and task state rollback are similar to those obtained in the case of 

one processing unit failure scenario.  

6.2.6.3.2. Recovery of One AMFT Unit 

The recovery of the AMFT unit after a temporary fault starts by sending a Heartbeat 

Message on the CAN network. After receiving the Heartbeat Message, each of the 

other AMFT units updates its node table and sends an updated task list to its associated 

processing unit. The recovered AMFT also sends an updated task list message to its 

associated processing unit. The test was carried out by removing a held reset button on 

the AMFT. This process reintegrates the AMFT into a distributed system, and tasks 

related to its associated processing unit are reallocated back. The results obtained for 
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the reconfiguration time and state age after recovery of the AMFT are shown in Table 

6.9. 

Table 6.9: Scenario-III: Recovery of AMFT Block. 

Recovered OBC  Reconfiguration Time 

(ms)  
Task State Rollback 

AMFT-1 ≈ 560 to 1000 1 to 3  

AMFT-2 ≈ 456 to 2750 1 to 3 

AMFT-3 ≈ 1106~2226 1 to 3 

 

6.2.6.3.3. Recovery of Two Processing Units 

This is a scenario when both of the processing units are recovered simultaneously after 

a failure.  For performing such a test, the recovery of two processing units is emulated 

by simultaneously pressing the recovery button on each of the two node’s AMFT 

boards.  The important aspect of the result is the same reconfiguration time irrespective 

of the number of nodes as shown in Table 6.10. 

Table 6.10: Scenario-III: Simultaneous Recovery of Two Processing Units. 

Recovered Processing 

Unit 
Reconfiguration Time (ms)  Task State Rollback 

Processing Unit-1&2 ≈ 1000 to 2080 1 to 3  

Processing Unit-1&2 ≈ 1300 to 3000 1 to 3 

Processing Unit-1&2 ≈ 1100 to 2620 1 to 3 

6.2.7 Implementation Issues 

During the implementation of the board level design of distributed computing systems, 

following critical issues were identified.  

 Computational Performance: Standalone processors interconnected at board level 

require more size, area and electrical power resources and are also computationally 

inefficient because of the insufficient resource sharing and limited interconnect 

speed. 
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 State Transfer Issue: The state of the task, as described in section 5.3.3, is 

necessary for its resumption when a task is migrated to another node. The size (in 

bytes) of the state data ∆𝑆𝐷 depends upon the nature of the task - it may be of a few 

bytes or may be of several bytes. In board level design as shown in Figure 6.20, the 

state data ∆𝑆𝐷of a task need to be stored in two places before being transferred to 

the other nodes. First, the data is stored in the local memory of the processing unit 

and secondly, in the local memory of the AMFT. In addition to the dual storage, 

the transfer of data consumes physical (CPU bus bandwidth, DMA, UART) and 

computational resources that affect the performance of the actual application.  

 Task Scheduling Issue: Each node is pre-configured to share the computing 

workload of the failed node as described in section 5.2.4. When a task is migrated 

to another node, it needs to be added into the existing scheduler of the OS. All 

tasks are statically pre-scheduled for all possible scenarios. It was observed that 

adding a task in a running schedule, disturbs the overall Scheduler time, a known 

issue among the research community [219]. Although our pre-scheduled method 

succeeded in addressing the possible scenarios, it was observed, that the scheduler 

needs a standalone processing.  
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Figure 6.20: Task State Data Flow. 
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6.3 Summary 

Fault-tolerant systems are of a complex nature and require to be analysed before 

development. In the first part of this chapter, a novel approach based on mathematical 

models was developed to analyse the reliability and availability of fault-tolerant 

computing systems. The results on the reliability showed that the proposed distributed 

computing approach is more reliable in comparison to the centralized and TMR based 

systems. This is due to the fact that the proposed distributed computing architecture is 

reconfigurable which allows task migration in the case of a processor failure. Fault 

management schemes were also compared and analysed in terms of reliability and 

availability. It is evident from the results that by distributing the fault management 

functions, much higher reliability and availability values can be obtained.  

The second part of the chapter presents a functional verification of the FTDC 

system, which was carried out through quick prototyping at board level, providing a 

proof of concept for the proposed architecture. The testing setup allows observations 

of the system behaviour at run-time. It verifies the proposed approach at the functional 

level, including the tasks migration in case of a node failure or following a recovery. It 

proves that the tasks are being added to or dropped from the existing scheduler. In 

addition, it validates that the AMFT is reconfigured to account for the changes in the 

FTDC. Furthermore, the prototyping allowed initial debugging of the software.  It also 

helped to identify implementation issues which were not foreseeable at the 

architectural level design stage. 
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Chapter 7 

7.Novel MPSoC Based Design for Fault-Tolerant 

Distributed Computing 

In this chapter, a novel multi-processor system-on-chip (MPSoC) based design for the 

proposed fault-tolerant distributed computing approach is presented. The design is 

targeted at modern FPGAs, which incorporate hard processor IP cores and 

programmable logic fabric on the same chip. The design is an upgraded version of the 

FTDC concept presented in Chapter 4, providing new enhanced features, which are 

enabled by the technology. It serves also as validation of the proposed approach and is 

used in the space related case-study in Chapter 8. In Section 7.1, the need and benefits 

of the MPSoC design is discussed. Section 7.2 presents details on the MPSoC design 

covering operational scenarios, block diagram and selection of FPGA. The hardware 

design of the MPSoC is presented in Section 7.3. The MPSoC software 

implementation is elaborated in Section 7.4. The MPSoC fault injection mechanism is 

discussed in Section 7.5. Experimental setup and results on the MPSoC based design 

are reported in Section 7.6. A CubeSat payload based on the MPSoC is presented in 

Section 7.7.   

7.1 Why MPSoC Design? 

It is evident from the reviewed literature that fault-tolerance against permanent failures 

of distributed system is provided through redundant resources. This replication of the 
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hardware resources incurs a very high cost for fault-tolerance. This cost can be reduced 

by utilizing over-provisioned resources in each node as presented in Section 6.2. 

However over-provisioning resources on a node is not sufficient enough for migrating 

all the faulty node’s tasks. This limitation of resources forces us to migrate tasks to 

multiple nodes, which creates problems of inter-tasks communication dependencies and 

enhances the communication on the network. Due to inter-tasks communication, the 

performance of the overall application can be severally degraded. However, a multicore 

processor based distributed system design naturally eliminates this problem by 

migrating the tasks of the failed node to a single core. In addition, MPSoC reduces the 

damage by utilizing the power of multicore embedded processors. So this design is 

more cost effective than the others where a complete physically redundant node is used 

for fault-tolerance purposes. Furthermore, in an MPSoC design each distributed 

computing node acts as a target fail-over node for the other node, achieving much 

higher reliability.  

The number of cores in a multicore processor depends on the requirements. Each 

additional core provides more computing resources, which can be utilized for 

computational performance or fault-tolerance. However, managing a large number of 

cores requires more design efforts and must be justified in terms of complexity and heat 

dissipation. 

An MPSoC may be developed as an Application Specific Integrated Circuit (ASIC) 

chip or by using an FPGA.  Both approaches have their advantages and disadvantages. 

ASIC is much faster but it is inflexible for design changes. On the other hand, the 

FPGA based approach is more flexible in terms of prototyping and also allows in-orbit 

reconfiguration. Therefore, the FPGA based approach is opted for in the design of the 

fault-tolerant distributed architecture, proposed in this thesis.  Furthermore, a hybrid 

FPGA that includes a multicore processor and programmable fabric is selected. Hybrid 

FPGA allows mapping of fault management functions in the programmable logic 

separate to the Processing Unit. Thus it defines a clear boundary between the 

Processing Unit and the fault management functions, which makes the design more 

reliable. Additionally, the programmable fabric can also be used for hardware 

acceleration of the computational intensive functions. The use of a hybrid FPGA in 

space depends on the underlying technology and criticality of the mission. Although, in 



Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing 

155 
 

the past, FPGAs have been used in space for many spacecraft missions, the SRAM 

based FPGAs are vulnerable to space radiations, particularly the Single Event Upsets 

(SEU). An SEU can flip a bit either in the configuration or data memory which may 

cause catastrophic effect. Although, the FPGA based approach is adopted but at this 

stage, if required, the same design can be used as a way to prototype an ASIC.  

The first academic MPSoC design realised a real-time embedded system for 

automotive applications, which was prototyped on an FPGA in 2009 as part of the 

GENESYS project funded by the European commission [210]. 

7.2 Description of the MPSoC Based Fault-Tolerant 

Distributed Computing Design 

A proof of concept for the FTDC architecture and preliminary functional testing was 

achieved by the board-level implementation, presented in section 6.2. The intended 

functionality was achieved, however, in section 6.2.7 additional issues that would 

improve the performance, were also observed, which are taken care of in the MPSoC 

design. 

  Figure 7.1 shows a distributed computing system, each node which is 

implemented as an FPGA based MPSoC. The design of the MPSoC consists of a hard 

multicore processor (in this case dual core) and main memory, as well as soft 

middleware IP and modules implemented on the FPGA programmable fabric. The 

dual-core processor is used for the execution of the application tasks. During normal 

operation, one of the cores of the dual-core processor runs a fraction of the application 

task set, while its associated core is idle. The idle core can share the workload in case 

of failure of a node in the distributed system. The shared memory handles the 

communications between the two cores for resource sharing. The middleware for the 

fault management functions, as detailed in Chapter 5, is implemented as a soft 

hardware IP. A system bus interface for the middleware is provided to access the 

memory attached to the multicore processor. This interface allows the middleware to 

retrieve data in case of a failure. Two separate networks are used – main network and 

AMFT network. The former is used for the communications between the processing 

units while the latter is used for the communications of middleware blocks.  
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To proceed with the MPSoC design and implementation, operational scenarios are 

specified, followed by a Block Diagram to address physical interfaces, and functional 

mapping. Then a suitable target FPGA is selected, to map each of the functions 

described in the Block Diagram. To have a functional MPSoC, the implementation 

follows a prescribed flow and ECAD tool suite associated with the particular FPGA. 

Finally, each module is implemented and integrated. The functionality is validated by 

performing a series of tests. The implementaion of the MPSoC is characterised by 

parameters, such as electrical power and logic resources consumption, which should 

ideally be as minimal as possible.  
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Figure 7.1: Distributed System Configuration.  

7.2.1 MPSoC Operational Scenarios 

7.2.1.1 Normal Scenario 

The first scenario represents the normal behaviour of the MPSoC operations as 

depicted in Figure 7.2. A number marks each operation for this scenario. A complete 

data flow is marked from 1 to 3 (red colour circles) representing reception side, 

message into the system. Data flow from 1 to 4 (blue colour rectangles) represents 

‘transmit direction’. In the receive direction, first CAN messages (Heartbeat, Fault, 
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and State Data) were emulated to be sent to the MPSoC under test via CAN AMFT 

interface. These messages are periodic and follow the TDMA scheme. Then received 

messages are separated into Heartbeat and state update message. A correct receive of 

heartbeat message indicates a healthy node that does not require any update in the 

node table. The receive data in state message is moved to main memory, indicating 

other node state update.  

On the transmit side of the node, each task writes its state to the main memory.  

Later, this state is read by AMFT and then it is sent to the CAN bus. During the whole 

process, task execution, task state data ∆𝑆𝐷  and hardware signals were monitored. 

Each task is instrumented to send data on a serial console for monitoring and 

debugging purposes during task execution. The hardware signals of the advanced 

high-performance bus (AHB), advanced extensible interface (AXI) and advanced 

peripheral bus (APB) were also monitored via on chip JTAG on a separate PC, as 

shown in Figure 7.2.  
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Figure 7.2: Data Flow in a Normal Scenario. 
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7.2.1.2 Task Migration Scenario 

This scenario represents the effect of a node failure on the other node. The task 

migration scenario, as marked from 1 to 7 steps, is shown in Figure 7.3. The failed 

node stops sending HB, which indicates a fault condition in that node. To observe the 

same scenario, CAN emulator acts as a failed node and stops sending messages on the 

bus. Inside the AMFT, node failure was observed via no HB message within allocated 

slot. The first action after no HB, an entry for that particular node was immediately 

removed by updating node table. Afterward, action for task migration was started. This 

being follows a task list preparation and its transmission to add/drop operation. 

Add/drop operation adds tasks into the Scheduler, and simultaneously taking spare 

processor core out of sleep mode. The complete operation of task migration was 

monitored by hardware monitoring and software packet capturing. To validate the 

correct behaviour of this scenario, following test points were observed.  
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Figure 7.3: Task Migration Scenario 
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 Task list from AMFT is sent to the processor, which emulates failed node tasks. 

This task list is captured on the fly and routed to the serial console for monitoring 

AMFT behaviour.  

 Each task is instrumented to send messages on the serial console to indicate its 

state during execution.  

 Task migration also involves hardware signal monitoring such as AHB, APB 

activities to ensure all operations. This operation was done using Chipscope Pro as 

shown in Figure 7.3. 

7.2.1.3 Fault Detection and Isolation 

This scenario represents a situation, where a node detects its failure and isolates it 

from the rest of the system. Figure 7.4 illustrates this scenario. The health of each node 

in the MPSoC implementation consists of one analogue signal (emulating node 

temperature) and two digital signals (emulating WDT and main memory error). Both 

analogue and digital signals are constantly read and checked to determine fault in the 

node. This is carried out in terms of defined limits of temperature values, as soon as a 

high or low temperature is reached, a fault signal is generated. WDT status is also 

read, if a predefined state (set to low in our case) is received then the processor is 

deemed faulty, or in an undetermined state. A fault is injected by intentionally 

exceeding one of the signal limits, manually. 

To verify the correct behaviour of AMFT for this scenario, Task List Message 

(TLM), task status, and hardware signals are monitored. On a fault, an empty TLM 

that was generated for processing unit was observed. On receipt of the TLM, all tasks 

were immediately deactivated and observed task status was stopped. Also, shutdown 

signal was also observed as marked 7 in Figure 7.4. 

The detailed verification is carried out as a case study in chapter-8 where a 

distributed OBC was designed, implemented and tested.   



Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing 

160 
 

Stop All Tasks

Main Memory

Program

Data

Tasks State Data

Stop HB and 
States

OR

1a

Empty Task 
List

HB, State Data

AMFT 
(FDIR)

Processing 
Unit

Task’s Status

ADC
Analogue Signal 
Emulating Node 

Temperature

Read Signal and 
Check limit 
Exceeded?

GPIOs
GPIOs Emulating 

WDT and Memory 
Erros

Read Signals 
and Check 

status

Issue Shutdown 
Command

Task list

1b

2a

2b

3

4

5

6

7
Digital Signal to DC/DC 

Converter for Shutdown 
node power

Packet Monitor

Serial 
Monitor

SoC Hardware 
Signals Monitor

JTAG

Hardware 
Signals

Chipscope 
Pro

 

Figure 7.4: Fault Detection and Isolation Scenario 

7.2.2 MPSoC Block Diagram 

The functional implementation of proposed approach as an MPSoC design is shown in 

Figure 7.5. It represents a block diagram of a distributed computing node, in which 

each function of the proposed approach is mapped.  

In this design, the single processor of the board level implementation is replaced 

with dual processors. One of the processors is usually executing the application tasks 

while the other is reserved to share the task load of the faulty node. In this scheme, 

each processor has its own task scheduler, thus eliminating the problem of scheduling.  

An AMFT block is connected to the on-chip system bus that connects it to main 

memory for accessing state data directly. This MPSoC design reduces the time and 

resources to transfer state information between the AMFT and processing unit.  

The memory scheme of the MPSoC comprises an internal and an external 

memory. The internal memory is used for faster access to shared data between the 
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processors, while the external memory, accessed by AMFT and the processors via the 

memory controller, is used to store the application data.   

For connecting peripherals, two separate buses (peripheral bus-1 and peripheral 

bus-2) are suggested, which are attached to various on-chip devices. An analogue-to-

digital converter (ADC) is included to monitor the node health for the purpose of 

detecting a failure of the node.  

Two network interfaces are used for external communication of the processing 

units and AMFTs.  
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Figure 7.5: Block Diagram of the MPSoC Design. 

7.2.3 Selection of FPGA Based MPSoC Device 

There are primarily three FPGAs manufacturers who support SoC-based design 

implementation, namely, Xilinx, Microsemi, and Altera. Each manufacturer has its set 

of design tools that support synthesis, which varies in complexity and usage. 

Furthermore, all of them support a number of on-chip functions that vary between 

families of FPGA. The requirements of proposed MPSoC design are on-chip hard 

processor IP and mixed-signal processing. Another important selection criterion is the 

availability of Intellectual Property (IP) cores. We compared three FPGAs most suited 

to our requirements as tabulated in Table 7.1. Of the many choices, the Xilinx FPGA 
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is selected, due to its known heritage in space applications. Also, a vast majority of the 

available IP cores, experience in its design tools and lastly for its mixed-signal 

processing capability.  

Another aspect is the choice of implementation i.e. the use of higher language 

used in programming of our functionality. We opted for utilizing readily available IP 

cores from Xilinx. The available IP cores helped to reduce significantly the design 

effort in mapping the distributed computing functions. This is the key reason for the 

successful implementation of the proposed MPSoC scheme on time. The selected 

Xilinx FPGA and its development tools are listed in Table 7.2.  

Table 7.1: SoC FPGAs 

 Xilinx Zynq-7000 

FPGAs 

Altera SoC FPGAs Microsemi 

SmartFusion2 FPGAs 

Processor Type ARM Cortex-A9 ARM Cortex-A9 ARM Cortex-M3 

Single or Dual Core Dual Single or Dual Single 

FPGA Fabric and 

Logic Density 

Artix-7, Kintex-7, 

28 K to 444 K Logic 

cells 

Arria, Cyclone V, 

25 K to 462 K Logic 

Elements 

Fusion2, 

6 K to 146 K Logic 

Elements 

External Memory 

Error Correcting 

Code (ECC) 

Yes Yes Yes 

On-Chip RAM 256 KB, no ECC 64 KB with ECC 64 KB, no ECC 

Floating-Point 

Unit/NEON 

Multimedia Engine 

Yes Yes Not Available 

Analog Mixed 

Signal 

2 x 12 Bit, 1 MSPS 

Analog-to-digital 

converters (ADCs) 

Not Available Not Available 

Table 7.2: Design and Development Tools and Target Board for MPSoC Implementation 

Device/Tool Description 

FPGA Xilinx Zynq-7000 EPP FPGA (XC7z020clg484-1) [220] 

Implementation Tools Xilinx Platform Studio v 14.5, Software Development Kit 

(SDK) v 14.5 

Debugging Chipscope Pro  [221] 

Development Board ZEDBOARD [222] 
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7.3 MPSoC Hardware Implementation 

Figure 7.6 shows the MPSoC design implementation. The upper part of the MPSoC 

implements the design of the processing unit that maps its functions to the processing 

system of the Zynq FPGA. The processing unit consists of two hard ARM Cortex A9 

processor IP cores. Both cores act as a single distributed processing unit - one is active 

while the other is in sleep mode. Each processor core is running an OS, for which a 

readily available FreeRTOS [223] was used. The software of each processor follows 

the design stack described in section 4.6. To exchange messages among the two 

processors, the shared memory of the processing system was used. Central 

interconnect was used to allow access to the main memory by both processor IP cores 

and AMFT, thus allowing sharing of main memory.  

The lower part of Figure 7.6 is the programmable logic where the AMFT is 

implemented. AMFT is realized on a Xilinx soft processor MicroBlaze. The 

MicroBlaze processor is connected to block RAM (BRAM) and advanced extensible 

interface (AXI) interconnect. BRAM contains the program and data for the AMFT 

software while the AXI-Interconnect acts as a bus, allowing MicroBlaze access to 

peripherals (timers, UART, GPIOs, CAN).  All peripherals interrupts are routed via a 

central interrupt controller that selects an interrupt source for the processor. For self-

monitoring of the distributed computing node, on-chip ADC (a hard macro) and 

GPIOs (emulating watchdog timer, memory error) are used. 

For debugging purposes, a debug module, allowing on-chip software debugging 

of MicroBlaze via JTAG interface was used. The circuit diagram of the MPSoC 

implementation is shown in Figure C.3 (Appendix C). During the implementation, 

logic resources, and electrical power consumption were measured.  

7.3.1 Logic Resources 

After the final mapping, placement and routing of the design, the resource utilization 

for MPSoC was determined. These comprise the processing unit and the AMFT 

resources. The former mainly consist of the multicore processor, while the latter are 

the form of slice lookup table (LUT), slice registers, and memory as reported in Table 
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7.3, which shows that very few resources for the AMFT implementation are required.  

A detailed report for logic resources is given in Appendix C. 
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Figure 7.6: MPSoC based Implementation of a Distributed Computing Node. 

Table 7.3: Logic Resources. 

Computing Unit Resource Utilization Available Utilization % 

Processing System (PS) Multicore Processor 2 2 100 
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7.3.2 Electrical Power Consumption 

The electrical power consumption for the implementation of MPSoC was estimated 

using the Xilinx XPower tool [224], as shown in Figure 7.7. Electrical Power was 

obtained for the Zynq (Z-7020) Artix-7, 28 nm technology [225]. It is evident from the 

results that a small amount of electrical power, approx. 180mW, is required for the 

AMFT, while 1384mW is needed for the processing unit, in which the main power is 

consumed by the DDR memory.  

 

Figure 7.7: MPSoC Electrical Power Consumption. 

7.4 MPSoC Software Implementation 

This section describes the MPSoC software development, which consists of two parts: 

(i) a processing unit application and (ii) an AMFT application. 

7.4.1 Application Software 

The processing unit functionality is implemented in C, as a FreeRTOS application 

executing on the multicore ARM processor on the Zynq FPGA. The main purpose of 

this application is to control the execution of the computing tasks as requested by the 
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unit’s associated AMFT. The processing unit application consists of the following 

main functional modules: 

 AMFT Sender and AMFT Receiver, which handle the communications with the 

AMFT unit. 

 Mission Task Manager, which controls the execution of the mission tasks based 

on the requests of the AMFT unit. 

 Mission tasks – in the distributed system prototype, the total number of mission 

tasks to be executed by the system can be varied, as well as the characteristics 

of each task. The main task characteristics are periodicity, duration, and state 

data ∆𝑆𝐷 length. The “state” of a task comprises a set of values that must be 

preserved for future execution of the task. The mission tasks are all periodic, 

similar to many spacecraft on-board computing tasks. Each mission task 

performs an operation which involves incrementing each byte of its state data. 

Each processing unit in the distributed computing system has an identical 

implementation, and the software code for every mission task is present in every 

processing unit. While the code for every task is present, tasks are started and stopped 

(by the Mission Task Manager) at run-time as required so that a different sub-set of 

tasks executes on each processing unit. 

The processing application-specific code is located in 8 source files, as listed in 

Table 7.4. This shows the application-specific source files. Also, the FreeRTOS source 

code and development board support files are required. Most of the application-

specific source files also have a corresponding header file, which has the same name 

as the source file name (e.g. amftReceiverTask.c has a corresponding header file 

amftReceiverTask.h). In most cases, the header files contain only function definitions. 

Figure 7.8 graphically shows the organization of the software, logically grouping files 

into related sets. 

Table 7.4: File list for Processing Unit Application. 

File Contents 

amftReceiverTask.c AMFT Receiver task 

amftSenderTask.c AMFT Sender task 
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ftdc_lcd.c Code to control output to the board’s LCD 

main.c main function; initialization code  

missionTaskManagerTask.c Mission Task Manager task 

missionTasks.c Code for all mission tasks 

missionTaskStates.c Mission task state data 

serial.c UART interrupt handler 

main.c

int   main(void)
void   set_shared_mem(void)
void    prvSetGpioHardware(void)
void   prvCreateQueues(void)
void   prvCreateSemaphore(void)
void   prvCreateFtdcTasks(void)
void   vTaskStartScheduler(void)

dataFormat.h freeRTOSConfig.h

ftdc_config.h
Configuration and 

Definitions

Main Application 
Entry Point

Real-Time Operating 
system

FreeRTOS

List.c
Queue.c
Tasks.c
Timer.c
...

amftReceiverTask.c

void   vAmftReceiverTask(void *pvParameters)
void   storeStateData(unint8_t taskId, uint8_t* messageBuffer)

amftSenderTask.c

void   vAmftSenderTask(void *pvParameters)
void   sendDataUsart(unint8_t message, uint32_t* message_Length)

MissionTaskManager.c

void   vMissionTaskManager(void *pvParameters)
uint8_t   startTask(unint8_t taskId)
Uint8_t stopTask(uint8_t taskId)

MissionTasks.c

void   vMissionTask0(void *pvParameters)
void   vMissionTask1(void *pvParameters)
void   vMissionTask2(void *pvParameters)
void   vMissionTask3(void *pvParameters)
void   vMissionTask4(void *pvParameters)
void   vMissionTask5(void *pvParameters)
void   vMissionTask6(void *pvParameters)
void   vMissionTask7(void *pvParameters)
...

missionTaskStates.c

FTDC Tasks

Mission Tasks

parTest.c

void   vParTestSetLED(unsigned long ulLED, signed portBASE_TYPE xValue)
void   vParTestToggleLED(unsigned long ulLED)
Void prvSetGpioHardware(void)

psInterrupt.c

int    vInitializeSerialPort0(void)
int    vInitializeSerialPort1(void)
void   UART_0_Interrupt_Handler(void *CallBackRef,u32 Event, unsigned int EventData)
void   UART_1_Interrupt_Handler(void *CallBackRef,u32 Event, unsigned int EventData)

Support Functions

Board Support Package

FreeRTOS BSP
Standalone BSP

Board Support 
Package

First Stage Boot Loader First Stage Boot Loader

 

Figure 7.8: Application Software Structure. 

7.4.2 AMFT Software 

The AMFT is a FreeRTOS-based software application created in C, which executes 

within the MicroBlaze on each MPSoC board. The implementation of AMFT within 

each MPSoC board is identical except for a stored node identifier that is used to 

identify each AMFT uniquely. 
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The AMFT monitors for faults in its associated processing unit and handles the 

distributed functionality such as migrating tasks following a node failure. The AMFT 

application implements the AMFT algorithms as described in section 5.5. Figure 7.9 

shows an overview of the AMFT application structure. The main modules are: 

 obcSender and obcReceiver Tasks, which handle the communications with the 

processing unit. 

 AMFT Sender and AMFT Receiver, which handle the low-level communications 

with the other AMFT units via the CAN bus. 

 AMFT Comms, which handles the high-level communications with the other 

AMFT units, such as communications slot management. 

 Task Allocation Manager, which handles determining which mission tasks 

should be executed on the node’s processing unit. 

 FDIR, which monitors for faults in the processing unit.  

The overall AMFT functionality, i.e. the algorithms described in section 5.2, is 

implemented through the functions of the above modules and the interactions between 

them. 

The AMFT application-specific code is located in 13 source files, as listed in Table 

7.5. Also, the FreeRTOS source code and development board support files are 

required. Most of the application-specific source files also have a corresponding 

header file, which has the same name as the source file name (e.g. amftCommsTask.c 

has a corresponding header file amftCommsTask.h). In most cases, the header files 

contain only function definitions. Figure 7.9 graphically shows the organization of the 

software, logically grouping files into related sets. 

Table 7.5: File list for the AMFT Application 

File Contents 

amftCommsTask.c AMFT Comms task 

amftReceiverTask.c AMFT Receiver task 

amftSenderTask.c AMFT Sender task 

AdcInterrupt.c Interrupt handler for reading ADC channels data 

com_can.c Interrupt Handlers for CAN transmit and receive, and 
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initialization code for CAN interrupts. 

com_ser.c Interrupt Handler for UART, and initialization code for 

UART interrupts. 

parTest.c Initialization code for LEDs 

fdirTask.c FDIR task 

ftdc_config_data.c Global variables used for system configuration 

main.c main function; initialization code  

obcReceiverTask.c OBC Receiver task 

obcSenderTask.c OBC Sender task 

taskAllocationManagerTask.c Task Allocation Manager task 

main.c

int   main(void)
void   prvSetupHardware(void)
void   microblaze_disable_dcache(void)
void   vInitializeAMFTTasks(void)
void   vTaskStartScheduler(void)

ftdc_config_data.c freeRTOSConfig.h

ftdc_config_data.h

Configuration and 
Definitions

Main Application 
Entry Point

Real-Time Operating 
system

FreeRTOS

List.c
Queue.c
Tasks.c
Timer.c
...

amftCommsTask.c

portTASK_FUNCTION(vAmftCommsTask, pvParameters)

amftSenderTask.c

portTASK_FUNCTION(vAmftSenderTask, pvParameters)
void   sendSumViaCan(unsigned char taskId)

taskAllocationManagerTask.c

portTASK_FUNCTION(vTaskAllocationManager,*pvParameters)

FTDC Tasks

parTest.c

void vParTestInitialize(void)
void   vParTestSetLED(unsigned long ulLED, signed portBASE_TYPE xValue)
void   vParTestToggleLED(unsigned long ulLED)
Void prvSetGpioHardware(void)

AdcInterrupt.c

void   vInitializeadcInterrupt(void)
void   vCurrentChannel_ISRHandle(void)
void   vTemperatureChannel_ISRHandle(void)
void   vVoltageChannel_ISRHandle(void)

Support Functions

Board Support Package

com_can.c

void   vInitializeCAN_0(void)
void   xSendCanMessage(xCanMessage message)
void   vCAN_TX_ISRHandler(void)
void   vCAN_RX_ISRHandler(void)

ftdc_custom_types.h

fdirTask.c

portTASK_FUNCTION(vFDIR, pvParameters)

amftReceiverTask.c

void vAmftReceiverTask(void *pvParameters)
void   vStoreSum(xCanMessage message)

obcSenderTask.c

portTASK_FUNCTION(vobcSenderTask, pvParameters)
void   sendSum(unsigned char taskId)

obcReceiverTask.c

void   vobcReceiverTask(void *pvParameters)

com_ser.c

void   vInitializeSerialPort_0(void)
void   xSendCanMessage(unsigned char cOutChar)
void   vUART_ISRHandler(void)

Board Support Package

FreeRTOS BSP
Standalone BSP

 

Figure 7.9: Structure of AMFT  Software 

7.4.3 AMFT Software Overhead 

The overhead for the implementation of AMFT in terms of code memory and data 

memory is shown in Table 7.6. These sizes were obtained for the case-study of AOCS 

application presented in Chapter 8. It concludes that the code memory size remains 
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fixed, however, the size of the data memory and non-volatile stable storage depends 

upon the checkpointed data volume. 

Table 7.6: Overhead of AMFT 

7.5 MPSoC Fault Injection Mechanism  

A symptom-based approach for the detection of software faults is proposed in section 

4.8. To test the fault detection methods in the case of the MPSoC design, a new fault 

injection mechanism was required which is capable to inject transient as well as 

permanent faults in the MPSoC. Both types of faults are defined in section 2.1.4. Given 

this requirement, a fault injection mechanism was developed, which is capable to inject 

faults in any of the distributed computing nodes. This mechanism is not only helpful for 

the validation of the fault detection algorithms, but it is also useful for the overall 

validation of proposed FTDC approach. The following sections present the details of 

the both fault injection mechanisms.  

To test the approach to software-based fault detection of section 4.8, a mechanism 

to inject transient faults was developed, as shown in Figure 7.10. This mechanism 

comprises of two parts. The first part is running on the host computer and was 

developed as a Windows Form Application in Visual Studio 2013. This provides a 

Graphical User Interface (GUI) to inject a fault in the processing unit software. A 

snapshot of the GUI is shown in Figure 7.11, which allows a user to select a 

distributed computing node, processor core, registers for the injection of faults. After 

selecting parameters, the user can send a command by pressing a ‘send’ button. Due to 

the bus architecture, this command message is broadcast to all processing units of the 

FTDC system. However, the UART of each processing unit can discard the message at 

S. No. Component Required Size 

(KB) 

Implementation 

Size (KB) 

1 Code Memory 12.316 KB 16 KB 

2 Data Memory 5.81 KB 8 KB 

3 Non-Volatile 

Stable Storage 

0.2 KB 1 KB 
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a hardware level without interrupting the processor, if the address of the processing 

unit inside the message is not matched. 

Host Computer 
Fault-Injection 

Software

Processing Unit 
of MPSoC-1

Processing Unit 
of MPSoC-n

Processing Unit 
of MPSoC-2

RS-422

... 
0x11,0x81

Processor ID (9-bit Auto 
Address Detection)

Fault Code

Master

Slaves

 

Figure 7.10: Fault Injection Mechanism. 

 

Figure 7.11: Host Software for Fault Injection. 

7.5.1 Transient Fault Injection 

To inject transient faults in the running application software, the mechanism shown in 

Figure 7.12 was developed. The mechanism can inject faults in the processor registers, 

peripheral registers and the data content of the main memory. This mechanism 
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receives a fault injection command via the RS-422 interface from the host computer 

software. After the command reception, the command message is placed on a queue 

‘QueueforFaultMsg’ for later use by the fault injection task. The fault injection task 

‘TaskforFaultInject’ is a low priority task that executes only, if no other task is ready 

to execute. The execution time for the interrupt service routine (ISR) is carefully 

controlled, and it does not last for more than 150 ns. This small period of time does not 

affect the execution of the actual application tasks. The execution of 

‘TaskforFaultInject’ injects a fault in the processing unit of MPSoC. Once the fault is 

injected, the detection method, proposed in section 4.8, gets activated and detects the 

fault anomaly.  

InterruptEvent

RS-422 Interrupt 
Handler for Fault 

Registration

QueueforFaultMsg

TaskforFaultInjection
(Low Priority)

Execute and Inject

Fault Code

Targets

CPU Registers

Peripheral 
Registers

Data contents of 
main memory

 

Figure 7.12: Transient Fault Injection Mechansim. 

7.5.2 Permanent Fault Injection 

A permanent fault causes an error that leads to the failure of the system. In case of the 

MPSoC distributed computing system, there can be various reasons for permanent 

faults. The common causes are the malfunctioning of memory, processor and 

watchdog timer (WDT).  The malfunctioning of the components can be caused by 

internal structural failures, particularly a fault in the processor registers. To develop 
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such a fault injection mechanism to cover all components is a very laborious task, and 

so in this thesis, we only cover permanent fault injection-related failure of a processor. 

This mechanism is essential for the validation of the permanent SDC fault detection 

algorithm, presented in section 4.8.2.  

Fault injection of permanent SDC errors is not possible in the hard processor. 

Therefore, a soft IP MicroBlaze processor was used for that. To test the proposed 

permanent fault detection method, a complete embedded system based on the 

MicroBlaze processor was designed and implemented on the programmable logic side 

of the Zynq FPGA, as shown in Figure 7.13. In order to inject a fault into the 

configuration memory of the implemented system, an existing Soft Error Mitigation 

(SEM) controller from Xilinx was integrated with the design to provide access to the 

internal configuration access port (ICAP) of the Zynq FPGA. This core is capable to 

receive commands via a simple UART. Also, it is designed to connect with the ICAP 

interface for the injection of a fault at any location of the configuration memory of the 

Zynq FPGA. The detailed circuit diagram is shown in Figure C.4 (Appendix C). 

MicroBlaze Processor 
AXI Bus, and associated Peripherals

Xilinx Soft Error 
Mitigation(SEM) 

Controller
Serial IF ICAP

 

Figure 7.13: Permanent Fault Injection Mechanism. 

7.6 Experimental Setup and Results 

Experimental Setup: The experimental setup for the distributed system demonstrates 

the required system behavior, i.e. tasks are migrated to healthy computing nodes when 
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a node fails and upon recovery. The details of the configuration for the setup are given 

in Table 7.7. It comprises three distributed nodes, implemented on the Xilinx Zynq 

FPGA devices of three ZEDBoard, connected via communication networks as shown 

in Figure 7.14.  Each node is implemented as an MPSoC that includes the Zynq ARM 

dual-core processor and MicroBlaze processor. The application software runs on the 

ARM dual-core processor, while the fault management software runs on MicroBlaze. 

Both the application and fault management software are implemented in C using 

FreeRTOS.  

Table 7.7: Prototyping System Parameters. 

Parameter  Value  

Number of Nodes 3 

Mission Task Set Simulated 

AMFT Communication 

Slot Time (ms) 

100 ms 

AMFT TDMA Cycle 

Time 

(100 x 3) ms 

Inter-AMFT 

Communication Network 

CAN @ 1Mbps 

Main Bus/Network CAN @ 1Mbps 

Development Board ZEDBoard 

 

Mission Task Set: For the purpose of this prototyping effort, a simulated mission task 

set, based on representative spacecraft on-board computing tasks, was implemented, 

which is summarized in Table 7.8. The main task characteristics that were considered 

were task period T and state data size 𝑡𝑠𝑠𝑖𝑧𝑒. We assumed that all tasks v are periodic 

and requires executing after a certain period. Furthermore, the worst case execution 

time (WCT) of each task (v 1, v 2 …) is less than or equal to its period T. The state of a 

task comprises a set of values that must be check-pointed for the future execution of 

the task. It is similar to a priori knowledge, which is required to get the current output 

values from a task. The task state size 𝑡𝑠𝑠𝑖𝑧𝑒 and the value of the state depend on the 

nature of the task. In the mission task set, we assume that all tasks are periodic with a 

different task period, T , and state data sizes 𝑡𝑠𝑠𝑖𝑧𝑒. The data values for each task state 

are initially equal to zero. Each mission task periodically updates its state data and 
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outputs a condensed form of the current value of the state data on the serial terminal 

(the condensed form is generated by summing all the bytes comprising the state data).  

Rationale and Assumptions: The proposed approach deals with fault-tolerance at an 

architectural level, where the failure of an entire computing node is compensated for. 

Fault-tolerance within a node and at the communication level is not considered. We 

assume that the network and the implementation of the AMFT are fault-tolerant. A 

failure of a node can be a temporary failure caused by single event effects (SEEs), or it 

can be a permanent failure caused by malfunction of electrical components. Also, we 

assume that the implementation of the AMFT block is dual-redundant, and its failure 

behaviour is fail-silent. Furthermore, a failure of an AMFT results in a failure of the 

complete node. However, the failure of a processing unit is handled by its associated 

AMFT. 

UART

Fault Injection Software

AMFT Bus

Main Bus

 

Figure 7.14: Experimental Setup. 

Table 7.8: Mission Task Set 

Mission Task 

(v) 

Task Period 

(T) (ms) 

State Data Bytes 

(𝒕𝒔_𝒔𝒊𝒛𝒆) 

  

Initial State 

Values 

 (𝒕𝒔𝟎) 
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Task-1 50 100 0…0 

Task-2 100 200 0…0 

Task-3 150 300 0…0 

Task-4 200 400 0…0 

Task-5 300 500 0…0 

 

Experimental Results:  During the experimental testing and validation of the MPSoC 

design fault detection latency, reconfiguration time, 𝑡𝑅𝑒𝑐𝑜𝑛𝑓. , and number of state 

rollbacks, 𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 , were observed.  

Fault Detection: The fault detection algorithms presented in section 4.8 were 

implemented and tested by injecting transient as well as permanent SDC faults. For that 

the fault injection mechanism, described in section 7.5 was used.  In addition to the 

SDC fault detection, the AMFT FDIR task, which monitors physical signals; 

temperature, voltage, current and WDT for the failure detection of each distributed 

node, is also tested. The faults were injected into the various components of an MPSoC 

node, and the detection latency was measured as shown in Figure 7.15. The lowest 

detection latency value was observed in the case of CPU registers when a transient fault 

was injected into the CPU registers. This is due to the transient fault detection 

algorithm, proposed in section 4.8.1, which immediately checks processed variables for 

errors. For all other faults, the detection mechanism was implemented as a separate 

task. The detection latency of all other faults depends on the period of their execution. 

The execution period of the fault detection task  𝑡𝐹𝐷_𝑃𝑒𝑟𝑖𝑜𝑑 for various components such 

as peripheral registers, data contents of memory, temperature/voltage/current signals, 

watchdog timer, CPU microarchitectural elements, was carefully selected, considering 

the severity nature of each fault.  
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Figure 7.15: Fault Detection Latency. 

The fault detection latency results showed that maximum detection latency was 

observed for the peripheral registers and CPU microarchitecture elements faults that 

should be less than or equal to 100 ms. The fault detection latency values are highly 

important as they affect the distributed system reconfiguration time, when tasks are 

migrated to other nodes.  

Reconfiguration Time: The reconfiguration time tReconfig, defined in section 6.2.1.1  is 

the time required to configure the distributed system. It includes detection time and 

migration time. Figure 7.16 shows the measured reconfiguration time for the defined 

configuration system setup and simulated task set. It is evident from the results that the 

reconfiguration time is variable and does not depend on the state data size. However, 

the state data size indirectly affects the communications slot time, which increases the 

fault message transmission time. For the particular settings of 300 ms communication 

cycle and 100 ms slot time, the fault message time can vary from 50 to 300 ms. This is 

due to the slot-based communication on the AMFT network, where fault messages can 

only be sent during the allocated slot.  

The Permanent Fault detection time is the second highest value that directly 

contributes to the reconfiguration time. The value of the permanent fault detection 𝑡𝐷 

depends on the execution period of the detection task, 𝑡𝐹𝐷_𝑝𝑒𝑟𝑖𝑜𝑑  , and the fault 
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detection processing time, 𝑡𝐹𝐷_𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 . For different faults, the execution period 

𝑡𝐹𝐷_𝑝𝑒𝑟𝑖𝑜𝑑 was different, therefore it can vary from 20 to 105 ms.  

The third time value that contributes a small increase to the reconfiguration time is 

the ‘Scheduling and Task Start time 𝑡𝑇𝑀 . When a task is migrated to another node 

following a failure, it needs to be scheduled and started. The value of  𝑡𝑇𝑀 depends on 

the processor speed, current workload, and the scheduling scheme used. Figure 7.15 

shows that this time is also variable and can vary from 2 to 4 ms.  

The upper bound value of the reconfiguration time tReconfig is fixed and should 

always be less than 400 ms for this particular system configuration. This value of the 

reconfiguration time tReconfig is very less as compared to traditional standby redundant 

computing systems used in space applications. In traditional systems, the switching 

time from a failed computer to the redundant computer is around 3000 ms [226]. 

 

Figure 7.16: Reconfiguration Time. 

State Data: The state data 𝛥𝑆𝐷 represents the task’s input values, which are required in 

order for the task to generate output values, whenever it is executed. Larger state data 

size, 𝑡𝑠𝑠𝑖𝑧𝑒, affects the transmission time, 𝑡𝑇𝑋 , and correspondingly the communication 

time slot, 𝑡𝑐𝑠 , of the TDMA cycle. Figure 7.17 shows the measured values for the 

transmission time 𝑡𝑇𝑋 and correspondingly the minimum slot time 𝑡𝑐𝑠. This shows a 
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linear relationship between the state data size 𝑡𝑠𝑠𝑖𝑧𝑒  and the transmission time 𝑡𝑇𝑋. We 

also observed that a node which shares computing load of a failed node will require 

more transmission time 𝑡𝑇𝑋 on the communication network due to more number of 

states. Therefore, a suitable value for the slot time 𝑡𝑐𝑠 is selected to cover all possible 

failure scenarios. Equation 7.1 is used for the theoretical calculation of transmission 

time  𝑡𝑇𝑋 on the AMFT CAN network. 

𝑡𝑇𝑋 = (
1

𝑅
) ∗ 𝑇𝐵 ∗ 𝑂𝐵 + 𝐼𝐹𝑆 ∗ 𝑁𝐹 

7.1 

where 

 

𝑅 = 𝐶𝐴𝑁 𝑆𝑝𝑒𝑒𝑑 𝑖𝑛 𝐵𝑖𝑡𝑠/𝑠 

𝑇𝐵 = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐵𝑖𝑡𝑠 

𝑂𝐵 = 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝐵𝑖𝑡𝑠 

𝐼𝐹𝑆 = 𝐼𝑛𝑡𝑒𝑟𝑓𝑟𝑎𝑚𝑒 𝑆𝑝𝑎𝑐𝑖𝑛𝑔 

𝑁𝐹 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠/𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

 

State Rollback: During the normal operation of the proposed FTDC system, task’s 

states are stored on each node.  It is essential to resumes a task when it is started on 

another node following a failure. This ensures the integrity of a fault-tolerant 

computing system. During the experimental evaluation, state rollbacks 𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘  for 

the different tasks were observed as shown in Figure 7.18. These observations were 

made for the earlier defined mission task set. We observed that state rollbacks 

𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘  are varied with the task period T.  For large task period, T=300 ms, the 

number of state rollbacks was small and equal to one state rollback only. However, for 

a small task period T=50 ms, the number of state rollbacks was large and equal to 

seven rollbacks.   
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Figure 7.17: State Data Size, Transmission Time, and Communication Time Slot. 

 

Figure 7.18: Number of State Rollbacks and Task Period. 

7.7 Multiprocessor System-on-chip for a CubeSat 

Mission 

CubeSat is a miniature satellite. It has a mass equal to 1 kilogram and volume equal to 

1000 cm
3
. It is mainly used for technology demonstration and educational purposes.    

Although its size is small, it requires all the computing functions of a normal satellite. 

These functions include satellite control, data handling, power/thermal management, 

and the ground communications. Each of these is usually implemented as standalone 

printed circuit boards. This makes the CubeSat overcrowded and very small physical 
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space is left for the actual payload equipment. Also, it is not possible to make CubeSat 

design fault-tolerant by providing extra redundant computing units.  

To avoid these problems, the proposed approach to fault-tolerant distributed 

computing could be applied to CubeSat. In this section a novel multiprocessor system-

on-chip CubeSat (MPSoC-CubeSat) design for fault-tolerant distributed computing is 

proposed. This design implements all the functions on a single chip, reducing its size 

significantly in comparison to the traditional board-level design. In addition, it allows 

task migration to make the system fault-tolerant. The design of the MPSoC-CubeSat is 

shown in Figure 7.19. 
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Figure 7.19: Design of Multiprocessor System-on-chip CubeSat (MPSoC-CubeSat). 

It comprises multiple computing modules and communication networks, housed on 

a single chip. These modules are similar to the nodes in the proposed FTDC approach. 

One of the on-chip networks is used for the communications of the computing 

modules while the other is used for the communications of the AMFT blocks. All the 

IOs are attached to a single input-output module for digital and analogue data. In the 

MPSoC-CubeSat, the functionality of the AMFT block is similar, except the decision 

for the chip power-off, which is handled by the OBDH only.   
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As the whole satellite computing functions are integrated on a single chip, it 

reduces the physical size and electrical power consumption. Unlikes, traditional 

CubeSat design, MPSoC-CubeSat design allows rapid integration and modification 

adapting to the needs of a particular mission.    

7.7.1 Implementation of MPSoC-CubeSat PCB Design 

In lieu of a prospective Leicester CubeSat mission, a Printed Circuit Board (PCB) 

complying with its specifications was designed. The PCB design was developed in 

Altium Designer v10.2 [227] and main features of the PCB design are stated as 

follows: 

 A 12 Layer PCB which complies with CubeSat specifications. 

 The design adapts our proposed MPSoC scheme, i.e. one MPSoC-CubeSat on a 

single PCB. 

 The majority of components and PCB layout are space qualified. 

 It is a standalone unit, with own power regulators, SDRAM (16x128)x2=512MB, 

Flash Memory 512Mb, CAN 2561 interfaces, USB 2.0 to UART bridge. 

 The main clock is 33.333 MHz. The internal PLL of FPGA takes the main clock 

and converts it to 666.67 MHz. The AMFT processing unit takes a separate clock 

of 100 MHz clock. 

 MPSoC has dedicated ADC interface using analogue inputs and sensor’s data 

processing. 

 The interface of 20 I/O available for additional daughter cards, e.g. for SpaceWire 

and WiFi modules. 

 Debugging and Programming interface via JTAG. 

The PCB Layout and its Bill of Materials (BoM) is given in Appendix D. 

7.8 Summary 

A novel MPSoC based approach to fault-tolerant distributed computing system was 

proposed for space applications. The proposed MPSoC design was implemented and 

http://www.altium.com/


Chapter 7. Novel MPSoC based Design for Fault-Tolerant Distributed Computing 

183 
 

tested for functional validation, for which appropriate experimental setup was 

developed. This experimental setup allowed observations of the scheme behaviour at 

run-time. For instance, the tasks are being added, dropped or reconfigured and faults 

injected at software and hardware level.  

A key observation was the behaviour of the proposed system under a failure 

scenario of the computing nodes. In the traditional redundant system, a failure of a 

computing node can cause degradation or be catastrophic for the whole distributed 

system. This failure behaviour depends on the criticality of the functions it holds. The 

MPSoC design reduces this damage to a minimum level by utilizing the power of 

multiple processors. Thus, making a distributed computing system computationally 

efficient and more reliable without the need for a spare computing node for fault-

tolerance. This reduces the overall design cost and makes the overall system 

economical. In addition to tolerating faults, an essential aspect of the proposed 

architecture is its ability to resume operations on a healthy node with a recent state 

data values.  

The traditional space computing redundant system requires time-consuming 

switching operation from primary to a redundant node in case of a failure. It can take 

several minutes if ground commanding is used. The obtained experimental results on 

the reconfiguration time are promising. The small, deterministic value of the 

reconfiguration time showed that a failure could be immediately masked by migrating 

tasks to another healthy node. It reduces the system downtime, thus improving the 

overall availability of the system, an essential feature of space computing systems.  
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Chapter 8  

8.Case Study: Fault-Tolerant Distributed AOCS 

Computer 

In this chapter, performance analysis of the proposed approach to fault-tolerant 

distributed computing (FTDC) is carried out under near realistic constraints and 

requirements using a time critical space application, namely satellite Attitude and 

Orbit Control System (AOCS).  First, the developed AOCS application is specified 

and its task set is defined and adapted to measurable parameters. Then the requisite 

AOCS task set is mapped on the distributed computing nodes and the AMFT system is 

configured. The AOCS is implemented using three MPSoC based nodes using the 

MPSoC design in Chapter 7, which are configured to operate as a distributed 

computing system. Experimental results are obtained, which are analysed and 

evaluated by a MATLAB AOCS model. The SDC fault detection algorithms, proposed 

in section 4.8 are also analysed and compared for performance and efficiency.  

8.1 Attitude and Orbit Control System 

AOCS controls the attitude and orbit of a spacecraft. Attitude control refers to the 

system which checks and corrects the orientation of a spacecraft with reference to an 

inertial frame of reference, whereas orbit control refers to a system that checks and 

sets the desired spacecraft position in orbit.  
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The AOCS computer receives data from sensors and executes complex algorithms 

to determine the desired orbit and attitude. It generates appropriate commands for the 

actuators to compensate for the errors in the desired and actual orientation and 

position, as shown in Figure 8.1. This set of operations is carried out in a control loop 

during the entire life of the spacecraft. Also, the AOCS computer has an external 

interface to accept commands from On-Board Data Handling (OBDH) Computer as 

well as from the Ground Station. AOCS also generates its state (current mode of 

operation) in the form of telemetry data, which provides information about the 

spacecraft orientation, as well as position in orbit. 

Spacecraft Actuators

SensorsEstimator

Control Error

Sensor Noise,
Misalignment

Controller

Estimation 
Models

Desired

Estimate

+
-

Disturbances
Attitude & Orbit Control Computer

TelemetryCommand
 

Figure 8.1: Block Diagram for Attitude and Orbit Control System.  

8.2 Rationale for Distributed AOCS 

The main requirements which demand a distributed AOCS are as follows: 

 In a single spacecraft mission, advanced attitude and orbit control for future 

spacecraft are needed to provide improved pointing accuracy, reliability, faster 

response, and on-board autonomy. These demands cannot be met with a 

centralized design.   
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 In a multi-spacecraft mission, to fly spacecraft in a formation, a distributed 

spacecraft control is essential. A Spacecraft Formation Flying (SFF) mission 

consists of a set of satellites, flying in a close configuration. Their geometry is 

accurately measured and controlled, requiring the distributed spacecraft to exert 

collaborative control of their relative positions and orientations. Contrary to a 

centralized control, distributed maintenance of the spacecraft formation is more 

reliable because it reduces the delay in performing the control of formation 

geometry and eliminates the chances of a single point of failure. Despite being 

very challenging, formation flying missions are the only solution to achieving a 

high-quality resolution synthetic aperture that is otherwise impossible to 

achieve. Table 8.1 lists a few Spacecraft Formation Flying missions.  

Table 8.1: Spacecraft Formation Flying Missions. 

Mission Launch 

Date 

Formation Type # of 

Spacecraft 

Application 

Prisma 

[228] 

June 2010 Trailing formation with 10 

cm distance to each other. 

2 Autonomous 

Formation Flying 

Demonstration 

TanDEM-

X [229] 

June 2010 Trailing formation with 

250/500 m distance to each 

other. 

2 High-Resolution 

Interferometric 

SAR  

Proba-3 

[230] 

Scheduled 

to be 

launched 

in 2018 

Trailing formation with 25 to 

250 m distance to each other. 

2 Formation Flying 

Technology 

Demonstration 

8.3 Design of a Distributed Attitude and Orbit 

Control  

The design of a distributed AOCS starts from the requirement specifications that follow 

design processes, application structure, task set and its mapping to actual physical 

nodes. The requirement specifications include parameters, such as accuracy, 

operational modes, reliability, and computational performance.  The functional design 

processes involves mapping of the requirement specifications into functional design 

units.  



Chapter 8. Case Study: Fault-Tolerant Distributed AOCS Computer 

187 
 

8.3.1 Requirement Specifications 

 AOCS shall maintain fine pointing attitude accuracy during the payload 

operations, while during the rest of the time it shall maintain coarse pointing 

accuracy.  Also, AOCS shall be able to correct the orbit, whenever required. 

 AOCS should be computationally efficient and able to perform autonomous 

attitude and orbit adjustment without ground control.  

 AOCS shall accept ground commands to perform attitude and orbit correction. It 

shall also provide attitude measurement via telemetry data. Furthermore, it shall 

provide information via telemetry to allow diagnostic on board the spacecraft. 

 AOCS shall be able to reconfigure itself in the case of a node failure. This 

requires that the migration of tasks of a faulty node should be handled timely and 

reliably.  

8.3.2 AOCS Sensors and Actuators 

Based on the requirement specifications in section 8.3.1, three attitude sensors, one 

orbit sensor and two types of actuators were selected as detailed in Table 8.2.  These 

are the minimum sensors and actuators set, i.e. essential to meet the AOCS 

requirement specifications.  

Table 8.2: AOCS Sensors and Actuators. 

Function Sensors/Actuators 

Attitude Measurement Sun Sensor, Magnetometer and Rate Gyro 

Orbit Measurement  GPS 

Attitude Control Magnetorquer 

Orbit Control Thrusters 

8.3.3 Functional Design Processes  

In our design process, AOCS application consists of four main processes, as shown in 

Figure 8.2. The input process is responsible for reading and formatting the sensor data 

in such a way that it is acceptable for the next process. The determination process 
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estimates the spacecraft orbit and attitude by using sensor data, an estimation algorithm, 

and available models. The output of this process is an estimate of the position in orbit, 

angles, and angular rates.  The next process is the controller process that can adapt to 

multiple configurations depending upon the selected mode of operation. In our AOCS 

application design, in total six operational modes of the controller process are possible 

as detailed in Table 8.3. The essential modes are detumbling, payload, normal and orbit 

control. The detumbling mode is used for initial rate reduction after the spacecraft 

separation from the launcher while the payload mode is used for the fine pointing of the 

spacecraft.  If the error is within the predefined limits, a normal execution mode is 

used. The final process is the output process that handles writing commands for 

actuators.  

Input 
Process

estimate_Attitude()

Computer Attitude Angles and 
Angular Velocity

SunModel(date,time)

Computer local sun line 
vector

FieldModel(date,time)

Computer local 
geomagnetic field vector

estimate_orbit()

estimate spacecraft orbit 
position

Read_SS
()

Read_MM
()

Read_RateGyro
()

Read_GPS()

Mode Select

Attitude & Orbit Determination 
Process

Detumbling_Controller
()

Compute rate and output 
torque

Orbit_Controller()

Compute thrust and 
corresponding pulse width

Controller Process

Write_Thruste
r()

Output Process

UPSE

Write_MT()

AOCE

Thrusters

Magnetorquer

Attitude Controller

normal_Controller()

Compute torque

Tx, Ty

AOCS Computer

Orbit_Model()

spacecraft orbit position

Mode Select

payload_Controller()

Compute torque

 

Figure 8.2: Design Processes for Attitude and Orbit Control Application.  

Table 8.3: AOCS Modes of Operations. 

Mode of Operation Mode Description 

Standby mode Only Telecommand and Telemetry tasks are active. There is no attitude 

and orbit control, so all the AOCS units are powered off except the 

computer itself. This mode is typically used, when the satellite is still 

inside the launcher or during the first and second stage after launch. 
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Detumbling mode This mode is typically activated after separation from the launcher and 

used for angular velocity rate reduction. The b-dot controller is used for 

this mode. 

Payload Mode This mode is used for fine attitude adjustment for the payload operation. 

Safe Mode Entered, when there is no reconfiguration possible. 

Normal Mode In normal mode, if the error is within predefined limits, no actuation is 

provided. 

Orbit Control Mode This mode is used when orbit change is required. 

8.3.4 Distributed AOCS Software Structure 

The distributed AOCS software structure mainly consists of three parts: application 

software, support software and fault management software as shown in Figure 8.3. The 

support and fault management software for the distributed AOCS computer are 

implemented as presented in section 4.6.1 and section 5.5, respectively. The design 

and implementation of the AOCS application, represented as a suitable task set, which 

meets the requirements specified in section 8.3.1 and their corresponding mapping to 

distributed computing nodes, are explained in the following section.  

AOCS Application Software

System Support Software

Fault Management

Software

Processing 

Unit

AMFT

 

Figure 8.3: Distributed AOCS Software Structure. 

8.3.4.1 AOCS Task Set 

The AOCS computer is responsible for execution of complex algorithms. The 

algorithm can be divided into a set of the task, from a computation point of view. 

These tasks are computationally intensive, requiring high reliability, high availability, 
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and real-time operation throughout their execution. An unfinished task leads to a 

failure of AOCS, which jeopardises the space mission, and may cause an in-orbit 

collision with other spacecraft. The importance and criticality of the AOCS computer 

in spacecraft is the main reason for choosing it for the validation of the proposed 

approach. Based on the requirement specifications and chosen sensors/actuators, the 

AOCS requisite tasks are derived and measurable parameters are assessed as 

summarised in Table 8.4. 

Table 8.4: Characteristics of Distributed AOCS Task Set. 

AOCS Task Typical 

Task 

Period, T 

(ms) 

State Data  Size 

𝒕𝒔𝒔𝒊𝒛𝒆 (bytes) 

Operational 

 Modes 

Task 

Number 

Attitude 

Measurement and 

Anomaly Check 

50-300 ms 6 bytes/sensor Detumbling (Only B 

Field) Normal and 

Payload Mode  

Task#1 

Attitude 

Determination 

50-300 ms Attitude angles 

and angular rates 

(24 bytes)  

Normal Mode and 

Payload Mode. 

Task#2 

Attitude Control   

- B-dot 

50-300 ms  

Control Torque, 

Tx, Ty, Tz (12 

bytes 

 

- Detumbling  

Task#3 

- PD  Control Torque, 

Tx, Ty, Tz (12 

bytes) 

- Normal Mode and 

Payload Mode. 

 

Orbit Estimation &  

Control 

10000 ms 24 bytes Orbit Control Mode Task#4 

Telemetry 1000 ms 60 bytes All Task#5 

Telecommand Sporadic 8 bytes All Task#6 

 

The common properties of the tasks are: 

 Periodic: all tasks are executed periodically with time periods T , which are stated 

in Table 8.4. The Telecommand task is an exception. 

 Deadline: each task has to be executed within a specified time, considered its 

deadline, which is determined from the period T.  

 Critical: no single task can be left unexecuted. 
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 State Data: State data ∆𝑆𝐷 represents the result on completion of a task, which has 

a certain data length, as shown in Table 8.4 and as explained in section 5.3.3. 

 Inter-dependant: the outcome of one task can be an input to another task. 

 Modes: different modes demand separate tasks and, therefore, have to be 

addressed separately. 

The above parameters allow us to quantify measures to determine the performance 

of the proposed approach. The rest of this section presents a functional description of 

the AOCS application tasks.  

Attitude Measurement and Anomaly Check Task: Firstly, this task is responsible 

for taking attitude sensor data measurements and passing the values to the attitude 

determination task. Sun and magnetometer sensors are used for the attitude 

measurements. A sun sensor measures the components of the sun vector ‘s’ in body 

frame ‘sb’ , while a magnetometer measures the components of the field vector ‘m’ in 

the body frame, mb. Secondly, this task detects and isolates the anomalies in the 

magnetometer and sun sensors. It can detect an anomaly by a single and a multi-sensor 

consistency check.  

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒: 

1 𝑣𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡_ 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝐶ℎ𝑒𝑐𝑘𝑇𝑎𝑠𝑘 { 

2 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

3 𝑤ℎ𝑖𝑙𝑒(1){ 

4 𝑠𝑏 = 𝑟𝑒𝑎𝑑_𝑠𝑠() 

5 𝑚𝑏 = 𝑟𝑒𝑎𝑑_𝑚𝑚() 

6 𝑟𝑎𝑡𝑒𝑏 = 𝑟𝑒𝑎𝑑_𝑔𝑦𝑟𝑜𝑟𝑎𝑡𝑒() 

7 𝑠𝑠𝑜𝑘 = 𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝐶ℎ𝑒𝑐𝑘𝑆𝑆(𝑠𝑏)  

8 𝑚𝑚𝑜𝑘 = 𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝐶ℎ𝑒𝑐𝑘𝑀𝑀(𝑚𝑏)  

9 𝑟𝑎𝑡𝑒𝑜𝑘 = 𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝐶ℎ𝑒𝑐𝑘𝐺𝑅(𝑟𝑎𝑡𝑒𝑏) 

10 𝑆𝑤𝑖𝑡𝑐ℎ(𝑚𝑜𝑑𝑒){ 

11 𝑐𝑎𝑠𝑒 𝐷𝐸𝑇𝑈𝑀𝐵𝐿𝐼𝑁𝐺:  
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12 𝑠𝑒𝑛𝑑𝑚𝑎𝑖𝑛_𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑀𝑠𝑔(𝑚𝑏) 

13 𝑠𝑒𝑛𝑑𝑎𝑚𝑓𝑡_𝑀𝑠𝑔(𝑚𝑏 ,   𝑚𝑜𝑑𝑒); 𝑏𝑟𝑒𝑎𝑘; 

14 𝑐𝑎𝑠𝑒 𝑁𝑂𝑅𝑀𝐴𝐿&𝑃𝐴𝑌𝐿𝑂𝐴𝐷: 

15 𝑠𝑒𝑛𝑑𝑚𝑎𝑖𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑠𝑔
(𝑠𝑏 ,𝑚𝑏 , 𝑟𝑎𝑡𝑒𝑏) 

16 𝑠𝑒𝑛𝑑𝑎𝑚𝑓𝑡_𝑀𝑠𝑔(𝑠𝑏, 𝑚𝑏 , 𝑟𝑎𝑡𝑒𝑏 ,𝑚𝑜𝑑𝑒); 𝑏𝑟𝑒𝑎𝑘;  

17 𝑑𝑒𝑓𝑎𝑢𝑙𝑡:  

18 } 

19 } 

20 } 

 

Attitude Determination Task: The purpose of this task is to obtain the spacecraft 

attitude. The task uses measurements of sensors and mathematical models [231] to 

collect components of vectors in the body and inertial reference frames. The 

components of these vectors are utilized by the attitude algorithm to obtain the 

spacecraft attitude in the form of Euler’s angles or quaternions. Attitude determination 

algorithms are broadly classified into non-recursive and recursive methods. Non-

recursive algorithms do not require a priori estimate and determine the attitude based 

on the current measurements only. These algorithms require minimum two 

measurement vectors to determine the complete attitude. Examples of non-recursive 

algorithms are Triad, Quest, and Davenport’s q-method. Recursive algorithms utilize 

past information and current measurements to obtain attitude. The most commonly 

used recursive algorithm is Kalman filtering. In our implementation of distributed 

AOCS, a triad algorithm was selected for the attitude determination task. This task is 

periodic and its period of operation depends on the period of the control cycle. The 

typical value of the task’s period is given in Table 8.4. The specification of the attitude 

task is as follows: 
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𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒: 

1 𝑣𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑇𝑎𝑠𝑘 { 

2 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

3 
𝑤ℎ𝑖𝑙𝑒(1){ 

[𝑡𝑖𝑚𝑒, 𝑜𝑟𝑏𝑖𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛] = 𝐺𝑃𝑆() 

4 𝑠𝑖 = 𝑠𝑢𝑛_𝑀𝑜𝑑𝑒𝑙(𝑡𝑖𝑚𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 

5 𝑚𝑖 = 𝐼𝐺𝑅𝐹_𝑀𝑜𝑑𝑒𝑙(𝑡𝑖𝑚𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 

6 𝑆𝑤𝑖𝑡𝑐ℎ(𝑚𝑜𝑑𝑒){ 

7 𝑐𝑎𝑠𝑒 𝑃𝐴𝑌𝐿𝑂𝐴𝐷:  

8 𝑅𝑏𝑖 = 𝑡𝑟𝑖𝑎𝑑(𝑠𝑏, 𝑠𝑖,𝑚𝑏 , 𝑚𝑖) 

9 𝑠𝑒𝑛𝑑𝑚𝑎𝑖𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑠𝑔
(𝑅𝑏𝑖) 

10 𝑠𝑒𝑛𝑑𝑎𝑚𝑓𝑡𝑀𝑠𝑔
(𝑅𝑏𝑖); 𝑏𝑟𝑒𝑎𝑘;  

11 𝑐𝑎𝑠𝑒 𝑁𝑂𝑅𝑀𝐴𝐿: 

12 𝑅𝑏𝑖 = 𝑡𝑟𝑖𝑎𝑑(𝑠𝑏, 𝑠𝑖,𝑚𝑏 , 𝑚𝑖) 

13 𝑠𝑒𝑛𝑑𝑚𝑎𝑖𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑠𝑔
(𝑅𝑏𝑖) 

14 𝑠𝑒𝑛𝑑𝑎𝑚𝑓𝑡𝑀𝑠𝑔
(𝑅𝑏𝑖); 𝑏𝑟𝑒𝑎𝑘;  

15 𝑑𝑒𝑓𝑎𝑢𝑙𝑡:  

16 } 

17 } 

18 } 

 

1 𝑣𝑜𝑖𝑑 𝑡𝑟𝑖𝑎𝑑(𝑠𝑏 , 𝑠𝑖,𝑚𝑏 , 𝑚𝑖){  

2 𝑡1𝑏 = 𝑠𝑏 ; 

3 𝑡2𝑏 =
𝑠𝑏 𝑥 𝑚𝑏

|𝑠𝑏𝑥 𝑚𝑏|
 ; 

4 𝑡3𝑏 = 𝑡1𝑏 𝑥 𝑡2𝑏;  
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5 𝑡1𝑖 = 𝑠𝑖 ; 

6 𝑡2𝑖 =
𝑠𝑖 𝑥 𝑚𝑖

|𝑠𝑖𝑥 𝑚𝑖|
 ; 

7 𝑡3𝑖 = 𝑡1𝑖 𝑥 𝑡2𝑖;  

8 𝑅𝑏𝑡 = [𝑡1𝑏 , 𝑡2𝑏 , 𝑡3𝑏];  

9 𝑅𝑖𝑡 = [𝑡1𝑖, 𝑡2𝑖, 𝑡3𝑖];  

10 𝑅𝑏𝑖 = 𝑅𝑏𝑡 𝑥 𝑅𝑖𝑡 = [𝑡1𝑏 , 𝑡2𝑏 , 𝑡3𝑏]  [𝑡1𝑖, 𝑡2𝑖, 𝑡3𝑖]
𝑇;  

11 } 

 

Attitude Control Task: The attitude control task is responsible to calculating the 

applied torque force to spacecraft in order to correct its orientation. The input to this 

task can come from the attitude determination task or directly from sensors depending 

upon the mode of operation. This task is operational in different modes. A wide 

variety of controllers have been used to control the spacecraft attitude. These include 

B-dot [232], Constant Gain [233], Proportional Integral Derivative (PID) [234], Linear 

Quadratic Regulator [235], and non-linear H∞ controller. For our design of distributed 

AOCS, we use a B-dot controller and a PD controller. The B-dot controller is 

employed for the detumbling mode, while the PD controller is used for the payload 

pointing of the spacecraft.  Both controllers are implemented in the attitude control 

task, one of these is activated based on the AOCS mode of operation. The attitude 

control task is periodic and its typical period T of execution is given in Table 8.4.  The 

following shows the specification of the task: 

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒: 

1 𝑣𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑇𝑎𝑠𝑘 { 

2 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

3 𝑤ℎ𝑖𝑙𝑒(1){ 

4 𝑆𝑤𝑖𝑡𝑐ℎ(𝑚𝑜𝑑𝑒){ 

5 𝑐𝑎𝑠𝑒 𝐷𝐸𝑇𝑈𝑀𝐵𝐿𝐼𝑁𝐺:  

6 𝐵𝑡−1
𝑏 = 𝑚𝑏;     % 𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐  𝑓𝑖𝑒𝑙𝑑 𝑎𝑡 𝑡 − 1 

7 𝑑𝑒𝑙𝑎𝑦 (∆𝑡);% 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑑𝑒𝑙𝑡𝑎 𝑡 
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8 𝐵𝑡
𝑏 = 𝑚𝑏 ;   % 𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐  𝑓𝑖𝑒𝑙𝑑 𝑎𝑡 𝑡  

9 𝐵𝑑𝑜𝑡 = 
[𝐵𝑡

𝑏 − 𝐵𝑡−1
𝑏 ]

∆𝑡
 ;  % 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐵  

10 
𝑢 = [ 𝑀𝑥,𝑀𝑦, 𝑀𝑧]

𝑇

= − [𝑘1 𝐵𝑥𝑑𝑜𝑡 , 𝑘2 𝐵𝑦𝑑𝑜𝑡  , 𝑘3 𝐵𝑧𝑑𝑜𝑡 ]
𝑇;% 𝑡𝑜𝑟𝑞𝑢𝑒, 𝑢  

11 𝑠𝑒𝑛𝑑𝑚𝑎𝑖𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑠𝑔
(𝑢) % 𝑆𝑒𝑛𝑑 𝑚𝑠𝑔 𝑓𝑜𝑟 𝑢 𝑜𝑛 𝑚𝑎𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

12 𝑠𝑒𝑛𝑑𝑎𝑚𝑓𝑡𝑀𝑠𝑔
(𝑢); 𝑏𝑟𝑒𝑎𝑘;  % 𝑆𝑒𝑛𝑑 𝑚𝑠𝑔 𝑓𝑜𝑟 𝑢 𝑜𝑛 𝐴𝑀𝐹𝑇 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

13 𝑐𝑎𝑠𝑒 𝑁𝑂𝑅𝑀𝐴𝐿&𝑃𝐴𝑌𝐿𝑂𝐴𝐷: 

14 % 𝑐𝑎𝑙. 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑎𝑛𝑔𝑙𝑒𝑠 

15 𝛼𝑒 = [𝜙 − 𝜙𝑑  ;  𝜃 − 𝜃𝑑  ;   𝛹 − 𝛹𝑑  ]𝑇  

16 % 𝑐𝑎𝑙. 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑎𝑛𝑔𝑙𝑒𝑠 

17 𝜔𝑒 = [𝜔𝑥 − 𝜔𝑥
𝒅 ;  𝜔𝑦 − 𝜔𝑦

𝒅 ;   𝜔𝑧 − 𝜔𝑧
𝒅 ]𝑻    

18 % 𝐾𝑝 𝑎𝑛𝑑 𝐾𝑑  𝑎𝑟𝑒 𝑔𝑎𝑖𝑛 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑓𝑜𝑟 𝑃𝐷 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟  

19 𝑢 = −𝐾𝑝 ∗  𝛼𝑒 ∗ 𝐾𝑑  𝜔𝑒  % 𝑃𝐷 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑡𝑜𝑟𝑞𝑢𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑢  

20 𝑠𝑒𝑛𝑑𝑚𝑎𝑖𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑠𝑔
(𝑢) % 𝑆𝑒𝑛𝑑 𝑚𝑠𝑔 𝑓𝑜𝑟 𝑢 𝑜𝑛 𝑚𝑎𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

21 𝑠𝑒𝑛𝑑𝑎𝑚𝑓𝑡𝑀𝑠𝑔
(𝑢); 𝑏𝑟𝑒𝑎𝑘;% 𝑆𝑒𝑛𝑑 𝑚𝑠𝑔 𝑓𝑜𝑟 𝑢 𝑜𝑛 𝐴𝑀𝐹𝑇 𝑛𝑒𝑡𝑤𝑜𝑟𝑘  

22 𝑑𝑒𝑓𝑎𝑢𝑙𝑡:  

23 } 

24 } 

 

Telemetry Task: The telemetry task gathers health and AOCS parameters. This task is 

also of a periodic nature and its telemetry parameters depend on the algorithms. The 

details of the telemetry parameters are given in Appendix E. On execution, it acquires 

the telemetry data and stores them into the 𝑇𝑀𝐿𝑖𝑠𝑡 data structure, which is transmitted 

to the main and the AMFT networks.  

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒: 
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1 𝑣𝑇𝑒𝑙𝑒𝑚𝑒𝑡𝑟𝑦𝑇𝑎𝑠𝑘 { 

2 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

3 𝑤ℎ𝑖𝑙𝑒(1){ 

4 𝑇𝑀𝐿𝑖𝑠𝑡 =  𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑇𝑀();% 𝑇𝑒𝑙𝑒𝑚𝑒𝑡𝑟𝑦𝐷𝑎𝑡𝑎 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 

5 
𝑠𝑒𝑛𝑑𝑚𝑎𝑖𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑠𝑔

(𝑇𝑀𝐿𝑖𝑠𝑡) % 𝑆𝑒𝑛𝑑 𝑚𝑠𝑔 𝑓𝑜𝑟 𝑇𝑀𝐿𝑖𝑠𝑡 𝑜𝑛  

𝑚𝑎𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

6 𝑠𝑒𝑛𝑑𝑎𝑚𝑓𝑡𝑀𝑠𝑔
(𝑇𝑀𝐿𝑖𝑠𝑡);% 𝑆𝑒𝑛𝑑 𝑚𝑠𝑔 𝑓𝑜𝑟 𝑇𝑀𝐿𝑖𝑠𝑡 𝑜𝑛 𝐴𝑀𝐹𝑇 𝑛𝑒𝑡𝑤𝑜𝑟𝑘}  

7 } 

8 } 

 

Telecommand Task: The telecommand task is a sporadic task. Each command can be 

issued from the OBDH computer or directly from ground via a Telecommand 

decoding system. The pseudo code for the telecommand task is given below. As soon 

as the command arrives, it is received by all distributed computing nodes via the main 

network. The node responsible for the execution of the telecommand task executes it 

and sends a successful execution message on the AMFT network. All the other nodes, 

remove the stored command. If a command does not execute within the allocated time 

(𝑡 + 𝑑𝑡), the next node responsible for the command executes it.  

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒: 

1 𝑣𝑇𝑒𝑙𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑇𝑎𝑠𝑘 { 

2 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

3 𝑤ℎ𝑖𝑙𝑒(1){ 

4 𝑖𝑓( 𝑇𝐶𝐸𝑉𝐸𝑁𝑇 == 𝑡𝑟𝑢𝑒){ % 𝑇𝑒𝑙𝑒𝑐𝑜𝑚𝑎𝑚𝑛𝑑 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝐸𝑣𝑒𝑛𝑡 

5 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑇𝐶); ;% 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑇𝐶 

6 𝑠𝑒𝑛𝑑𝑎𝑚𝑓𝑡𝑀𝑠𝑔
(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙); ;% 𝑇𝐶 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙, 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 𝑇𝐶 

7 } 

8 } 
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Orbital Estimation & Control Task: Satellite orbit drift due to atmospheric drag and 

gravitational pulls. Orbits can be determined and corrected by ground-based tracking 

systems [236, 237], or this can be done on board spacecraft  [238]. The former method 

has a disadvantage over the later one, because it requires a ground intervention to 

control the orbit of a satellite. However, the later method requires complex orbit 

determination and control algorithms to be processed on board the spacecraft that are 

difficult to run on centralized low-performance computers. Contrary to a centralized, a 

distributed AOCS computer can run these complex algorithms easily because of the 

inherent computational power of multiple nodes. In the design of the distributed 

AOCS computer, the estimation and control task is responsible for correcting the 

spacecraft orbit. First, this task determines the spacecraft orbit by extended Kalman 

filtering (EKF) and then forces are applied by delta-V actuators. The period of the 

orbit estimation and control task is very large and the exact value depends on the 

altitude and mission.  A typical value of the period T for this task is given in Table 8.4. 

𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒: 

1 𝑣𝑂𝑟𝑏𝑖𝑡𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛&𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑇𝑎𝑠𝑘 { 

2 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

3 𝑤ℎ𝑖𝑙𝑒(1){ 

4 % 𝑂𝑟𝑏𝑖𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛  

5 𝑟𝑎𝑤𝐺𝑝𝑠𝑑𝑎𝑡𝑎 =  𝐺𝑝𝑠𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡();  

6 𝑝𝑟𝑒𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔𝐴𝑛𝑑𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑟𝑎𝑤𝐺𝑝𝑠𝑑𝑎𝑡𝑎, 𝐼𝐺𝑆);  

7 𝑠𝑡𝑎𝑡𝑒𝑠𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  𝑜𝑟𝑏𝑖𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔();  

8 𝑜𝑟𝑏𝑖𝑡𝑃𝑟𝑖𝑑𝑖𝑐𝑡𝑒𝑑 =  𝑜𝑟𝑏𝑖𝑡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛();  

9 % 𝑂𝑟𝑏𝑖𝑡 𝐶𝑜𝑛𝑡𝑟𝑜𝑙  

10 𝑢 =  −𝑘𝑥  

11 } 

Now that the AOCS Task Set has been described, their mapping to the distributed 

computing nodes is described next, in which three nodes are employed for evaluation 

purposes. 
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8.3.4.2 Tasks-to-Nodes Mapping  

In order to distribute the AOCS task set across the FTDC system, they have to be 

mapped correctly to the individual computing nodes. The reason being, that one task 

outcome may be used as an input to another task and, therefore, task execution 

requires this inter-dependency information to be taken care of unmistakeably.  

In our case, there are six tasks listed in Table 8.4, which comprise the AOCS Task 

Set and 3 distributed computing nodes are used in the implemented FTDC system.  

Figure 8.4 shows how the Task Set can be mapped to these nodes. The mapping 

decisions are described below: 

 Task # 5 and Task #6 being critical and are mapped to all nodes.  

 Task #1 is mapped to node 1. Task #2 cannot execute till Task #1 has completed. 

 Task #2 and Task #3 are mapped to node 2. Task #3 cannot execute till Task #2 

has completed.  

 Task#4 is mapped on node 3. 
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Figure 8.4: Mapping of AOCS Tasks. 
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8.4 Distributed AOCS Computer Implementation 

and Testing  

The fault-tolerant AOCS computer consists of three distributed nodes, which are based 

on the MPSoC design presented in 7.3. Each processing unit communicates with its 

peers via a separate network, from the network used by AMFT. The targeted network 

high data rate time-triggered network (TTEthernet) was not available and therefore, 

the lower speed CAN network was used. Since CAN is not time triggered, and to make 

its behaviour deterministic, the TDMA scheme was used. A time slot is allocated to 

each node, and only that node can communicate during that time slot, i.e. transmit its 

information. The time slots are repeated after a set time, known as the TDMA cycle. In 

the TDMA cycle, the slot time is based on the size of the data in bits, and the data rate 

of the communication network, as well as the minimum time, a node can wait before 

its information becomes invalid. The details of the fault-tolerant distributed AOCS 

system parameters are given in Table 8.5.  

Table 8.5: Distributed AOCS System Parameters. 

 

8.4.1 System Configuration 

The following sections discuss the slot allocation separately for the processing unit 

and the AMFT block. 

TDMA Slot Time: AMFT has to communicate its information to its peers, and the 

shared information is the task outcome in the form of the state data ∆𝑆𝐷. For instance, 

from Table 8.4, the largest state data size 𝑡𝑠𝑠𝑖𝑧𝑒 is that of Task #5, which is 60 bytes. 

Parameter  Distributed AOCS 

Computer 

Number of Nodes 3 

Task Set AOCS 

AMFT Network Slot Time (ms) 30, 300  

AMFT Network Speed (Mbps) CAN @ 1Mbps 

Main Network  Slot Time (ms) 100  

Main Network Speed (Mbps) CAN @ 1Mbps 

Development Board ZedBoard 
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That state data has to be passed to its peer node within the shortest time possible, 

which is determined based on the communication speed as follows. The controller area 

network (CAN) used for the AMFT communication is limited to 1 Mbps. According to 

Equation 7.1 to transmit state data size 𝑡𝑠𝑠𝑖𝑧𝑒  of 60 bytes on CAN, it requires a 

transmission time 𝑡𝑇𝑋 of 1002 µsec. Based on that, a slot duration 𝑡𝑐𝑠 of approximately 

2 ms is sufficient to transmit the state data 𝑡𝑠𝑠𝑖𝑧𝑒 of 60 bytes, ensuring that the data is 

reliably delivered before the start of the next slot.  

The second communication parameter is the slot repetition time, which is derived 

from the tasks period T. For example, from Table 8.4, the minimum task period 

corresponds to 50 ms, which means that the data must be delivered within 50 ms  time 

interval before the next execution of the same task. A repetition period, equal to the 

task period T, helps to maintain the updated data state of a particular task during the 

task migration process. 

AMFT Configuration: As the AMFT is deployed in a distributed computing 

scenario, additional information has to be incorporated in the AMFT. This information 

is in the form of configuration tables, i.e. Node and Task Migration Tables, which are 

stored in the AMFT as described in Section 5.3.4. 

 Node Table: This table holds information about the active and non-active nodes in 

the system. In the initial state, it is assumed that all nodes in the system are active. 

and the number of the nodes in the distributed system are known. As soon as the 

connection is established, the node table is updated, based on the current status of 

each node. The table is also updated in case of a node failure, as necessary. 

 Task Migration Table: This table holds critical information about the initial Task 

Mapping, as well as possible migration scenarios of tasks in case of faulty nodes. 

Therefore, each AMFT knows how to migrate tasks when a certain node fails.  

In this case study, all possible scenarios of node failures are defined statically (off-

line). Similarly the above two tables are both set off-line, supporting all scenarios, 

which are needed to assess the performance of the proposed architecture.  
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8.4.2 Experimental Results 

During the testing of the distributed AOCS computer, the following parameters were 

measured to evaluate the performance: (i) reconfiguration time, (ii) state rollback and 

(iii) computational performance. The rest of this section describes the obtained results 

for each of these measurements. For the purpose of testing, faults were injected in the 

distributed AOCS computer using the fault injection mechanism presented in section 

7.5. Two main scenarios were used, which were based on a TDMA cycle time of 30 

ms and 300 ms, respectively 

8.4.2.1 Reconfiguration Time 

The reconfiguration time is measured for a different number of nodes failures.  As 

shown in Table 8.6 the reconfiguration time, 𝑡𝑅𝑒𝑐𝑜𝑛𝑓, is largely dependent upon the 

TDMA cycle time and its value is always less than or equal to the TDMA cycle time 

plus the fault detection time 𝑡𝐷. 

Table 8.6: Reconfiguration Time Measurements 

8.4.2.2 Task State Rollback 

During normal operation, each task state of the AOCS is checkpointed. The task state 

checkpointing data is provided to each migrated task, when it restarts its execution on 

the target node. The rollback of the task state depends on the reconfiguration time 

Failure 

Scenario 

AMFT 

Slot 

Time, 

𝐭𝐜𝐬 (ms) 

AMFT 

Networ

k 

TDMA 

Cycle 

Time 

(ms) 

Fault 

Detectio

n Time, 

𝐭𝐃 (ms) 

 

Fault 

Message 

Transmis

sion  

Time, 𝐭𝐅𝐌 

(ms) 

Transmis

sion 

Time, 𝐭𝐓𝐗 

(ms) 

 

Migratio

n Time, 

𝐭𝐓𝐌  (ms) 

 

Reconfiguration Time 

(ms), 
𝐭𝐑𝐞𝐜𝐨𝐧𝐟  =   𝐭𝐃 + 𝐭𝐅𝐌 +
 𝐭𝐓𝐗 + 𝐭𝐓𝐌 

Measured 

Value (ms) 
Expected 

Value 

(ms) 

One node 
Fails 

10 30 101 8 to 26 1 ~1 111 to 129 < 140 

Two nodes 

Fail 

102 10 to 28 1 ~1 114 to 132 

One node 

Fails 

100 300 110 98 to 290 1 ~1 210 to 402 < 430 

Two nodes 
Fail 

120 100 to 295 1 ~1 222 to 417 
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𝑡𝑅𝑒𝑐𝑜𝑛𝑓 and task period  𝑇. The measured value of the rollback of each task state for 

the AOCS is stated in Table 8.7. It is evident from the results that the number of the 

task state rollbacks, 𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 , is directly related to the TDMA cycle and the 

reconfiguration time. For a large value of TDMA cycle, the rollback increases linearly 

considering a constant task period T.  

As observed above, the state data,  ∆𝑆𝐷 , which is stored on the node following a 

node failure may be a few execution cycles old in case of the 300 ms network cycle 

time, so the task state would be “rolled back” to the previous state. This rollback only 

momentarily affects the AOCS output, which is acceptable for this type of applications 

and will be further analysed in section 8.5.1. However, the number of rollbacks, 

𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 , can be reduced by employing a high-speed communication protocols for the 

AMFT network. 

Table 8.7: Rollback of Task State. 

8.4.2.3 Computational Performance 

To assess the computational performance of the proposed fault-tolerant distributed 

AOCS computer, it was compared with a centralized AOCS computer and an AOCS 

Task 

# 

Task Task 

Period, T 

(ms) 

State Data, 

∆𝑺𝑫 

State Data 

Size 

 𝐭𝐬𝐬𝐢𝐳𝐞(𝐛𝐲𝐭𝐞𝐬) 

No. of state 

Rollback 

𝐧𝐫𝐨𝐥𝐥𝐛𝐚𝐜𝐤of 

task state 

No. of state 

Rollback 

𝐧𝐫𝐨𝐥𝐥𝐛𝐚𝐜𝐤of 

task state 

TDMA Cycle 

Time= 30 

(ms) 

TDMA Cycle 

Time= 300 

(ms) 

1 Attitude 

Measurement & 

Anomaly Check 

100 Sun, 

Magnetometer 

and rate gyro   

18 1~2 2~5 

2 Attitude 

Determination 

100 Attitude 

Angles and 

angular rate 

24 1~2 2~5 

3 Attitude Control 100 Torque vector 12 1~2 2~5 

4 Orbit estimation 

and Control 

10000 Position, 

Velocity 

values and 

Torque vector 

36 0~1 0~1 

5 Telemetry 1000 AOCS 

Parameters 

60 0~1 0~1 

6 Telecommand Aperiodic Command 8 N/A N/A  
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computer with active replication in terms of Dhrystone Millions Instruction per 

Seconds (DMIPS). Both the FT distributed and the replication AOCS computers are 

comprised of three computing nodes. In all three cases, the computing nodes of the 

AOCS computers were implemented using the MPSoC design, presented in Chapter 7. 

For each AOCS computer, the total available DMIPS computing performance was 

obtained from Equation 8.1, where 𝐷𝑀𝐼𝑃𝑠𝑛𝑜𝑑𝑒   is a Dhrystone MIPs per MPSoC node 

and 𝑛 is the number of nodes per computer. Dhrystone MIPs per second of 2380.95 

was obtained by running the Dhrystone code on each individual computing node 

(implemented in the Xilinx Zynq FPGA on the ZedBoard).  

The computational performance results for the three computer configurations are 

shown in Figure 8.5 in terms of (i) total available DMIPS, (ii) utilized DMIPS, (iii) 

overhead DMIPS due to fault-tolerance management and (iv) remaining available 

DMIPS (calculated by subtracting the total available DMIPS from utilized DMIPS). 

As it can be seen from Figure 8.5, compared to the centralized, the active replication 

AOCS and the distributed AOCS computers have higher total available DMIPS 

because they both are comprised of three computing nodes. The comparison of the 

three computers in terms of the utilized DMIPS shows that the computational demand 

of the distributed DMIPS is almost equal to the centralised computer DMIPS, while 

the active replication AOCS computer is less computationally efficient, which is due 

to the replication of the tasks on each node, causing a significant portion of the DMIPS 

to be spent on replicas execution and maintenance. The slightly higher utilised DMIPS 

in the proposed distributed AOCS computer, compared to the centralised case, is due 

to its fault management and task migration support. The active replication computer 

requires much higher overhead DMIPS too, as all the three computing nodes execute 

the same tasks and further computing resources are required for voting and consensus 

among the replicated tasks. Compared to the replication computer, the distributed 

computer requires considerably lower overhead DMIPS. The centralized computer has 

the lowest overhead DMIPS, which is not surprising, as it uses a single computing 

node running an internal FT scheme that does not require interaction among 

computing resources. The remaining DMIPS of the distributed AOCS computer are 

significantly higher than the two other options, providing additional computing power 

that can be utilized for enhancing its reliability or computational performance. Based 
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on these results, it can be concluded that the task-oriented fault-tolerant distributed 

approach is not only reliable but it is also computationally efficient.   

𝐷𝑀𝐼𝑃𝑆𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = 𝐷𝑀𝐼𝑃𝑆𝑛𝑜𝑑𝑒 ∗ 𝑛 (8.1) 

 

Figure 8.5: Comparison of Computational  Performance 

8.5 Analysis of Experimental Results 

This section presents an analysis of the obtained experimental results in terms of 

computational integrity and fault coverage.  

8.5.1 Computational Integrity 

It was mentioned in section 3.6 that the computational integrity of the fault-tolerant 

computing system depends on the reconfiguration time, 𝑡𝑅𝑒𝑐𝑜𝑛𝑓 , and the number of 

the task state rollbacks,  𝑛𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘. In fact, the computational integrity of the FTDC 

system increases with decreasing the values of both parameters. Computational 

integrity requirements are application specific. This section is dedicated to evaluating 

the computational integrity of the implemented FT distributed AOCS. 

Reconfiguration Time: The reconfiguration time 𝑡𝑅𝑒𝑐𝑜𝑛𝑓 should be minimized and 

ideally should be lower than the minimum task period 𝑇 to achieve high computational 

integrity. It is evident from the results given in Table 8.6 that when the cycle time was 

set to 30 ms, the reconfiguration time was measured to about 114 ~ 132 ms, and for 
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the large TDMA bus cycle of 300 ms, reconfiguration time was about 222 to 417 ms, 

which is higher than the acceptable limit of 100 ms (minimum task period). Although, 

this time value is deterministic, it will cause a task state to rollback, when the task 

resumes its function on other node.  

To keep the reconfiguration time 𝑡𝑅𝑒𝑐𝑜𝑛𝑓 small, the sum of the network TDMA 

cycle time and fault detection time 𝑡𝐷 should be less than the minimum task period 𝑇. 

The value of the TDMA cycle time can be reduced by employing a high speed 

communication network while the fault detection 𝑡𝐷 time can also be reduced by the 

fault detection task period  𝑡𝐹𝐷_𝑃𝑒𝑟𝑖𝑜𝑑 as discussed in section 7.6.  

Effect of State Rollback on Computational Integrity:  It is evident from Table 8.7, 

that a maximum of 5 rollbacks can be observed during the migration process. To 

assess the state rollback impact on the AOCS, the associated effects were simulated in 

Simulink. 

Figure 8.6 shows a Simulink model for the Attitude Determination and Control System 

(ADCS). The model is comprised of an attitude proportional derivative (PD) 

controller, spacecraft attitude dynamics block, external disturbances block and a set of 

sensor blocks. The connections of the each block to the other blocks are as follows: 

 The input desired angles, 𝜙𝑑  , 𝜃𝑑, 𝛹𝑑,  and angular rates 𝜔𝑥
𝑑 , 𝜔𝑦

𝑑, 𝜔𝑧
𝑑, 

are subtracted from the attitude determination angles 𝜙 , 𝜃, 𝛹, and angular rates 

𝜔𝑥 , 𝜔𝑦, 𝜔𝑧 by the vector subtraction blocks.  The output of these blocks is the 

required difference in the desired and actual attitude of the spacecraft which 

needs to be corrected. 

 The attitude difference in terms of angles [𝜙 − 𝜙𝑑  ;  𝜃 − 𝜃𝑑 ;   𝛹 − 𝛹𝑑  ]𝑇and 

angular rates  [𝜔𝑥 − 𝜔𝑥
𝒅 ;  𝜔𝑦 − 𝜔𝑦

𝒅 ;   𝜔𝑧 − 𝜔𝑧
𝒅 ]𝑻  as obtained in previous 

step is passed to the proportional derivative (PD) controller block for attitude 

correction. 

 The PD controller calculates the required torques 𝑢 =  [𝑇𝑥, 𝑇𝑦 , 𝑇𝑧] for the 

attitude correction of a spacecraft. However, before applying to spacecraft, the 

external disturbances  [𝐷𝑥, 𝐷𝑦  , 𝐷𝑧] are added by the disturbance block.  
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 The value of the torque 𝑢  is applied to the spacecraft, which represents the 

spacecraft attitude dynamics model. The output of the spacecraft dynamics 

block is fed back to the attitude sensor and determination blocks.  

The following describes the insertion of state rollback in the ADCS Simulink model 

and its effects on the performance of the ADCS.   

 In order to insert the state rollback into the Simulink ADCS model, the PD 

controller input was switched to some fixed attitude angles ϕ , θ,Ψ, and angular 

rate ωx , ωy, ωz that are represented as angle error and angular rate error in the 

ADCS Simulink model. This momentary pause of the input angles and angular 

rates to error angles and angular rates values produces an effect similar to a 

node failure in a distributed AOCS Computer.  

 The time of the pause depends on the number of the task state rollbacks. From 

Table 8.7, a maximum of 5 rollbacks were observed, however to be more 

realistic, six rollbacks were inserted into the PD controller input angles and 

angular rates, which corresponds to a pause of 1800 ms. The exact instance of 

the pause can be anywhere, but in this case a pause of 1800 ms as inserted at the 

simulation time of 50 sec, as shown in Figure 8.7.  

 The corresponding output observed values of the PD controller are shown in Figure 

8.8, where the change due to the state rollbacks is shown by a thin line and the 

actual attitude is represented by a thick line. It is evident from the results that the 

momentary rollback did not have a significant effect and recovered quickly.  

 The simulation results show that six task state rollbacks is acceptable for this type 

of application. This result confirms that the experimentally obtained value of 5 state 

rollbacks is within the acceptable margin.  

Based on the modelling outcomes above, we conclude that the distributed AOCS 

computer meets its computational integrity requirements. 
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Figure 8.6: Simulink Model of ADCS 

 

Figure 8.7: ADCS Controller Input with a State Rollback of 6 a) Angles b) Angular Rates 
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Figure 8.8: Satellite Attitude with a State Rollback of 6  a) Angles b) Angular Rates 

8.5.2 Fault Coverage 

As stated in section 3.6, a fault-tolerant system is assessed based on the fault coverage. 

As mentioned earlier in section 4.8 and section 5.3.1, both a software-based and a 

hardware based fault detection mechanisms were employed. The software-based fault 

detection covers mainly faults in the application software that may (i) arise due to a 

design error or (ii) propagate as a result of hardware faults. Hardware fault detection is 

handled by the AMFT block and uses (i) monitoring of the health status (temperature, 

current, voltage), (ii) WDT, and (iii) EDAC signals for errors in the main memory. In 

the following section, we only cover the SDC and the hardware faults.  

From the experimental observation of the distributed AOCS computer, the fault 

coverage for the different methods is shown in Figure 8.9. Any abnormality in the 

measured values is reported as a fault. The hardware based methods are capable to 

detect all faults related to health signals and memory errors as shown in Figure 8.9.  
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With regards to software-based fault detection, only the proposed algorithms for 

detection of SDC errors were evaluated for fault coverage, as shown in Figure 7.15. 

The transient algorithm covers the temporary faults in the CPU registers, data memory, 

and peripheral registers. As the memory faults are covered by a hardware EDAC, 

therefore, during the implementation of the SDC algorithm, most of the memory was 

not covered. Due to this, the memory fault coverage value observed during the 

evaluation was only 20 %. Permanent SDC algorithm covers the faults related to stuck-

at-bit faults and bridging faults in microarchitecture elements. Up to 90% of the 

permanent SDC errors due to struck-at-bit in the registers and ALU are detected, while, 

in case of bridging faults, the lowest detection capability of 70 % was observed for 

ALU bridging faults.   

It is evident from the results that the proposed algorithms are capable to detect 

transient as well as permanent faults. On any of the above fault detection, the AMFT 

block starts the task migration process, enabling fault-tolerance at the architectural 

level.  

 

 

Figure 8.9: Fault Coverage of the FT Distributed AOCS Computer 
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8.6 Summary 

In this chapter, a novel design of a fault-tolerant distributed AOCS computer was 

presented, which uses task migration to tolerate the failure of computing nodes. The 

functional design process is presented from the point of the distributed computing 

required by the AOCS application, which allows us to understand and observe the 

interaction between the various AOCS processes. The developed AOCS task set and 

its algorithms were presented.  

The AOCS tasks were mapped on a three node FTDC architecture. The hardware 

and software design of the AOCS distributed computer was then accomplished. The 

hardware design of the proposed computer was realized as a three-node MPSoC based 

distributed system. The software part comprised of the AOCS application, system 

support tasks and fault management functions were implemented in hardware. The 

proposed distributed AOCS computer was tested to evaluate of proposed FTDC 

approach under a near-realistic scenario.  

The observed results on the reconfiguration time, state rollback, and computational 

performance are promising. The small, deterministic value of the reconfiguration time 

showed that a failure could be immediately masked by migrating tasks to other healthy 

nodes. This reduces the system downtime, thus improving the overall availability of 

the system. The observations on the state rollback showed that a task could restart its 

execution with recent state data ∆𝑆𝐷 values minimizing the amount of computational 

loss, thus increases the computational integrity. The observations on the computational 

performance showed that a significant improvement is achieved by using task 

migration as compared to other approaches. 

In the last section, the approach is further evaluated for computational integrity 

and fault coverage. This showed that the achieved computational integrity is sufficient 

for the proposed AOCS application. The results on the fault coverage showed that 

major faults are covered, which are required to detect a node failure at the architectural 

level.   

In conclusion, the proposed approach to fault-tolerant distributed computing was 

demonstrated with regards to a satellite AOCS, demonstrating promising results, and 

future applications. However, the approach can easily be extended and made 
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applicable to intra-spacecraft and inter-spacecraft payload applications, as well as to 

other mission critical application domains.  
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Chapter 9 

9.Conclusions and Future Work 

This thesis addresses current requirements of the space industry for fault tolerant High 

Performance Embedded Computing.   

9.1 Research Summary 

Current and future space missions demand High Performance Embedded Computing 

that has to be highly reliable. We propose the use of a distributed computing 

architecture to address the high-performance demand, and determine a suitable fault 

management scheme to make the computing reliable. To address the proposed 

solution, we have investigated the existing literature from the point of view of existing 

architectures. However, after a detailed review, it was found that no single solution 

could meet the requirements. Although distributed computing has been employed in 

space applications, the fault tolerance capability relies on physical redundancy 

schemes, rendering them highly inefficient and costly. Therefore, a new approach that 

utilizes the best of distributed computing and a novel distributed fault management 

scheme is proposed. 

The FTDC architecture comprises three main components, a node, a 

communication network and a fault management scheme. There are two types of 

nodes suggested: a distributed computing node and an input-output node. A high-

speed communication network is recommended to interface all nodes. To determine 
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the faults in the nodes, a fault management scheme based on distributed coordination 

is proposed and employed. The fault management scheme requires a separate 

hardware in parallel with the processing unit within the distributed computing node. 

This enables a high reliability and availability measure of the scheme. The 

performance parameters that did not exist in the literature had to be developed to 

assess our or any other architecture in question. 

The proposed fault management scheme is named AMFT, which has been 

designed from scratch, developed and implemented on hardware, and assessed through 

newly developed assessment methods. The performance of the AMFT is deemed fully 

satisfactory, as a standalone unit, as well as when operating in a distributed computing 

application, after performing a rigorous set of tests.  

The proposed architecture improves the current state of the art in addressing a gap 

in the present knowledge and engineering practice as well providing a design that is 

practically realizable. This has been proven by the implementation of an MPSoC based 

distributed computing system that was found to perform to specification. 

To further examine the performance, the FTDC architecture was mapped to a 

realistic space AOCS application, which showed promising results. The system met 

the rigorous objectives of the AOCS application performing timely task migration in 

the event of a fault. The effect of the critical issue of rollback of state on system 

performance was shown to be minimal and sets a baseline for future work. 

9.2 Contributions to the State of the Art 

The following major contributions to the state-of-the-art have been accomplished in 

this research:   

 Novel architecture for Fault-Tolerant Distributed Computing is proposed. The 

first ever architecture for task oriented fault-tolerant distributed cooperative 

computing, which applies to intra-spacecraft and inter-spacecraft fault-tolerant 

distributed computing, has several unique features which make it different from 

the spacecraft conventional computing architectures. First, it divides a computing 

system into multiple groups, where each group has its dedicated TDMA based 

communication network, making the system operations more reliable and timely.  



Chapter 9. Conclusions and Future Work 

214 
 

The segregation of computing and input-output nodes avoids the problems of 

isolation. Furthermore, separate networks for application tasks and fault 

management functions do not affect the performance of each other. In particular, 

the architecture is proposed for space applications, however, numerous other 

embedded applications can also benefit from it. 

 Novel Adaptive Middleware Design for Distributed Fault-Tolerance Management 

is proposed.  The adaptive middleware for fault-tolerance (AMFT) block, which 

provides the necessary functionality for fault management and seamless 

adaptability of a distributed system by tasks migration in case of a failure is the 

first work that has addresses fault management by migrating tasks in a distributed 

system. In addition, this is the first work that has adopted a novel approach of task 

oriented fault-tolerant distributed computing for on-board spacecraft computing 

systems. 

 Novel MPSoC based Design for Fault-Tolerant Distributed System is designed and 

implemented. The MPSoC based approach to the implementation of fault-tolerant 

distributed computing system is the first ever MPSoC based design of fault-tolerant 

computing node that uses multiprocessor based design to integrate middleware and 

application functions. Contrary to traditional design of on-board computing node, 

this is more flexible, computational efficient while simultaneously requires less area 

and volume. Its design flexibility allows its use for intra or inter-spacecraft 

distributed computing applications by just modifying the communication network.  

 New Fault-Tolerant Distributed Attitude and Orbit Control System Computer for 

use on board satellites is designed. The AOCS design presented in this thesis is the 

first ever distributed design of a satellite AOCS computer which is able to migrate 

tasks following a failure of a computing node. The new MPSoC based design was 

implemented and fully tested and evaluated. 

 Novel Fault Detection Algorithms are proposed and designed. The two novel 

algorithms for detection of silent data corruption combined with symptom-based 

fault detection require a very small amount of detection time. Contrary to other 

detection algorithms, are most suited to distributed computing in terms of resource 

utilization. 
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 New Reliability and Availability Models for fault-tolerant computing systems are 

proposed. The reliability and availability models for the evaluation and 

comparison of the proposed approach are the first attempt of using mathematical 

models for fault-tolerant computing systems, which allowed comparing it against 

the conventional spacecraft architecture and schemes. The evaluation shows that 

proposed approach of fault-tolerant distributed computing is more efficient in 

terms of factors reflecting reliability, availability and high performance computing.  

  A Fault Injection Mechanism is proposed and implemented, which is particularly 

suitable to distributed computing. The mechanism to inject faults into distributed 

computing system is different to other schemes in that it is particularly designed to 

test distributed computing systems.  It is capable of injecting a fault in any of the 

computing nodes via a software interface on a host computer software. This eases 

the testing of a distributed computing system under the influence of faults.  

 MPSoC design for a CubeSat mission is designed and implemented. The features 

of the MPSoC make it suitable for the computing system design of future very 

small satellites, e.g. satellites with a mass < 1 kg.  For in-orbit demonstration of the 

proposed approach of fault-tolerant distributed computing, a printed circuit board 

(PCB) of MPSoC for a CubeSat mission was designed and implemented.  

9.3 Future Work 

The proposed architecture and the underlying fault management scheme, has shown 

promising results in the proof of concept as covered in this thesis. However, due to 

limited scope of this research there is room for future studies in the following 

directions. 

 Extensive performance testing of the Middleware block in the light of scalability, 

by adding more nodes, in multiple groups. The various implementation of AMFT 

can be further studied and assessed for the performance improvement. 

 Fault detection method can be further studied in light of false alarms.  

 The communication network can be further researched, both physical aspects as 

well as the multiple access scheme employed. 
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 Resource sharing in the multicore processor scenario can be further researched to 

minimize access times. 

 PCB designed be realized and deployed in future CubeSat based mission, for space 

qualification. 

 Utilize FPGA on the fly reconfigurability to migrate hardware modules, to address 

the task dependency of special hardware. 

 Employ an actual application for a spacecraft payload such as image compression 

or synthetic aperture radar (SAR), and assess the performance. 

 The underlying hardware technology for the implementation of design needs further 

investigation in terms of radiation susceptibility. 
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Appendix A.  

A.Definitions 

Definition A.1: Fault 

A fault is a hardware or software defect that can lead to the system entering an 

incorrect state. Faults are classified as transient, permanent and intermittent based on 

their duration. 

Definition A.2: Error 

A fault manifests itself as an error, such as a bit that is a zero instead of a one. An error 

is that part of the system state which is liable to lead to system failure. 

Definition A.3: Failure 

A failure is a state in which the system is restricted from performing its required 

functions. 

Definition A.4: Fault-Tolerant 

It is an ability of a computing system to continue its service in the event of failure. 

Failures can be a power, memory or processor failure. 

Definition A.5: Fault Avoidance 

An approach to protect a system so that happening of faults in a system can be 

avoided. Common fault avoidance methods in spacecraft are shielding, parts screening 

and rigorous testing.  
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Definition A.6: Fault Detection 

A system cannot tolerate faults unless it is aware of it. Fault detection is a process, 

which enables a system to know its faults.   

Definition A.7: Fault Isolation 

Fault isolation is the property of a system that when something fails, the effect of the 

failure is limited in scope.  

Definition A.8: Error Recovery 

When a fault is detected, the processor must take action to recover from its effects. 

Recovery from errors is characterized as roll forward and roll back.  

Definition A.9: Fault Diagnosis 

The process of fault identification is called fault diagnosis. 

Definition A.10: Fail-Safe 

A fail-safe device is one that responds in a way that will cause no harm in case of a 

failure. 

Definition A.11: Fail-Stop 

In case of a fail-stop system, the system stops producing outputs when it fails. 

Definition A.12: Fail-Symmetric 

The fault results in the same erroneous value being sent to all other redundant units. 

Definition A.13: Fail-Asymmetric 

The fault results in different erroneous values being sent to other redundant units. 

Definition A.14: Real-Time and Non-Real-Time Systems 

Real-time systems include safety-critical systems in which correct behaviour depends 

upon meeting the real-time requirements of the system.  In the Non-Real-Time system, 

no strict time limit is required for the computing operations. 

Definition A.15: Asynchronous Systems 

In asynchronous systems, there is no global clock, and no assumptions about process 

execution speeds and message delivery delays are made. 

Definition A.16: Synchronous Systems 
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In synchronous systems, where computers share a common notion of time, the relative 

speeds of processes and communication latency are bounded.   

Definition A.17: Reliability 

The reliability of a system at time t is the probability that system is operating correctly 

from time zero until time t. 

Definition A.18: Availability 

The availability of a system at time t is the probability that the system is available for 

the time t duration. 

Definition A.19: Mean-time-to-failure (MTTF) 

It is the amount of the time that a system is available between outages or failures.  

Definition A.20: Mean-time-to-Repair (MTTR) 

It is the amount of time to repair a system and bring it back online.  

Definition A.21: Mean-time-between-failure (MTBF) 

It is the amount of time that elapses between one failure and the next failure. It is 

mathematically equal to the sum of the MTTF and MTTR.  

Definition A.22: Fault Monitoring 

Fault monitoring observes the behaviour of the system for checking errors and 

malfunctions in the software and hardware of computer system.  

Definition A.23: Task Migration 

Tasks that were running on a processor that subsequently failed are migrated to other 

healthy processor or processors are termed as task migration. 
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Appendix B.  

B.Derivation of Reliability 

B.1 Reliability of Series System 

In the series system, components are connected in a series configuration. A failure of 

one of the system components fails the entire system. Conceptually, a series system is 

one that is as weak as its weakest link. A graphical description of a series system is 

shown in Figure B.1. 

1 2 n
 

Figure B.1: Series System of n Components 

In order to calculate the reliability of the system, usually block diagrams are used 

whereby each block having its reliability for a given mission T. The reliability of the 

series system is described by equation B.1, if each block reliability differs. 

 𝑅𝑠 = 𝑅1 × 𝑅2  × . . . 𝑅𝑛 (B.1) 

If components are identical, then the reliability is represented by equation B.2 

 𝑅𝑠  =  [𝑅𝑖]
𝑛(if all 𝑖 =  1, . . . , 𝑛) (B.2) 
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To obtain equation B.2, statistical knowledge for the derivation of equation B.2 is 

essential. In the following section, we will derive the equation B.2 using the statistical 

knowledge.  

In a series system of "n" components, the following are two equivalent "events": 

"System Success" = "Success of every individual component." 

Therefore, the probability of the two equivalent events, that define total system 

reliability for mission time T (denoted R(T)) must be the same: 

 𝑅(𝑇) = 𝑃[𝑠𝑦𝑠𝑠𝑢𝑐𝑐𝑒𝑠𝑠] = 𝑃[ 𝑐𝑜𝑚𝑝1 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝 2…𝑎𝑛𝑑 𝑐𝑜𝑚𝑝 𝑛] (B.3) 

 = 𝑃[𝑐𝑜𝑚𝑝1𝑠𝑢𝑐] …  𝑃[𝑐𝑜𝑚𝑝 𝑛𝑠𝑢𝑐] =  𝑅1(𝑇)… 𝑅1(𝑇) (B.4) 

 = 𝑒−𝜆𝑇 … 𝑒−𝜆𝑇 = (𝑒−𝜆𝑇)𝑛 (B.5) 

All system components are assumed identical and independent with the same failure 

rate "λ". Hence, the entire system reliability R(T) is equal to the product of all 

component reliability. 

B.2 Reliability of Parallel System 

In the parallel system configuration, as long as not all of the system components fail, 

the entire system works. As all components of a parallel system are connected in a 

parallel configuration, therefore total system reliability is higher than the reliability of 

any single system component. A graphical description of a parallel system of "n" 

components is shown in Figure B.2. 

1

2

n
 

Figure B.2: Parallel System of m Components. 
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Reliability of a parallel system is derived as follows: 

 𝑅𝑠  =  1 − (1 − 𝑅𝑖)  (B.6) 

 =  1 − (1 − 𝑅1)  ×  (1 − 𝑅2)  ×. . . (1 − 𝑅𝑛) (B.7) 

If the component reliability differ, or  

 𝑅𝑠  =  1 − (1 − 𝑅𝑖)  =  1 − [1 −  𝑅]𝑛 (B.8) 

If all "n" components are identical: [Ri = R; i = 1, ..., n] 

To derive equation B.8, a simple parallel system composed of n = 2 identical 

components are considered. The system can survive only if the first component, or the 

second component, or both components, survive for mission time, T. The same can be 

written in terms of statistical "events": 

 𝑅(𝑇) = 𝑃[𝑠𝑦𝑠𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑇] = 𝑃[ 𝑋1 > 𝑇 𝑜𝑟 𝑋2 > 𝑇 𝑜𝑟 𝐵𝑜𝑡ℎ > 𝑇] (B.9) 

 =  𝑃 (𝑋1 > 𝑇) +  𝑃(𝑋2 > 𝑇) − 𝑃( 𝑋1 > 𝑇 𝑜𝑟 𝑋2 > 𝑇) (B.10) 

 = 𝑅1 (𝑇) + 𝑅2 (𝑇) − 𝑅1 (𝑇) 𝑥 𝑅2 (𝑇) (B.11) 

 = 𝑅1 (𝑇) [1 − 𝑅2 (𝑇)] + 𝑅2 (𝑇) + (1 − 1) (B.12) 

  = 1 +  𝑅1 (𝑇) [1 − 𝑅2 (𝑇)] − [1 − 𝑅2 (𝑇)] (B.13) 

 =  1 − [1 − 𝑅1(𝑇) ] [1 − 𝑅2 (𝑇)] (B.14) 

 = 1 − [1 − 𝑃(𝑋1 > 𝑇)] [1 − 𝑃(𝑋2 > 𝑇)] (B.15) 

This same approach can be extended to an arbitrary number of "n" parallel 

components which can be identical or different.  

B.3 Reliability of Satellite On-Board Computers 

In this section, state-of-the-art OBCs and their reliability values are discussed. Firstly, 

a centralized OBC design will be presented. Following that, different OBC designs 

will be discussed that use redundancy for fault-tolerance purposes.  
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The reliability of the OBCs in this section is evaluated using the binomial 

distribution, referred to as the Bernoulli distribution, which is a simplified and suited 

to reliability applications [28]. It applies to a situation in which there are n independent 

trials, whereby an event can either occur (success) or not occur (failure). The 

probability of success on any one trial is b, and that of failure is 1 − b. The number of 

successes is denoted by r. Thus, the probability of r successes in n trials with the 

probability of one success being b is given by Equation B.16. 

 𝐵(𝑟; 𝑛, 𝑏) = (
𝑛

𝑟
) 𝑏𝑟(1 − 𝑏)𝑛−𝑟 

(B.16) 

𝑓𝑜𝑟 𝑟 = 0,1,2, … , 𝑛 

where: 

(𝑛
𝑟
) =

𝑛!

𝑟!(𝑛−𝑟)!
 ≡ number of combinations of n things taken r at a time. 

B.3.1 Centralized OBC 

In the centralized OBC, shown in Figure B.3, one physical internally redundant OBC 

unit is used. Although the OBC is internally redundant, physical damage or functional 

failure affecting the complete OBC unit can be catastrophic. Failure of the OBC can 

lead to either fail-safe mode or it can cause a complete satellite failure. The reliability 

of the centralized OBC, Rcent_obc (t), is measured by the success probability b of the 

OBC, which follows an exponential distribution. So Rcent_obc(t) can be represented by 

Equation B.17 where λ represents the failure rate of the centralized OBC, as follows: 

 𝑅𝑐𝑒𝑛𝑡𝑜𝑏𝑐
(𝑡) =  𝑒−𝜆𝑡         (B.17) 

 

Centralized OBC

 

Figure B.3: Centralized OBC Reliability 
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B.3.2 Cold Standby Redundant OBC 

The cold standby OBC, shown in Figure B.4, is the simplest method to provide 

redundancy against failures in an OBC design. In a cold standby redundancy, usually 

one identical OBC unit is placed in power off state along with the primary OBC. The 

redundant back-up OBC unit is powered up in case of failure of the primary OBC. As 

the primary and back-up OBC units are not synchronized, a considerable amount of 

time is required for the back-up unit to switch on and to reach a known state. In 

addition, a supervisory unit is required for the failure detection, isolation and power-up 

of the back-up OBC as shown in Figure B.5. The supervisory unit monitors the OBC 

parameters for detection of failures. If the parameter values are violated compared 

with the predefined limits; it performs switching of power and IOs from the primary to 

the redundant OBC unit. 

OBC-1
(Active)

OBC-2
(InActive)

 

Figure B.4: Cold Standby OBC 

Supervisory 
Unit

R

P

IOs

Power
Input

Input/Output 
Isolation Switch

 

Figure B.5:  Supervisory Unit  

The reliability of the cold standby redundant OBC, Rcsb_obc(t), is equal to the sum of 

the probabilities of 2 out of 2 and 1 out of 2 working OBCs as represented by Equation 
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B.18. After solving Equation B.18 using the exponential distribution for the 

probability of success b, we obtain the overall reliability, Rcsb_obc(t) , for the cold 

standby redundant OBC as given by Equation B.21. 

 𝑅𝑐𝑠𝑏_𝑜𝑏𝑐 = 𝑅𝑠𝑢𝑝 ∗  [𝐵(2; 2, 𝑏) + 𝐵(1; 2, 𝑏)] (B.18) 

 𝑅𝑐𝑠𝑏_𝑜𝑏𝑐 = 𝑅𝑠𝑢𝑝 ∗  (
2

2
) 𝑏2(1 − 𝑏)0 + (

2

1
) 𝑏1(1 − 𝑏)1 (B.19) 

 𝑅𝑐𝑠𝑏_𝑜𝑏𝑐 = 𝑅𝑠𝑢𝑝 ∗ (2𝑏 − 𝑏2 ) (B.20) 

 𝑅𝑐𝑠𝑏𝑜𝑏𝑐
(𝑡) = 𝑅𝑠𝑢𝑝 ∗ (2𝑒−𝜆𝑡 − 𝑒−2𝜆𝑡) (B.21) 

 

where: 
 

Rcsb_obc Reliability of cold standby OBC  

Rsup Reliability of Supervisor Unit 

B(r;n,b) Binomial expression showing ‘r’ out of ‘n’ are healthy  [28] 

b Probability of Success 

λ Failure Rate 

 

The reliability of the cold standby OBC, Rcsb_obc(t), is higher than the reliability of 

the centralized OBC, Rcent_obc(t), assuming that the supervisory unit is a high reliability 

component too. This is because of the inherent availability of a redundant unit which 

can be switched on in case of a failure of the main OBC. 

B.3.3 Warm Standby Redundant OBC 

In case of warm standby redundancy as shown in Figure B.6, both OBCs are in a 

powered on-state. However, only the primary OBC is executing tasks while the back-

up OBC unit is in an idle state. Similar to the cold standby redundancy, a supervisor is 

required for the detection, isolation and switch over to the back-up OBC unit in case of 

a failure. Optionally, the back-up unit can be used as a supervisor and can perform the 

fault tolerance management functions. There is a cost versus reliability trade-off of 
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using an external supervisor against an internally implemented supervisor on the back-

up OBC. Usually, it is preferable to have a separate supervisory unit.  

The downtime of the warm standby OBC is considerably less than that of the cold 

standby OBC. This is because the switching over to the redundant OBC requires very 

less time due to its on-state. So, in terms of availability the warm standby is 

comparatively a better option than the cold standby redundant OBC. However, the 

reliability of the warm standby OBC is similar and can be represented by Equation 

B.21 too. 

OBC-1
(Active)

OBC-2
(Active)

 

Figure B.6: Warm Standby OBC 

B.3.4 N-Modular Redundant OBC 

The N-modular redundant OBC design comprises more than one OBC units, all of 

them running in parallel, as depicted in Figure B.7. The choice of N is based on the 

required system reliability and usually a minimum three nodes are used because a two-

node system can only detect a fault but it does not know which one of the two units is 

faulty. All units are synchronized, processing the same input information and 

generating the same output data. In addition, the final output, which is delivered to the 

target system, is derived as a result of a majority voting stage. A voter detects a fault 

based upon the majority vote  of the module outputs [36]. In majority voting the 

number of healthy nodes should always be greater than the number of the faulty nodes 

in order for the voter to deliver the correct output.  

A failure of the voter in an N-modular redundant OBC can be catastrophic, 

leading to the failure of the whole OBC. Therefore, the reliability of the voter unit is 

very important. A voter can be implemented in hardware or software. A hardware 

voter, as shown in Figure B.8, compares the processors’ internal buses. Its placement 

is limited by a certain distance from the main processors because of the need for clock 

synchronization among the processors at a fine-grained level. On the other hand, a 
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software-based voter works at a message level, as shown in Figure B.9, whereby each 

of the processing units exchanges messages with the voter to generate an output. 

Software based voters are more relaxed in terms of synchronization among the 

processing units. In software based voting, messages are sent to the voter via 

network/bus from each processing unit. The voter then compares the messages and 

generates an output for the IOs. A software voter called ‘master/slave’ is implemented 

on the master processing unit as a software entity [124]. In a ‘master/slave’ voter 

configuration, all units send data to the master for the voted output.  

The main drawbacks of the N-modular redundant method are strict clock 

synchronization, common mode failures, difficult isolation process, increased fan-

in/fan-out, etc. In addition, it is difficult to resynchronize a node after it has recovered 

from a fault. Software voters can alleviate these problems, however, the final voted 

output has a higher latency due to the exchange of communication messages. 

OBC-1
(Active)

OBC-2
(Active)

OBC-N
(Active)

Voter

Sensor-1 Sensor-2 Sensor-3

 

Figure B.7: N-Modular Redundant OBC 
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Figure B.8: Hardware Voter 
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Figure B.9: Software Voter 

We consider here the Triple Modular Redundant (TMR) OBC, as the most 

common case of an N-modular redundant OBC design. We assume that the voter is an 

external hardware entity. The overall reliability of the TMR OBC with a hardware 

voter, RTMR_HV(3-2), is given by Equation B.24 as follows: 

 𝑅𝑇𝑀𝑅−𝐻𝑉(3−2) = 𝑅𝑣𝑜𝑡𝑒𝑟 ∗  [𝐵(3; 3, 𝑏) + 𝐵(2; 3, 𝑏)] (B.22) 

 𝑅𝑇𝑀𝑅−𝐻𝑉(3−2) = 𝑅𝑣𝑜𝑡𝑒𝑟 ∗  (
3

3
) 𝑏3(1 − 𝑏)0 + (

3

2
) 𝑏2(1 − 𝑏)1 (B.23) 

 𝑅𝑇𝑀𝑅−𝐻𝑉(3−2) = 𝑅𝑣𝑜𝑡𝑒𝑟 ∗ (3𝑏2 − 2𝑏3) (B.24) 

 

where 

𝑅𝑣𝑜𝑡𝑒𝑟: 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑉𝑜𝑡𝑒𝑟 

 

Contrary to the hardware voter, if a software voter is embedded inside the redundant 

nodes in a master/slave configuration, then the system reliability with a software voter, 

RTMR_SV(3-2) , is represented by Equation B.25 below:   

 𝑅𝑇𝑀𝑅−𝑆𝑉(3−2) = (3𝑏2 − 2𝑏3) (B.25) 

 

The success probability b is an exponential distribution, so the probability of the 

success b is substituted by e
-λt

 and the reliability of the TMR OBC can be represented 

by Equations B.26 and B.27, as follows: 
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 𝑅𝑇𝑀𝑅−𝐻𝑉(3−2)(𝑡) = 𝑅𝑣𝑜𝑡𝑒𝑟 ∗ (3𝑒−2𝜆𝑡 − 2𝑒−3𝜆𝑡) (B.26) 

 𝑅𝑇𝑀𝑅−𝑆𝑉(3−2)(𝑡) = (3𝑒−2𝜆𝑡 − 2 𝑒−3𝜆𝑡) (B.27) 

Generalized expressions for a maximum number of n nodes in a system with a 

hardware and a software voter are given by Equations B.28 and B.29 respectively, 

where r represents the healthy number of nodes and k is the summation index, as 

follows: 

 𝑅𝑇𝑀𝑅−𝐻𝑉(𝑡) = 𝑅𝑣𝑜𝑡𝑒𝑟 ∗  ∑ (
𝑛

𝑘
) 𝑒−𝑘𝜆𝑡 (1 − 𝑒−𝜆𝑡)(𝑛−𝑘)

𝑛

𝑘=𝑟

 (B.28) 

 𝑅𝑇𝑀𝑅−𝑆𝑉(𝑡) = ∑ (
𝑛

𝑘
) 𝑒−𝑘𝜆𝑡 (1 − 𝑒−𝜆𝑡)(𝑛−𝑘)

𝑛

𝑘=𝑟

 (B.29) 

B.3.5 1:N Redundant OBC 

The 1:N redundant system comprises multiple computing units along with a standby 

unit. All the primary units have similar functions thus allowing the standby unit to 

back-up any of the primary units in case of a failure. The switch over to the back-up 

unit is decided by one of the spare units called a checker, which continuously steps 

through each of the working units. If the checker disagrees with one of the working 

unit, it is assumed to be faulty and is replaced by a spare unit. 
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Appendix C.  

C.Implementation Details 

C.1 Board Level Implementation 

C.1.1 Resources 

The resources required to implement the fault-tolerant distributed system depend on 

the number of computing nodes that are required, which will be determined by the 

requirements of the particular system. A greater number of nodes can be employed to 

provide a higher level of fault tolerance for environments in which multiple computing 

units may be expected to fail. A greater number of nodes may also be utilized to 

provide additional processing power. This must be balanced against the additional 

resources required, which is an especially important issue for applications such as 

spacecraft systems.  

Electrical Power Consumption: Electrical Power is a scarce resource in embedded 

computing, particularly on board spacecraft. Therefore, it is essential for a distributed 

processing system to utilize electrical power as efficiently as possible. We measured 

the electrical power for the AMFT and processing unit using the National Instruments 

(NI) LabView 2011 and data Acquisition device [239]. As shown in Figure C.1, the 

computing load assigned to the individual units did not have a large impact on the 

unit’s power consumption and the total power was almost the same. This is an 

important result that shows that migration of the tasks to other computing unit does not 

http://web.mst.edu/~cottrell/ME240/Homework/transducers/DAQ/NI%20USB-6221.pdf
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have a large impact on the node electrical power consumption itself. In distributed 

computing system, the total power consumption increases linearly with the number of 

nodes. It may be possible to reduce power consumption through the use of dynamic 

frequency scaling. As shown in Figure C.2, by decreasing the operating frequency 1/4th 

for each node, electrical power of the distributed system can be reduced to half value.  

 

Figure C.1: Effect on Electrical Power with Task Load Variation. 

 

Figure C.2: Effect on Electrical Power with Frequency Variation. 
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C.2 MPSoC based Implementation 

C.2.1 Electrical Circuit Diagram 

 

Figure C.3: Circuit Diagram of MPSoC Implementation. 

C.2.2 Device Utilization 

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 3,551 106,400 3% 

Number used as Flip Flops 3,516     

Number used as Latches 0     

Number used as Latch-thrus 0     
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Number used as AND/OR logics 35     

Number of Slice LUTs 4,628 53,200 8% 

Number used as logic 4,234 53,200 7% 

Number using O6 output only 3,263     

Number using O5 output only 135     

Number using O5 and O6 836     

Number used as ROM 0     

Number used as Memory 239 17,400 1% 

Number used as Dual Port RAM 64     

Number using O6 output only 0     

Number using O5 output only 0     

Number using O5 and O6 64     

Number used as Single Port RAM 0     

Number used as Shift Register 175     

Number using O6 output only 174     

Number using O5 output only 1     

Number using O5 and O6 0     

Number used exclusively as route-thrus 
155     

Number with same-slice register load 112     

Number with same-slice carry load 
19     

Number with other load 24     

Number of occupied Slices 1,971 13,300 14% 

Number of LUT Flip Flop pairs used 5,419     

Number with an unused Flip Flop 2,124 5,419 39% 

Number with an unused LUT 791 5,419 14% 

Number of fully used LUT-FF pairs 2,504 5,419 46% 

Number of unique control sets 299     

Number of slice register sites lost 
1,117 106,400 1% 

to control set restrictions 

Number of bonded IOBs  20 200 10% 

Number of LOCed IOBs 20 20 100% 

Number of bonded IOPAD 130 130 100% 

IOB Flip Flops 4     

Number of RAMB36E1/FIFO36E1s 66 140 47% 

Number using RAMB36E1 only 66     

Number using FIFO36E1 only 0     

file:///E:/xapp1079_zedboard_DC/design/edk_system/implementation/system_map.xrpt
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Number of RAMB18E1/FIFO18E1s 0 280 0% 

Number of BUFG/BUFGCTRLs 5 32 15% 

Number used as BUFGs 5     

Number used as BUFGCTRLs 0     

Number of 

IDELAYE2/IDELAYE2_FINEDELAYs 
0 200 0% 

Number of 

ILOGICE2/ILOGICE3/ISERDESE2s 
0 200 0% 

Number of 

ODELAYE2/ODELAYE2_FINEDELAYs 
0     

Number of 

OLOGICE2/OLOGICE3/OSERDESE2s 
8 200 4% 

Number used as OLOGICE2s 8     

Number used as OLOGICE3s 0     

Number used as OSERDESE2s 0     

Number of PHASER_IN/PHASER_IN_PHYs 
0 16 0% 

Number of 

PHASER_OUT/PHASER_OUT_PHYs 
0 16 0% 

Number of BSCANs 1 4 25% 

Number of BUFHCEs 0 72 0% 

Number of BUFRs 0 16 0% 

Number of CAPTUREs 0 1 0% 

Number of DNA_PORTs 0 1 0% 

Number of DSP48E1s 3 220 1% 

Number of EFUSE_USRs 0 1 0% 

Number of FRAME_ECCs 0 1 0% 

Number of ICAPs 0 2 0% 

Number of IDELAYCTRLs 0 4 0% 

Number of IN_FIFOs 0 16 0% 

Number of MMCME2_ADVs 1 4 25% 

Number of OUT_FIFOs 0 16 0% 

Number of PHASER_REFs 0 4 0% 

Number of PHY_CONTROLs 0 4 0% 

Number of PLLE2_ADVs 0 4 0% 

Number of PS7s 1 1 100% 

Number of STARTUPs 0 1 0% 

Number of XADCs 0 1 0% 

Average Fanout of Non-Clock Nets 4.6     
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C.2.3 Permanent Fault Injection Design 

 

 Figure C.4: Permanent Fault Injection Mechanism Implementation. 
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Appendix D.  

D.Distributed Computing Node PCB Design Data 

D.1 Printed Circuit Board Layout  

 

Figure D.1: Front View.  
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Figure D.2: Back View. 

 

Figure D.3: Top Layer. 
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Figure D.4: Top Overlay. 

 

Figure D.5: Bottom View. 
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D.2 Bill of Materials 

 

 

.
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Appendix E.  

E.Software 

E.1 Application Software Top Level Design 
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E.2 AMFT Software Top Level Design 
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E.3 AOCS Telemetry List 

Unit TM Parameter Qty Minimum  Bits 

Magnetometer (MGM) 

Magnetic Field 3 36 

Compensation/Bias 3 24 

Scale Factors 3 24 

Alignment Matrices 3 24 

Sun Sensor (SS) 

Pixel Value 4 48 

In-FOV flag - SS 4 4 

Value Offset-SS 4 24 
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Exposure Time 4 12 

Scale Factor-SS 4 24 

SS Open Threshold 4 32 

Sun Vector - SS 4 56 

Current Sensor 

Current Value - CS 8 56 

Value Offset-CS 8 32 

Scale Factor-CS 8 32 

Tempertaure Sensor 

Temperature Value - TS 8 56 

Value Offset-TS 8 32 

Scale Factor-TS 8 32 

Rate Gyro  

Rate 4 64 

Value offset 4 64 

Scale Factor 4 64 

Gyro Speed 4 32 

GPS 

GPS Time 1 32 

GPS Date 1 16 

Position 3 63 

Velocity 3 54 

Valid Flag 1 1 

Torquerods (MTR) 

MTR Magnitude of Signal applied 3 30 

MTR Direction 
3 3 

 (+ve or -ve) 

MTR Mode 3 9 

Thruster 
Accumulated Firing Duration - 
THR 

12 192 

AOCS Computer Orbit Position 3 63 

(ACC) Orbit Velocity 3 54 

  Time 1 32 

  Quaternion 4 80 

  Bias Rate 3 48 

  TC Download - - 

  RAM Download - - 

  Reference Bias 4 64 

  Mode Status 1 4 

  System Software Message 4 16 

  Controller Output 3 48 

  Sub-Mode Status 1 4 

  Controller Gains/Paramters 18 576 

  
AOCS Mode Attitude Threshold 
Values 

8 80 

  Estimated Angular Rates 3 48 

  Selection of Sinking Thrusters 1 4 
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  Thruster Firing Configuration 1 4 

  
Thrusters fire (with count and 
time-tagging) 

36 576 

  Sensor Calibration Parameters 12 96 

  Sun Presnece 2 6 

  Gyro Integral Angle 4 80 

  AOCS Health State 48 48 

  
Memory of System Fault/Alarm 
State 

1 8 

  Faults and anomaly flags 40 40 

Total   335 3151 
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