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ABSTRACT : 
 

Temporal data means a data which have incorporated with the concept of time, to maintain past, present 

and future data. A Stream of data has may contain time, In other words it can be named as a sequence of 

data. In this paper temporal data mining concepts and tasks  and mining sequential patterns algorithms are 

discussed and evaluated. The motivation behind this paper is to give preliminary knowledge about a 

temporal data mining ,as well as presenting  and evaluation of the most known algorithms for discovering 

Temporal-side of Sequential Patterns which will helps new arrival to  Temporal Data Mining arena. 
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1. INTRODUCTION 

 
Temporal databases incorporate the concept of time to maintain past, present and future data[1], 

[2], [3]. They store time-varying information. As most database applications are temporal in 

nature, e.g. financial applications such as portfolio management, accounting, and banking, record-

keeping applications such as personnel, medical-record and inventory management and scientific 

applications, such as weather monitoring. in the past decade, the study of temporal databases has 

been an active field of research [4]. 

 

Generally, a temporal database supports three distinct types of time attributes which are valid 

time, transaction time and user-defined time. Valid time stores the time when an event takes place 

with start time and end time values. Transaction time is the time when the event is recorded in the 

database and user-defined time is time domains whose semantics are user-defined and depend on 

the particulars of the application. Since valid time describes the occurrence pattern of events 

stored in the database, it promises greater utility as a source of domain knowledge than 

transaction time.  

 

Each record stores the start time and end time during which the tuple is valid. Data is collected in 

the form of event time sequences where each event lasts for a certain time interval. For instance, 

in hospital information systems laboratory examinations or clinical records are stored for medical 

diagnosis of patients’ behavior over a certain monitoring period. Records like “patient A had 

surgery from 10:30 to 13:00 on 14 June” are stored. The temporal nature of data provides us a 

better understanding of trend or pattern over time as to find any valuable information. For 

example, we can find patterns like “60% of patients who took medicine A and then took medicine 

B after an hour, got a fever the following day”. The frequent temporal patterns exhibited by 

patients may identify some correlations between drugs for further diagnosis. Other temporal data 

are about telecommunication networks, weather and marketing in which by analyzing sequences 
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of time-stamped data, we can have a better understanding of the data, which changes over time. 

Knowledge discovery in temporal databases thus catches the attention of researchers[5], [6]. 

Furthermore, recent research in temporal databases has made important contributions in 

characterizing the semantics of temporal information and in providing expressive and efficient 

means to model, store, and query temporal data[3], [7].  For instance, an extended SQL standard, 

TSQL2, has been developed for temporal databases[8]. Within the TSQL2 standard, time is 

widely represented by intervals defined between start time (ts) and end time (te) points. There has 

been a significant amount of investigation for the development of temporal databases, such as 

temporal data structures[9], temporal algebraic operators[10], query processing[7], [11], 

indexing[12], etc. 
  

2. TEMPORAL CONCEPTS 
 
Time is continuous in nature. This continuous nature of time is important in the changing world 

since changes are possible with time. The sun moving across the sky or advances of program 

counters all involve changes with time[13].  Authors of [13], [14]  have defined some of  the 

basic concepts of time.  
 

2.1 Event 

 
An event is an instantaneous happening, i.e. something occurring at an instant an event is 

supposed to occur at a time t if it occurs at any instant during t. Moreover, the event occurrence 

time is the instant at which the event occurs in the real-world. The valid time associated with the 

event is the time t to which the event occurrence time belongs[13], [14]. 
 

2.2 Valid time 

 
The valid time of a fact is the time when the fact is true in the modeled reality. A fact may have 

associated with number of instants and time intervals, with single instants and intervals being 

important special cases. Valid times are usually supplied by the user[13]. 
 

2.3 Transaction Time 

 
A database fact is stored in a database at some point in time, and after it is stored, it is current 

until logically deleted. The transaction time of a database fact is the time when the fact is current 

in the database and may be retrieved. As a consequence, transaction times are generally not time 

instants, but have duration[13]. 
 

2.4 Valid Time vs. Transaction Time 

 
Time has received some attention in database research[15], [16]. This has led to the development 

of a temporal data model[16], p. 502) that "… would store, along with information on entities and 

relationships, both when information was valid in the real world and when that information was 

recorded in the database.” Both valid time and transaction time can employ fields capturing the 

start or finish of activities, or equivalent representation. 

 

Valid time, is when the information is valid, e.g., when an event occurred. Whereas, transaction 

time is when the event was captured, or the resource, agent or location information was 

established. [15]referred to transaction time as extrinsic time. Valid time was developed before 

transaction time[16]. A database that supports both valid time and transaction time can be called 

biTemporal database[17], [18], [19]. 
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2.5 Timestamp 

 
Timestamp (TS) is a time value associated with some timestamped object, for example, an 

attribute values or a table. The concept can be specialized to valid timestamp, transaction 

timestamp, interval timestamp, event timestamp. In [17] Devlin  has divided timestamp to two 

types depending on the nurture of events, which may be using a simple timestamp or using two 

timestamps. 

 

As stated in[19], timestamps may be associated with events as a whole. In this view, a timestamp 

exists for the lifespan of an event, i.e., from the beginning to the end of its relevance. Timestamps 

may also refer to evolving properties of the event, expressing the beginning and the end of 

relevance of certain attribute values. 
 

2.6 User Defined Time 

 
User Defined Time (UDT) is an uninterrupted attribute domain of date and time. User-defined 

time is parallel to domains such as money and integer, unlike transaction time and valid time; it 

has no special query language support. It may be used for attributes such as “birth day" and 

“hiring date" 
 

2.7 Duration 

 
The duration of event can be defined as the absolute distance between start time and end time. 

And the Duration can be defined formally as 

se ttED −=)(  , where D is the duration of event (E), ts and  te are event (E) time start and time 

end, respectively. 

 

For example, the duration of viewing a webpage P is when a user starts viewing the page P until 

he switches to another page or stop viewing that page[13], [14]. 
 

 
Figure 1 Granularity tree of Gregorian 

Calendar [20] 
 

 

2.8 Calendar 

 
A calendar is a human abstraction of physical time space[1], and the measurements of time vary 

in different calendar systems that are used in different cultural environments. Some familiar 
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calendar systems are the Gregorian, Islamic and Oriental-lunar calendars. In particular, calendars 

determine the mapping between human-meaningful time values and an underlying time-line. 

However, calendars are most often cyclic, allowing human-meaningful time values to be 

expressed succinctly. For example, dates in the common Gregorian calendar may be expressed in 

the form < day month year> where each of the fields month, day, and year cycle as time passes. 

Figure 1 shows the granularity tree of Gregorian, which includes basic granularities of the 

physical time 

 

Furthermore, a calendar is modeled as a totally ordered set (sequence) of intervals with additional 

semantics and represented by a tuple (granularity, pattern, period, start time, end time), 

where[20]: 

 

Granularity is the default time unit used in a calendar. 

Pattern is a subsequence of time units expressed as a temporal element. If a calendar is 

periodic, the pattern with respect to one period is specified. Otherwise, the whole 

sequence of a calendar is specified. If there is more than one possible pattern, they are 

separated by "|" which means or. 

Period is the length of a time interval during which a pattern occurs repeatedly. It is expressed 

in terms of the number of time units of a particular granularity in that period, or by a 

particular granularity. 

Start time is the time unit from which a calendar starts. 

End time is the time unit at which a calendar ends. 
 

2.9 Granularity 

 
The discovery of temporal patterns or relationships that involve multiple granularities is 

addressed in[21]. It is stressed that events occurring in the same day, or happening within k weeks 

from a specific day may capture our attention.  With the use of an event structure, which is a set 

of temporal constraints on a set of variables representing events, we target for patterns of events 

that match the even structure[21]. 

 

2.10 Time intervals 

 
Time interval or calendar interval refers to any specific set of consecutive time units with a given 

start-time, end-time and granularity, for instance the time interval [1, 4] with granularity of 

minute is an ordered set {1, 2, 3, 4}, representing minutes[20]. Moreover, according to [22] a 

calendar unit can also consist of a set of consecutive intervals. For, any calendar unit can be 

considered as a set of subinterval with smaller granularities. Consequently, based on that 

approach, the interval between January 1 and January 15 forms a time interval of the calendar 

units “months” with granularity days, whilst the calendar units “days” also consists of 

subintervals with granularity hours etc.  
 

2.11 Periodicity 

 
Periodicity refers to regular repetition of a certain event within a specific time interval[20], [22]. 

For instance, the event “spring” is repeated once within the time interval of a year. Such events 

are called periodic events, such intervals are called periodic intervals. Each periodicity refers to a 

specific time period which can be represented in terms of calendar units of a specific granularity 

(i.e. year with granularity months) or merely in terms of specific granularity, i.e. months. 

Periodicity is a very important temporal feature frequently identified among the transactions in 

temporal databases[20], [22], [23].  

 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.1, January 2013

 

3. TEMPORAL REASONING

 
Considerable research effort has been directed towards temporal aspects of information systems. 

One of the areas is temporal reasoning, which involves the issues of time modeling and the 

representation of temporal relationships based on the underlying temp

primitive notion of temporal data, 

are based on. Time points are assumed to be linear and an ordering relation is defined. Intervals 

are expressed in a pair of start time and end time points, (I

relations are expressed in terms of relations between their endpoints.  Some authors define 

algebras of temporal relationships according to a classical point of view. One of the most 

commonly used interval-based formalisms is Allen’s interval algebra

relationship between any two intervals as a subset of a set of thirteen basic relations, including 

before, meets, overlaps, starts, during and finishes,

equal.  Table 1 illustrate Allen’s taxonomy. In corporation with knowledge dis

most widely used Allen’s interval algebra, as well as first order temporal logic. 
 

4. TEMPORAL DATA MINING

 
Temporal data constitutes a large portion of data collected in daily operations. In general, 

temporal data can be loosely defined as any data that contain temporal information. Examples 

include financial databases for stock price indexes, telecommunication

Searching for similar patterns in a temporal database is useful in many applications as we can 

discover and predict the risks, causality and trends associated with a specific pattern. The 

accommodation of time into mining technique

of events and thus an ability to suggest cause and effect or trends in rule sets. Temporal data 

mining is thus an important extension as it offers the capability to infer causal and temporal 

proximity relationships that non-

 

The time component we capture helps in analyzing the changes of the data over time of the 

system. We may find any causal relationships from the ordering of occurrences of events such as 

the first condition, which is followed by the second one, is identified as cause and effect 

relationship, other than association, if no knowledge of time is known. Likewise, the time 

component may assists in identifying the validity of rules like “Hiking Boots

“Years. Months(3:5) during {Years (1990), Years (1995)}”. This reveals that every springtime 

from 1990 to 1995 the customers who buy hiking boots also buy outerwear. Such a rule may not 

be valid before 1990 or after 1995. We obs
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Table 1 Allen’s Taxonomy [24] 

EASONING AND TEMPORAL SEMANTICS 

Considerable research effort has been directed towards temporal aspects of information systems. 

One of the areas is temporal reasoning, which involves the issues of time modeling and the 

representation of temporal relationships based on the underlying temporal domain. There are two 

primitive notion of temporal data, time point and time interval, which temporal reasoning systems 

are based on. Time points are assumed to be linear and an ordering relation is defined. Intervals 

time and end time points, (I-, I+), with (I-<I+) such that the ordering 

relations are expressed in terms of relations between their endpoints.  Some authors define 

algebras of temporal relationships according to a classical point of view. One of the most 

based formalisms is Allen’s interval algebra[24]. It models the 

y two intervals as a subset of a set of thirteen basic relations, including 

meets, overlaps, starts, during and finishes, together with their inverses, plus the relation 

.  Table 1 illustrate Allen’s taxonomy. In corporation with knowledge discovery process, 

most widely used Allen’s interval algebra, as well as first order temporal logic.  

INING 

Temporal data constitutes a large portion of data collected in daily operations. In general, 

temporal data can be loosely defined as any data that contain temporal information. Examples 

include financial databases for stock price indexes, telecommunications and medical databases. 

Searching for similar patterns in a temporal database is useful in many applications as we can 

discover and predict the risks, causality and trends associated with a specific pattern. The 

accommodation of time into mining techniques provides a window into the temporal arrangement 

of events and thus an ability to suggest cause and effect or trends in rule sets. Temporal data 

mining is thus an important extension as it offers the capability to infer causal and temporal 

-temporal data mining is not able to do.  

The time component we capture helps in analyzing the changes of the data over time of the 

system. We may find any causal relationships from the ordering of occurrences of events such as 

condition, which is followed by the second one, is identified as cause and effect 

relationship, other than association, if no knowledge of time is known. Likewise, the time 

component may assists in identifying the validity of rules like “Hiking Boots →

“Years. Months(3:5) during {Years (1990), Years (1995)}”. This reveals that every springtime 

from 1990 to 1995 the customers who buy hiking boots also buy outerwear. Such a rule may not 

be valid before 1990 or after 1995. We observe that by adding the temporal semantics to the rule 
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set, more accurate and clear information is obtained[25]. In addition, by discovering the change in 

knowledge obtained in the underlying data, it is possible to know how quickly the domain is 

likely to change which helps in better marketing strategies. For example, by identifying 

frequently or unexpected occurring patterns over event sequences such as stocks with similar 

price movements, customers’ purchasing patterns over seasons as well as rare events happening 

for fraud detection, we gain more information from the sequences of records. In general, a set of 

historical data is collected in the form of event time sequences. 

 

Current temporal data mining techniques can be broadly classified into two categories: 

categorical and numerical data analysis. The former focuses on the discovery of causal 

relationships among temporally-oriented events. Most of the events concerned are point-based 

categorical events where only the time when the transaction takes placed is recorded like sales 

records, telecommunication network alarms, etc. Some of the categorical data are interval-based 

events the valid times of which are supported by the system such as patient database, scientific 

databases in geophysics and astronomy areas, etc. The ordering of data is a valuable source of 

information, which can direct future operations. Numerical data analysis concerns the discovery 

of similar patterns within the same time sequence or among different time sequences[26], [27], 

[28]. Numerical values of the sequences are taken into consideration as a comparison for trend 

discovery and prediction and it is known as time series analysis[29], [30]. Different shapes of the 

changes of data over time are analyzed[4]. 

 

Previous work in knowledge discovery in temporal data mainly concentrates on sequential pattern 

such as[31], [32], [33], [34], [35]. Although potential knowledge can be extracted, these 

techniques only treat data as a series in chronological order. They consider the ordering of a 

string of events and thus mainly support point-based events. Hence, most of these algorithms 

ignore time intervals, whereas some events sometime are compulsory stamped by time. 
 

4.1 Temporal Data Mining Tasks 

 
A set of relevant and important data mining techniques can be applied on a temporal database. 

According to techniques of data mining and theory of statistical time series analysis, the theory of 

temporal data mining may involve the following areas of investigation, since a general theory for 

this purpose is yet to be developed[36]: 

 

1. Temporal data mining tasks include: 

 

• Temporal data characterization and comparison, 

• Temporal clustering analysis, 

• Temporal classification, 

• Temporal association rules, 

• Temporal sequential pattern, 

• Temporal pattern analysis, and 

• Temporal prediction and trend analysis. 

 

2. A new temporal data model (supporting time granularity and time-hierarchies) may need 

to be developed based on: 

 

• Temporal data structures, and 

• Temporal semantics. 

 

In addition, temporal data mining needs to include an investigation of tightly related issues such 

as temporal data warehousing, temporal OLAP, computing temporal  measurements, etc. 
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5. MINING SEQUENTIAL PATTERNS 
 
Sequential pattern mining was first introduced by Agrawal and Srikant[32]. They also presented 

three algorithms for solving the problem of identifying sequential patterns. The AprioriAll 

algorithm was shown to perform better than the other two approaches. In [37]  the same authors 

proposed the GSP algorithm, which is 20 times faster than AprioriAll. They also introduced 

maximum gap, minimum gap and sliding windows. This branch of data mining attempts to 

discover frequent subsequences as patterns in a sequence database[38]. One can mine only the 

maximal frequent subsequences, or all frequent subsequences. 

 

 Mannila et al. presented the problem of finding frequent episodes in only one long sequence of 

events[33]. An episode is defined as a set of events occurring with a partially defined order and 

within a given time bound. In a later work[34], they generalized their work to allow one to 

express arbitrary unary conditions on the individual event attributes, or to give binary conditions 

on the pairs of event attributes. Their experiments were performed using a Web server-level logs 

file. Oates and Cohen in [39] introduced the problem of detecting strong dependencies among 

multiple streams of data. Their measure of dependency strength is based on the statistical measure 

of non independence. [32]provides the following definition: An itemset is a non-empty set of 

items. A sequence is an ordered list of itemsets. Without loss of generality, one can assume that 

the set of items is mapped to a set of contiguous integers.  

 

A record supports a sequence s if s is contained in it. The support count is incremented only once 

per record. The support for a sequence is defined as the fraction of the whole data set that 

contains this sequence. If this support≥ min_sup, then the sequence is frequent. 

 

Algorithms for mining frequent itemsets and sequences are useful for discovering Web structure 

and access patterns. For instance, by putting each Web page as transaction and URLs as items, 

frequent itemsets result in groups of related URLs that are frequently referenced together. 

Similarly, frequent sequences in Web log data yield information about user access patterns (that 

is, the sequence of URLs frequently traversed) that are of immense value to advertisers, Web site 

designers etc[40]. additionally, in a web access database at a particular site, the discovered 

patterns are the sequences of the most frequently accessed pages at that site. This kind of 

information can be used to restructure the website, or to insert dynamically relevant links in web 

pages based on user access patterns. 
 

5.1 Sequence Data constraints 
 
Unfocused approaches to sequential pattern mining suffer from two major drawbacks, which can 

briefly be stated as follows[41]:  

 

 1) Disproportionate computational cost for selective users. 

 2) Overwhelming volume of potentially useless results 

.  

Here selective users can be identified as users searching for a specific pattern rather than frequent 

patterns, as in the case of gene sequence studies. So there is a need for novel pattern mining 

solutions that enable the incorporation of user-controlled focus in the mining process. 

 

To achieve this goal, more constraints on data other than the time-window can be integrated to 

the levels of the data mining process. These are discussed in further detail in[35]. User defined 

constraints for determining interestingness of found patterns is an important portion of finding 

frequent sequences and useful rules. Constraints mentioned in related work are as follows: 
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a) As mentioned above, time constraints are the first basic measurements over sequences of 

events. Research over temporal databases involves time constraints more densely. Studies by 

Mannila et al include some user-defined time-window constraints[33], [34], [42]. Basically, 

the episodes are considered over these time intervals, so that, events occurring far apart from 

each other will not be counted for further investigation of sequences. Note that, in the time-

window constraint, the whole sequence must appear within the time-window in order to be 

counted as frequent. 

b)Length and width restrictions. 

c) Minimum time gap between sequence elements. 

d)Maximum time gap between sequence elements. 

e) Item constraints for including or excluding some items, forming super items, etc. 

f) Finding sequences characteristic in at least one class i.e., a special attribute value pair, that we 

are interested in predicting. 

g)And a flexible constraint specification language that allows users to express the specific 

family of patterns that they are interested in. The abstract goal here is to prune the 

computational cost and ensure system performance with the level on user focus. Providing 

regular expressions is a promising method of expressing this flexible constraint specification 

language that is introduced to sequence mining in[41]. 

 

5.2 Sequential mining parameters 

 
There are several parameter settings which may strongly influence the results of sequential 

pattern mining[43]. 

 

• The duration of a time sequence may be the entire available sequence in the database, or a 

user-specified subsequence such as that corresponding to the year 2001. Notice that a longer 

duration means a longer sequence to be mined, which makes the mining task more complex. 

Durations may also be defined as sets of partitioned sequences, such as every year or every 

one thousand take-offs and landings, or every time there is a large aircraft crash. In such 

cases, periodic patterns can be discovered. 

 

• When a set of events occur within a specified period of time they can be viewed as occurring 

together in the same event folding window, w. If w is set to the same length as duration, it 

will find time-insensitive patterns i.e. association patterns without care as to which item was 

bought first. For example, “In 2001, customers who bought a PC bought a digital camera as 

well”. If w is set to 0, sequential patterns found contain events that occur at distinct unrelated 

time instances, such as “A customer who bought a PC and then a memory chip is likely to buy 

a CD-ROM later on”. If w is set to be something in between, then those transactions that 

occur within one event window are taken as one transaction in the dataset to be mined. 

 

• The third parameter is the time interval int, between events in the discovered pattern. If int = 

0, there is no interval gap allowed, so patterns found consist of strictly consecutive sequences, 

such as ai-1aiai+1, where ai is an event occurring at time i. For example, if int=0 and the event 

folding window is set to one week, patterns found will be frequent over consecutive weeks. If 

instead we want to find separated patterns by at least min-interval but at most max_interval, 

we might choose to specify int as min_interval ≤ int  ≤  max_interval. For example, “If a 

person rents movie A, he/she will likely rent movie B within 30 days” implies 1 day≤ int≤ 30 

days. The final option is to find patterns carrying an exact interval int, where int = c≠ 0. For 

example, the query “Every time the Dow Jones drops more than 5%, what will exactly 

happen two days later?” will search for sequential patterns with int = 2 days. 
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5.3 Sequential Patterns Algorithms 

 
As we mentioned earlier, several sequential pattern mining algorithms have been introduced to 

confront the problem of discovering sequential patterns. From the literature, most well known 

algorithms can be classified into three categories: Apriori-based, Projection-based and SPADE-

based. 

 
5.3.1 Apriori-based Algorithms 

GSP was introduced in[44]. It extends the algorithms AprioriAll and AprioriSome introduced in 

[32] by adding some time constraints like minimal and maximal gaps between occurrences of 

elements (min-gap, max-gap), sliding time windows and taxonomies. Problem definition of the 

algorithm is: given a database D of data-sequences, a taxonomy T, user-specified min-gap and 

max-gap time constraints, and a user-specified sliding window-size, to find all sequences whose 

support is greater than the user-specified minimum support. 

 

Apriori-Based algorithms make multiple passes over the data. Each subsequent pass starts with a 

seed set: the frequent sequences found in the previous pass. The seed set is used to generate 

candidate sequences. The support (frequency) for these candidate sequences is found during the 

pass over the data. The algorithm terminates when there are no frequent sequences at the end of a 

pass. PSP[45], another Apriori-based algorithm, was developed to improve the way in which GSP 

stored candidate patterns - in every other respect its process of finding sequential patterns mirrors 

GSP. 
 

5.3.1 Projection-based Algorithms 
FreeSpan [38] was developed to substantially reduce the expensive candidate generation and 

testing of Apriori, while maintaining its basic heuristics. In general, FreeSpan uses frequent items 

to recursively project the Sequence database into projected databases while growing subsequence 

fragments in each projected database. Each projection partitions the database and confines further 

testing to progressively smaller and more manageable units. The trade-off is a considerable 

amount of sequence duplication as the same sequence could appear in more than one projected 

database. However, the size of each projected database usually (but not necessarily) decreases 

rapidly with recursion. PrefixSpan [46] was developed to address the costs of FreeSpan. Its 

general idea is that, instead of projecting sequence databases by considering all the possible 

occurrences of frequent subsequences, the projection is based only on frequent prefixes because 

any frequent subsequence can always be found by growing a frequent prefix. 
 

5.3.2 SPADE-based Algorithms 

SPADE (Sequential PAttern Discovery using Equivalence Classes) algorithm was presented 

recently in[47], [48]. It uses vertical id-list database format where each sequence is associated 

with a list of objects in which the sequence occurs along with the timestamps. It decomposes the 

search space lattice into sub-lattices and processes them independently in the main memory. 

Three database scans are needed to  compared with the multiple scans of data in other 

approaches. Two different search strategies, breadth-first search and depth-first search are used 

for enumerating frequent sequences. cSPADE is again a study of Zaki et al presented in[35]. It is 

mainly the extension of SPADE algorithm with the constraints in GSP. There are other 

algorithms, which have been introduced and are based on SPADE algorithms, such as 

webSPADE[49] and Go-SPADE.[50]. 
 

5.4 Evaluation of Sequential Patterns discovery Algorithms  

 
As stated in the research which conducted by [51] as well as stated in [35], [48] the experimental 

results show that SPADE outperforms GSP by a factor of two, and by an order of magnitude with 

pre-processed data. It has two important advantages:  
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 1) Reducing the I/O costs by reducing the database scans and, more importantly 

 2) Decomposing the problem into sub-problems which can be solved independently, so that it 

makes parallel computing possible. 

 

Authors of GSP and cSPADE have implemented some further constraints like item constraints for 

including or excluding certain items and class predictions, while excluding the taxonomy 

presentation of GSP. Results obtained show that the difference between cSPADE and GSP 

narrows when min-gap and max-gap constraints are considered, but overall again cSPADE 

outperforms GSP. But this is a natural result as SPADE also has outperformed GSP. 

 

1. Table 2 shows the evaluation of most known sequential patterns algorithms based on the 

literature of mining sequential patterns, which we have illustrated earlier. Each algorithm is based 

on one of three categorises: Apriori-based, Projection-based and SPADE-based. We explained 

how the data in these algorithms are laid out, the type of data structure used by each category and 

how may times the algorithm passes over the database. 
 

 

Table 2 Sequential patterns discovery algorithms  

valuation 

6. CONCLUSION 
 

In this paper, concepts of temporal-side aspect are explained, and temporal data mining and its 

tasks are discussed. However, we precisely concentrate on mining temporal-side sequential 

patterns. In recent years, Several approaches for mining sequential data have been proposed.  

 

In this paper, The concept of mining sequential patterns has been discussed and some of the well 

known mining sequential pattern algorithms have been evaluated which have concentrated on 

temporal side. As result of that mining algorithms have been categorized into three types, in 

relation to layout of data, Data structure as well as passing on data. which helps a researcher to 

choose the type of algorithms may suite their criteria of research.  
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