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deep-learning (DL) algorithms, which learn the repre-
sentative and discriminative features in a hierarchical 

manner from the data, have recently become a hotspot in 
the machine-learning area and have been introduced into 
the geoscience and remote sensing (RS) community for RS 
big data analysis. Considering the low-level features (e.g., 
spectral and texture) as the bottom level, the output fea-
ture representation from the top level of the network can 
be directly fed into a subsequent classifier for pixel-based 
classification. As a matter of fact, by carefully addressing 
the practical demands in RS applications and designing the 
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input–output levels of the whole network, we have found 
that DL is actually everywhere in RS data analysis: from 
the traditional topics of image preprocessing, pixel-based 
 classification, and target recognition, to the recent chal-
lenging tasks of high-level semantic feature extraction and 
RS scene understanding. 

In this technical tutorial, a general framework of DL for 
RS data is provided, and the state-of-the-art DL methods 
in RS are regarded as special cases of input–output data 
combined with various deep networks and tuning tricks. 
Although extensive experimental results confirm the excel-
lent performance of the DL-based algorithms in RS big data 
analysis, even more exciting prospects can be expected for 
DL in RS. Key bottlenecks and potential directions are also 
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indicated in this article, guiding further research into DL  
for RS data.

AdvAntAges of ReMote sensIng Methods 
RS techniques have opened a door to helping people wid-
en their ability to understand the earth [1], [2]. In fact, 
RS techniques are becoming more and more important in  
data-collection tasks. Information technology compa-
nies depend on RS to update their location-based services 
[3], [4]. Google Earth employs high-resolution (HR) RS 
images to provide vivid pictures of the earth’s surface. 
Governments have also utilized RS for a variety of pub-
lic services, from weather reporting to traffic monitoring 
[5]–[7]. Nowadays, one cannot  imagine a life without RS. 
Recent years have even witnessed a boom in RS satellites, 
providing for the first time an extremely large number of 
geographical images of nearly every corner of the earth’s 
surface [8]. Data warehouses of RS images are increasing 
daily, including images with different spectral and spatial 
resolutions [9], [10].

How can we extract valuable information from the 
various kinds of RS data? How should we deal with the 
ever-increasing data types and volume? The traditional 
approaches exploit features from RS images with which 
information-extraction models can be constructed [11]. 
Handcrafted features have proved effective and can repre-
sent a variety of spectral, textural, and geometrical attri-
butes of the images [12], [13]. However, since these features 
cannot easily consider the details of real data, it is impos-
sible for them to achieve an optimal balance between dis-
criminability and robustness. When facing the big data of 
RS images, the situation is even worse, since the imaging 
circumstances vary so greatly that images can change a lot 
in a short interval. Thanks to DL theory [14], which pro-
vides an alternative way to automatically learn fruitful fea-
tures from the training set, unsupervised feature learning 
from very large raw-image data sets has become possible 
[15]. Actually, DL has proven to be a new and exciting tool 
that could be the next trend in the development of RS im-
age processing.

RS images, despite the spectral and spatial resolution, 
are reflections of the land surface [16], with an impor-
tant property being their ability to record multiple-scale 
information within an area. According to the type of in-
formation that is desired, pixel-based, object-based, or 
structure-based features can be extracted. However, an ef-
fective and universal approach has not yet been reported 
to optimally fuse these features, due to the subtle rela-
tionships between the data. In contrast, DL can represent 
and organize multiple levels of information to express 
complex relationships between data [17]. In fact, DL tech-
niques can map different levels of abstractions from the 
images and combine them from low level to high level 
[18]. Consider scene recognition as an example, where, 
with the help of DL, the scenes can be represented as a 
unitary transformation by exploiting the variations in the 

local spatial arrangements and structural patterns cap-
tured by the low-level features, where no segmentation 
stage or individual object extraction stage is needed.

Despite its great potential, DL cannot be directly used in 
many RS tasks, with one obstacle being the large numbers of 
bands. Some RS images, especially hyperspectral ones, con-
tain hundreds of bands that can cause a small patch to be a 
really large data cube, which corresponds to a large number 
of neurons in a pretrained network [19], [20]. In addition to 
the visual geometrical patterns within each band, the spec-
tral curve vectors across bands are also important informa-
tion. However, how to utilize this information still requires 
further research. Problems still exist in the high-spatial-reso-
lution RS images, which have only green, red, and blue chan-
nels, the same as the benchmark data sets for DL. In practice, 
very few labeled samples are available, which may make a 
pretrained network difficult to construct. Furthermore, im-
ages acquired by different sensors present large differences. 
How to transfer the pretrained network to other images is 
still unknown.

In this article, we survey the recent developments in 
DL for the RS field and provide a technique tutorial on the 
design of DL-based methods for optical RS data. Although 
there are also several advanced techniques for DL for syn-
thetic aperture radar images [21]–[26] and light detection 
and ranging (LiDAR) point clouds data [27], they share the 
similar basic DL ideas of the data analysis model. 

the geneRAL fRAMeWoRK
Despite the complex hierarchical structures, all of the DL-
based methods can be fused into a general framework. 
Figure 1 illustrates a general framework of DL for RS data 
analysis. The flowchart includes three main components, 
the prepared input data, the core deep networks, and the 
expected output data. In practice, the input–output data 
pairs are dependent on the particular application. For ex-
ample, for RS image pan sharpening, they are the HR and 
low-resolution (LR) image patches from the panchromatic 
(PAN) images [28]; for pixel-based classification, they are 
the spectral–spatial features and their feature representa-
tions (unsupervised version) or label information (super-
vised version) [29]; while, for tasks of target recognition 
[30] and scene understanding [31], the inputs are the fea-
tures extracted from the object proposals, as well as the raw 
pixel digital numbers from the HR images and RS image 
databases respectively, and the output data are always the 
same as in the application of pixel-based classification, as 
described previously.

When the input–output data pairs have been properly 
defined, the intrinsic and natural relationship between 
the input and output data is then constructed by a deep 
architecture composed of multiple levels of nonlinear op-
erations, where each level is modeled by a shallow module 
such as an autoencoder (AE) or a sparse coding algorithm. 
It should be noted that, if a sufficient training sample set is 
available, such a deep network turns out to be a supervised 
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approach. It can be further fine-tuned by the use of the la-
bel information, and the top-layer output of the network 
is the label information rather than the abstract feature 
representation learned by an unsupervised deep network. 
When the core deep network has been well trained, it can 
be employed to predict the expected output data of a given 
test sample. Along with the general framework in Figure 1, 
we describe a few basic algorithms in the deep network-
construction tutorial in the following section, and we then 
review the representative techniques in DL for RS data anal-
ysis from four perspectives: 1) RS image preprocessing, 2)  
pixel-based classification, 3) target recognition, and 4) 
scene understanding.

BAsIC ALgoRIthMs In deeP LeARnIng
In recent years, the various DL architectures have thrived 
[32] and have been applied in fields such as audio recog-
nition [33], natural language processing [34], and many 
classification tasks [35], [36], where they have usually 
outperformed the traditional methods. The motivation 
for such an idea is inspired by the fact that the mammal 
brain is organized in a deep architecture, with a given 
input percept represented at multiple levels of abstrac-
tion, for the primate visual system in particular [37]. 
Inspired by the architectural depth of the human brain, 
DL researchers have developed novel deep architectures 
as an alternative to shallow architectures. Deep belief 
networks (DBNs) [38] are a major breakthrough in DL 
research and train one layer at a time in an unsupervised 
manner by restricted Boltzmann machines (RBMs) [39].  
A short while later, a number of AE-based algorithms 
were proposed that also train the intermediate levels 

of representation locally at each level (i.e., the AE and 
its variants, such as the sparse AE and the denoising AE 
[40], [41]). Unlike AEs, the sparse coding algorithms [42] 
generate sparse representations from the data themselves 
from a different perspective by learning an overcomplete 
dictionary via self-decomposition. In addition, as the 
most representative supervised DL model, convolutional 
neural networks (CNNs) [43] have outperformed most 
algorithms in visual recognition. The deep structure of 
CNNs allows the model to learn highly abstract feature 
detectors and to map the input features into represen-
tations that can clearly boost the performance of the 
subsequent classifiers. Furthermore, there are many op-
tional techniques that can be used to train the DL archi-
tecture shown in Figure 1. In this review, we only provide 
a brief introduction to the following four typical models 
that have  already been used in the RS community and 
can be embedded into the general framework to achieve 
the particular application. More detailed information re-
garding the DL algorithms in the machine-learning com-
munity can be found in [14] and [44].

Convolutional neural networks
The CNN is a trainable multilayer architecture composed 
of multiple feature-extraction stages. Each stage consists 
of three layers: 1) a convolutional layer, 2) a nonlinearity 
layer, and 3) a pooling layer. The architecture of a CNN is de-
signed to take advantage of the two-dimensional structure 
of the input image. A typical CNN is composed of one, two, 
or three such feature-extraction stages, followed by one or 
more traditional, fully connected layers and a final classifier 
layer. Each layer type is described in the following sections.

fIgURe 1. A general framework of DL for RS data analysis. 
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CONVOLUTIONAL LAYER
The input to the convolutional layer is a three- dimensional 
array with r two-dimensional feature maps of size  
m #  n. Each component is denoted as ,x ,m n

i  and each 
feature map is denoted as xi. The output is also a three- 
dimensional array ,m n k1 1# #  composed of k feature 
maps of size .m n1 1#  The convolutional layer has k 
trainable filters of size ,l l q# #  also called the filter bank 
W, which  connects the input feature map to the output 
feature map. The convolutional layer computes the out-
put feature map * ,z W x bs

i
s

t

q i
s1= +

=
/  where * is a two- 

dimensional discrete convolution operator and b is a 
trainable bias parameter.

NONLINEARITY LAYER
In the traditional CNN, this layer simply consists of a 
pointwise nonlinearity function applied to each compo-
nent in a feature map. The nonlinearity layer computes the 
output feature map ,a f z fas ·s s= ^ ^h h is commonly chosen 
to be a rectified linear unit (ReLU) ( , ) .maxf x x0=^ h  

POOLING LAYER
The pooling layer involves executing a max operation over 
the activations within a small spatial region G of each 
feature map: .maxp aG

s

i G
i
s=

!
 To be more precise, the pool-

ing layer can be thought of as consisting of a grid of pool-
ing units spaced s pixels apart, each summarizing a small 
spatial region of size p * p centered at the location of the 
pooling unit. After the multiple feature-extraction stages, 
the entire network is trained with back propagation of a 
supervised loss function such as the classic least-squares 
output, and the target output y is represented as a 1–of–K 
vector, where K is the number of output and L is the num-
ber of layers:

 ( ) ( , ) ( ),J h x y2
1 sum ( )

i
l

l

L

i

N
2 2

1
i i m i= - +

=

` j //  (1)

where l indexes the layer number. Our goal is to minimize
J i^ h as a function of .i  To train the CNN, we can apply sto-
chastic gradient descent with back propagation to optimize 
the function.

CNNs have recently become a popular DL method and 
have achieved great success in large-scale visual recogni-
tion, which has become possible due to the large public 
image repositories, such as ImageNet [36]. In the RS com-
munity, there are also some recent works on CNN-based RS 
image pixel classification [45]–[47], target recognition [48], 
[49], and scene understanding [50].

autoenCoders
An AE is a symmetrical neural network that is used to learn 
the features from a data set in an unsupervised manner 
by minimizing the reconstruction error between the in-
put data at the encoding layer and its reconstruction at the 
decoding layer. During the encoding step, an input vector 

x Ri N!  is processed by applying a linear mapping and a 
nonlinear activation function to the network:

 ( ) ( )f x g W x bi i
1 1a = = + , (2)

where W RK N
1 ! #  is a weight matrix with K features, 

b RK
1 !  is the encoding bias, and g(x) is the logistic sig-

moid function ( ( )) .exp x1 1+ - -  We decode a vector using 
a separate linear decoding matrix:

 z W b·i T i
2 2a= + , (3)

where W RK N
2 ! #  is a weight matrix and b RN

2 !  is the de-
coding bias. Feature extractors in the data set are learned by 
minimizing the cost function, and the first term in the recon-
struction is the error term. The second term is a regularization 
term (also called a weight decay term in a neural network):

 ( , )J X Z x z W2
1

2
i i

i
m 2 2

1
m

= - +
=
/ , (4)

where X and Z are the training and reconstructed data, re-
spectively.

We recall that a denotes the activation of hidden units 
in the AE. Thus, when the network is provided with a spe-
cific input ,x Xi N m! #  let m

1 i
i

m

1t a=
=

t 6 @/  be the average 
activation of a  averaged over the training set. We want to 
approximately enforce the constraint ,t t=t  where t is the 
sparsity parameter, which is typically a small value close 
to zero. In other words, we want the average activation of 
each hidden neuron tt  to be close to zero. To satisfy this 
constraint, the hidden units activations must be mostly in-
active and close to zero so that most of the neurons are in-
active. To achieve this, the objective in the sparse AE learn-
ing is to minimize the reconstruction error with a sparsity 
constraint, i.e., a sparse AE: 

 ( , ) ( )J X Z KL
j

K

1
b t t+
=

t/ , (5)

where b is the weight of the sparsity penalty, K is the num-
ber of features in the weight matrix, and KL $^ h is the Kull-
back-Leibler divergence given by

 ( ) ( )log logKL 1 1
1

t t t
t
t

t
t
t

= + -
-
-t

t t . (6)

This penalty funct ion has the proper ty that 
( )KL 0t t =t  if .t t=t  Otherwise, it increases monotoni-

cally as tt  diverges from ,t  which acts as the sparsity con-
straint. An AE can be directly employed as a  feature extrac-
tor for RS data analysis [51], and it has been more  frequently 
stacked into the AEs for DL from RS data [52]–[54]. 

restriCted Boltzmann maChines
An RBM is commonly used as a layer-wise training model 
in the construction of a DBN. It is a two-layer network, 
presenting a particular type of Markov random field with 
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visible units { , }v 0 1 D=  and hidden units { , } .h 0 1 F=  A 
joint configuration of the units has an energy given by

 ( , : ) ,E v h b v a h w v hi i j j i i j
j

F

i

D

j

F

i

D

1111
i = - - -

====

////  (7)

where { , , }b a wi j iji =  and wij is the weight between visible 
unit i and hidden unit j, and bi and aj are bias terms of the 
visible and hidden unit, respectively. 

The joint distribution over the units is defined by

 ( , : ) ( )P v h Z e1 ( , : )E v hi
i

= i-  (8)

 ( ) ( , : ),Z E v h
hv

i i= //  (9)

where Z i^ h is the normalizing constant. The network as-
signs a probability to every input vector via the energy func-
tion. The probability of the training vector can be raised by 
adjustment to lower the energy, as given in (7). The condi-
tional distributions of hidden unit h and input vector v are 
given by the logistic function

 ( | ) ,p h v g W v a1j ij i j
i

D

1
= = +

=

d n/  (10)

 ( | ) ,p v h g W h b1j ij i j
j

F

1
= = +

=

e o/  (11)

 ( ) .g x
e1
1

( )x=
+ -  (12)

Once the states of hidden units are chosen, the input data 
can be reconstructed by setting each vi to 1 with the prob-
ability in (11). The hidden units’ states are then updated to 
represent the features of the reconstruction. The learning of 
W is done through a method called contrastive divergence (CD). 
The DBN has been applied to the RS image spatial–spectral 
classification and shows superior performance compared to 
the conventional feature dimensionality-reduction methods, 
such as principal component analysis (PCA), and classifiers, 
such as support vector machines (SVMs) [55], [29].  In recent 
years, it has also been successfully proposed for object recogni-
tion [56] and scene classification [57].

sParse CodinG
Sparse coding is a type of unsupervised method for learn-
ing sets of overcomplete bases to represent data efficiently to 
find a set of basis vectors iz  such that we can represent an 
input vector x as a linear combination of these basis vectors:

 .x ai
i

k

i
1
z=

=

/  (13)

While techniques such as PCA allow us to learn a complete 
set of basis vectors efficiently, we wish to learn an overcom-
plete set of basis vectors to represent the input vectors x. The 
advantage of having an overcomplete basis set is that our ba-
sis vectors are better able to capture structures and patterns 
inherent in the input data. However, with an overcomplete 

basis set, the coefficients ai are no longer uniquely deter-
mined by the input vector x. Therefore, in sparse coding, we 
introduce the additional criterion of sparsity to resolve the 
degeneracy introduced by the overcompleteness.

We define the sparse coding cost function on a set of m 
input vectors as

 ( )min x a S a
,a

j
i
j

i
i

k

j

m

i
j

i

k

1 2

2

1 1
z m- +

z == =

// / , (14)

where S $^ h is a sparsity cost function that penalizes ai for 
being far from zero. We can interpret the first term of the 
sparse coding objective as a reconstruction term that tries 
to force the algorithm to provide a good representation of 
x, and the second term can be defined as a sparsity penalty 
that forces our representation of x to be sparse.

A large number of sparse coding methods have been pro-
posed. Notably, for RS scene classification, Cheriyadat [58] 
introduces a variant of sparse coding that combines local 
scale-invariant feature transform (SIFT)-based feature de-
scriptors to generate a new sparse representation, while, in 
[59], the sparse coding is used to reduce the potential redun-
dant information in the feature representation. In addition, 
as a computationally efficient unsupervised feature-learn-
ing technique, k-means clustering has also been played as 
a single-layer feature extractor for RS scene classification 
[60]–[62] and achieves state-of-the-art performance.

deeP LeARnIng foR ReMote sensIng dAtA
The “Basic Algorithms in Deep Learning” section discussed 
some of the basic elements used in constructing a DL ar-
chitecture as well as the general framework. In practice, 
the mathematical problems of the various RS data analysis 
techniques can be regarded as special cases of input–output 
data combined with a particular DL network based on the 
aforementioned algorithms. In this section, we provide a 
tutorial on DL for RS data from four perspectives: 1) image 
preprocessing, 2) pixel-based classification, 3) target recog-
nition, and 4) scene understanding.

remote sensinG imaGe PreProCessinG
In practice, the observed RS images are not always as sat-
isfactory as we demand due to many factors, including the 
limitations of the sensors and the influence of the atmo-
sphere. Therefore, there is a need for RS image preprocess-
ing to enhance the image quality before the subsequent 
classification and recognition tasks. According to the relat-
ed RS literature, most of the existing methods in RS image 
denoising, deblurring, superresolution, and pan sharpen-
ing are based on the standard image-processing techniques 
in the signal processing society, while there are very few 
machine-learning-based techniques. In fact, if we can ef-
fectively model the intrinsic correlation between the input 
(observed data) and output (ideal data) by a set of training 
samples, then the observed RS image could be enhanced 
by the same model. According to the basic techniques in 
the previous section, such an intrinsic correlation can be 
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effectively explored by DL. In this tutorial, we consider two 
typical applications as the case studies, i.e., RS image resto-
ration and pan sharpening, to show the state-of-the-art DL 
achievements in RS image preprocessing.

Followed by the general framework of DL-based RS data 
preprocessing that we introduced in the “General Frame-
work” section, the input data of the framework are usually 
the whole original image or the local image patches. A spe-
cific deep network is then constructed, such as a decon-
volution network [63] or a sparse denoising AE [28]. After 
that, the observed RS image is recovered by the learned DL 
model per spectral channel or per patch.

restoration and denoisinG
For RS image restoration and denoising, the original im-
age is the input to a certain network that is trained with 
the clean image to obtain the restored and denoised im-
age. For instance, Zhang et al. utilized the L1∕2-regularized 
deconvolution network for the restoration and denoising of 
RS images [63], which is an improved version of the L1-reg-
ularized deconvolution network. The classical deconvolu-
tion network model is based on the convolutional decom-
position of images under an L1 regularization, which is a 
sparse constraint term. In the experiments undertaken in 
this study, adopting the L1∕2 regularization in the deep net-
work gave sparser solutions than their L1 counterpart and 
has achieved satisfactory results.

Pan sharPeninG
By introducing deep neural networks, Huang et al. pro-
posed a new pan-sharpening method for RS image prepro-
cessing [28] that used a stacked modified sparse denoising 
AE (S-MSDA) to train the relationship between HR and 
LR image patches. Similar to the structure of the sparse 
AE, S-MSDA is constructed by stacking a series of MSDAs. 
The MSDA is a modified version of the sparse denoising 
AE (SDA), which is obtained by combining sparsity and a 
denoising AE together. The SDA is trained to reconstruct 
a clean, repaired input from the corresponding corrupted 
version [64]. Meanwhile, the modified version (i.e., the 
MSDA) takes the HR image patches and the corresponding 
LR image patches as clean data and corrupted data, respec-
tively, and represents the relationship between them. There 
is a key hypothesis that the HR and LR multispectral (MS) 
image patches have the same relationship as that between 
the HR and LR PAN image patches; thus, it is a learning-
based method that requires a set of HR–LR image pairs for 
training. Since the HR PAN is already available, we have 
designed an approach to obtain its corresponding LR PAN. 
Therefore, we can use the fully trained DL network to recon-
struct the HR MS image from the observed LR MS image. 
The experimental results demonstrated that the DL-based 
pan sharpening method outperforms the other traditional 
and state-of-the-art methods. The aforementioned meth-
ods are just two aspects of DL-based RS image preprocess-
ing. In fact, we can use the general framework to generate 

more DL algorithms for RS image-quality improvement for 
different applications.

PiXel-Based ClassiFiCation
Pixel-based classification is one of the most popular topics in 
the geoscience and RS community. Significant progress has 
been achieved in recent years, e.g., in the aspects of handcraft-
ed feature description [65]–[68], discriminative feature learn-
ing [13], [69], [70], and powerful classifier designing [71], 
[72]. However, from the DL point of view, most of the exist-
ing methods can extract only shallow features of the original 
data (the classification step can also be treated as the top level 
of the network), which is not robust enough for the classifica-
tion task. DL-based pixel classification for RS images involves 
constructing a DL architecture for the pixel-wise data repre-
sentation and classification. By adopting DL techniques, it is 
possible to extract more robust and abstract feature represen-
tations and thus improve the classification accuracy.

The scheme of DL for RS image pixel-based classifica-
tion consists of three main steps: 1) data input, 2) hierarchi-
cal DL model training, and 3) classification. A general flow 
chart of this scheme is shown in Figure 2. In the first steps, 
the input vector could be the spectral feature, the spatial 
feature, or the spectral–spatial feature, as we will discuss 
later. Then, for the hidden layers, a deep network structure 
is designed to learn the expected feature representation of 
the input data. In the related literature, both the supervised 
DL structures (e.g., the CNN [45]) and the unsupervised 
DL structures (e.g., the AEs [73]–[75], DBNs [29], [76], 
and other self-defined neurons in each layer [77]) are em-
ployed. The third step is the classification, which involves 
classification by utilizing the learned feature in the second 
step (the top layer of the DL network). In general, there are 
two main styles of classifiers: 1) the hard classifiers, such as 
SVMs, which directly output an integer number as the class 
label of each sample [76], and 2) the soft classifiers, such as 
logistic regression, which can simultaneously fine-tune the 
whole pretrained network and predict the class label in a 
probability distribution manner [29], [73], [74], [78].

sPectraL FeatUre cLassiFication
The spectral information usually contains abundant dis-
criminative information. A frequently used and direct ap-
proach for RS image classification is spectral feature-based 
classification, i.e., image classification with only the spec-
tral feature. Most of the existing common approaches for RS 
image classification are shallow in their architecture, such 
as SVMs and k-nearest neighbor (KNN). Instead, DL adopts 
a deep architecture to deal with the complicated relation-
ships between the original data and the specific class label.

For spectral feature classification, the spectral feature 
of the original image data is directly deployed as the in-
put vector. The input pixel vector is trained in the network 
part to obtain the robust deep feature representation, which 
is used as the input for the subsequent classification step. 
The selected deep networks could be the deep CNN [45] 
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and a stack of the AE [73], [75], [79], [80]. In particular, Lin  
et al. adopted an AE plus SVMs and a stacked AE plus lo-
gistic regression as the network structure and classification 
layer to perform the classification task with shallow and 
deep representation, respectively. It is worth noting that, 
due to the deeper network structure and the fine-tuning 
step, the deep spectral representation achieved a better per-
formance than the shallow spectral representation [73].

cLassiFication With sPatiaL inFormation
Land covers are known to be continuous in the spatial do-
main, and adjacent pixels in an RS image are likely to be-
long to the same class. As indicated in many spectral–spa-
tial classification studies, the use of the spatial feature can 
significantly improve the classification accuracy [81]–[83]. 
However, traditional methods cannot extract robust deep 
feature representations due to their shallow properties. 
To address this problem, a number of DL-based feature-
learning methods have been proposed to find a new way 
of extracting the deep spectral–spatial representation for 
classification [84].

For a certain pixel in the original RS image, it is natural 
to consider its neighboring pixels to extract the spatial fea-
ture representation. However, due to the hundreds of chan-
nels along the spectral dimension of a hyperspectral image, 
the region-stacked feature vector will result in too large an 
input dimension. As a result, it is necessary to reduce the 
spectral feature dimensionality before the spatial feature 
representation. PCA is commonly executed in the first step 
to map the data to an acceptable scale with a low informa-
tion loss. Then, in the second step, the spatial information 
is collected by the use of a w # w (w is the size of window) 
neighboring region of every certain pixel in the original im-
age [85]. After that, the spatial data is straightened into a 
one-dimensional vector to be fed into a DL network. Lin et 
al. [73] and Chen at al. [74] adopted the stacked AE as the 
deep network structure. When the abstract feature has been 

learned, the final classification step is carried out, which is 
similar to the spectral classification scheme.

When considering a joint spectral and spatial feature-
extraction and classification scheme, there are two main 
strategies to achieve this goal under the framework sum-
marized in Figure 2. Straightforwardly, differing from the 
spectral–spatial classification scheme, the spectral and ini-
tial spatial features are combined together into a vector as 
the input of the DL network in a joint framework, as pre-
sented in the works [29], [53]–[55], [73], and [74]. The pre-
ferred deep networks in these papers are SAEs and DBNs,  
respectively. Then, by the learned deep network, the joint 
spectral–spatial feature representation of each test sample is 
obtained for the subsequent classification task, which is the 
same as the spectral–spatial classification scheme described 
previously. The other approach is to address the spectral 
and spatial information of a certain pixel by a convolu-
tional deep network, such as the CNNs [46], [47], [76], the 
convolutional AEs [78], and a particular defined deep net-
work [78]. Moreover, there are a few hierarchical learning 
frameworks that take each step of operation (e.g., feature 
extraction, classification, and postprocessing) as a single 
layer of the deep network [86]–[90]. We also regard them 
as the spectral–spatial DL techniques in this tutorial article.

tarGet reCoGnition
Target recognition in large HR RS images, such as ship, 
aircraft, and vehicle detection, is a challenging task due to 
the small size and large numbers of targets and the com-
plex neighboring environments, which can cause the rec-
ognition algorithms to mistake irrelevant ground objects 
for target objects. However, objects in natural images are 
relatively large, and the environments in the local fields are 
not that complex compared to RS images, making the tar-
gets easier to recognize. This is one of the main differences 
between detecting RS targets and natural targets. Although 
many studies have been undertaken, we are still lacking an 

fIgURe 2. A general framework for the pixel classification of RS images using DL methods. Inputs of the DL networks can be divided into 
three categories: the spectral feature, the spatial feature, and the spectral–spatial feature. 
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efficient location method and robust classifier for target 
recognition in complex environments. In the literature, Cai 
et al. [91] showed how difficult it is to segment aircraft from 
the background, and Chen et al. [30], [92] made great ef-
forts in vehicle detection in HR RS images.

The performance of target recognition in such a complex 
context relies on the features extracted from the objects. DL 
methods are well suited for this task, as this type of algo-
rithm can extract low-level features with a high frequency, 
such as edges, contours, and outlines of objects, whatever 
the shape, size, color, or rotation angle of the targets. This 
type of algorithm can also learn hierarchical representa-
tions from the input images or patches, such as the parts 
of the objects that are compounded by the lower-level fea-
tures, making recognition of RS targets discriminative and 
robust. A number of these approaches achieved state-of-
the-art performance in target recognition by use of a DL 
method [30], [48], [49], [52], [56], [93]–[96].

GeneraL deeP-LearninG FrameWorK oF  
remote sensinG tarGet recoGnition
The DL methods used in target recognition can be divided 
into two main categories: unsupervised methods and su-
pervised methods. The unsupervised methods learn fea-
tures from the input data without knowing the correlated 
labels or other supervisory information, while the super-
vised methods use the input data as well as the supervi-
sory information attached to the input to discriminatively 
learn the feature representations. However, both of these  
DL methods are utilized to learn features from the object 
images, and the learning processes can be unified into the 
same framework, as depicted in Figure 3.

The RS images are first preprocessed to subtract the 
mean and divide the variance, or to simply convert the im-
ages to gray images with only one channel. Other prepro-
cessing techniques compute the gradient images [97] of the 
original image with a certain threshold [30]. The second 
term of this general pipeline is extracting the object propos-
als, which is a bounding box locating the probable targets. 
Following the process of selecting the proposals from the 

whole image, a simple feature extraction is conducted for 
each proposal or the whole image to extract the low-level 
descriptors that are invariant to shift, rotation, and scaling, 
to some extent,  such as SIFT [98], Gabor [99], and the his-
togram of oriented gradients (HOG) [97]. Next, the middle-
level feature representations can be generated by perform-
ing codebook learning on the learned descriptors. This 
step is not essential, but using these low- or middle-level 
features usually outperforms merely using the raw pixels 
when learning hierarchical feature representations by the 
following deep neural networks.

The deep neural networks such as the CNNs, sparse AEs, 
and DBNs are hierarchical models that can learn high-level 
feature representations in the deep layers automatically 
generated by the features learned in the shallow layers. 
Having learned the discriminative and robust representa-
tions of the proposals, a classifier such as an SVM is trained 
with training samples composed of the representations of 
some data and the corresponding supervisory information. 
When a new proposal is generated from a new image, this 
framework can automatically learn the high-level features 
from the raw image, and then classification is undertaken 
by the well-trained classifier to tell whether the proposal is 
the target or not.

samPLe seLection ProPosaLs
To choose the most accurate area that exactly contains the 
target, a number of proposals should be extracted from 
the input image. Each proposal is usually a bounding box 
covering an object that probably contains the target. The 
most satisfactory case is that the target is in the center of 
the bounding box, and the bounding box can just cover the 
edge of the object.

There are different ways of selecting the proposals. The 
baseline technique is the sliding window method [100], 
which slides the bounding box over the whole image with 
a small stride to generate a number of proposals. The slid-
ing window technique is accurate and will not miss any 
possible proposals that may exactly contain the target, 
yet it is slow and burdens the subsequent feature-learning 

fIgURe 3. A general framework of target recognition using DL methods. The high-level features learned by the deep networks are sent to 
the classifiers to be classified (or directly classified by the deep networks for a supervised network). 
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algorithms and classifiers, especially when there are quite 
a lot of objects in an image (e.g., in RS images). Other 
methods have been proposed to solve this problem, e.g., 
Chen et al. [30] proposed an object-location technique 
that can discover the coarse locations of the targets, and 
hence can greatly reduce the number of proposals. The 
search efficiency of this method is more than 20 times 
the baseline sliding window method. Tang et al. [101] 
proposed a coarse ship location technique that can ex-
tract the candidate locations of the targets with little de-
crease in accuracy.

LoW- to middLe-LeVeL FeatUre LearninG
Low-level features, which have the ability to handle varia-
tions in terms of intensity, rotation, scale, and affine projec-
tion, are utilized to characterize the local region of the key 
points in each image or patch. Han et al. [94] utilized SIFT 
descriptors to represent the image patches, which made the 
subsequent training process of the DBMs easier. Dalal and 
Triggs [97] proposed a method for object detection using 
the HOG.

The low-level descriptors can boost the feature-learn-
ing performance of the deep networks. However, they 
catch only limited local spatial geometric characteris-
tics, which can lead to poor classification or detection 
performance when they are directly used to describe 
the structural contents of image patches. To tackle this 
problem, some work has been done to learn codebooks 
that are used to encode the local descriptors and gener-
ate middle-level feature representations and to alleviate 
the unrecoverable loss of discriminative information. For 
instance, Han et al. [94] applied the locality-constrained 
linear coding model [102] to encode the SIFT descriptors 
into the image patch representation.

traininG the deeP-LearninG netWorKs
Although the middle-level features are extracted based 
on the low-level local descriptors to obtain the struc-
tural information and preserve the local relevance 
of elements in the local region, they cannot provide 
enough strong description and generalization abilities 
for object detection when confronted with objects and 
backgrounds with a large variance. To better understand 
the complexity of the environments in an image, bet-
ter descriptors should be utilized. The DL methods can 
handle complex ground objects with large variance, as 
the features learned by the deep neural networks can be 
highly abstract, which makes them invariant to relative-
ly large deformations, including different shapes, sizes, 
and rotations, and discriminative to some objects that 
belong to different categories but resemble each other 
in some other aspect, such as white targets on a white 
background. Generally speaking, the DL methods used 
in target recognition in RS images can be divided into 
two categories: 1) the supervised DL algorithms and 2) 
the unsupervised DL algorithms.

SUPERVISED METHODS
There are two typical supervised DL methods for target 
recognition: the CNN and the multilayer perceptron 
(MLP) [103]. The CNNs are hierarchical models that 
transform the input image or image patch into layers of 
feature maps, which are high-level discriminative features 
representing the original input data. For the MLP model, 
the input image or patch should be reshaped into a vec-
tor. Then, after the transformation of each fully connected 
layer, the final feature representation can be generated. 
The final features are then sent to the classification layer 
to generate the label of the input image. Both types of 
supervised networks transform the input image into a 
two-dimensional vector for a one-class object detection. 
This vector indicates the predicted label (whether the in-
put candidate is the target or not, or the probability of 
the proposal being the target). In the training stage, to 
learn the weights or kernels, the supervised networks are 
trained with the training samples composed of positive 
samples that contain the target and negative samples that 
do not contain the target. In the testing stage, the propos-
als extracted from a new RS image are processed by the 
models and attached with a probability y. The candidates 
then considered to contain the target are selected by a 
given empirical threshold or other criteria.

Although the CNN has shown robustness to distortion, 
it only extracts features of the same scale and, therefore,  
cannot tolerate a large-scale variance of objects. When 
it comes to RS images that have a large variance in the 
backgrounds and objects, training a CNN that extracts 
multiscale feature representations is necessary for a bet-
ter detection accuracy. Chen et al. [30] proposed a hybrid 
deep neural network (HDNN) by dividing the maps of the 
final convolutional layer and the max-pooling layer of the 
deep neural network into multiple blocks of variable re-
ceptive field sizes or max-pooling field sizes to enable the 
HDNN to extract variable-scale features for detecting the 
RS objects. The input of the HDNN with L convolutional 
layers is a gray image. The image is filtered by the filters in 
the first convolutional layers f1 to get the feature maps C1, 
which are then subsampled by the first max-pooling layer 
to select the representative features as well as reduce the 
number of parameters to be processed. After transferring 
the L layers’ activations or feature maps, the final convo-
lutional feature maps of the Lth layer CL are generated. 
In the architecture of the conventional CNNs, the final 
layer is followed by some fully connected layers and final-
ly the classification layer. However, this kind of feature-
processing method does not make full use of the features 
and the filters. The receptive field size of each convolu-
tional layer is fixed, and thus it cannot extract multiscale 
features. However, there are still rich features in the final 
convolutional layer that can be learned and transformed 
into more discriminative representations. One way to bet-
ter utilize the rich features is to increase the depth of the 
convolutional layers, which may, however, introduce a 
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huge amount of computational burden when training the 
model. Another way is to use a multiscale receptive field 
size that can train filters with different sizes and generate 
multiscale feature maps.

In the HDNN, the last layer’s feature maps are di-
vided into T blocks { , , , }B B BT1 2 f  with filter sizes of 
{ , , , }s s s s s sT T1 1 2 2# # #f , respectively. The ith block covers 
ni feature maps of the final convolutional layer. Then the 
activation propagation between the last two convolutional 
layers can be formulated as

 ( * ),B C f bt L t t1v= +-  (15)

where Bt denotes the tth block of the last feature maps, f t 
denotes the filters of the corresponding block, and v de-
notes the activation function.

Having learned the multiscale feature representations 
to form the final convolutional layer, an MLP network 
is used to classify the features. The output of the HDNN 
is a two-node layer, which indicates the probability of 
whether the input image patch contains the target. Some 
of the vehicle-detection results are referred to in [30], 
from which it can be concluded that, although there are 
a number of vehicles in the scene, the modified CNN 
model can successfully recognize the precise location 
of most of the targets, indicating that the HDNN has 
learned fairly discriminative feature representations to 
recognize the objects.

UNSUPERVISED METHODS
Although the supervised DL methods like the CNN and its 
modified models can achieve acceptable performances in 
target recognition tasks, there are limitations to such meth-
ods since their performance relies on large amounts of la-
beled data, while, in RS image data sets, high-quality images 
with labels are limited. It is therefore necessary to recognize 
the targets with a few labeled image patches while learning 
the features with the unlabeled images.

Unsupervised feature-learning methods are models that 
can learn feature representations from the patches with no 
supervision. Typical unsupervised feature-learning meth-
ods are RBMs, sparse coding, AEs, k-means clustering, and 
the Gaussian Mixture Model [104]. All of these shallow 
feature-learning models can be stacked to form deep unsu-
pervised models, some of which have been successfully ap-
plied to recognizing RS scenes and targets. For instance, the 
DBN generated by stacking RBMs has shown its superiority 
over conventional models in the task of recognizing aircraft 
in RS scenes [105].

The DBN is a deep probabilistic generative model that  
can learn the joint distribution of the input data and its 
ground truth. The general framework of the DBN model 
is illustrated in Figure 4. The weights of each layer are up-
dated through layer-wise training using the CD algorithm, 
i.e., training each layer separately. The joint distribution 
between the observed vector x and the L hidden layers is  

( , , , , ) ( ( )) ( , )PP x h h h h h P h hl k k l l
k

l1 2 1 1
0

2
f = + -

=

-% , where 
( )P h hk k 1+  is a conditional distribution for the visible units 

conditioned on the hidden units of the RBM at level k, and 
( , )P h hl l1-  is the visible–hidden joint distribution in the 

top-level RBM. Some aircraft detection results from large 
airport scenes can be seen in [105], from which we can see 
that most aircrafts with different shapes and rotation an-
gles have been detected. 

sCene understandinG
Satellite imaging sensors can now acquire images with a 
spatial resolution of up to 0.41 m. These images, which 
are usually called very high-resolution (VHR) images, have 
abundant spatial and structural patterns. However, due 
to the huge volume of the image data, it is difficult to 
directly access the VHR data containing the scenes of in-
terest. Due to the complex composition and large num-
ber of land-cover types, efficient representation and un-
derstanding of the scenes from VHR data have become a 
challenging problem, which has drawn great interest in 
the RS field.

Recently, a lot of work in RS scene understanding has 
been proposed that focuses on learning hierarchical inter-
nal feature representations from image data sets [50], [106]. 
Good internal feature representations are hierarchical. In 
an image, pixels are assembled into edgelets, edgelets into 
motifs, motifs into parts, and parts into objects. Finally, ob-
jects are assembled into scenes [107], [108]. This suggests 
that recognizing and analyzing scenes from VHR images 
should have multiple trainable feature-extraction stages 
stacked on top of each other, and we should learn the hi-
erarchical internal feature representations from the image.

UnsUPerVised hierarchicaL  
FeatUre-LearninG-Based methods
As indicated in the “General Framework” section, there 
is some work that focuses on unsupervised feature-learn-
ing techniques for RS images scene classification, such as 
sparse coding [58], k-means clustering [60], [109], and topic 
model [110], [111]. These shallow models could be consid-
ered to stack into deep versions in a hierarchical manner 
[31], [106]. Here, we summarize an overall architecture of 

fIgURe 4. The simple structure of the standard DBN. 
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the unsupervised feature-learning framework for RS scene 
classification. As depicted in Figure 5, the framework con-
sists of four parts: 1) patch extraction, 2) feature extraction, 
3) feature representation, and 4) classification.  

PATCH EXTRACTION
In this step, the patches are extracted from the image by 
using random sampling or another method. Each patch has 
a dimension of w # w and has three bands (R, G, and B), 
with w referred to as the receptive field size. Each w # w 
patch can be represented as a vector in RN  of the pixel in-
tensity values, with .N w w 3# #=  A data set of m sampled 
patches can thus be constructed. Then various features can 
be extracted from the image patch to construct the train-
ing and test data, such as raw pixel or other low-level fea-
tures (e.g., color histogram, local binary pattern, and SIFT). 
The patch feature composed of the training feature and test 
feature is then fed into an unsupervised feature-learning 
method that is used for the unsupervised learning of the 
feature extractor W.

FEATURE EXTRACTION
After the unsupervised feature learning, the features can 
be extracted from the training and test images using the 
learned feature extractor W, as illustrated in Figure 6. Given 

a w-#-w image patch, we can now extract a representative 
Ri K!a  for that patch by using the learned feature ex-

tractor : .f R RN K"  We then define a new representation 
of the entire image using the feature extractor function 
:f R RN K"  with each image. Specifically, given an image 

of n-#-n pixels (with three channels: R, G, and B), we can 
define an ( )n w 1- + -#-( )n w 1- +  representation (with 
K channels) by computing the representative Ri K!a  for 
each w-#-w subpatch of the input image. More formally, 
we denote ( )ija  as the K-dimensional feature extracted from 
location i, j of the input image. For computational efficien-
cy, we can also convolute our n-#-n image with a step size  
(or stride) greater than 1 across the image.

FEATURE REPRESENTATION
After the feature extraction, the new feature representation for 
an image scene will usually have a very high dimensionality. 
For computational efficiency and storage volume, it is stan-
dard practice to use max-pooling or another strategy to reduce 
the dimensionality of the image representation [112], [36]. For 
a stride of s =  1, the feature mapping produces an ( )n w 1- + - 
#-( )n w 1- + -#-K representation. We can reduce this by 
finding the maximum over local regions of ,( )ija  as done pre-
viously. This procedure is commonly used in computer vision, 
with many variations, as well as in deep feature learning.

fIgURe 5. The overall architecture of the unsupervised feature-learning framework. 
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CLASSIFICATION
Finally, the extracted feature is combined with the SVM 
or another classifier to predict the scene label. However, 
most methods for unsupervised feature learning produce 
filters that operate either on intensity or color information. 
Vladimir [113] proposed a quaternion PCA and k-means 
combined approach for unsupervised feature learning that 
makes joint encoding of the intensity and color informa-
tion possible. In addition, Cheriyadat [58] introduced a 
variant of sparse coding that combines local SIFT-based 
feature descriptors to generate a new sparse representation, 
producing an excellent classification accuracy. The sparse 
AE-based method also produces excellent performance. 
In [31], Zhang et al. proposed a saliency-guided sparse AE 
method to learn a set of feature extractors that are robust 
and efficient, proposing a saliency-guided sampling strat-
egy to extract a representative set of patches from a VHR 
image so that the salient parts of the image that contain 
the representative information in the VHR image can be ex-
plored, which differs from the traditional random sampling 
strategy. They also explored the new dropout technique in 
the feature-learning procedure to reduce data overfitting 
[114]. The extracted feature generated from the learned fea-
ture extractors can characterize a complex scene very well 
and can produce an excellent classification accuracy.

sUPerVised hierarchicaL  
FeatUre-LearninG-Based methods
Before 2006, it was believed that training deep supervised 
neural networks was too difficult to perform (and indeed 
did not work). The first breakthrough in training happened 
in Geoff Hinton’s lab with an unsupervised pretraining by 
RBMs, as discussed in the previous subsection. However, 
more recently, it was discovered that one could train deep 
supervised networks by proper initialization, just large 
enough for the gradients to flow well and the activations to 
convey useful information. These good results with the pure 
supervised training of deep networks seem to be especially 
apparent when large quantities of labeled data are available.

In the early years after 2010, based on the latent Dirichlet 
allocation (LDA) model [115], various supervised hierarchical 
feature-learning methods have been proposed in the RS com-
munity [116]–[120]. LDA is a generative probabilistic graphi-
cal model for independent collections of discrete data and 
is a three-level hierarchical model, in which the documents 
inside a corpus are represented as random mixtures over a set 
of latent variables called topics. Each topic is in turn character-
ized by a distribution over words. The LDA model captures 
all of the important information contained in a corpus by 
considering only the statistics of the words. The contextual 
relationships are neglected due to the Bayesian assumption. 
For this reason, LDA is categorized as a bag of words model. 
Its main characteristic is based on the words’ exchangeability. 
The LDA-based supervised hierarchical feature-learning ap-
proaches have been shown to generate excellent hierarchical 
feature representations for RS scene classification. 

In fact, the LDA-based models are still not deep enough 
compared to the other techniques in the DL family. More 
recently, a few pure DL methods have been proposed for RS 
image scene understanding based on CNNs [121]. Zhang et 
al. proposed in detail a gradient-boosting random convolu-
tional network framework for RS scene classification that 
can effectively combine many deep neural networks [50]. 
Marmanis et al. considered a pretrained CNN by the Ima-
geNet challenge and exploited it to extract an initial set of 
representations for earth observation classification [122]. 
Hu et al. investigated how to transfer features from the ex-
isting successfully pretrained CNNs for RS scene classifica-
tion [123]. Luus et al. suggested a multiscale input strategy 
for multiview DL with the aid of convolutional layers to 
shift the burden of feature determination from hand-engi-
neering to a deep CNN [124]. These advanced supervised 
DL methods all outperform the state-of-the-art methods 
with the various RS scene classification data sets.

eXPeRIMents And AnALYsIs
In this section, we present some experimental results on 
the DL algorithms for RS data scene understanding that we 

fIgURe 6. The feature extraction using a w-#-w feature extractor and a stride of s. We first extract the w-#-w patches, each separated by s 
pixels, then map them to the K-dimensional feature vectors to form a new image representation. These vectors are then pooled over  
16 quadrants of the image to form a feature vector for classification. 
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believe can bring the most significant improvement com-
pared to existing methods. Due to page limitations, experi-
mental results relating to RS image preprocessing, pixel-
based classification, and target recognition can be found 
within the papers in the reference list.  

The first data set chosen for investigation is the well-
known University of California (UC) Merced data set 
[125]. Figure 7 shows a few example images representing 
various RS scenes that are included in this data set, which 
contains 21 challenging scene categories with 100 im-
age samples per class. Following the experimental setup 
in [58], we randomly selected 80% of the samples from 
each class for training and set the remaining images for 
testing. For this data set, we compared our proposed su-
pervised DL method, i.e., the random convolutional 
network (RCNet) [50], with the spatial pyramid match-
ing kernel (SPMK) method [112], the SIFT +  sparse cod-
ing (SSC) approach described in [58], and our unsuper-
vised feature-learning method, i.e., the saliency-guided 
sparse AE (SSAE) method that was previously proposed 
in [31]. For the RCNet algorithm, we trained the RCNet 

function using stochastic gradient descent with a batch  
size of 64, a momentum of 0.9, a weight decay of 0.0005, 
and a learning rate of 0.01. In addition, we trained each 
RCNet for roughly 500 cycles with the whole training set. 
All of these experiments were run on a personal computer 
(PC) with a single Intel core i7 central processing unit, an 
NVIDIA Titan graphics processing unit,  and 6-GB mem-
ory. The operating system was Windows 7, and the imple-
mentation environment was under MATLAB 2014a with 
a CUDA kernel. We compared the reported classification 
performances with the challenging UC Merced data set, 
and, among the four strategies we compared, the super-
vised DL method RCNet produced the best performance, 
as shown in Table 1.

The other image data set was constructed from a large 
satellite image that was acquired from Google Earth of 
Sydney, Australia. The spatial resolution of the image was ap-
proximately 1.0 m. The large image to be annotated was of 
7,849 × 9,073 pixels, as shown in Figure 8. There were eight 
classes of training images: residential, airplane, meadow, 
rivers, ocean, industrial, bare soil, and runway. Figure 8 
shows some examples of such images. This data set con-
sisted of not only the eight defined classes, but also some 
other classes that had not been learned such as the bridges 
and the main roads. We manually labeled part of the image 
to obtain a subregion image data set, in which each subre-
gion was of the size of 128 × 128, whereby each subimage 
was supposed to contain a certain scene. The training set for 
each class contained 25 samples of the labeled images for 

fIgURe 7. Example images associated with the 21 land-use categories in the UC Merced data set: 1) agricultural, 2) airplane, 3) baseball 
diamond, 4) beach, 5) buildings, 6) chaparral, 7) dense residential, 8) forest, 9) freeway, 10) golf course, 11) harbor, 12) intersection,  
13) medium residential, 14) mobile-home park, 15) overpass, 16) parking lot, 17) river, 18) runway, 19) sparse residential, 20) storage tanks, 
and 21) tennis court. 

(1) (2) (3) (4) (5) (6) (7)

(8) (9) (10) (11) (12) (13) (14)

(15) (16) (17) (18) (19) (20) (21)

MEtHOd SPMK SSC SSAE RCNet

accuracy 74% 81.67% 82.72% 94.53%

tABLE 1. A COMPARISON OF tHE PREVIOUSLy REPORtEd 
 ACCURACIES ANd tHE UC MERCEd dAtA SEt.
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each class, while the remaining images were used for test-
ing, as shown in Table 2.

For the Sydney data set, we trained the RCNet function 
using stochastic gradient descent with a batch size of 32, a 
momentum of 0.9, a weight decay of 0.0005, and a learning 
rate of 0.01. We trained each RCNet for roughly 800 cycles 
with the whole training set. The PC environment was the 
same as previously mentioned. We also compared the final 
classification accuracies for RCNet and the traditional 
methods. Table 3 shows the average overall accuracies for 
the four methods. The results confirm that using the super-
vised DL method is an  efficient way to increase the RS scene 
classification accuracy.

ConCLUsIons And fUtURe WoRK
In this technical tutorial, we have systematically reviewed 
the state-of-the-art DL techniques in RS data analysis. The 
DL techniques were originally rooted in machine-learning 
fields for classification and recognition tasks, and they have 
only recently appeared in the geoscience and RS commu-
nity. From the four perspectives of image preprocessing, 
pixel-based classification, target recognition, and scene 
understanding, we have found that DL techniques have 
had significant successes in the areas of target recognition 
and scene understanding, i.e., areas that have been widely 
accepted as challenges in recent decades in the RS commu-
nity because such applications require us to abstract the 
high-level semantic information from the bottom-level 

features (usually the raw pixel representation), while the 
traditional RS methods of feature describing feature  
extraction classification are shallow models, with which 

fIgURe 8. (a) The whole image for image annotation. (b) The image ground truth. (c) Example images associated with the eight land-use 
categories from the image: 1) runway, 2) airplane, 3) residential, 4) river, 5) ocean, 6) meadow, 7) industrial, and 8) bare soil. 

Ocean Meadow Industrial Bare SoilRunway Airplane Residential River

(a) (b)

(c)

CLASS SAMPLES

NO. NAME tRAINING tESt

1. runway 25 97 

2. airplane 25 16 

3. residential 25 381 

4. river 25 59 

5. ocean 25 133 

6. meadow 25 102 

7. industrial 25 101 

8. Bare soil 25 9 

total 200 898 

tABLE 2. tHE tRAINING ANd tESt SAMPLES FOR  
tHE SydNEy dAtA SEt.

tABLE 3. tHE OVERALL ACCURACIES FOR tHE dIFFERENt  
MEtHOdS WItH tHE SydNEy dAtA SEt.

MEtHOd SPMK SSC SSAE RCNet

accuracy 89.67% 91.33% 92.20% 98.78%
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it is extremely difficult or impossible to uncover the high-
level representation. 

On the other hand, the achievements of DL techniques 
in image preprocessing and pixel-based classification 
(especially considering the cost of the large training set) 
have not been as dramatic, which is partly because the 
image-quality improvement is more likely to relate to the 
image-degradation model (as with the traditional ap-
proaches), and the task of predicting the label of pixels 
in the RS image is relative shallow for most conditions, 
even when only addressing the spectral feature. Despite 
this, we strongly believe that DL techniques are crucial 
and important in RS data analysis, particularly for the 
age of RS big data.

However, the research in DL is still young and many 
questions remain unanswered [44]. The following are some 
potentially interesting topics in RS data analysis.
1) The number of training samples: Although DL meth-

ods can learn highly abstract feature representations 
from raw RS images, the detection and recognition 
performance relies on large numbers of training sam-
ples. However, there is usually a lack of high-quality 
training images because the collection of labeled HR 
images is difficult. Under these circumstances, how to 
retain the representation learning performance of the 
DL methods with fewer adequate training samples re-
mains a big challenge.

2) The complexity of RS images: Unlike natural scene im-
ages, HR RS images include various types of objects with 
different sizes, colors, rotations, and locations in a single 
scene, while distinct scenes belonging to different cat-
egories may resemble each other in many respects. The 
complexity of RS images contributes a lot to the difficul-
ty of learning robust and discriminative representations 
from scenes and objects with DL.

3) Transfer between data sets: An interesting direction is 
the transfer of the feature detectors learned by deep net-
works from one data set to another, since there is often 
a lack of training images in some fields of RS. Especial-
ly when facing the large variations of RS data sets, the 
problem may be even worse, which needs further and 
systematic research.

4) Depth of the DL model: The deeper the deep networks 
are, the better the performance of the models. For super-
vised networks such as CNNs, deeper layers can learn 
more complex distributions, but they may result in 
many more parameters to learn, and hence can lead to 
the problem of overfitting, especially when the training 
samples are inadequate. The computation time is also 
a vital factor that should be considered. Exploring the 
proper depth of a DL model for a given data set is still an 
open topic to be researched.
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