
Mach Learn (2007) 69: 97–114
DOI 10.1007/s10994-007-5010-1

Unconditional lower bounds for learning intersections
of halfspaces

Adam R. Klivans · Alexander A. Sherstov

Received: 9 September 2006 / Revised: 18 March 2007 /
Accepted: 13 April 2007 / Published online: 25 May 2007
Springer Science+Business Media, LLC 2007

Abstract We prove new lower bounds for learning intersections of halfspaces, one of the
most important concept classes in computational learning theory. Our main result is that any
statistical-query algorithm for learning the intersection of

√
n halfspaces in n dimensions

must make 2Ω(
√

n) queries. This is the first non-trivial lower bound on the statistical query
dimension for this concept class (the previous best lower bound was nΩ(logn)). Our lower
bound holds even for intersections of low-weight halfspaces. In the latter case, it is nearly
tight.

We also show that the intersection of two majorities (low-weight halfspaces) cannot be
computed by a polynomial threshold function (PTF) with fewer than nΩ(logn/ log logn) mono-
mials. This is the first super-polynomial lower bound on the PTF length of this concept class,
and is nearly optimal. For intersections of k = ω(logn) low-weight halfspaces, we improve
our lower bound to min{2Ω(

√
n), nΩ(k/ logk)}, which too is nearly optimal. As a consequence,

intersections of even two halfspaces are not computable by polynomial-weight PTFs, the
most expressive class of functions known to be efficiently learnable via Jackson’s Harmonic
Sieve algorithm. Finally, we report our progress on the weak learnability of intersections of
halfspaces under the uniform distribution.

Keywords Intersections of halfspaces · Halfspace learning · PAC learning · SQ learning ·
Statistical queries · Query learning · Lower bounds for learning · Polynomial threshold
functions · Harmonic sieve

1 Introduction

Learning intersections of halfspaces is a fundamental and well-studied problem in computa-
tional learning theory. In addition to generalizing well-known concept classes such as DNF
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formulas, intersections of halfspaces are capable of representing arbitrary convex sets. While
many efficient algorithms exist for PAC learning a single halfspace, the problem of learning
the intersection of even two halfspaces remains a difficult challenge. A variety of efficient al-
gorithms have been developed for learning natural restrictions of intersections of halfspaces
in various learning models (Vempala 1997; Klivans et al. 2004; Klivans and Servedio 2004;
Kwek and Pitt 1998).

Progress on proving hardness results for learning intersections of halfspaces has been
more limited. Klivans and Sherstov (2006) have recently given the first representation-
independent (cryptographic) hardness results for PAC learning intersections of halfspaces.
Feldman et al. (2006) have obtained closely related results. The only other relevant hardness
results are for representation-dependent (proper) learning: if the learner’s output hypothesis
must be from a restricted class of functions (e.g., intersections of halfspaces), then the learn-
ing problem in question is NP-hard with respect to randomized reductions (Alekhnovich et
al. 2004).

The PAC hardness results surveyed above are conditional, i.e., they depend on widely be-
lieved but unproven assumptions from cryptography or complexity theory. Our paper com-
plements that work by proving lower bounds that are unconditional but valid only for a
restriction of the PAC model. Specifically, we study the problem of learning intersections
of halfspaces in Kearns’ statistical query model of learning (Kearns 1993), an elegant re-
striction of Valiant’s PAC model (Valiant 1984). A learner in the statistical query model is
allowed queries of the form “What is Prx∼μ[Q(x,f (x)) = 1], approximately?” Here μ is
the underlying distribution on {−1,1}n, the function Q : {−1,1}n × {−1,1} → {−1,1} is
a polynomial-time computable predicate, and f : {−1,1}n → {−1,1} is the unknown con-
cept. The motivation behind the statistical query model is that efficient algorithms in this
model are robust to classification noise. Kearns showed that concept classes learnable via a
polynomial number of statistical queries are efficiently PAC learnable. Perhaps surprisingly,
virtually all known PAC learning algorithms can be adapted to work via statistical queries
only; the one exception known to us is the algorithm of Blum et al. (2003) for learning parity
functions.

The SQ dimension of a concept class C under distribution μ is defined as the size of the
largest subset A ⊆ C of concepts such that the elements of A are “almost” orthogonal under
μ (see Sect. 2.2 for a precise definition). Blum et al. (1994) proved the SQ dimension of
a concept class to be a measure of the number of statistical queries required to learn that
class. It is well known that the concept class of parity functions has SQ dimension 2n (the
maximum possible) under the uniform distribution. This observation has been the basis of
all known statistical query lower bounds.

1.1 Our results

Our main contribution is a lower bound for learning intersections of halfspaces in the statis-
tical query model. We construct distributions under which intersections of halfspaces have
a large SQ dimension. Let MAJk denote the concept class of intersections of k majorities,
a subclass of intersections of halfspaces.

Theorem 1.1 There are (explicitly given) distributions on {−1,1}n under which

sqdim(MAJk) =
{

nΩ(k/ logk) if logn � k � √
n,

max{nΩ(k/ log logn), nΩ(logk)} if k � logn.
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Our result is essentially optimal. Namely, the SQ dimension of MAJk (and more gener-
ally, of intersections of k polynomial-weight halfspaces) is known to be at most nO(k·logk·logn)

under all distributions. For completeness, we recall a proof of this upper bound in Sect. 4. An
illustrative instantiation of our main theorem is as follows: for any constant 0 < ε � 1/2,

the intersection of nε halfspaces has SQ dimension 2Ω(nε), the known upper bound being
2O(nε log3 n).

The previous best lower bound for this concept class was nΩ(logn). The nΩ(logn) bound
holds even for nε -term DNF, a subclass of the intersection of nε halfspaces. The proof is
as follows. A DNF formula with 2t terms can compute any function on t variables. Thus,
a polynomial-size DNF can compute parity on any subset of logn variables. Since any two
distinct parity functions are orthogonal under the uniform distribution, the SQ dimension of
polynomial-size DNF is at least

(
n

logn

) = nΩ(logn).

Our second contribution is a series of lower bounds for the representation of MAJk as a
polynomial threshold function (PTF). Jackson gave the first polynomial-time algorithm, the
celebrated Harmonic Sieve (Jackson 1995), for learning polynomial-size DNF formulas with
membership queries under the uniform distribution. More generally, he showed that the con-
cept class of polynomial-weight PTFs is learnable in polynomial time using the Harmonic
Sieve. A natural question to ask is whether every intersection of k low-weight halfspaces,
a straightforward generalization of k-term DNF, can be represented as a polynomial-weight
PTF. We answer this question in the negative even for k = 2. Let MAJ denote the majority
function, which can be represented as the low-weight halfspace

∑
xi � 0. We prove that the

intersection of two majority functions requires not only large weight but also large length:

Theorem 1.2 The function MAJ(x1, . . . , xn) ∧ MAJ(y1, . . . , yn) requires PTF length
nΩ(logn/ log logn).

The lower bound of Theorem 1.2 nearly matches the nO(logn) upper bound of Beigel
et al. (1995), proving that their PTF construction is essentially optimal. As a corollary to
Theorem 1.2, we observe that intersections of even two low-weight halfspaces cannot be
computed by polynomial-weight PTFs, the most expressive class of concepts known to be
learnable via Jackson’s Harmonic Sieve. We note here that intersections of a constant num-
ber of halfspaces are learnable with membership and equivalence queries in polynomial
time via Angluin’s algorithm for learning finite automata. For the case of intersections of
k = ω(1) halfspaces, however, no polynomial-time algorithms are known. For this case, we
prove PTF length lower bounds with an exponential dependence on k:

Theorem 1.3 Let k � √
n. Then there are (explicitly given) functions in MAJk that require

PTF length nΩ(k/ logk).

This lower bound is almost tight: Klivans et al. (2004, Theorem 29), have shown that every
function in MAJk has a PTF of length nO(k·logk·logn). Note that Theorem 1.3 improves on
Theorem 1.2 for k = ω(logn).

Finally, we consider the feasibility of learning intersections of halfspaces weakly in poly-
nomial time under the uniform distribution. (Recall that strong learning refers to construct-
ing a hypothesis with error ε in time poly(n,1/ε); weak learning refers to constructing a
hypothesis with error 1/2 − 1/poly(n) in time poly(n).) We report our progress on this
problem in Sect. 5, proving negative results for generalizations of the problem and positive
results for several restricted cases.
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1.2 Our techniques

Most of our results follow from a variety of new applications of bent functions, i.e., func-
tions whose Fourier coefficients are as small as possible. Although the Fourier analysis of
Boolean functions is usually relevant only to uniform-distribution learning, we apply an ob-
servation due to Bruck (1990) that the flatness of a function’s spectrum is directly related to
the length of its PTF representation, a quantity involved with arbitrary-distribution learning.
We construct non-uniform distributions under which various intersections of low-weight
halfspaces are capable of computing bent functions. This in turn yields a variety of lower
bounds on their PTF length, depending on the construction we employ. We then extend the
construction of a single bent function to a family of bent functions and prove that this yields
a large set of orthogonal functions, the critical component of our SQ dimension lower bound.
All functions and distributions we construct are explicitly defined.

For the near-optimal lower bound on the PTF length of the intersection of two major-
ity functions, we combine results on the PTF degree of intersections of halfspaces due to
O’Donnell and Servedio (2003) with a translation lemma in circuit complexity due to Krause
and Pudlák (1997).

1.3 Organization

We first prove PTF length lower bounds for intersections of majorities in Sect. 3. We build
on these results to prove our main SQ dimension lower bound in Sect. 4. Our discussion of
weak learning appears in Sect. 5.

2 Preliminaries

A Boolean function is a mapping {−1,1}n → {−1,1}, where 1 corresponds to “true.” In
this representation, the parity χS of a set S ⊆ [n] of bits is given by the product of the
corresponding variables: χS

def= ⊕
i∈S xi = ∏

i∈S xi . A majority function is a Boolean function
of the form

sign(xj1 + xj2 + · · ·),
where the xji are distinct variables from among x1, . . . , xn. A generalization of majority is a
halfspace

sign(a1xj1 + a2xj2 + · · ·),
where the ai are integer weights. Finally, a polynomial threshold function (PTF) has the
form

sign(a1χ1 + a2χ2 + · · ·),
where the ai are integer coefficients and the χi are distinct parity functions over x1, . . . , xn,
possibly including the constant function 1. Note that halfspaces and majorities are PTFs.
One can assume w.l.o.g. that the polynomial a1χ1 + a2χ2 + · · · sign-representing a PTF is
nonzero on all inputs.

Two important characteristics of PTFs from a learning standpoint are its weight and
length. The weight of a PTF sign(

∑
i aiχi) is

∑
i |ai |. The length of a PTF is the number

of monomials, i.e., distinct parity functions. Thus, a PTF’s weight is never less than its
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length. A PTF is light (respectively, short) if its weight (respectively, length) is bounded by
a polynomial in n.

In the above description, the polynomial (weighted sum of parities) computing a PTF f

agrees in sign with f on every input. We refer to this type of sign-representation as strong:
a polynomial p strongly represents a Boolean function f iff for all x we have p(x) �= 0 and
f (x) = sign(p(x)). We will also need the following relaxed version of threshold compu-
tation (Saks 1993): a polynomial p weakly represents a Boolean function f iff p(x) �= 0
for some x, and f (x) = sign(p(x)) on any such x. We say that a function has a strong (re-
spectively, weak) representation on a set of parities A ⊆ P([n]) iff there is a polynomial∑

S∈A aSχS that strongly (respectively, weakly) represents f . The following is a useful tool
in analyzing PTFs.

Theorem 2.1 (Theorem of the Alternative, Aspnes et al. 1994; O’Donnell and Servedio
2003) Let A ⊆ P([n]) denote any set of parities on x1, . . . , xn, and let P([n]) denote the
full set of the 2n parities. Then for any function f : {−1,1}n → {−1,1}, exactly one of the
following statements holds:

(a) f has a strong representation on A;
(b) f has a weak representation on A⊥ = P([n]) \A.

2.1 Fourier transform

Consider the vector space of functions {−1,1}n → R, equipped with the inner product
〈f,g〉 = Ex∼U [f (x) · g(x)]. The parity functions {χS}S⊆[n] form an orthonormal basis for
this inner product space. As a result, every Boolean function f can be uniquely written as
its Fourier polynomial

f =
∑
S⊆[n]

f̂ (S)χS,

where f̂ (S)
def= 〈f,χS〉. Observe that f̂ (∅) = 2 Prx[f (x) = 1] − 1. The f -specific constants

f̂ (S) are called Fourier coefficients. The orthonormality of the parities yields Parseval’s
identity for Boolean functions:

∑
S⊆[n]

f̂ (S)2 = 〈f,f 〉 = 1.

As in signal processing, one can obtain an approximation to a function by identifying and
estimating its large Fourier coefficients (the “dominant frequencies”). Although there are 2n

coefficients to consider, the large ones can be retrieved efficiently by the elegant algorithm
of Kushilevitz and Mansour (1993), to which we refer as “KM”:

Theorem 2.2 (Kushilevitz and Mansour 1993) Let f be any Boolean function and let
δ, θ > 0 be parameters. With probability � 1 − δ, KM outputs every S ⊆ [n] for which

|f̂ (S)| � θ, and no S ⊆ [n] for which |f̂ (S)| � θ/2. KM runs in time poly(n, 1
θ
, log 1

δ
).

It is thus useful to recognize classes of functions that have large Fourier coefficients. We
denote by L∞(f ) the largest absolute value of a Fourier coefficient of f. Formally, L∞(f )

def=
maxS{|f̂ (S)|}. This quantity places a lower bound on the length of a PTF computing f :
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Theorem 2.3 (Bruck 1990, Theorem 5.11) Any PTF computing f has length at least
1/L∞(f ).

Theorem 2.3 implies that functions with short PTFs are weakly learnable under the uniform
distribution:

Proposition 2.4 Let C be a class of Boolean functions. If each f ∈ C has a PTF of length �,
then C is learnable to accuracy 1

2 + 1
2�

under the uniform distribution in time poly(n, �).

Proof Let f ∈ C be the unknown target function. In time poly(n, �), KM identifies all pari-
ties that predict f with advantage 1/� or better. It thus suffices to show that for some parity
χ, |Ex[χ · f ]| � 1/�. The latter is equivalent to showing that L∞(f ) � 1/�. But if we had
L∞(f ) < 1/�, then any PTF implementing f would require more than � monomials (by
Theorem 2.3). Thus, some parity χ predicts f with advantage 1/� or better. �

Proposition 2.4 shows that PTF length is an indicator of weak learnability under the
uniform distribution. Additionally, PTF weight is an indicator of strong learnability under
the uniform distribution: Jackson (1995) proves that the Harmonic Sieve strongly learns an
unknown Boolean function if it can be written as a polynomial-weight PTF.

For all f : {−1,1}n → {−1,1}, we have L∞(f ) � 2−n/2 by Parseval’s identity. For n

even, f is called bent if all Fourier coefficients of f are 2−n/2 in absolute value. It is
known (Bruck 1990) that bent functions include inner product mod 2

IPn(x) = (x1 ∧ x2) ⊕ (x3 ∧ x4) ⊕ · · · ⊕ (xn−1 ∧ xn)

and complete quadratic

CQn(x) =
{1 if (‖x‖mod 4) ∈ {0,1},

−1 otherwise.

Above and throughout the paper, ‖x‖ stands for the number of −1 bits in x. In particular,
‖x ⊕ y‖ yields the number of bit positions where x and y differ.

2.2 Statistical query dimension

The statistical query model, first defined by Kearns (1993), is an elegant model of learning
that can withstand classification noise. The SQ model has proven to be a useful formalism.
In fact, a vast majority of today’s efficient learning algorithms fit in this framework. The SQ
dimension of a concept class, defined shortly, is a tight measure of the hardness of learning
in this model. As a result, SQ dimension estimates are of considerable interest in learning
theory.

A concept class C is a set of functions {−1,1}n → {−1,1}. The statistical query dimen-
sion of C under distribution μ, denoted sqdimμ(C), is the largest N for which there are N

functions f1, . . . , fN ∈ C with

|Ex∼μ[fi(x) · fj (x)]| � 1

N

for all i �= j . We denote sqdim(C)
def= maxμ{sqdimμ(C)}. The SQ dimension of a concept

class fully characterizes its weak learnability in the statistical query model: a low SQ di-
mension implies an efficient weak-learning algorithm, and a high SQ dimension rules out
such an algorithm (see Blum et al. 1994 and Yang 2005, Corollary 1).
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2.3 Notation

We adopt the notation L+∞(f )
def= maxS �=∅{|f̂ (S)|}. We denote by MAJk the family of func-

tions computable by the intersection of k majorities, each on some subset of the n vari-
ables. Throughout the paper, we view k as an arbitrary function of n, including a constant.
MAJ(xi1 , xi2 , . . .) stands for the majority value of xi1 , xi2 , . . .. We denote the set {1,2, . . . , a}
by [a]. I[A] denotes 1 if the statement A is true, and 0 otherwise. The vector with −1 in the
ith position and 1’s elsewhere is ei . In particular, x ⊕ ei represents x with its ith bit flipped.

Recall that a Boolean function is called monotone if flipping a bit from −1 to 1 in any in-
put does not decrease the value of the function. For example, the majority function

∑
xi � 0

is monotone. A function f (x1, . . . , xn) is unate if f (σ1 ⊕ x1, . . . , σn ⊕ xn) is monotone for
some fixed σ ∈ {−1,1}n. Here σ is called the orientation of f. For example, the function
x1 − 2x2 + x3 − 4x5 � 3 is unate with orientation σ = (1,−1,1,−1).

3 PTF length lower bounds for MAJk

We begin by developing lower bounds on the PTF representation of intersections of low-
weight halfspaces. In particular, this section establishes two of the main results of this paper:
Theorems 1.2 and 1.3. We will also need these structural results to prove our main lower
bound on the SQ dimension of intersections of halfspaces.

3.1 PTF length of MAJk : an nΩ(logk) bound

Unlike the lower bound for MAJ2, the results in this section and the next require k = ω(1)

for a super-polynomial lower bound. However, they rely solely on the fundamental The-
orem 2.3 and are thus considerably simpler. Furthermore, the constructions below (Lem-
mas 3.3 and 3.5) will allow us to prove a lower bound on the SQ dimension of MAJk in
Sect. 4. A key to these results is the following observation.

Lemma 3.1 Let f (x1, . . . , xn) have a PTF of length �. Then so does f (χ1, . . . , χn), where
each χi is a parity over x1, . . . , xn or the negation of a parity.

Proof Given a polynomial of length � that strongly sign-represents f , make the replace-
ment xi → χi . This does not increase the number of monomials, while yielding a PTF for
f (χ1, . . . , χn). �

By Lemma 3.1, it suffices to show that f (χ1, . . . , χn) does not have a short PTF in order
to prove that neither does f (x1, . . . , xn). We accomplish the former via a reduction to a
known hard function.

Definition 3.2 (Reflection) Let f : {−1,1}n → {−1,1} and y ∈ {−1,1}n. The y-reflection
of f is the function fy(x) = f (x ⊕ y). A function g : {−1,1}n → {−1,1} is called a reflec-
tion of f if g(x) = f (x ⊕ y) for some fixed y and all x.

We are now in a position to prove the desired reduction to a hard function.

Lemma 3.3 Let k � 2no(1)
. Then there are explicitly given functions χ1, χ2, . . . , χn (each a

parity or the negation of a parity) such every reflection of IP on Ω(logn · logk) variables is
computable by f (χ1, χ2, . . . , χn) for some f ∈ MAJk .
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Proof Let g1, g2, . . . , glogk be copies of the IP function, each on a distinct set of variables
Vi with |Vi | = v for some v = v(n, k) to be chosen later. Thus, g = ⊕

gi is IP on v logk

variables. At the same time, g is computable by the AND of 2logk−1 < k functions, each
of the form h1 ∨ h2 ∨ · · · ∨ hlogk, where hi ∈ {gi,¬gi}. Each h1 ∨ h2 ∨ · · · ∨ hlogk can be
computed by the PTF

h1 + h2 + · · · + hlogk � 1 − logk, or
(3.1)

2v/2h1 + 2v/2h2 + · · · + 2v/2hlogk � 2v/2(1 − logk).

Every hi is a bent function on the v variables Vi , and thus 2v/2hi is simply the sum of the 2v

parities on Vi , each with a plus or a minus sign.
Create a new set of variables U = {χ1, χ2, . . .} as follows. U will contain a distinct vari-

able for each parity on Vi (for each i = 1,2, . . . , logk) and one for its negation. In addition,
U will contain 2v/2(logk − 1) < 2v/2 logk variables, each of which corresponds to the con-
stant 1. As a result, each of the k PTFs of the form (3.1) is a majority function in terms of U .
Therefore, IP(x) on v logk variables is computable by f (χ1, χ2, . . .) for some f ∈ MAJk .
Furthermore, for every fixed y ∈ {−1,1}v logk , IP(x ⊕y) is computable by fy(χ1, χ2, . . .) for
some fy ∈ MAJk . This is because for each parity, U = {χ1, χ2, . . .} additionally contains its
negation.

It remains to show that |U | � n. Setting v = logn − log logk − 2 yields |U | = 2 ·
2v logk + 2v/2 logk � n. Thus, for k � 2no(1)

the above construction computes IP on the
claimed number of variables:

v logk = (logn − log logk − 2) logk = Ω(logn · logk). �

Lemma 3.3 immediately yields the desired lower bound on PTF length.

Theorem 3.4 Let k � 2no(1)
. Then the intersection of k majorities requires a PTF with

nΩ(logk) monomials.

Proof Let k � 2no(1)
. By Lemma 3.3, there is a function f ∈ MAJk and a choice of signed

parities χ1, . . . , χn such that f (χ1, . . . , χn) computes IP on v = Ω(logn · logk) vari-
ables. Since L∞(f (χ1, . . . , χn)) = 2−v/2, any PTF computing f (χ1, . . . , χn) requires 2v/2 =
nΩ(logk) monomials by Theorem 2.3. By Lemma 3.1, the same holds for f (x1, . . . , xn). �

3.2 PTF length of MAJk : an nΩ(k/max{log logn,logk}) bound

This section applies Lemma 3.1 with a different reduction. The resulting lower bound is
better than that of Theorem 3.4 for some range of k.

Lemma 3.5 Let k � √
n. Then there are explicitly given functions χ1, χ2, . . . , χn (each a

parity or the negation of a parity) such that every reflection of CQ on min{Ω(
k logn

log logn
),

Ω(
k logn

logk
)} variables is computable by f (χ1, χ2, . . . , χn) for some f ∈ MAJk .

Proof Consider CQ on v variables, for some v = v(n, k) to be chosen later. Since CQ de-
pends only on the sum of the input bits, it can be represented by the AND of v predicates as
follows:

CQ(x) = 1 ⇐⇒ ∧
s∈S

(∑
i xi �= s

)
,
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where S ⊆ {−v, . . . ,0, . . . , v} and |S| � v. A single PTF can check any number t of these
predicates:

(∑
i

xi − s1

)2(∑
i

xi − s2

)2

· · ·
(∑

i

xi − st

)2

> 0, (3.2)

where s1, . . . , st ∈ S.
Consider the PTF (

∑
i xi + v)2t > 0. Multiplying out the l.h.s. yields the sum of exactly

(2v)2t parities (not all distinct). Construct a new set of variables U = {χ1, χ2, . . .} to contain
a variable for each of these (2v)2t parities and their negations. Over U , the PTF (

∑
i xi +

v)2t > 0 is a majority. In fact, any PTF of the form (3.2) is a majority over U . Hence, CQ(x)

on v variables is computable by f (χ1, χ2, . . .) for some f ∈ MAJk . Furthermore, for every
fixed y ∈ {−1,1}v , CQ(x ⊕ y) is computable by fy(χ1, χ2, . . .) for some fy ∈ MAJk . This
is because for each parity, U = {χ1, χ2, . . .} additionally contains its negation.

It remains to pick v such that v � kt (the k PTFs must collectively check all v predicates)
and |U | � n (the new variable set can have size at most n):

v = max{v′ : v′ � kt and 2(2v′)2t � n for some integer t � 1}

= min

{
Ω(

√
n),Ω

(
k logn

log logn

)
,Ω

(
k logn

logk

)}
,

which is equivalent to v = min{Ω(k logn/ log logn), Ω(k logn/ logk)} for k � √
n. �

Theorem 3.6 Let k � √
n. Then the intersection of k majorities requires a PTF with

min{nΩ(k/ log logn), nΩ(k/ logk)} monomials.

Proof Let k � √
n. By Lemma 3.5, there is a function f ∈ MAJk and a choice of signed

parities χ1, . . . , χn such that f (χ1, . . . , χn) computes CQ on v = min{Ω(k logn/ log logn),
Ω(k logn/ logk)} variables. Since L∞(f (χ1, . . . , χn)) = 2−v/2, any PTF computing
f (χ1, . . . , χn) requires 2v/2 monomials by Theorem 2.3. By Lemma 3.1, the same holds
for f (x1, . . . , xn). �

3.3 PTF length of MAJ2: an nΩ(logn/ log logn) bound

Our lower bound for the PTF length of MAJ2 exploits two related results in the literature.
The first is a lower bound on the degree of any PTF for MAJ2, due to O’Donnell and Serve-
dio (2003). We additionally amplify the degree requirements by replacing each variable in
MAJ2 by a parity on a separate set of ≈ logn variables. Denote the resulting composition
by MAJ2 ◦ PARITY. The second result we use is a general theorem of Krause and Pudlák
(1997) which, given the PTF degree of a function f , states a lower bound on the PTF length
of a related function f op. We obtain the result of this section by relating the PTF length of
MAJ2 to that of (MAJ2 ◦ PARITY)op.

The degree of a function f , denoted deg(f ), is the minimum degree of any polynomial
that strongly represents it. For MAJ2, we have:

Theorem 3.7 (O’Donnell and Servedio 2003, Theorem 17) Let f (x, y) = MAJ(x1, . . . ,

xn) ∧ MAJ(y1, . . . , yn). Then f has degree Ω(
logn

log logn
).

The key to the lower bound in this section is the following link between PTF degree and
length requirements.
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Definition 3.8 For f : {−1,1}n → {−1,1}, define f op : {−1,1}3n → {−1,1} as

f op(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) = f (u1, . . . , un),

where ui = (zi ∧ xi) ∨ (zi ∧ yi).

Proposition 3.9 (Krause and Pudlák 1997, Proposition 2.1) Let f : {−1,1}n → {−1,1} be
given. Then f op requires PTF length 2deg(f ).

We need another observation.

Lemma 3.10 Let g(x) = f (
⊕k

i=1 x1,i , . . . ,
⊕k

i=1 xn,i). Then deg(g) = k · deg(f ).

Proof Our proof is inspired by the XOR lemma of O’Donnell and Servedio (2003, Theo-
rem 13). The upper bound k · deg(f ) is trivial: take any polynomial of degree deg(f ) that
strongly represents f and replace each variable by its corresponding length-k parity on xi,j .
To prove that k ·deg(f ) is also a lower bound on deg(g), note that f has no strong represen-
tation over parities of degree less than deg(f ). By the Theorem of the Alternative, f has a
weak representation pw over parities of degree at least deg(f ). Substituting corresponding
parities on xi,j for the variables of pw yields a weak representation of g; it is nonzero on
many assignments to xi,j since pw is nonzero on at least one assignment to x1, . . . , xn. The
degree of any monomial in the resulting PTF for g is at least k · deg(f ). By the Theorem of
the Alternative, g cannot have a strong representation over the parities of degree less than
k · deg(f ). We conclude that deg(g) � k · deg(f ). �

Combining the above yields the desired bound:

Theorem 1.2 (Restated from Sect. 1.1) The function MAJ(x1, . . . , xn) ∧ MAJ(y1, . . . , yn)

requires PTF length nΩ(logn/ log logn).

Proof Let f = MAJ(x1, . . . , xt ) ∧ MAJ(xt+1, . . . , x2t ). Define a new function
f ⊕ : ({−1,1}k)2t → {−1,1} as

f ⊕(x) = MAJ

(
k⊕

i=1

x1,i , . . . ,

k⊕
i=1

xt,i

)
∧ MAJ

(
k⊕

i=1

xt+1,i , . . . ,

k⊕
i=1

x2t,i

)
.

By Lemma 3.10, deg(f ⊕) = k · deg(f ). Consider now f ⊕op. For single bits a, b, c ∈
{−1,1}, we have (c ∧ a) ∨ (c ∧ b) = 1

2 (1 + c)a + 1
2 (1 − c)b. As a result, f ⊕op can be

computed by the intersection of two PTFs:

f ⊕op(x, y, z) =
(

k∏
i=1

q1,i + · · · +
k∏

i=1

qt,i � 0

)
∧

(
k∏

i=1

qt+1,i + · · · +
k∏

i=1

q2t,i � 0

)
,

where qi,j = (1 + zi,j )xi,j + (1 − zi,j )yi,j .

Therefore, f ⊕op is computed by the intersection of two PTFs, each with weight at most
4kt . Lemma 3.1 implies that if the intersection of two majorities, each on a distinct set of
4kt variables, has a PTF with � monomials, then so does f ⊕op. But by Proposition 3.9,
f ⊕op requires a PTF of length 2deg(f ⊕) = 2k·deg(f ). To summarize, the intersection of two



Mach Learn (2007) 69: 97–114 107

majorities, each on 4kt variables, requires a PTF of length 2k·Ω(log t/ log log t). The theorem
follows by setting t = √

n and k = 1
4 logn. �

Using a rational approximation to the sign function, it is possible to obtain a PTF for
MAJ(x1, . . . , xn)∧MAJ(y1, . . . , yn) with nO(logn) monomials (Beigel et al. 1995). Our lower
bound of nΩ(logn/ log logn) nearly matches that upper bound.

A key ingredient in our proof of the nΩ(logn/ log logn) lower bound on the PTF length of
MAJ2 was the non-trivial degree lower bound for the same function, due to O’Donnell and
Servedio (2003). We could obtain an nω(1) lower bound for the PTF length of MAJ2 by using
the simpler ω(1) lower bound on the degree of MAJ2 due to Minsky and Papert (1988). That
would suffice to show that MAJ2 does not have a short PTF; the proof would be analogous
to that of Theorem 1.2.

Theorems 1.2 and 3.6, established above, immediately imply:

Theorem 1.3 (Restated from Sect. 1.1) Let k � √
n. Then there are (explicitly given) func-

tions in MAJk that require PTF length nΩ(k/ logk).

4 SQ dimension of MAJk

Recall that the SQ dimension captures the hardness of a concept class. We explicitly con-
struct distributions under which the intersection of nε majorities, for any constant 0 < ε �
1/2, has SQ dimension 2Ω(nε). This is an exponential improvement on nΩ(logn), the previous
best lower bound that was based on computing parity functions by intersections of half-
spaces. We additionally prove (Sect. 4.1) that the latter construction could not give a bound
better than nΘ(logn).

Let f : {−1,1}n → {−1,1} be any function. Recall that for a fixed string y ∈ {−1,1}n,
the y-reflection of f is the function fy(x) = f (x ⊕ y). A key observation is that any two
distinct reflections of a bent function are uncorrelated under the uniform distribution. This
result is known in the coding theory literature; for completeness, we give a self-contained
proof below.

Lemma 4.1 (cf. Macwilliams and Sloane 1977, p. 427, Problem 12) Let f : {−1,1}n →
{−1,1} be a bent function. Then for any distinct y, y ′ ∈ {−1,1}n, Ex∼U [f (x ⊕ y) ·
f (x ⊕ y ′)] = 0.

Proof For a fixed pair y, y ′ of distinct strings, we have y ⊕ y ′ �= 1n. Thus,

Ex∼U [f (x ⊕ y)f (x ⊕ y ′)] = Ex

[(∑
S

f̂ (S)χS(x)χS(y)

)(∑
T

f̂ (T )χT (x)χT (y ′)
)]

=
∑

S

∑
T

f̂ (S)f̂ (T )χS(y)χT (y ′) · Ex[χS(x)χT (x)]

=
∑

S

f̂ (S)2χS(y)χS(y
′) = 1

2n

∑
S

χS(y ⊕ y ′) = 0.

The last equality holds because on every z ∈ {−1,1}n \ 1n, exactly half of the parities eval-
uate to −1 and the other half, to 1. �

The following is a simple consequence of Lemma 4.1:
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Theorem 4.2 Let C denote the concept class of bent functions on n variables. Then
sqdimU(C) = 2n.

Proof Fix a bent function f and consider its 2n reflections, themselves bent functions. By
Lemma 4.1, any two of them are orthogonal. �

Consider a function h : {−1,1}n → {−1,1}n. The h-induced distribution on {−1,1}n,
denoted by h ◦ U , is the distribution given by

(h ◦ U)(z) = Pr
x∼U

[h(x) = z]

for any z ∈ {−1,1}n. Put differently, h ◦ U is the uniform distribution over the multiset
h({−1,1}n).

Proposition 4.3 Let f,g : {−1,1}n → {−1,1} and h : {−1,1}n → {−1,1}n be arbitrary
functions. Then Ex∼h◦U [f (x) · g(x)] = Ex∼U [f (h(x)) · g(h(x))].

Proof By definition of h ◦ U , picking a random input according to h ◦ U is equivalent to
picking x ∈ {−1,1}n uniformly at random and returning h(x). �

We are ready to prove the claimed SQ lower bound for MAJk .

Theorem 1.1 (Restated from page 1) There are (explicitly given) distributions on {−1,1}n

under which

sqdim(MAJk) =
{

nΩ(k/ logk) if logn � k � √
n,

max{nΩ(k/ log logn), nΩ(logk)} if k � logn.

Proof Let k � logn. Fix n monomials χ1, χ2, . . . , χn as in Lemma 3.3. Let v = Ω(logn ·
logk). Then there are 2v functions F = {f1, f2, . . . , f2v } ⊂ MAJk , where each fi(χ1(x),

χ2(x), . . . , χn(x)) computes IP(x ⊕ y) on v variables for a distinct y ∈ {−1,1}v.

Define h : {−1,1}n → {−1,1}n by

h(x) = (χ1(x),χ2(x), . . . , χn(x)).

Then for every two distinct fi, fj ∈ F,

Ex∼h◦U [fi(x) · fj (x)]

=
{

Ex∼U [fi(χ1(x), . . . , χn(x)) · fj (χ1(x), . . . , χn(x))] by Proposition 4.3
0 by Lemma 4.1.

In words, every pair of functions in F are orthogonal under the distribution h ◦ U .
Therefore, sqdimh◦U(MAJk) � |F | = 2v = nΩ(logk) for k � logn. Moreover, the distrib-
ution h ◦ U has an explicit description: pick a random x ∈ {−1,1}n and return the n-
bit string (χ1(x), . . . , χn(x)), where χ1, . . . , χn are the explicitly given monomials from
Lemma 3.3. Applying an analogous argument to Lemma 3.5 yields the alternate lower bound
sqdim(MAJk) = min{nΩ(k/ logk), nΩ(k/ log logn)} for k � √

n. �

For completeness, we recall an upper bound on the SQ dimension of MAJk. It is an
immediate consequence of the results of Blum et al. (1997) and Klivans et al. (2004).
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Theorem 4.4 For every distribution μ on {−1,1}n, we have sqdimμ(MAJk) � nO(k·logk·logn).

Proof Klivans et al. (2004, Theorem 29) show that every f ∈ MAJk has a PTF of degree
d = O(k · log k · logn). Thus, every f ∈ MAJk is a halfspace in terms of the parity functions
of degree at most d. It follows that the SQ dimension of MAJk is at most the SQ dimension
of halfspaces in

∑d

i=0

(
n

i

)
� nO(k·logk·logn) dimensions. A seminal paper of Blum et al. (1997)

proves that the SQ dimension of halfspaces in D dimensions is at most poly(D), under all
distributions. The claim follows. �

4.1 On the SQ dimension under the uniform distribution

The distributions in Theorem 1.1 are non-uniform. Can we prove a comparable lower bound
on the SQ dimension of MAJk under the uniform distribution? A natural approach would
be to compute different parities with functions in MAJk . Since the parities are mutually
orthogonal under the uniform distribution, this would yield an SQ lower bound. In what
follows, we show that this approach yields at best a trivial nΩ(logk) SQ lower bound, even
for the much larger class of intersections of unate functions. Specifically, we show that
intersections of k unate functions cannot compute PARITY on more than 1 + logk bits.

Proposition 4.5 Let f be a unate function with orientation σ . If f (x) = −1 on some x with
‖x ⊕ σ‖ < n, then f (y) = −1 on some y with PARITY(x) �= PARITY(y).

Proof Suppose ‖x ⊕ σ‖ < n. Then xi = σi for some i. Let y = x ⊕ ei . This ensures that
PARITY(x) �= PARITY(y), as desired. Furthermore, f (y) � f (x) by the unate property,
i.e., f (y) = −1. �

Theorem 4.6 To compute PARITYn by the AND of unate functions, 2n−1 unate functions
are necessary and sufficient.

Proof Sufficiency is straightforward: PARITY has a trivial CNF with 2n−1 clauses, each of
which is a unate function. For the lower bound, consider

∧
fi = PARITY, where each fi is

a unate function with orientation σi. By Proposition 4.5, fi can output “false” only on the
input x satisfying ‖x ⊕σi‖ = n: otherwise fi would output “false” on two inputs of different
parity. Thus, 2n−1 unate functions are needed to exclude the 2n−1 falsifying assignments to
PARITY. �

5 Weakly learning intersections of halfspaces

Section 3 showed that the intersection f of even two majorities does not have a polynomial-
length PTF. Thus, there is some distribution on {−1,1}n with respect to which the correlation
of f with every parity is negligible, i.e., inversely superpolynomial (1/nω(1)). However, this
leaves open the possibility of inverse-polynomial correlation (and thus weak learnability)
with respect to the uniform distribution. In other words, we would like to know if

L∞(h1 ∧ · · · ∧ hk) � 1

nO(1)

for a slow enough function k = k(n) and all halfspaces h1, . . . , hk.
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It is easy to construct an intersection of k = nω(1) halfspaces that has only negligible
Fourier coefficients (e.g., compute a bent function on ω(logn) variables). At the other ex-
treme, Klivans et al. (2004, Theorem 20) have shown that the intersection of k = O(1)

halfspaces always has a nonnegligible Fourier coefficient. Thus, we restrict our attention to
the range ω(1) � k � nO(1).

This section reports our progress on the problem. Section 5.1 studies two generalizations
of MAJk and proves that the resulting functions have only negligible Fourier coefficients
for all k = ω(1). On the positive side, Sect. 5.2 proves that no combining function of k �√

logn halfspaces can compute a bent function on ω(logn) variables (which would have
only negligible Fourier coefficients). Section 5.3 proves a positive result for a specialization
of the problem to unate functions and to intersections of read-once functions.

5.1 Negative results for related concept classes

We consider two generalizations of MAJk : the XOR of k majorities, and the AND of k unate
functions. In both cases, we show that all Fourier coefficients can be negligible whenever
k = ω(1).

Proposition 5.1 Let k = k(n) be arbitrary with ω(1) � k � O(
√

n). Let h1, . . . , hk be ma-
jority functions, each on a separate set of n/k variables. Then L∞(h1 ⊕· · ·⊕hk) � 1/nω(1).

Proof We can assume that t = n/k is an odd integer; otherwise, work with the largest odd
integer t less than n/k. If f and g are functions on disjoint variables, then L∞(f ⊕ g) =
L∞(f ) · L∞(g). For t odd, it is well known (O’Donnell 2003) that L∞(MAJt ) = O(1/

√
t).

The claim follows. �

Thus, the XOR of ω(1) majorities has negligible Fourier coefficients. We can extend this
result to the AND of unate functions:

Theorem 5.2 There are unate functions h1, . . . , hk such that L∞(
∧

hi) = 1/nω(1) whenever
k = ω(1).

Proof Assume k � √
n (otherwise simply set h√

n+1 ≡ · · · ≡ hk ≡ 1). Given k = ω(1), let
t = logk = ω(1). Let f = g1 ⊕ · · · ⊕ gt , where each gi is a majority function on a dis-
tinct set of n/t variables. By Proposition 5.1, L∞(f ) = 1/nω(1). At the same time, f is
computed by the AND of 2t−1 functions h1, . . . , h2t−1 , where each hi is a disjunction on
{g1,¬g1, . . . , gt ,¬gt }. Since each gi is a unate function, so is ¬gi. Then each hi is a dis-
junction of unate functions on disjoint variable sets and is thus itself a unate function. In
summary, f is computed by the AND of 2t−1 � k unate functions. �

5.2 Computing a bent function with halfspaces

Consider a function f of the form f = g(h1, h2, . . . , hk), where each hi is a halfspace and
g : {−1,1}k → {−1,1} is an arbitrary combining function. We will give a combinatorial
argument that for k = o(

√
n), the function f cannot be bent. Our proof technique is inspired

by the analysis of edge slicing in (Saks 1993). An edge is a pair of vertices x, y ∈ {−1,1}n

of the hypercube that differ in exactly one coordinate. It is easy to see that the hypercube
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contains 2n−1n edges. An edge (x, y) is sliced by function f if f (x) �= f (y); otherwise, the
edge (x, y) is unsliced.

The proof below is based on two observations. First, it is known that a single halfspace
slices at most a Θ(1/

√
n) fraction of the edges. The halfspace x1 +x2 +· · ·+xn � 0 achieves

this bound exactly. The second observation is that a bent function slices many edges; in
fact, we prove that every bent function slices exactly half of the edges. To see why this is
intuitively satisfying, note that a random Boolean function is likely to be nearly bent. At the
same time, when the vertices of the hypercube are randomly labeled +1 or −1, one would
expect about half of the edges to be sliced. To summarize, bent functions slice many edges,
while a single halfspace slices few. We combine these two facts to prove that no function on
o(

√
n) halfspaces can compute a bent function.

Theorem 5.3 (O’Neil 1971) A halfspace slices at most 1
2 n

(
n

n/2

) = Θ(2n
√

n) edges of the
n-cube.

Theorem 5.3 proves the first observation. To prove the second, we first relate the number
of edges sliced by a Boolean function to its Fourier spectrum.

Lemma 5.4 Every Boolean function f slices exactly 2n−1
∑

S |S|f̂ (S)2 edges.

Proof The probability p(f ) that a random edge is sliced by f is

p(f ) = Ei∈[n][Ex∈{−1,1}n [I[f (x) �= f (x ⊕ ei)]]].
Note that Ex∈{−1,1}n [I[f (x) �= f (x ⊕ ei)]] = Infi (f ), the influence of variable xi on f . As a
result,

p(f ) = Ei∈[n][Infi (f )] = 1

n

∑
i∈[n]

Infi (f ) = 1

n

∑
S⊆[n]

|S|f̂ (S)2.

The last equation is based on the well-known equality
∑

i∈[n] Infi (f ) = ∑
S⊆[n] |S|f̂ (S)2

(see Bshouty and Tamon 1996, Lemma 4.1). Since the total number of edges is 2n−1n, we
see that f slices p(f ) · 2n−1n = 2n−1

∑
S⊆[n] |S|f̂ (S)2 edges. �

As a special case, PARITYn = x1x2 . . . xn slices every edge (2n−1n), while the constant
function f = 1 slices no edges. For bent functions, we obtain the following corollary:

Corollary 5.4.1 Every bent function slices exactly 2n−2n edges.

Proof Every bent function f satisfies f̂ (S)2 = 1/2n for all S ⊆ [n]. By Lemma 5.4, the
number of edges sliced by f is:

2n−1
∑
S⊆[n]

|S|f̂ (S)2 = 1

2

∑
S⊆[n]

|S| = 1

2

n∑
k=0

k

(
n

k

)
= n2n−2.

�

Our sought result is a straightforward consequence of Theorem 5.3 and Corollary 5.4.1.

Theorem 5.5 Let f = g(h1, h2, . . . , hk), where each hi : {−1,1}n → {−1,1} is a halfspace
and g : {−1,1}k → {−1,1} is an arbitrary Boolean function. If k = o(

√
n), then f is not

bent.
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Proof For f to slice an edge, at least one of h1, h2, . . . , hk must slice it. By Theorem 5.3,
a single halfspace can slice at most Θ(2n

√
n) edges. Since every bent function slices exactly

2n−2n edges (by Corollary 5.4.1), k = Ω(
√

n) halfspaces are necessary for f to be bent. �

For a general combining function, the Ω(
√

n) bound of Theorem 5.5 is not far off. For
example, the XOR of n halfspaces can compute the bent function IPn. Also, the majority
of 2n halfspaces can implement any symmetric function on n bits (Bruck 1990) and, there-
fore, can implement the bent function CQn. It is less clear how tight the Ω(

√
n) bound is

for AND. In particular, the AND of 2Ω(n) � √
n unate functions (and thus, halfspaces) is

needed to compute CQn. (The proof is a straightforward generalization of our argument in
Theorem 4.6.) In light of the 2Ω(n) complexity of CQn, it is plausible that AND is weaker
than other combining functions and the lower bound for AND can be improved.

5.3 Read-once intersections and unate functions

Given the intersection f = h1 ∧ . . .∧hk of functions on disjoint variable sets, we can exploit
their independence in analyzing the spectrum of f .

Lemma 5.6 Let f = h1 ∧ h2 ∧ . . . ∧ hk, where the hi are arbitrary Boolean functions on
disjoint variable sets. Then L∞(f ) � 1

3 maxi{L+∞(hi)}.

Proof It suffices to prove that L∞(f ) � L+∞(hk)/3. Let pi = Prx[hi(x) = 1] and p =
Prx[f (x) = 1]. The independence of the hi implies that p = ∏

pi. We have:

f = h1 ∧ h2 ∧ . . . ∧ hk = −1 + 1

2k−1
·
∏
i∈[k]

(1 + hi) = −1 + 1

2k−1

∑
A⊆[k]

hA,

where hA
def= ∏

i∈A hi . Therefore for all S �= ∅,

f̂ (S) = 1

2k−1

∑
A⊆[k]

[ĥA(S)]. (5.1)

Let S �= ∅ be a subset of the variables on which hk is defined. Because h1, . . . , hk are on
disjoint sets of variables, we see that

ĥA(S) =
{

ĥk(S)
∏

i∈A\{k} ĥi (∅) if k ∈ A,

0 otherwise.
(5.2)

Substituting (5.2) in (5.1) yields:

|f̂ (S)| =
∣∣∣∣ ĥk(S)

2k−1

∑
A⊆[k−1]

∏
i∈A

ĥi(∅)

∣∣∣∣ =
∣∣∣∣ ĥk(S)

2k−1

∏
i∈[k−1]

(1 + ĥi (∅))

∣∣∣∣

= |ĥk(S)|
∏

i∈[k−1]
pi � |ĥk(S)| · p = |ĥk(S)| · f̂ (∅) + 1

2
.

The above derivation uses the identity pi = (1 + ĥi (∅))/2. We have shown that

|f̂ (S)| � |ĥk(S)| · f̂ (∅) + 1

2
.
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Consider two cases. If f̂ (∅) � −1/3, we obtain L∞(f ) � |f̂ (S)| � |ĥk(S)|/3. If f̂ (∅) <

−1/3, we have L∞(f ) � |f̂ (∅)| > 1/3 � |ĥk(S)|/3. In either case,

L∞(f ) � 1

3
|ĥk(S)|.

Since the choice of ĥk(S) was arbitrary from among the nonconstant Fourier coefficients of
hk , we have L∞(f ) � L+∞(hk)/3. �

Lemma 5.6 states that if at least one of h1, . . . , hk has a large nonconstant Fourier co-
efficient, then f = h1 ∧ · · · ∧ hk will have a large Fourier coefficient as well. Somewhat
surprisingly, the claim holds for any k, although the read-once requirement effectively re-
stricts k � n.

We can improve on Lemma 5.6 by considering unate functions in MAJk instead of in-
tersections of general read-once functions. We obtain weak learnability in this case by ap-
pealing to the benign Fourier properties of unate functions. Analyses of the max-norm of
unate functions seem to be folklore, with surveys appearing in (Bshouty and Tamon 1996;
Saks 1993). For completeness, we provide a proof below.

Theorem 5.7 For any unate function f : {−1,1}n → {−1,1},

L∞(f ) � max{|f̂ (∅)|, |f̂ ({1})|, . . . , |f̂ ({n})|} � 1

n + 1
.

Proof For a Boolean function f : {−1,1}n → {−1,1}, let f |xi=a denote the subfunction of
f with the ith variable set to a. It is easy to see that for all f ,

E[f |xi=1 − f |xi=−1] = 2f̂ ({i}), (5.3)

and

E[(f |xi=1 − f |xi=−1)
2] = 4

∑
A:i∈A

f̂ (A)2. (5.4)

W.l.o.g. assume that f is monotone rather than unate; this does not affect the absolute values
of f ’s Fourier coefficients. Then we have E[(f |xi=1 − f |xi=−1)

2] = 2E[f |xi=1 − f |xi=−1].
Substituting (5.3) and (5.4) into the latter equality yields:

f̂ ({i}) =
∑
A:i∈A

f̂ (A)2.

Summing over i, we obtain
∑

i f̂ ({i}) = ∑
A |A|f̂ (A)2 � 1 − f̂ (∅)2, from which we con-

clude that f̂ (∅)2 + ∑
i f̂ ({i}) � 1. The claim follows. �

As a corollary, we obtain the following result.

Theorem 5.8 Let f = g(h1, . . . , hk), where g : {−1,1}k → {−1,1} is a monotone function
(e.g., AND or MAJ) and the functions hi : {−1,1}n → {−1,1} are unate with a common
orientation (e.g., halfspaces with a common orientation or halfspaces on disjoint sets of
variables). Then f is unate and L∞(f ) � 1/(n + 1).
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