
Efficient, Authenticated, and Fault-Tolerant
Key Agreement for Dynamic Peer Groups

Li Zhou and Chinya V. Ravishankar

Department of Computer Science & Engineering
University of California, Riverside

Riverside, CA 92521, USA
{lzhou,ravi}~cs.ucr . edu

Abstract. We present an efficient authenticated and fault-tolerant
protocol (AFTD) for tree-based key agreement. Our approach is driven
by the insight that when a Diffie-Hellman blinded key is updated, in
a tree-based method, it suffices to send the update to a small subset
of the group, instead of entire group, as current methods require.
Our scheme distributes each updated public key to a relatively small
subgroup, called its trust set, greatly improving performance. Moreover,
we use a threshold secret sharing method to distribute the function
of the trusted authority across trust sets, thereby guaranteeing key
authentication, enhancing fault-tolerance, and protecting our protocol
from impersonation attacks. Our performance analysis suggests that our
scheme significantly reduces the communication overhead and storage
requirement.

Keywords: Secure Group Communication, Key Agreement, Key Au
thentication

1 Introduction

As a result of the increased popularity of group-oriented applicat ions, such as
pay-TV, distributed interactive games, teleconferencing and chat rooms, there is
a growing demand for security services to achieve secure group communication.
A common method is to encrypt messages with a group key, so that entities out
side the group cannot decode them. A satisfactory group communication system
would possess the properties of group key security, forward secrecy, backward
secrecy, and key authentication/integrity [1,2,3]. In this paper, we focus on K ey
authentication/integrity, which ensures that public keys of group members can
not be modified by adversaries. There are two approaches for generating such
group keys: centralized key distribution and distributed key agreement. Central
ized key distribution uses a dedicated key server, resulting in simpler protocols.
However, centralized methods fail entirely once the server is compromised, so
that the central key server makes a tempting target for adversaries. In addition,
centralized key distribution is not suitable for dynamic peer groups, in which all
nodes play the same function and role, thus it is unreasonable to make one the

N. Mitrou et al. (Eds.) : NETWORKING 2004, LNCS 3042, pp. 759-770, 2004.
© IFIP International Federation for Information P rocessing 2004

760 L. Zhou and C.V. Ravishankar

key server, placing all trust in it. In contrast, distributed key agreement requires
each member to contribute a share to generate the group key, resulting in more
complex protocols.

The group key is updated on every membership change for forward and
backward secrecy, a method called group rekeying. To reduce the number of
rekeying operations, Wong et al. [4] proposed a logical data structure called a
key tree that reduces the rekeying overhead from O(n) to O(log n), where n is the
group size. Based on this idea, Kim et al. proposed a tree-based key agreement
protocol, TGDH [1], which is a combination of key tree and Diffie-Hellman key
exchange to generate and maintain the group key.

Unfortunately, TGDH suffers from two drawbacks. As explained in Section 3,
it remains prone to impersonation attacks, and uses more messages than neces
sary.

1.1 Our Work

In this paper, we propose a novel Authenticated, Fault-tolerant Tree-based
Diffie-Hellman key agreement protocol, AFTD, based on two key ideas. First,
as explained in Section 3, it is gross overkill to broadcast updated public keys
to all group members for recomputing the group key when a node ni joins or
leaves. It suffices to send each update to a much smaller subset of nodes in the
tree, called its trust set TS(ni)· Second, we achieve robust key authentication
by distributing the function of trusted authority among the nodes in TS(ni),
using a threshold cryptographic scheme. Any k members of a node's trust set
can serve as its public key certificate authority. Our performance analysis shows
this scheme can reduces the communication overhead from O(n2) to O(nlogn)
for initialization, and from O(nlogn) to O(n) for rekeying. It also reduces the
storage requirement for blinded keys from O(n) to O(logn). This feature is
particularly useful when a broadcast channel is unavailable.

The rest of this paper is organized as follows. We survey related work in
Section 2. Section 3 motivates our work and defines our intrusion model. We
present our solution in Section 4 and demoostrate performance analysis and
comparison in Section 5. Finally we make a conclusion in Section 6.

2 Related Work

Key trees (4,5) were first proposed for centralized key distribution, while Kim et
al. [1) adapted it to a distributed key agreement protocol TGDH. Every group
member create a key tree separately. Each leaf node is associated with a real
group member, while each non-leaf node corresponds to a subgroup of group G,
considered a virtual member. In Figure 3, virtual member V4 corresponds to the
subgroup that contains two real group members M3 and M 4 .

In TGDH, every node on the key tree has a Diffie-Hellman key pair based
on the prime p and generator a, used to generate the group key. Secret-public
key pair {KM;, BKM; = aKM; mod p} is for real member Mi, and {Kv., BKv; =

Efficient, Authenticated, and Fault-Tolerant Key Agreement 761

aKv; mod p} is for virtual member \Ii. Public key BKM; is also called as blinded
key. Consider a node Mv whose left child is Mtv and right child node is Mrv
(to simplify the description, we do not distinguish real members from virtual
members here). M/s secret key can be computed in the usual Diffi.e-Hellman
fashion as KMv = (BKtv)Krv = (BKrv)Ktv mod p.

With all blinded keys well-known, each group member can compute the secret
keys of all nodes on its key path, comprising the nodes from the leaf node up to
the root. The root node's secret key Kv0 is known to all group members, and
becomes the group key. In Figure 3, group member M2 knows the key pairs of
M2, V3, V1 and Vo. Vo's secret key is the group key.

Steiner et al. [6,2] proposed a family of Group Diffi.e-Hellman (GDH) pro
tocols for dynamic peer groups. Based on them, Ateniese et al. [7] proposed a
new multiparty authenticated key agreement protocol, which offers key authen
tication/integrity, key confirmation, and non-repudiation of group membership.
However, some fl.aws in this protocol have been found by Pereira et al. [8].

Lee et al. [9,10] have designed several tree-based distributed key agreement
protocols, reducing the rekeying complexity by performing interval based rekey
ing. They also present an authenticated key agreement protocol. As the success
of their scheme is partially based on a certificate authority, their protocol will
encounter the same problems as centralized trust mechanisms.

In [11], Kong et al. provide robust and ubiquitous security support for mo
bile ad-hoc networks. In their scheme, they distribute the certificate authority
functions through a threshold secret sharing mechanism, in which each entity
holds a secret share, and multiple entities in a one-hop neighborhood jointly
provide certificate services. Our distributed trust mechanism differs from theirs
in two aspects. First, our goals are different. Second, the nodes that offer valid
certificates are different [12].

3 Motivation and Attack Model

TGDH [1] isasimple and effi.cient approach for the establishment of ephemeral
keys for group sessions, however, it suffers from two significant drawbacks.

First, although TGDH uses authenticated channels, it still seems vulnerable
to impersonation attacks. To provide authenticated blinded keys, TGDH sug
gests that every protocol message be signed by its sender using some strong
public signature method such as DSA or RSA, and then verified by all receivers
using the sender's public key. However, TGDH is a session key generation pro
tocol, and does not address the long-term security of DSA or RSA keys. Since
adversaries can compromise those keys in the long run, these keys must be re
freshed periodically from a trusted source that is available online. Our approach
is to define a trust set for each member Mi, and distribute the function of trusted
authority across trust sets so that any k members from this set can offer Mi 's
public key certificate, enhancing fault-tolerance. We distribute the function of
trust authority in a manner similar to the scheme in [11], which is based on
(k, n)-threshold secret sharing scheme. It is pointed out in [13] that scheme

762 L. Zhou and C.V. Ravishankar

in [11] is not usable in a group with malicious members since it does not provide
an important property known as verifiability. However, we focus on the correct
and secure generation of group keys in the face of outsider attacks mounted by
non-group members as in [14,15]. We do not address insider attacks mounted by
malicious group members because they can always reveal their own private keys
or the group key to non-group members, thus causing fraudulent membership
events or compromising group communication. Thus our scheme is unaffected
by the flaw pointed out in [13]. Detailed description of intrusion model appears
in [12].

Second, TGDH involves excessive communication and storage overheads
caused by broadcasting updated blinded keys. This problern becomes more se
rious if membership events are common. Storage requirement also becomes an
important issue when resource limited devices, such as PDAs, are able to join
the group as qualified group members. In our scheme, instead of broadcasting
these updates, they are transmitted to a smaller subset of nodes (trust set), so
that communication and storage overheads can be reduced significantly.

4 Our Solution

4.1 Overview

TGDH [1] observes that a node n 1 in the group needs to know the blinded key
of another node n2 only if nz is on its co-path, defined as the set of siblings of
each node in the key path of n 1 . However, we offer the key insight that even
more is true. In fact, an update of a blinded key need be sent only to a small
subset of the group, instead of entire group. Because of the way Diffie-Hellman
key exchanges are used in a key tree to generate the group key, the blinded
key of any node ni is only needed by the leaf nodes of the subtree rooted at n/s
sibling. This group of nodes, which we call ni 's trust set, forms the basis for both
improved efficiency as well as key authentication. We send each node's blinded
keys only to its trust set. A node's trust set is also entrusted with the task of
responding to requests for its public key, and provides key certificates using a
threshold cryptographic scheme. This insight is missing from earlier work.

Key Management Phases. In our scheme, each group member construct
a key independently. Each real group member Mi has two key pairs: a Diffie
Hellman key pair, {KMi, BK Mi = aKMi mod p}, which is used to generate the
group key, and an RSA secret-public key pair, { Di, Ei}, which is used to provide
source authentication. Non-leaf nodes Vi are virtual members, and have only a
Diffie-Hellman key pair { K vi, BK V; = aK vi mod p} .

Group key management in our approach occurs in two phases: the initial
ization phase and the rekeying phase. Initialization is a one-time activity that
distributes appropriate public-key certificates to trust sets. While such initial
ization may be done in many ways, we simplify our presentation by postulating
that this nmction is performed by a trusted authority (TA), which subsequently
goes offline. Offline here means the TA will not issue renewed public key cer
tificates for existing group members during the process of group rekeying. New

Efficient, Authenticated, and Fault-Tolerant Key Agreement 763

(a) Initialization Phase (b) Rekey Option
1: Certification by
Peers

Fig. 1. AFTD overview

(C) Rekey Option 2: Certifica
tion by Offline Trusted Author
ity

members wishing to join the group may obtain initial certificate from the TA at
any time prior to join.

This TAuses an RSA secret-public key pair {SK, PK}, and establishes public
key certificates for each group member Mi by signing Mi 's public key with its
secret key SK. Mi 's public key certificate (Mi, BKM;, Ei) SK is now distributed
to its trust set. Since the public key PK is well known, any member of M/s trust
set can verify this certificate and obtain Mi 's public key.

The initialization phase also distributes a secret share SKj of the secret
key SK to each group member Mj using Shamir's (k, n)-threshold sharing [16],
which is used for creating partial public key certificates held by members of trust
sets. A node Mj in M/s trust set verifies the original certificate for Mi (signed
using SK), and re-encrypts it with SKj to create a partial certificate. Now any k
members in the trust set of a given group member can offer that group member's
public key certificate by group signing of certificates.

In the rekeying phase, AFTD includes protocols in support of three opera
tions: join, leave and interval multicast.

4.2 Initialization Phase

Assurne the group G has n real group members M1, M2, ... , Mn initially. We
describe how to distribute the function of the trusted authority to appropriate
subgroups (trust set) so that any k member nodes in an appropriate subgroup
can offer the corresponding valid certificate. Here "valid" means the certificate
has been signed with the system secret key SK.

Distributing the system secret key shares SKi. Our design uses
Shamir's (k,n)-threshold scheme [16]. First, the TA randomly selects a (k -1)
degree polynomial f (x) = S K + a1 · x + · · · + ak_1 · xk- 1, such that the
shared secret is f(O) = SK. Each group member obtains a secret share
SSM; = (f(Mi)modm). For any k group members {M1,M2, ... ,Mk}, La-

764 L. Zhou and C.V. Ravishankar

grange interpolation yields SK = 2::7=1 (SSM, · lM, (0)) = 2::7=1 SKi (mod m),
where lM, (0) are the Lagrange coefficients1.

Obtaining valid certificates: The certificate X for any node is served by
the node's trust set, with each member in that trust set providing a partial
certificate xBK. With any k partial certificates, the requesting member can
compute the valid certificate as xSK1 • xBK2 .. . xBKk = xo:::::=l BK.) = xSK
[11]. Thus, these k members can work like a trusted authority, and jointly offer
the certificate. (We use the t-bounded coalition offsetting algorithm proposed
in [11] to ensure that the above equation is valid.)

This approach has the nice feature that the system secret key SK is never
revealed to any member node nor to any subset of member nodes. They can
jointly reconstruct xsK, but never SK itself. While this method can be unsafe
if group members can be compromised [13], this difficulty does not arise in our
case, as explained in Section 3.

Further, AFTD improves fault-tolerance, since Shamir's threshold scheme
ensures that any set of k- 1 or less secret shares cannot jointly obtain SK. Thus
if any set of k - 1 or less secret shares have been discovered, the system secret
key SKis still safe from adversaries.

Defining Trust Sets. At the beginning, each group member is assigned a
unique member ID and associated with a leaf node of the key tree in ascending
order. To define trust sets, the group is first split into k-member dusters. The
members in the last duster may have more than k group members when n is
not a multiple of k. The upper part of Figure 3 shows a 7-member group. When
k = 2, the group is divided into 3 dusters, and the last one has three members.

Definition 1 (Trust Set). The trust set of Mi or Vi (See Figure 2} is the set
of nodes in the union of all clusters that contain one or more leaf nodes of the
subtree rooted at Mi or V; 's sibling node, and represented as TS(Mi) or TS(V;).

In Figure 3, TS(V2) is the set of nodes in the first two dusters, which contain
allleafnodes {M1,M2,M3,M4} ofthe subtree rooted at V2's sibling node V1.

When the number of dusters in TS(Mi) is less than two, we improve fault
tolerance by induding in TS(Mi) the first adjacent duster formed by the leaves
of the sibling of Mi.

Distributing the Certificates to Trust Sets. After distributing the sys
tem secret key shares to all group members, the trusted authority distributes
the stored public key certificates to appropriate trust sets. Then the TA works
offline and is used only to initialize new members joining the group. The system
can provide key authentication service to renewed RSA keys without the help of
the TA, since its function has been fully distributed to appropriate trust sets.

4.3 The Rekeying Phase

To achieve forward and backward secrecy (Section 1), the group key must be
updated whenever new members join or old members leave. Each new member
1 D fi d l () _ (x-MI) .. ·(x-M,_ 1)(x- M;ttl(x- M k)

e ne as M; X - (M; - MI)···{M;-M;_I)(M;-M;tt}(M;- Mk).

Efficient, Authenticated, and Fault-Tolerant Key Agreement 765

MJ must also obtain a system secret share SSMJ and some certificates so that
it can offer certificate services.

Localized Self-initialization. When an uninitialized new member MJ
joins the group, a k-coalition of old members which are share holders
{MJ11 MJ2 , • • • MJk }, can jointly offer a system secret share SSMJ to MJ as
follows:

SSMJ = '2:~= 1 SSMJi ·lMJi (MJ) = '2:~= 1 SSJi (mod m).
The Lagrange coefficients and SSJi are known by MJ, so SSMJ1 can be

derived directly. Here we use the shuffiing scheme presented in [11 J to maintain
the secrecy of MJi 's share.

The Join Protocol. Assurne that a new member Mn+ 1 wishes to join a
n-member group which contains {M1, M2 , .•• , Mn}· Mn+l is required to au
thenticate itself by presenting a join request signed with BK. Mn+ 1 may obtain
a signature on its join request either by establishing credentials with the offline
trusted authority, or by enlisting the cooperation of at least k nodes from the
group G willing to recognize and certify Mn+l 's request.

When the other group members receive this request, they independently de
termine Mn+l 's insertion node [I] in the key tree, which is the shallowest right
most node, or the root node when the key tree is well-balanced. They also inde
pendently determine a real member called join sponsor Ms [I J to take responsible
for coordinating the join, which is the rightmost leaf node in the subtree rooted
at the insertion node.

No keys change in the key tree at a join, except the blinded keys for nodes on
the key path for the sponsor node. The sponsor simply recomputes the group key,
and sends updates for blinded keys on its own key path to their corresponding
trust sets. Each member Mj of the sponsor node's trust set creates a new partial
share SSj of the secret key SK, and forwards it to Mn+ 1 , which combines them
to obtain its new secret share SKn+l· The new node Mn+l also sends its signed
certificate to the members of its trust set TS(Mn+ 1), and gets the public keys
needed for generating the group key. The join works as shown in Algorithm 1.

Algorithm 1 Join Protocol in AFTD

1: The new member Mn+ l broadcasts the signed join request to the group.
2: Group members determine the insertion point, and update their key trees by creating a new

intermediate node and promoting it to become the parent of both the insertion node and Mn+l ·
3: Each group member adjusts the clusters in its key tree by adding Mn+l to the smallest cluster

adjacent to the insertion point, or to the cluster on its right one in case of a tie. If the size of
the modified cluster goes up to 2k, split it into two clusters.

4: The sponsor Ms computes the new group key, and sends the updated blinded keys of nodes on
its key path to their corresponding trust sets. These messages are signed by the sponsor Ms.

5: The members in these trust sets request the sponsor Ms's certificate from TS(Ms) to verify
the updated blinded keys they received. ·

6: Mn+l obtains its secret share SKn+l from TS(Ms).
7: Mn+l sends its valid public key certificates to its trust set, and gets the public keys needed for

generating the group key.

In Figure 3, Ms joins a 7-member group, and k = 2. The join sponsor M7

creates a new intermediate node V6 in the key tree and promotes it to become

766 L. Zhou and C.V. Ravishankar

Fig. 2. Trust Set Fig. 3. Join Process in AFTD Fig. 4. Leave Process in AFTD
of Mi or Vi

the parent of M7 and Ms. The sponsor M1 computes the new group key, sending
the updated BKv6 and BKv2 to their corresponding trust sets {Ms, MB, M1, Ms}
and {M1,M2,M3,M4} respectively. Finally as the size of the third duster is
extended to 2k = 4, it splits into two clusters: {Ms, MB} and {M7, Ms}.

Leave Protocol. Assurne that a member ML wishes to leave a n-member
group. First ML initiates the leave protocol by sending a leave request. When
the other group members receive the request, they independently determine the
sponsor node, which is defined as in [1] to be the right-most leaf node of the
subtree rooted at the leaving member's sibling node. The leave protocol works
as shown in Algorithm 2.

Algorithm 2 Leave Protocol in AFTD

1: The former sibling node of ML is promoted to replace ML's parent node.
2: The size of the duster that formerly contained ML is decreased by one, and merges with an

adjacent duster if its size drops below k. The new cluster may split if its size is 2k or !arger.
3: The sponsor Ms picks a new secret key KM , computes the new group key, and sends the

updated blinded keys of nodes on its key path to their corresponding trust sets. These messages
are signed by the sponsor M ,.

4: The members in these trust sets request Ms' certificate from TS(Ms) to verify the updated
blinded keys they received.

In Figure 4, Ms leaves a 9-member group where k = 2. The sponsor Mg
picks a new secret key KM9 and computes the new group key, sending updated
BKM9 , BKv6 and BKv2 to their corresponding trust sets {Ms, MB , M7, Mg},
{Ms,M6, M7,M9} and {M1,M2,M3,M4} respectively.

Interval Multicast Protocol. AFTD can also realize secure interval mul
ticast, in which a group member wants tosend data to a subgroup of group G.
This problern is discussed by Gouda et al. [17], who describe a new use of key
trees. They are concerned about using the existing subgroup keys in the key tree
to securely multicast data to different subgroups within the group. Unlike their
approach, which depends on a centralized key server to maintain the unique key
tree and manage all keys, AFTD solves this problern in a distributed fashion.
For the detailed algorithm, please refer to [12].

Efficient, Authenticated, and Fault-Tolerant Key Agreement 767

Updating Secret Keys & Secret Shares. In AFTD, each group member
is required to update its Diffie-Hellman keys before each group session, or during
a session when it is selected as a sponsor on a member's leaving. Source authenti
cation of the updated blinded keys is guaranteed by the sender's RSA signature.
Further, to ensure the long-term secrecy of the RSA keys, AFTD requires each
group member to renew its RSA key pair periodically, and send it to its trust
set securely using its current RSA secret key. AFTD adopts the proactive secret
share update algorithm in [18] to periodically update the system secret shares
to invalidate compromised secret shares.

4.4 Security of Trusted Authority

The trusted authority, which may be distributed, is on-line during initialization,
but remains offline subsequently. During initialization, the TA distributes valid
key certificates and secret shares of its secret key SK, so that the function of
key authentication can be realized and distributed across appropriate trust sets.
Since the duration of initialization is relatively short, it is safe for us to use the
TA at that time.

During the rekeying phase, the trusted authority may be approached by new
group members for authentication and creation of valid key certificates for them.
In this mode, the trusted authority works offline, in that it only communicates
with new group members, making compromises of TA unlikely.

4.5 The N umher of Rekeying Messages Received

On a rekeying event, all members in the trust sets of the nodes on the sponsor's
key path will receive an updated blinded key. As in [1], we use the term co-path
for the set of siblings of each node on the key path of member Mi. The nodes on a
co-path have disjoint subtrees, so that the set of leaf nodes for these subtrees are
also disjoint. Thus, the leaf nodes of each node in the co-path fall into clusters
with minimal overlaps.

Because of the way they are defined(Section 4.2) , the trust sets of the nodes
on the key path of member Mi have small overlap. Consequently, each group
member receives nearly the same number of rekeying messages in our scheme.
For example, in Figure 3, v6 and v2 are on the key path of the Sponsor M7. v5
and V1 are on the co-path of M 7 , which have disjoint subtrees, so that V6 an V2
have disjoint trust sets. V6's trust set is {M5, M6, M7, Ms}, and V2's trust set
is {M1, M 2 , M 3 , M4}. Each member of these trustsetswill receive one updated
blinded key.

5 Performance Analysis

5.1 Communication Overheads

The Initialization Phase. The communication overhead is measured by the
number of the messages. In the initialization phase of AFTD, the trusted au
thority distributes the certificates of each node in the key tree to its trust set.

768 L. Zhou and C.V. Ravishankar

Since every node in each trust set receives a message, the overall communication
overhead of the first phase is measured by the number of nodes in all trust sets.

If n is the group size and hv; is the height of Yi, there are at most 2lgn-hv;

leaf nodes on the subtree of Vi 's sibling node. Since the duster size is k, the
number of shares needed to reconstruct the certificate, these nodes will fall into

2Ign-hy.

at most f k ' l clusters. Hence, the size of Vi 's trust set is no more than
2~n-hv I h r k 'l . k < 2 gn-1- V; + 2k nodes. As the maximum number of nodes in

each level hv; is 2hv;, the communication overhead of each level is at most
2hv, · (21gn-hvM; + 2k). Therefore, we can compute the overall communication

overhead in the initialization phase as Cinitial = ~~!,~ 2i · (21gn-i + 2k) =
O(nlogn).

The Rekeying Phase. In the rekeying phase of AFTD, when a new member
joins or an old member leaves, keys for nodes on the sponsor node's key path
must be updated and multicast. Hence for each level of the key tree, only one
node's blinded key has been updated and must be multicast to its trust set.

Since the size of the trust set of the nodes on level hv; is at most f 21sn;hv; l· k <
21g n-hv; + 2k nodes, we can compute the overall communication in this stage as
CRekey = 2:~!,~(2lgn-i + 2k) = O(n).

40000
TGOH-

f
]SOQO AFT1l(1<•3)

30000 AFT1l(l<•$)

2lOOO
AFTD(t-8)

",
AfiD(bl -

"ö 20000

t llOOO
10000

z sooo

80 100 120 14(1

Gr01.1pSl,.c

(a) Initialization Phase

=== -·-

(d) Total Communication
Overhead(k = 11}

J
i z

80 100 120 140
Citoup S11.e

(b) Rekeying Phase

(e) Avg Number of Mes
sages

-·- ""._ --

(C) Total Communication
Overhead(k = 5}

300---=:-.-:,.,---:=;:,---,

obo==~~=='
40 60 80 100 120 140

Grot.lp Si:re

(f) Storage Requirement
(k = 5)

Fig. 5. Communication & Storage Overheads

Efficient, Authenticated, and Fault-Tolerant Key Agreement 769

Table 1. Performance of TGDH and AFTD Compared

Communication Overhead Storage Requirement
lnitialization 1-'hasejH.ekeying Phase l::llincted KeyjK:::iA 1-'ublic Key

TGDH O(n') I O(nlogn) O(n) I n
AFTD Otnlogn) 1 Ojn) OQognl 1 2k

Figure 5(a) and (b) show the effects of different thresholds k on the commu
nication overheads of AFTD. They also compare the communication overhead of
our scheme tothat of TGDH. Figure 5(c) and (d) compare the total communica
tion overhead of AFTD with that of TGDH, where k = 5 and 11 separately. Total
communication overhead is defined as the combined communication overhead of
initialization phase and multiple rekeying events. Clearly, the communication
overhead of our scheme is significantly smaller than that of TGDH, especially ir.
large dynamic group scenarios.

The value of k is a system-dependent parameter, and represents a tradeoff
between system security and fault-tolerance. Further, as seen from the above
figures, the communication overhead of our scheme is insensitive to k.
Number of Messages Received on Rekeying. As explained in Section 4.5,
each group member receives nearly the same number of rekeying messages in
our scheme, because of the way trust sets are defined. Thus, the average number
of messages on an rekeying event is a reasonable measure of communication
overhead. Figure 5(e) compares the average number of messages received by each
group member on an rekeying event. As the group size increases, the average
number of messages received decreases to approximately one in our scheme,
while it remains at lg n in TGDH. For example, when the group size is 128, each
group member receives around two rekeying message in our scheme, but about
seven in TGDH. This demonstrates the scalability of AFTD in terms of the load
experienced by group members.

5.2 Computation Overhead and Storage Requirements

Table 1 compares the performance of TGDH and AFTD. Due to space limita
tion, readers are referred [12] for a detailed analysis of computation and storage
requirements.

6 Conclusion

In this paper, we have presented AFTD, an efficient, authenticated and fault
tolerant tree-based key agreement protocol. Central to our technique is a thresh
old secret sharing based method to distribute the function of trusted authority
to appropriate trust sets. Our performance analysis shows that our approach can
significantly reduce the communication and storage overheads.

770 L. Zhou and C.V. Ravishankar

Acknowledgement. This work is supported in part by grants from Tata Con
sultancy Services, Inc., and the Fault-Tolerant Networks program of Defense
Advanced Research Projects Agency, under contract F30602-01-2-0536.

References

1. Kim, Y., Perrig, A., Tsudik, G.: Simple and fault-tolerant key agreement for
dynamic collaborative groups. In: Proceedings of the CCS'OO. (2000)

2. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups.
IEEE TRANSACTIONS on Paralleland Distributed Systems 11 (2000)

3. Perrig, A.: Efficient collabortive key management protocols for secure au
tomonomous group communication. In: Proceedings of CrypTEC'99. (1999)

4. Wong, C., Gouda, M., Lam, S.: Secure group communication using key graphs. In:
Proceedings of the ACM SIGCOMM'98, Vancouver, Canada (1998)

5. Wallner, D., Harder, E., Agee, R.: Key management for multicast: Issues and
architecture. In: Internet Draft, draft-wallner-key-arch-Ol.txt. (1998)

6. Steiner, M., Tsudik, G., Waidner, M.: Cliques: A new approach to group key
agreement. In: Proceedings of the ICDCS'98, Amsterdam, Netherlands (1998)

7. Ateniese, G ., Steiner, M., Tsudik, G.: New multiparty authentication services and
key agreement protocols. IEEE Journal of Selected Areas in Communications 18
(2000)

8. Pereira, 0., Quisquater, J.: A security analysis of the cliques protocols suites. In:
Proceedings of the 14-th IEEE Computer Security Foundations Workshop. (2001)

9. Lee, P., Lui, J., Yau, D.: Distributed collaborative key agreement protcols for
dynamic peer groups. In: Proceedings of the ICNP'02. (2002)

10. Lee, P., Lui, J., Yau, D.: Distributed collaborative key agreement protcols for dy
namic peer groups. Technical report, Dept. of Computer Science and Engineering,
Chinese University of Hong Kong (2002)

11. Kong, J., Zerfos, P., Luo, H., Zhang, L.: Providing robust and ubiquitous security
support for mobile ad-hoc networks. In: Proceedings of the ICNP'Ol. (2001)

12. Zhou, L., C.V.Ravishankar: Efficient, authenticated, and fault-tolerant key agree
ment for dynamic peer groups. Technical Report 88, Dept. of Computer Science
and Engineering, University of California, Riverside (2003)

13. Narasimha, M., Tsudik, G., Yi, J.H.: On the utility of distributed cryptography in
p2p and manets: the case of membership control. In: Proceeding of the ICNP'03.
(2003)

14. Amir, Y., Kim, Y., Nita-Rotaru, C., Tsudik, G.: On the performance of group key
agreement protocols. In: Proceedings of the ICDCS'02. (2002)

15. Amir, Y., Nita-Rotaru, C., Stanton, J., Tsudik, G.: Scaling secure group com
munication systems: Beyong peer-to-peer. In: Proceedings of the DISCEX'03,
Washington DC (2003)

16. Shamir, A.: How to share a secret. Communications of the ACM 22 (1979)
17. M.G.Gouda, Huang, C., E.N.Elnozahy: Key trees and the security of interval

multicast. In: Proceedings of the ICDCS'02, Vienna, Austria (2002)
18. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or:

How to cope with perpetualleakage. extened abstract, IBM T.J. (1995)

