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ABSTRACT

We address blind multiuser detection in a DS-CDMA down-
link channel in the presence of carrier frequency offset. The
synchronous users are separated by re-establishing orthogo-
nality of their spreading sequences in a shared equaliser at the
chip level. The adaptation algorithm is based on a constant
modulus criterion of the various users, for which a stochastic
gradient descent algorithm can be derived. We show that the
resulting filtered-error filtered-regressor algorithm requires
modifications in order to cope with carrier offset, and pro-
pose an combined blind multiuser equaliser with blind car-
rier frequency offset estimation. Simulations demonstrating
the algorithm’s convergence and BER performance are pre-
sented.

1. INTRODUCTION

In a DS-CDMA downlink scenario, transmission over a dis-
persive channel destroys the mutual orthogonality of the
codes which are used to multiplex the various users in the
system. As a result, the received and code-demultiplexed
user signals are subject not only to inter-symbol interference
(ISI) due to channel dispersion but also to multiple access
interference (MAI) due to the loss of code orthogonality.

A popular approach to suppress MAI and ISI is the
minimum output power (MOE) algorithm blindly cancelling
MALI and ISI terms but passing the desired user by code-
constraints [1, 2]. Recovering several users at the same
time exploits more knowledge of the system and has been
performed blindly using a constant modulus (CM) crite-
rion [3, 4, 5], whereby the derived algorithms either omit
spreading [4] or do not take the dispersiveness of the chan-
nel into account [3, 5]. Non-blind multiuser schemes in turn
are based either on the knowledge of a pilot [6, 7] or train-
ing sequences [8]. We have proposed a blind synchronous
multiuser equalisation algorithm in [9], which is based on a
constant modulus criterion, whereby the spreading codes in-
herently orthogonalise the decoded signals, making the need
for additional orthogonality constraints obsolete [4, 10]. The
result is a filtered-error filtered-regressor structure similar to
the training/decision directed approach in [7].

In this paper, we consider the above multiuser equaliser
in a DS-CDMA downlink with potential carrier offset. While
standard CM algorithms are invariant to carrier frequency
offset [11, 12], we analyse that the filtered-error filtered
regressor-structure destroys this nice property. Instead the
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algorithm has to be supplied with a carrier offset estimate to
work accurately, for which a solution is proposed.

The paper is organised as follows. In Sec. 2, we briefly
review the various signals and system blocks in a DS-CDMA
downlink. Sec. 3 first reviews the multiuser CMA algorithm
before analysing its sensitivity to a carrier frequency offset,
which also proposes a modified structure when operating un-
der such conditions. Sec. 4 considers a carrier offset detec-
tion strategy, which combined with the modified multiuser
CM algorithm is evaluated in Sec. 5 by simulations.

2. SIGNAL MODEL

We consider the DS-CDMA downlink system in Fig. 1 with
multiple symbol-synchronous users, which for the sake of
simplicity are assumed to have the same rate and fully load
the system, although multiple rate users and partial load can
be taken into account [13]. In a first step, the N user sig-
nals u,[n], [ = 0(1)N — 1 are code multiplexed using Walsh
sequences of length N extracted from a Hadamard matrix H.
The resulting chip rate signal, running at N times the symbol
rate, is further scrambled by c[m] prior to transmission over
a channel with dispersive impulse response g[m| and corrup-
tion by additive white Gaussian noise v[m], which is assumed
to be independent of the transmitted signal.

The dispersive channel g[m] destroys the orthogonality
of the Walsh codes, such that direct decoding of the received
signal r[m] with descrambling by ¢*[m] and code-matched
filtering by H' will lead to MAI and ISI corruption of the
decoded user signals #;[n], / = 0(1)N — 1. In order to re-
establish orthogonality of the codes, a chip rate equaliser
w[m] can be utilised [8, 7]. In the following, we are con-
cerned with the blind updating of the equaliser coefficients
wlm], as well as the influence and compensation of a carrier
frequency offset AQ.
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Figure 1: Flow graph for DS-CDMA downlink scenario.
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3. BLIND MULTIUSER EQUALISER

The receiver structure and the algorithm of the multiuser
equaliser proposed in [9, 13] will be briefly reviewed in
Secs. 3.1 and 3.2, while the influence of carrier frequency
offset is considered in Sec. 3.3.

3.1 Receiver Description

The receiver structure is shown in the lower branch of Fig. 1,
whereby for decoding, Walsh sequences are used as matched
filters. A Walsh sequence contained in a vector h; can be
extracted from an N x N Hadamard matrix,

T
H' = [ho hy - thl] (M
and user for decoding the /th user as
c*[nN] 0 y[nN]
c*[nN—1] y[nN—1]
iln] = th . .
0 *[nN—N+1] y[nN—.N+l}
wh 0 F[nN]
. wil FlnN—1]
= h/[nN]- : .
0 wh | [ AlaN—L—N+2]

whereby the descrambling code ¢*[m] has been absorbed into
a modified and now time-varying code vector fll [#N]. The
vector w € CF contains the equaliser’s L chip-spaced com-
plex conjugate weights. The time index highlighting that w
can be time-varying has been omitted for simplicity. Rear-
ranging w and h ,[nN] yields

h[[nN] 0 7nN]
hl[nN] FlnN—1]

|
g

t[n] . :
0 b/ [nN] | LF[AN—L—N+2]
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with H,[nN] € ZF*NHL=1) being a convolutional matrix

comprising the /th user’s modified code vector h'[n] and
£,y € CNFL-
nN '

3.2 Blind CM Multiuser Algorithm

We assume that the user signals u,;[n] consist of symbols
with a constant modulus ¥, such as BPSK, QPSK, or 8-PSK.
Therefore, the equaliser can be adapted blindly by forcing all

decoded users #,[n] onto a constant modulus. This can be
formulated, similarly to [4, 14], by a suitable cost function

Soms
N—1
§CM—5{IZO(Y2—L71[H]IZ)2}7 ©)

which measures deviation of each of the N users’ decoded
symbols from the desired modulus. The optimum equaliser
coefficient vector w is therefore given by

WoptCM = argnli,n Eem - @)
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Figure 2: Flow graph of DS-CDMA receiver structure; different
from Fig. 1, the carrier frequency offset compensation e/V=" has
been transfered to the receiver output.

There is no unique solution to (4), since minimising (3) is
ambiguous with a manifold of solutions due to an indeter-
minism in phase rotation. However, any member of this man-
ifold is a suitable solution for the equaliser w, and can be
used in combination with differential modulation schemes to
recover u,[n].

A simple stochastic gradient descent update rule for wn]
can be found by calculating the gradient of an instantaneous
cost function, i.e. omitting the expectation operator in (3),
yielding

Wi *NDéCM(Wn) (%)

with [9] the gradient estimate

Wht1 =

D",‘CM wy) =2 z —|@,[n]|*) H,[nN] &, i@;[n]  (6)

This algorithm differs from the standard CM algo-
rithm [15] or its extension in [4] in the inclusion of a code
filtered term H,[nN] r, rather than just the equaliser input
r[n]. This is structurally similar to a multiple-error filtered-X
LMS algorithm [16], which has been analogously employed
in equalisation [17, 8].

3.3 Carrier Frequency Offset

To investigate the influence of a carrier frequency offset on
the algorithm in (5) and (6), in the following we aim to ana-
lytically move the modulator e/2?™ causing the offset to the
receiver output.

Let the carrier offset-free received signal be denoted as
7lm] = r[m]-e~/=", as shown in Fig. 1. Thus, the tap delay
line vector

F[nN] = e V=" diag{l, e E L
= e /NIA(Z) r[nN]

e*j(L*I)E} r[nN] (7)

can be substituted into (2) yielding
i, n) = e /N= wHl H,[nN]\(Z) 1y, ®)
————
I:I[[nN,E]

Analogous to [9], the gradient estimate can be derived as

D§CM W) = =2 Z =l@[n]|*) H,[nN, =] r,y @ [n] (9)

whereby 7, [n] are the uncompensated user signals as defined
in Fig. 2.
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Thus, the modulation by the carrier offset frequency af-
fects the transfer function in the error path, and the Walsh
code matrix H,[nN] in (2) and (6) needs to be replaced by
ICII [7N,=] in (8) and (9). Therefore, the proposed blind syn-
chronous multiuser equaliser is — unlike standard CMA al-
gorithms [15] — sensitive to carrier frequency offset, and
must be supplied with an estimate = ~ AQ.

4. CARRIER FREQUENCY OFFSET
COMPENSATION

The aim is to estimate the carrier offset AQ from the de-
coded user data #,[n] in Fig. 2, in order to (i) supply the mul-
tiuser CM algorithm with an accurate carrier offset and (ii)
compensate for the phase rotation to yield the carrier offset
compensated user signals 7;[n]. Assuming the transmission
of QPSK user data, we investigate a carrier offset detection
method raising the decoded samples to the fourth power sim-
ilar to [18].

Similar to [19], the carrier frequency offset can be ob-
tained by

4 N-1

== go 45{(&,[;1]&7[;1—1\4])4} (10)

with a region of convergence if |AQ| < 7/(2NM). The re-
sulting = is an estimate of AQ, which however is biased
if 4;[n] = w,[n] 4 ¥[n] with noise ¥[n] that is correlated with
u;[n]. If v[m] in Fig. 1 is AWGN, then ¥[n] is likely to be
correlated due to the equaliser response w|n|. Therefore, the
bias term on = in (10) can be reduced by selecting M > L/N,
although this reduces the capability to estimate larger offset
values due to the reduced region of convergence. This above
carrier offset detection approach has been reported to operate
reliably for channel SNRs above approximately 10dB [18].

5. SIMULATION RESULTS

For the simulations below, we apply the proposed blind mul-
tiuser equaliser combined with a carrier frequency offset cor-
rection to two types of channels characterised by their aver-
age profile shown in Fig. 3. These are the mean moduli of
Rayleigh distributed coefficients of the channel impulse re-
sponses g, [m] and a more dispersive g, [m)].

5.1 Convergence

In order to demonstrate the convergence behaviour of the
proposed algorithm, we transmit N = 4 users with QPSK sig-
nals over g, [m] in the absence of channel noise, but with a
carrier offset of AQ = 0.2z. The equaliser comprises of 10
coefficients, with the second coefficient in w[0] set to unity.
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Figure 3: Moduli of complex valued channel impulse responses
g, [m] (left) and g, [m] (right).
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Figure 4: Real part of the equaliser coefficient trajectories during
adaptation (left) without adjusting =, and (middle) with adjusting =
together with (right) the learning curve of = during adaptation.
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Figure 5: Relative error in estimation of carrier frequency.

With a step size y = 0.05 and an initial value = = 0, the evo-
lution of the filter coefficients’ real part is shown in Fig. 4.
For the experiment in Fig. 4(left), the carrier frequency offset
estimate was set to zero during adaptation, while the trajec-
tories in Fig. 4(left) are the ones of a blind multiuser CMA
with the carrier frequency offset estimate incorporated. The
estimate = is calculated using a window of 200 symbol peri-
ods to evaluate (10) at each point in time. The learning curve
for = is given in Fig. 4(right), exhibiting good convergence
to the adjusted carrier frequency offset AQ.

The accuracy of the carrier frequency offset estimation
in noise is detailed in Fig. 5. The scenario is the same as
above, with N = 4 users transmitting over g, [m], and L = 10
coefficients in the equaliser. The system is given 500 symbol
periods to converge, and uses a window length of 200 sym-
bols for the estimation of =. Thereafter, the accuracy of = is
monitored of the next 500 symbol periods.

5.2 Bit Error Performance

To demonstrate the achievable BER over blindly equalised
dispersive channels with carrier offset, we consider two sce-
narios. The first scenario uses N = 4 users over channel g, [m]
and an equaliser of L = 20 coefficients. The results for three
different carrier offset frequencies are stated in Fig. 6, and are
benchmarked against the performance of a minimum mean
square error (MMSE) equaliser of same length. As seen in
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Figure 6: BER curves for transmission over g, [m]; CMA(1) and(2)
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Figure 7: BER curves for transmission over g, [m]; CMA(1) and(2)
refer to operation with or without adjustment of =.

Fig. 5, the carrier offset estimation is difficult at low SNR
values and hence leads to degraded performance compared
to the MMSE. However, in all cases the carrier offset estima-
tion makes a considerable difference to the convergence of
the overall system compared to the uncompensated system.

A second scenario uses a more dispersive channel g, [m]
to transmit N = 8 users with the help of an L = 64 coefficient
filter. The results for this case are given in Fig. 7 averaged
over an ensemble of 100 realisations of g, [m], demonstrating
good performance of the combined scheme.

6. CONCLUSIONS

A blind equalisation approach for a DS-CDMA downlink
scenario has been presented, which aims to enforce CM con-
ditions on the various user signals. A stochastic gradient al-
gorithm has been reviewed, which differs from previous CM
algorithms by a code-prefiltering of its input but also its sen-
sitivity to carrier frequency offsets. The latter has been cir-
cumvented by modifications to the algorithm, necessitating
the blind detection of the carrier frequency offset. A com-
bined scheme based on the multiuser CM algorithm and a
blind estimation of the carrier frequency offset has shown
good results in terms of convergence speed and BER per-
formance, and in some cases very closely approaches the
MMSE solution.
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