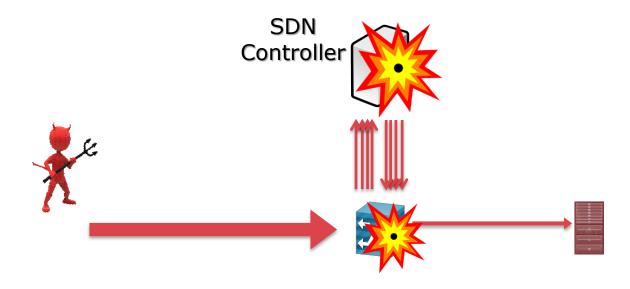

Fingerprinting Software-defined Networks

Roberto Bifulco, <u>Heng Cui</u>, Ghassan Karame, Felix Klaedtke NEC Laboratories Europe, Heidelberg, Germany

CoolSDN 2015, ICNP


Introduction

- Software-defined networking (SDN):
 - Separates data plane from control plane.
 - Software controls the network.
- Packet processing
 - Fast at data plane (hardware)
 - **Slow** at control plane (software)
- An attacker can measure packet processing times

Introduction (cont.)

- Knowing controller-switch interaction:
 - Better understanding of the network's forwarding logic.
 - Makes DoS attacks more powerful/effective.

• No feasibility study of fingerprint realistic SDN deployments.

Problem Statement

- Feasibility of fingerprinting an SDN network?
- Accuracy of fingerprinting an SDN network?
- Impact of number of switches in an SDN network?
- Attack models:

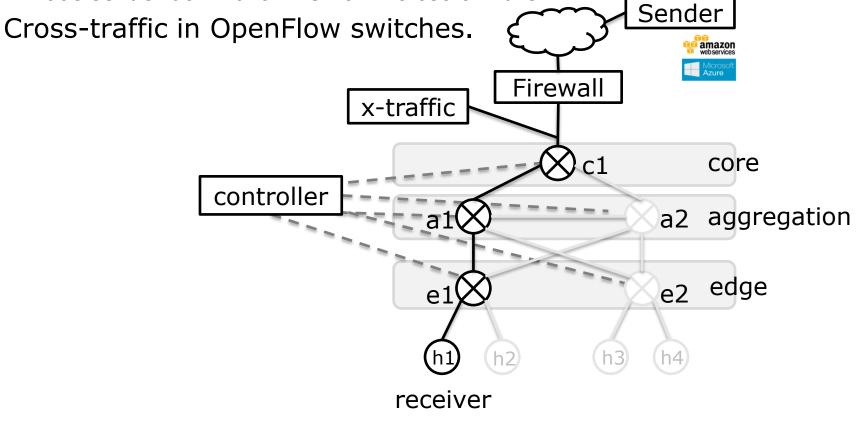
Active

- Compromise a remote client.
- Inject probe packets.

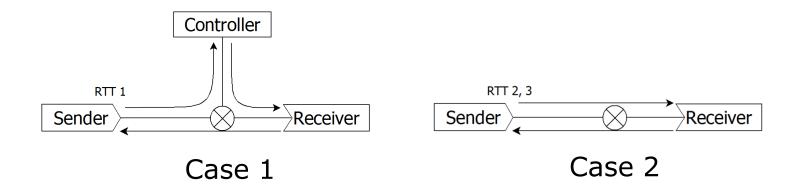
Passive

- Passively monitor traffic between client and server.

4

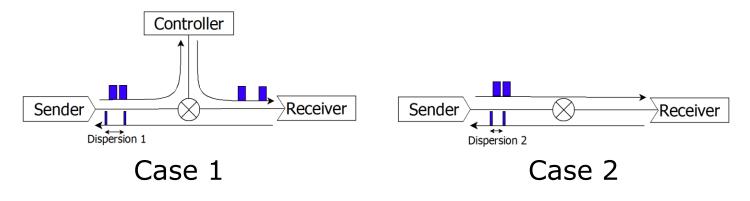

Roadmap

- Part I
 - Introduction and Motivation
 - Problem Statement
- Part II
 - Testbed
 - Measured Features
 - Results
- Part III
 - Related Works
 - Conclusions

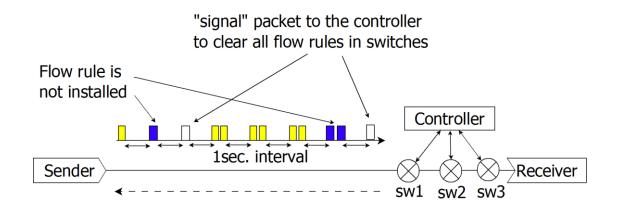

Testbed

- Three NEC PF5240 OpenFlow switches
 - Conventional data center typically consists of 3-tier switches.
- Floodlight controller.
- Probe: internet \rightarrow firewall \rightarrow OpenFlow switches \rightarrow receiver.
 - Probe sender at Amazon EC2 or Microsoft Azure.

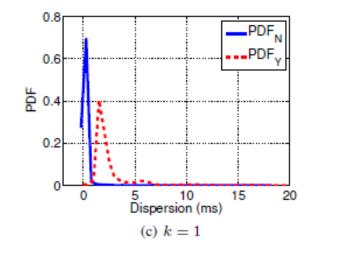
Measured Feature: Round Trip Time (RTT)

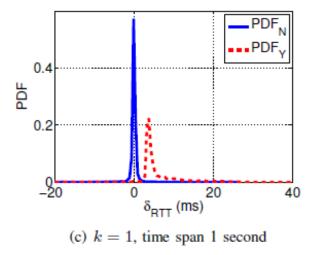

- Compute δ_{RTT} based on two RTT measurements:
 - $\delta_{RTT} = RTT_1 RTT_2$ is mainly dominated by controller-switch interaction delay.
 - $\delta'_{RTT} = RTT_2 RTT_3$ represents delay variances along the network path.

• Active/Passive attacker.

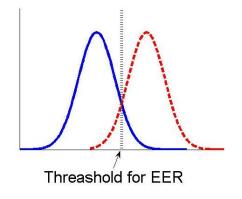

Measured Feature: Dispersion

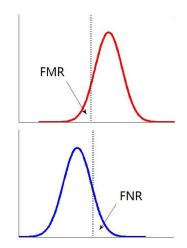
- Dispersion in case 1:
 - Limited by the delay of the controller-switch interaction.
 - Typically in the order of milliseconds.
- Dispersion in case 2:
 - Represents the network bottleneck bandwidth.
 - Typically in the order or microseconds.


• Active attacker.


- 20 machines around the globe.
 - Probing spanning two weeks.
- UDP probe packets (echoed by receiver).
- Use a pre-defined type of packet as "signal" to controller to clear flow rules.
- Reconfigure number of switches which are involved in the controller/switch interaction (k=1,2,3).
 - By installing static forwarding rule to the rest of switches.

Measurement Results in PDF

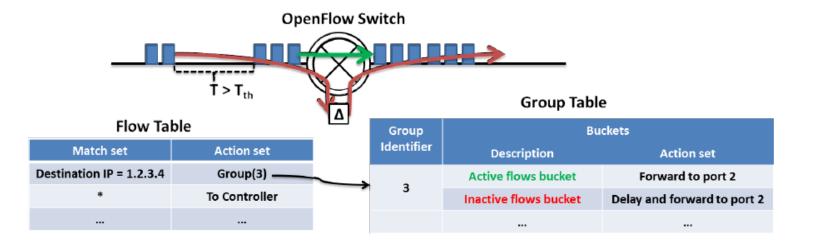

- PDF_Y: probe triggers rule installation (red).
- PDF_N: no rule installation is performed (blue).
- Distributions of PDF_Y and PDF_N significantly differ.



Quantitative Interpretation of Results

- False Match Rate (FMR)
 - Decision: no rule was installed
 - In reality: there is a rule installation.
- False Non-match Rate (FNR)
 - Decision: a new rule was installed.
 - In reality: no rule was installed.
- Equal Error Rate (EER)
 - Error rate at which both FMR and FNR are equal.
 - Widely accepted as a single metric for the accuracy of an identification system.

			k = 1	k = 2	k = 3
Packet-pair Dispersion		EER	1.59%	1.46%	1.46%
		Threshold	1.07 ms	1.42 ms	1.45 ms
δ_{RTT}	1 second	EER	2.64%	1.26%	1.27%
		Threshold	2.20 ms	4.67 ms	5.71 ms
	10 minutes	EER	7.50%	5.00%	2.50%
		Threshold	3.23 ms	3.99 ms	7.62 ms
	3 weeks	EER	19.17%	11.83%	10.83%
		Threshold	0.99 ms	3.65 ms	3.74 ms


Implications

- Fingerprinting an SDN network is feasible.
 - Dispersion:
 - stable over time
 - **δ**rtt:
 - can be extracted by passive measurement
- Our setting emulates a case which is hard to fingerprint:
 - Controller CPU was idle most of the time.
 - Pre-computed logic to issue forwarding decision.
 - Our hardware switches are among the fastest ones on the market.

Countermeasure

- Delay each packet at a switch before forwarding.
 - Harms network performance
- Delay the first few packets of old flows.
 - Minor impact on network performance.
 - The amount of delay can be determined from our observations.
 - Obscure attacker whether additional delay is caused by controller-switch interaction or by delay element Δ .

Related Work

- Prior work hints at the possibility of fingerprinting an SDN network [ShinHotsdn13].
 - We provide two possible features.
 - We demonstrate the feasibility of fingerprinting SDN networks.
- Other related works on network fingerprint/characterization.
 - RTT is relatively stable in backbone networks [MarkopoulouComComm06].
 - Residential network features (RTT, dispersion) mainly depend on "last-mile hops" [DischingerIMC07].
 - Dispersion is widely used in bandwidth estimation.
 - Available bandwidth or bottleneck bandwidth along the path.

Conclusion

- It is feasible to fingerprint SDN networks. ٠
 - Overwhelming probability of predicting controller-switch interactions. ٠
 - Feasible for both active and passive attackers. ۲
 - + Active probing has more stable accuracy
 - *but* can be deterred by anomaly detection systems.
 - Passive measurement accuracy depends on network conditions + *but* passively measuring the network traffic is hard to detect.
- Countermeasure against fingerprinting.
 - Evaluation of the effectiveness is current work.

15

Thank you && Questions

Orchestrating a brighter world

