
Privacy-Preserving Computation
(Position Paper)

Florian Kerschbaum

SAP Research
Karlsruhe, Germany

florian.kerschbaum@sap.com

Abstract. Private data is commonly revealed to the party performing
the computation on it. This poses a problem, particularly when outsourc-
ing storage and computation, e.g., to the cloud. In this paper we present
a review of security mechanisms and a research agenda for privacy-
preserving computation. We begin by reviewing current application sce-
narios where computation faces privacy requirements. We then review ex-
isting cryptographic techniques for privacy-preserving computation. And
last, we outline research problems that need to be solved for implement-
ing privacy-preserving computations. Once addressed, privacy-preserving
computations can quickly become a reality enhancing the privacy pro-
tection of citizens.

1 Introduction

There are very strong privacy-enhancing techniques for communication and au-
thentication available to citizens, but when it comes to actually processing the
data few choices are available. Projects such as ANON and JAP [10] or TOR
[20] enable anonymous communication. Tools such as IDEMIX [15] even enable
anonymity-preserving authentication over these communication channels. Nev-
ertheless, the data sent over anonymous (and authenticated) channels is rarely
protected from the recipient.

This problem becomes prevalent when outsourcing storage and computation,
e.g., to the cloud. Service providers such as Facebook or Google have made a
business out of exploiting this data for advertising purposes. Big data is collected
about habits and preferences of customers.

This problem is not due to a lack of available security mechanisms. Cryptog-
raphy provides tools for privacy-preserving computations, such as secure multi-
party computation, homomorphic encryption, order-preserving encryption or
zero-knowledge proofs. In contrast to anonymous communication and authenti-
cation these mechanisms often lack a user-friendly implementation. This paper
proposes a research agenda for implementing privacy-preserving computation
bringing it closer to users’ (and service providers’) adoption. This paper does
not argue that no further research in cryptography is necessary – quite the
contrary, but existing mechanism should already be made available to system
implementers. Furthermore, this paper focuses on the computational aspect,



i.e., securing data while computing, and not data privacy aspects dealt with
k-anonymity [52] or differential privacy [21].

In the next section we present two exemplary scenarios where computation
on private data is strictly necessary, but not desired or even illegal. In criminal
investigations police institutions often need to exchange data about subjects,
places or objects, but are (rightfully) restricted to necessary and proportionate
cases. This may hinder investigation success. Privacy-preserving computation
enables performing this data exchange, such that only data which is clearly
linked to a related case is revealed, but other data is kept private. Innocent
suspects are protected while criminal investigations are fostered.

In the future smart electricity grid household collect fine-grained consump-
tion data and transmit it to the grid and utility providers. This data enables
inferences about the household inhabitants and their preferences and represents a
significant privacy invasion. In the Netherlands smart meter roll-outs have been
stopped for this reason. Privacy-preserving computation enables smart meter
data processing, such as billing, without revealing one’s consumption data to
the providers. It thereby reconciles the need for a smart grid with the privacy
concerns of the citizens.

In Section 3 we review and compare a number of mechanisms for privacy-
preserving computation. Secure multi-party computation [54] has been invented
thirty years ago, but implementations are only beginning to emerge. Recently
fully homomorphic encryption [22] has arisen as an alternative, but theoretical
solutions are still to inefficient to be put to practice. Outsourced storage [11,
45] can be efficiently processed if it is encrypted using searchable [14] or order-
preserving encryption [3, 13]. Data collected by cyber-physical sensors can be
securely (and privately) processed using zero-knowledge proofs [26]. We will only
gives a coarse characterization of techniques in order to judge their applicability
in different scenarios.

Finally, in Section 4 we outline an agenda of tools that will help implement
privacy-preserving computations and thereby increase user adoption. Currently,
designing and implementing privacy-preserving computations is difficult. The
programmer has to have problem-specific know-how for its application, pro-
gramming experience to select the best implementation method and security
awareness in order to ensure privacy. In a lot of cases the programmer has to
make a choice between secure or privacy guarantees and efficiency. If he chooses
to be efficient security needs to verified manually. Furthermore, every new com-
putation (even if done at run-time) requires the same level of effort. We present
a proposal for tools that should help remedy these problems.

2 Scenarios

We consider two exemplary scenarios where privacy needs to be protected dur-
ing computation, i.e. they require privacy-preserving computation. These are
criminal investigations and smart meter billing. Although both scenarios deals
with computation on private data their most prominent solutions use different



techniques. Whereas criminal investigations are implemented using secure com-
putation, smart meter billing is implemented using zero-knowledge proofs. This
also highlights the applicability of different scenarios to different technologies.
We will try to devise the characteristics of the scenarios lending them to specific
technologies.

2.1 Criminal Investigation

In federated states or organization of states, such as the European Union or
the United States, a common approach to organized crime is necessary. For this
purpose, federal law enforcement agencies, such as Europol or the FBI, have
been established. Nevertheless, data privacy laws (rightfully) restrict supplying
institutions from sharing their data, unless there is a hard corroborating evidence
on a case and subject under investigation.

A common tool for the criminal investigator is data mining using social net-
work analysis of the data stored in their warehouses. It graphically depicts the
suspects and their connections to other people or artifacts, such as telephone
numbers or bank accounts, and allows the computation of certain metrics. Not
all the facts composing the entire picture of a case may be known to one inves-
tigator. In particular, in pan-European organized crime, local police forces may
only be aware of a partial view of the picture.

This necessitates data exchange between the institutions, but European data
privacy laws restricts data exchange to necessary and proportionate cases. There-
fore we propose a solution where the local investigator, or an investigator at the
superordinate institution has access to all information, but without revealing
sensitive or private details. This allows the investigator to still use SNA and
profit from its achievements without breaking individual privacy rights or guide-
lines of other institutions.

Therefore privacy-preserving SNA – a special form of privacy-preserving data
mining – has been suggested in the literature [39]. Each party inputs their view
of the social network to a secure computation and the result is the anonymized
combined view. No additional information, e.g., about unrelated suspects, is
revealed, i.e., their privacy is being preserved.

Note that in order to compare for identical entries in the social network – a
computation on joint data is necessary. No party can by itself decide whether
the data of the other party matches its own. It is therefore important to note
that in this scenario both parties provide (private) input.

For the practical adoption of privacy-preserving computation in criminal in-
vestigations several legal, political and social considerations have to be taken
into account. We argue that the ready-to-use availability of the technology will
spur the public discussion on these topics.

2.2 Smart Meter Data

Smart metering refers to the collection of consumption profiles at customer’s
households with the help of so called smart meters (SM). Smart meters measure



electricity consumption in households and communicate their readings at regular
intervals to the back-end system. Alternatively, the back-end system can also
query the smart meter for its data (pull). A Trusted Platform Module in the
smart meter holds key material and creates signatures over the data to ensure
authenticity and integrity until it arrives at the back-end system. There the
consumption profile and the tariff data from the respective customer’s contract
are used to calculate the price the customer has to pay for the time period
covered by the profile.

Smart metering has encountered massive privacy concerns from media [35],
data privacy experts [16] and consumers [30]. The fact that whole consumption
profiles of households are transmitted to and stored by suppliers is troubling
w.r.t. customer privacy. Data confidentiality can be easily protected in transit
between smart meter and back-end system. However, their storage at the suppli-
ers’ IT-systems still endangers customer privacy. Depending on resolution and
the availability of different services’ profiles (e.g. water, heat, electricity) one can
read the profile and ”see” more or less clearly what happens in the household:
For instance, when family members wake up (light switched on), whether they
shower in the morning (water, heat, and electricity for water heater), whether
they drink hot beverages with their breakfast and when or if they leave for work
or school. Furthermore, the frequency of washing and drying clothes, cooking or
the amount of time the TV is turned on can be inferred. For further research
on what electricity consumption profiles tell about the inhabitants see [7, 29, 40,
51].

These inferences make consumption profiles very privacy-sensitive data and
these profiles might even have value in the advertising market, for instance. On
one hand, disgruntled employees or external attackers might attempt to steal it
for profit or out of malice. On the other hand, the supplier could seek subsidiary
revenues by selling this data himself. Depending on the local jurisdiction, this
might even be legal.

The important point is, that currently there are no reliable, technical mea-
sures in place to prevent abuse of consumption profiles. Merely organizational
measures, policies or laws sanction the abuse of privacy related data but require
a trace or proof of abuse and do not prevent it in the first place.

First [36] and later independently [46] introduce a privacy component into
the standardized smart meter / meter data management (MDM) reporting com-
munication link. This component hides the actual consumption profile from the
MDM and therefore also from the supplier. This only requires small changes
compared to current smart meter reporting. The privacy component intercepts
smart meter readings, then uses tariff information provided externally (over the
Internet or by the MDM) to calculate the billing amount and sends only the
resulting billing amount to the MDM.

The technical solution in this scenario is a Zero-Knowledge Proof (ZKP).
The user proves to the service provider that it truthfully computed the bill. This
works for two reasons: First, the user only computes on his private data, i.e.,
there is no second party (private) input. Second, the integrity and authenticity



of the data is ensured by trusted components. The smart meters can digitally
sign their measurements and are implemented with trusted hardware.

We envision this scenario setup to be quite common in cyber-physical sys-
tems. It has already been described by Danezis and Livshits in a related position
paper for cloud computing [19]. Sensors collect data about people. Obviously,
this data may be privacy-sensitive and protected by privacy legislation. These
sensors can ensure the integrity of the collected data, but should not reveal it.
Using a ZKP the user can perform the computation itself in a privacy-preserving
fashion and prove correct computation. Other examples of this scenario setup
include, e.g., road toll pricing [6] or e-ticketing in public transportation [32].

For the practical adoption of this technology a user device (plug-in compo-
nent) needs to be part of the protocol [36]. While the business implications of
this design are not field-tested, we argue that increased privacy of the consumer
might make an interesting business case.

3 Security Mechanisms

In this section we briefly and mostly non-technically review the mechanisms of
secure computation, homomorphic encryption, order-preserving encryption and
zero-knowledge proofs. We address the properties of each in terms of security,
performance and functionality. Balancing these three objectives is the challenge
of privacy-preserving computation. Particularly, we highlight their suitability for
certain application scenarios.

3.1 Secure Multi-Party Computation

Yao introduced secure two-party computation in [54]. Secure (two-party) compu-
tation allows two parties to compute a function f over their joint, private inputs
x and y, respectively. No party can infer anything about the other party’s input
(e.g. y) except what can be inferred from one’s own input (e.g. x) and output
(e.g. f(x, y)).

Yao’s initial protocol uses a technique called garbled circuits. Alice prepares
a circuit for the function to be computed and encrypts (and garbles) this cir-
cuit. The encrypted circuit is transferred to Bob who obtains keys for his input
using oblivious transfer. Bob then decrypts (part of) the circuit obtaining the
function result. For a detailed, technical description of circuit garbling and its
implementation see [42].

Now, there are many protocols for secure computation. They can be clas-
sified into generic and special protocols. Generic protocols can implement any
functionality whereas special protocols implement one specific function. Generic
protocols contain a translation step for the function – similar to Yao’s garbled
circuit construction. Their security proof, however, is independent of the func-
tion. Special protocols are usually more efficient, since they use problem insight
to optimize the protocol. They need to proven secure manually for each protocol
instance.



For a very long time generic protocols exist for multi-party computations in
the computational [25] and information-theoretic setting [9]. Also they exist for
many different security models. Most notable are the semi-honest and malicious
security models [24]. In the semi-honest model the parties are assumed to follow
the protocol. In the malicious model they may deviate arbitrarily. The policy
implications of these models need to be discussed in the context of the concrete
use case and its actors, e.g., criminal investigations. A detailed investigations is
subject to further research and out of scope of this position paper.

Security of secure computations is often defined by comparison to an ideal
model. In the ideal model there is a trusted third party. All parties send their
inputs to the trusted third party which computes the function and returns the
result to the parties. The function implemented by the third party is also ideal
functionality. Each attack feasible in the real protocol execution must also be
feasible in this ideal model.

It is important to note that neither model prevents inferences about the in-
put from the result. This may be particularly sensitive if one party may influence
the function to be computed. For example, assume that one may party may pri-
vately issue a query about the other’s party private database. Then it is hard to
preserve the privacy of the database without additional measures such as differ-
ential privacy [21]. Furthermore, no security model prevents the substitution of
inputs. Therefore an interest in the correct computation of the result needs to be
assumed. This is subject to economic security models, such as non-cooperative
computation [50]. Even when implementing a non-cooperative computation se-
cure computation may be difficult to implement [2, 27, 28]. Nevertheless using
specialized protocols it can even be implemented for mixed security models [41].
Implementing a proxy, e.g., using cloud computing, may help solve the prob-
lem [37]. In theory, it is possible to implement any computation using rational
players [34], but it requires physical assumptions.

There exist a number of domain-specific programming languages for imple-
menting secure computations [8, 12, 18, 31, 33, 42, 48]. They can be classified into
those tied to a generic protocol [8, 12, 31, 42] or those based on generic program-
ming languages [18, 33, 48]. The second kind can implement a wider variety of
protocols, but also enables implementing insecure protocols. The ones tied to a
specific protocol may be proven secure independent of the functionality. Such a
proof extends to all protocols implemented in this language, but the language
prevents implementing many special, possibly more efficient protocols.

We classify them into systems specifying the ideal functionality and sys-
tems specifying the protocol description. Just FairPlay [42] and FairPlayMP [8]
are instances of systems which only describe the ideal functionality of a secure
computation, i.e. what is to be implemented by the protocol. All of the other lan-
guages, compilers or frameworks are instances of systems where the programmer
can – at least partially – specify how the protocol is implemented. This approach
leads to significantly more efficient protocols, but puts an additional burden on
the programmer.



3.2 Homomorphic Encryption

Homomorphic encryption supports a homomorphism of (at least) one arithmetic
operation on the ciphertexts to an arithmetic operation on the plaintexts. Addi-
tively homomorphic operation supports addition as the homomorphic operation
on the plaintexts. Let E(x, r) denote the encryption of plaintext x with random-
ization parameter r. Then the following addition properties hold

D(E(x)E(y)) = x + y

The most popular additively homomorphic encryption system is Paillier’s [44].
It is public key and satisfies modern security definitions (semantic security). Its
performance is comparable to other public key encryption systems.

Gentry recently developed a fully homomorphic encryption scheme [22]. It
supports both, addition and multiplication, and therefore allows the computation
of arbitrary functions on the ciphertext. Nevertheless, its performance is severely
restricted in practice [23] and more efficient schemes are still subject to research.

As middle-ground there are somewhat homomorphic encryption schemes.
They support a limited number of multiplications and thereby enable to compute
a wider class of functions than purely additively homomorphic encryption. Their
performance is comparable to additively homomorphic encryption [43].

A fundamental advantage of homomorphic encryption compared to secure
computation is its non-interactivity. The client submits input and a server can
perform the computation without learning anything but ciphertexts. The re-
sult is a ciphertext as well. Therefore computations on homomorphic encryption
can be performed off-line and do not depend on the network performance. The
client only has to communicate data linear in its input length whereas in secure
computation it is linear in the function’s complexity.

Nevertheless, besides its performance homomorphic encryption also has a
number of limitations. First, the result and each intermediate result is encrypted.
Therefore the server cannot make any decision based on its value. Similar to
secure computation the server therefore needs to compute over all choices, i.e.,
in every conditional branch both branches need to be evaluated. This increases
the complexity of each function to its worst case complexity and further increases
the performance penalty.

More severely, computations on homomorphic encryption must be performed
under the same key. It has been proven in [53] that no fully homomorphic en-
cryption scheme with multiple keys can exist. This implies a collusion attack
for collaborative computations. When two parties submit input, one party only
holds the public key. The input data of this party may be decrypted by the
private key holder, e.g., by a collusion with the server. Homomorphic encryption
therefore seems less suitable for collaborative computations.

Additively homomorphic encryption can also be used to implement secure
computation [17]. This makes the computation interactive again, but prevents
the collusion attack. Usually secure computation based on homomorphic encryp-
tion is less efficient than other generic protocols [47].



3.3 Order-Preserving Encryption

Order-preserving encryption [3, 13] ensures that the order (greater-than relation)
of the ciphertexts is the same as the order of the corresponding plaintexts. This
allows a server to efficiently search on the ciphertexts using binary search or
perform range queries. In turn this capability enables performing most database
queries on encrypted data [11, 45].

Efficient encrypted database – where the key is stored outside of the database
– have many applications in privacy-preserving computing. Cloud computing
using a database-as-a-server model can be secured against the service provider
such that insider or targeted attacks are significantly complicated. As such real-
world applications of prototypical system have been already reported [11].

The efficiency gain of order-preserving encryption mainly stems from its main
difference to the homomorphic encryption. The result of the computation on the
ciphertexts is publicly available to the server performing the computation. This
enables implementing significantly more efficient algorithms.

Another instance of such an encryption scheme is searchable encryption [14].
Searchable encryption allows to compare for equality of plaintexts using a token
issued by the private key holder. Differently from order-preserving encryption it
can be proven secure in more standard security models. The best security proof
for order-preserving encryption is that it is as secure as possible under the order-
preserving constraints [13]. How secure this level of security is still subject to
research. Searchable encryption has been proven secure against chosen plaintext
attacks.

Searchable encryption requires a linear scan over the data, i.e., an index is
useless. It therefore has not found the same acceptance in the database commu-
nity as order-preserving encryption, although it also allows range queries [49].

Clearly, since the result of the comparison is revealed, this type of encryp-
tion is limited to specific functions. First, the size of the ciphertexts needs to
remain manageable. Second, certain functions may allow breaking the encryption
scheme. For example, a public-key order preserving encryption scheme would al-
low binary search for arbitrary plaintexts. It cannot be secure. Therefore all
order-preserving encryption schemes are symmetric.

Due to the limitation of the functionality, order-preserving encryption has
limited applications. A secure, encrypted database is certainly a great achieve-
ment, but more complicated applications seem to be difficult to design. They
may not be securely implementable and if they are, then their construction can
be very complicated.

3.4 Zero-Knowledge Proofs

Zero-Knowledge Proofs (ZKP) have been introduced in cryptography a long time
ago [26]. They allow the proof of knowledge of some data that satisfies a certain
function. In the example of smart meter data, this function is the signatures by
the smart meters and the billing amount. The household then proofs knowledge
of consumption data that is signed and amount to the bill.



ZKPs in the first place ensure integrity, i.e., the function has been computed
truthfully. As such their application to privacy-preserving computation is not
obvious, but ZKPs allow the outsourcing of the computation while verifying the
integrity of the computation. Therefore they allow the outsourcing the originator
of the (private) data, although it might not be trusted. At least it can ensure
the confidentiality (privacy) of the data. The ZKP ensures that it cannot cheat.

Consequently, ZKPs are applicable in settings where data is collected about
a person, such as smart metering or road-toll pricing. ZKPs are similarly limited
as homomorphic encryption when it comes to input of multiple parties. Then
secure computation is the method of choice, but ZKPs can also be implemented
non-interactively. Nevertheless due to the emergence of more and more cyber-
physical systems where sensors collect data about person ZKPs will probably
enjoy wider adoption.

The initial ZKPs were generic allowing to proof for any function in NP.
Then some special ZKPs were designed, e.g., for discrete logarithms or range
proofs. Recently, compilers translating function descriptions into ZKPs have been
presented [4, 5].

ZKPs are also the basis for privacy-preserving authentication. A user can
proof the possession of an attribute - such as age or driver’s license – with-
out revealing any private information. Furthermore, all transaction may remain
unlinkable. Therefore the future adoption of ZKPs to privacy-preserving com-
putation seems even more likely. We recommend to also consider the position
paper [19] by Danezis and Livshits which already outlines similar ideas on ZKPs.

4 Research Agenda

In order to foster the adoption of privacy-preserving computation for many more
applications there need to be tools. These tools need to ease the design and
development of privacy-preserving computing applications. Currently, there is a
lot of manual effort in developing a privacy-preserving application. This hinders
adoption in practice due to a lack of skills and available resources. Development
tools can significantly lower the barrier of adoption. Other characteristics such
as security (privacy) and even performance can be made to fit, if the system is
designed cleverly.

4.1 Compiler

As mentioned before there already exist some compilers for secure computa-
tion and zero-knowledge proofs. These compilers unfortunately currently still
fall short of the requirements of the developers. We will highlight some design
principles, challenges and ideas for achieving the full potential. These design
principles should be seen as visionary, ambitious objectives and even partial,
but rigorous achievement can be viewed as scientific success.

I. Only the ideal functionality should be specified.



The principle of FairPlay shows the right direction. It is already difficult
enough for the programmer to acquire problem domain-specific knowledge in
order to design a successful application. If the programmer also has to care
about security (and complex performance aspects), he will be overburdened.
The compiler has to take care of it.

A necessary additional specification is the data origin, i.e., which party pro-
vides which input. There may be a need for some security policies, but largely
extending current access control. Privacy-preserving computation allows to en-
force policies, such as security against a service provider. There is no longer a
grant or deny decision.

In the system architecture there may also be a need to specify trust relation-
ships. Nevertheless, there should not be a restriction to or reliance on specific
trust assumptions. Instead, privacy-preserving can reduce or even remove most
of the commonly necessary trust assumptions.

II. Security should be guaranteed.

Except for the specification of policies and trust assumption security must be
guaranteed. Every successfully compiled program must be secure. The definition
of security must depend on the policy and the security model (which may also
be specified as part of the policy). Ideally, the compiler generates a proof or is
certified that the compiled program is secure. We have seen for secure compu-
tations that some domain-specific languages violate this principle for security
reasons.

There are several security models available in the cryptographic literature,
but sometimes they may fall short in capturing the system’s dependencies. For
example, it is easy to design a protocol that is secure in the semi-honest protocol,
if all inputs can be revealed by the result of the function. Therefore additional
tools analyzing the functionality for admissible information flow in the entire
system are necessary. Only, if the programmer is not capable of “shooting him-
self in the foot”, a system can be considered simple to implement and secure.
Therefore, there is a clear need for security models and tools augmenting the
available cryptographic security models.

Language annotations, such as type systems, may significantly simplify this
problem. E.g. type systems for information flow [1] allow only specifying pro-
grams that do not contain non-admissible information flows. Type systems can
encode any type of security proof, but the research challenge remains to analyze
the admissible information flows.

III. Performance optimization should be automatic.

Out of the set of admissible protocols according to the security model the
compiler should select the best performing one. This selection should be au-
tomatic, i.e., without the need of specification by the programmer. There are
several challenges and approaches to this problem.

First, the compiler may use many of the algorithms available to the compiler
community. Algorithms like data flow or program analysis need to be augmented



for additional criterion – security. We see a number of results in this area, e.g.,
in secure computation optimization [38].

Second, there is a need for a clear performance model. The typical complex-
ity measure of algorithms do not fit any more, since there is this additional
criterion of security. Let n be the input length, then we also have the security
parameter k. Now, what is faster O(n2k) or O(nk2)? Performance models can
make decision for this and are already often used in other compilers, e.g., SQL
query optimization.

Given a comprehensive performance model, the programmer should no longer
need to specify the type of mechanism to be used. Instead, based on analysis
of the data model and the function the compiler should select the optimally
suitable one, e.g., secure computation or homomorphic encryption. Admittingly,
some methods, such as order-preserving encryption, can be hard to fit into this
model, particularly due to their unclear security model.

Based on the problem of complicated complexities the programmer may actu-
ally implement a sub-optimal algorithms, because he is not aware of all informa-
tion for the decision. Therefore the compiler should be equipped with capabilities
to rewrite programs, such that they perform better. Some rewriting techniques,
e.g., common sub-expression elimination, have been developed in compiler de-
sign. Again, these need to be augmented by a security criterion. Furthermore,
since there is no programming language established yet, we can also adapt the
design of the language.

5 Conclusions

In this paper we investigated the status and future challenges of privacy-preserving
computation. We have the security mechanisms available, but face the challenge
of implementing them. Performance has already been proven in several appli-
cations not to be the prohibiting factor anymore and available computational
resources continue to increase.

The problem will shift to the development of the applications. Current tools
do not scale to the expected increase in privacy-preserving computation. We
outlined some exemplary application which can serve as blue prints for others
waiting to be implemented.

We then outlined the research challenges for a compiler for privacy-preserving
computation. Based on three principles relating to the three objectives of privacy-
preserving computation we described some research challenges and approaches.
The purposes of this agenda is entice discussion and interest among interdisci-
plinary stakeholders in order to foster the adoption of privacy-preserving com-
putation. Seeing what will be possible may lift some of the prejudices privacy-
preserving computation currently faces. Ultimately only the uptake of technology
will lead to a better protection of the citizen’s privacy.



References

1. M. Abadi, G. Morrisett, and A. Sabelfeld. Language-based security. Journal of
Functional Programming, 15(2):129–129, 2005.

2. I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed computing meets
game theory: Robust mechanisms for rational secret sharing and multiparty com-
putation. In Proceedings of the 25th ACM Symposium on Principles of Distributed
Computing, PODC’06, 2006.

3. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for
numeric data. In Proceedings of the ACM International Conference on Management
of Data, SIGMOD’04, 2004.

4. J. B. Almeida, E. Bangerter, M. Barbosa, S. Krenn, A.-R. Sadeghi, and T. Schnei-
der. A certifying compiler for zero-knowledge proofs of knowledge based on σ-
protocols. In Proceedings of the 15th European Conference on Research in Com-
puter Security, ESORICS’10, 2010.

5. M. Backes, M. Maffei, and K. Pecina. Automated synthesis of privacy-preserving
distributed applications. In Proceedings of 19th Network and Distributed System
Security Symposium, NDSS’12, 2012.

6. J. Balasch, A. Rial, C. Troncoso, B. Preneel, I. Verbauwhede, and C. Geuens. Pretp:
privacy-preserving electronic toll pricing. In Proceedings of the 19th USENIX Con-
ference on Security, USENIX Security’10, 2010.

7. G. Bauer, K. Stockinger, and P. Lukowicz. Recognizing the use-mode of kitchen
appliances from their current consumption. In Proceedings of the 4th European
Conference on Smart Sensing and Context, EuroSSC’09, 2009.

8. A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a system for secure multi-
party computation. In Proceedings of the 15th ACM Conference on Computer and
Communications Security, CCS’08, 2008.

9. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the 20th
ACM Symposium on Theory of computing, STOC’88, 1988.

10. O. Berthold, H. Federrath, and M. Köhntopp. Project “anonymity and unob-
servability in the internet”. In Proceedings of the 10th Conference on Computers,
Freedom and Privacy: Challenging the Assumptions, CFP’00, 2000.

11. C. Binnig, S. Hildenbrand, and F. Färber. Dictionary-based order-preserving string
compression for main memory column stores. In Proceedings of the ACM Interna-
tional Conference on Management of Data, SIGMOD’09, 2009.

12. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: a framework for fast privacy-
preserving computations. In Proceedings of the 13th European Symposium on Re-
search in Computer Security, ESORICS’08, 2008.

13. A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving symmetric
encryption. In Advances in Cryptology, EUROCRYPT’09, 2009.

14. D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption
with keyword search. In Advances in Cryptology, EUROCRYPT’04, 2004.

15. J. Camenisch and E. Van Herreweghen. Design and implementation of the idemix
anonymous credential system. In Proceedings of the 9th ACM Conference on Com-
puter and Communications Security, CCS 02, 2002.

16. A. Cavoukian, J. Polonetskyand, and C. Wolf. Smart privacy for the smart grid:
embedding privacy into the design of electricity conservation. Identity in the In-
formation Society, 3(2):275–294, 2010.



17. R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty computation from threshold
homomorphic encryption. In Advances in Cryptology, EUROCRYPT ’01, 2001.

18. I. Damg̊ard, M. Geisler, M. Krøigaard, and J. B. Nielsen. Asynchronous multiparty
computation: theory and implementation. In Proceedings of the 12th International
Conference on Practice and Theory in Public Key Cryptography, PKC’09, 2009.

19. G. Danezis and B. Livshits. Towards ensuring client-side computational integrity
(position paper). In Proceedings of the ACM Cloud Computing Security Workshop,
CCSW’11, 2011.

20. R. Dingledine, N. Mathewson, and P. Syverson. Tor: the second-generation onion
router. In Proceedings of the 13th USENIX Conference on Security, USENIX
Security’04, 2004.

21. C. Dwork. Differential privacy. In Proceedings of the 33rd International Colloquium
on Automata, Languages and Programming, 2006.

22. C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the 41st ACM Symposium on Theory of Computing, STOC’09, 2009.

23. C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In Advances in Cryptology, EUROCRYPT’11, 2011.

24. O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

25. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the 19th ACM Symposium on Theory of Computing, STOC’87, 1987.

26. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal of Computing, 18(1):186–208, 1989.

27. S. D. Gordon and J. Katz. Rational secret sharing, revisited. In Proceedings of the
5th International Conference on Security and Cryptography for Networks, SCN’06,
2006.

28. J. Halpern and V. Teague. Rational secret sharing and multiparty computation:
Extended abstract. In Proceedings of the 36th ACM Symposium on Theory of
Computing, STOC’04, 2004.

29. G. W. Hart. Nonintrusive appliance load monitoring. Proceedings of the IEEE,
80(12):1870–1891, 1992.

30. W. Heck. Smart energy meter will not be
compulsory. NRC Handelsblad, April 2009.
http://www.nrc.nl/international/article2207260.ece/Smart energy meter will not be compulsory.

31. W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Tasty: tool
for automating secure two-party computations. In Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS’10, 2010.

32. T. S. Heydt-Benjamin, H.-J. Chae, B. Defend, and K. Fu. Privacy for public trans-
portation. In Proceedings of the 6th International Workshop on Privacy Enhancing
Technologies, PET’06, 2006.

33. Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation
using garbled circuits. In Proceedings of the 20th USENIX Conference on Security,
USENIX Security’11, 2011.

34. S. Izmalkov, S. Micali, and M. Lepinski. Rational secure computation and ideal
mechanism design. In Proceedings of the 46th IEEE Symposium on Foundations
of Computer Science, FOCS’05, 2005.

35. A. Jamieson. Smart meters could be ’spy in the home’. Telegraph (UK), October
2009. http://www.telegraph.co.uk/finance/newsbysector/energy/6292809/Smart-
meters-could-be-spy-in-the-home.html.



36. M. Jawurek, M. Johns, and F. Kerschbaum. Plug-in privacy for smart metering
billing. In Proceedings of the 11th International Symposium on Privacy Enhancing
Technologies, PETS’11, 2011.

37. F. Kerschbaum. Adapting privacy-preserving computation to the service provider
model. In Proceedings of the International Conference on Privacy, Security, Risk
and Trust, PASSAT’09, 2009.

38. F. Kerschbaum. Automatically optimizing secure computation. In Proceedings of
the 18th ACM Conference on Computer and Communications Security, CCS’11,
2011.

39. F. Kerschbaum and A. Schaad. Privacy-preserving social network analysis for
criminal investigations. In Proceedings of the 7th ACM Workshop on Privacy in
the Electronic Society, WPES’08, 2008.

40. M. A. Lisovich, D. K. Mulligan, and S. B. Wicker. Inferring personal information
from demand-response systems. IEEE Security and Privacy, 8(1):11–20, 2010.

41. A. Lysyanskaya and N. Triandopoulos. Rationality and adversarial behavior in
multi-party computation. In Proceedings of the 26th International Conference on
Advances in Cryptology, CRYPTO’06, 2006.

42. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay – a secure two-party com-
putation system. In Proceedings of the 13th USENIX Conference on Security,
USENIX Security’04, 2004.

43. M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be
practical? In Proceedings of the 3rd ACM Cloud Computing Security Workshop,
CCSW’11, 2011.

44. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology, EUROCRYPT’99, 1999.

45. R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. Cryptdb:
protecting confidentiality with encrypted query processing. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles, SOSP’11, 2011.

46. A. Rial and G. Danezis. Privacy-preserving smart metering. In Proceedings of the
10th ACM Workshop on Privacy in the Electronic Society, WPES’11, 2011.

47. A. Schröpfer and F. Kerschbaum. Forecasting run-times of secure two-party com-
putation. In Proceedings of the 8th International Conference on Quantitative Eval-
uation of Systems, QEST’11, 2011.

48. A. Schröpfer, F. Kerschbaum, and G. Müller. L1 – an intermediate language for
mixed-protocol secure computation. In Proceedings of the 35th IEEE Computer
Software and Applications Conference, COMPSAC’11, 2011.

49. E. Shi, J. Bethencourt, T.-H. H. Chan, D. Song, and A. Perrig. Multi-dimensional
range query over encrypted data. In Proceedings of the IEEE Symposium on Se-
curity and Privacy, SP’07, 2007.

50. Y. Shoham and M. Tennenholtz. Non-cooperative computation: boolean functions
with correctness and exclusivity. Theoretical Computer Science, 343(1-2):97–113,
2005.

51. F. Sultanem. Using appliance signatures for monitoring residential loads at meter
panel level. IEEE Transactions on Power Delivery, 6(4):1380–1385, 1991.

52. L. Sweeney. k-anonymity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5), 2002.

53. M. Van Dijk and A. Juels. On the impossibility of cryptography alone for privacy-
preserving cloud computing. In Proceedings of the 5th USENIX Workshop on Hot
Topics in Security, HotSec’10, 2010.

54. A. C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, FOCS’82, 1982.


