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Abstract Many existing approaches for image-to-geometry
registration assume that either a textured 3Dmodel or a good
initial guess of the 3D pose is available to bootstrap the reg-
istration process. In this paper we consider the registration
of photographs to 3D models even when no texture informa-
tion is available. This is very challenging as we cannot rely
on texture gradients, and even shading gradients are hard
to estimate since the lighting conditions are unknown. To
that end, we propose average shading gradients, a render-
ing technique that estimates the average gradient magnitude
over all lighting directions under Lambertian shading. We
use this gradient representation as the building block of a
registration pipeline based on matching sparse features. To
cope with inevitable false matches due to the missing tex-
ture information and to increase robustness, the pose of the
3D model is estimated in two stages. Coarse pose hypothe-
ses are first obtained from a single correct match each,
subsequently refined using SIFT flow, and finally verified.
We apply our algorithm to registering images of real-world
objects to untextured 3D meshes of limited accuracy. More-
over, we show that registration can be performed even for
paintings despite lacking photo-realism.
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1 Introduction

Registering images to 3D models of real-world objects or
places is an important prerequisite for transferring informa-
tion between images and a 3D model of the scene (Corsini
et al. 2009; Neugebauer and Klein 1999). For example, color
information from images can be used to texture a 3D model
thatwas previously acquired using range scans.More broadly
speaking, the 2D imagemay provide diverse information that
can be used to annotate, or possibly even update (Matzen and
Snavely 2014), the 3D model. Going in the opposite direc-
tion, it is possible to annotate images with information from
the corresponding part of the 3D scene once we know the
camera pose from which the image was taken, leading to a
multitude of augmented reality applications.

In this paper, we introduce a method for registering indi-
vidual photographs to 3D models even in the absence of any
information on the texture of the object (see Fig. 1). This
is in contrast to many existing image-to-geometry registra-
tion approaches (Irschara et al. 2009; Li et al. 2008, 2010)
that rely on pre-registered images to which a newly arriving
photograph is aligned through matching of features. Such
pre-registered images are available, for example, when the
3D geometry is acquired throughmulti-view stereo (Agarwal
et al. 2009). However, this scenario is not always applicable,
e.g. when acquiring a 3D model by non-photometric meth-
ods, such as range scans. Although some range scanners are
able to measure the reflectance of a surface point, this color
information is not very reliable and only available if the scan-
ning is performed during daytime. However, it is not unusual
that scanning campaigns are required to take place at night;
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Fig. 1 Our algorithm finds the pose of an untextured 3D model of a
potentially textured object from a single photograph

thus we need to work with the raw geometry information
only (Corsini et al. 2012).

Our method estimates the pose of the depicted 3D model
by searching for sparse correspondences between features
found on the photograph and image features found on ren-
derings of the 3D model. Existing methods, in contrast,
typically aim tomaximize the statistical dependency between
the photograph and a rendering, (e.g., Corsini et al. 2009).
The resulting registration criterion is dense, but leads to a
highly non-convex optimization problem with many local
optima, necessitating good initialization. Therefore, dense
registration methods are by and large bootstrapped with user
interaction or some other prior information on the camera
pose. While this may be suitable for smaller scanning cam-
paigns, this does not scale to registering a continuous stream
of incoming images to a geometric model of the scene. Our
work is complementary to these dense methods in that it
automatically provides registration hypotheses, which can be
further refined, if needed, without requiring user interaction.

Gradients are the most common building block for many
image features (e.g., Dalal and Triggs 2005; Lowe 2004).
Since we cannot hope to recover the texture gradients in
renderings of the untextured 3D model, we need to rely on
gradients due to the shading of the object, if we aim to use
well-proven image features for describing image patches. In
absence of prior information on the lighting and reflectance
properties of the object, we assume a simple, yet effective
Lambertian shading model with a single point light source,
and estimate the observable gradient magnitude averaged
over all directions of the point light. This average shading
gradient directly relates to the magnitude of standard image
gradients that are computedwith the same linear operator, yet
neither requires a known lighting direction nor any ad-hoc
assumptions about it. Bringing both rendering and photo-
graph into a gradient representation allows us to establish
sparse 2D-to-3D correspondences.

However, in the absence of texture, the ratio of correct
correspondences tends to be lower than when matching pho-
tographs. To cope with this, we estimate the camera pose
in two stages. First, coarse poses are generated from just a
single correspondence each. To that end we match 2D key-
points on the image to 2D keypoints detected on renderings
of randomly sampled viewpoints around Harris3D keypoints
(Sipiran and Bustos 2011). Coarse poses are obtained by
estimating an affine transformation between the matching
patches of photograph and rendering. This initial estimate is
refined in a second step that iteratively improves the pose
using SIFT flow (Liu et al. 2011) on the gradient representa-
tion. While registration does not always succeed due to the
difficulty of the problem, a final automatic verification step
can predict reliably whether the registration succeeded.

The contributions of this paper are as follows: (1) we
present average shading gradients, a novel way of computing
a gradient representation from renderings of an untextured
3Dmodel in the absence of any lighting information. The rep-
resentation directly relates to gradients found on real images.
(2) We deal with a low ratio of correct patch correspon-
dences by generating coarse image-to-geometry registration
estimates from just a single correct correspondence. (3) We
propose an iterative pose refinement technique based onSIFT
flow that substantially increases the registration accuracy. (4)
To make our pipeline fully automatic, we suggest a verifica-
tion step that accurately predicts whether the registration has
been successful. Our experiments show that average shading
gradients coincide well with gradient information of corre-
sponding images and robustly cope with “noisy” geometry.
Moreover, we demonstrate the efficacy of our entire pipeline
on 3D meshes of varying complexity and accuracy.

This paper is an extendedversionof (Plötz andRoth 2015).
In comparison to our previous work, we improved the refine-
ment as described in Sect. 4.4 and give a proof for the bound
on the average shading gradients in the appendix. We give
further analysis of the approximation error incurred by our
closed-form bound in Sect. 3. Furthermore, we provide an
extensive study and discussion of the different parameters of
the proposed feature descriptor and compare our method to
an improved RANSAC baseline. Finally, we show that our
registration pipeline is also capable of registering paintings
and stylized photographs to untextured 3D meshes, despite
their non-photorealistic depiction.

2 Related Work

The idea of using rendered lines for aligning 3D objects
has a long history in computer vision (Lowe 1991) and is
used in object-level pose estimation (Lim et al. 2013a; Stark
et al. 2010; Zia et al. 2013), image-to-geometry registration
(Russell et al. 2011), sketch-based shape retrieval (Eitz et al.
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2012), and photo-to-terrain alignment (Baboud et al. 2011).
In addition to simple line rendering techniques, such as sil-
houettes, contours, ridges and valleys, more sophisticated
and view-dependent methods have been proposed. Sugges-
tive contours (DeCarlo et al. 2003), for example, are drawn
where contour lines would occur if the view direction was
altered slightly. Apparent ridges (Judd et al. 2007) use a
notion of view-dependent curvature to compute ridges and
valleys. The obtained lines do not necessarily coincide with
high principal curvature, but rather with large perceived cur-
vature. Both line rendering techniques are geared to convey
shape to human users. In contrast, the average shading gradi-
ent proposed here aims at matching the gradients observable
froma real image of the 3Dobject.Our technique is alsomore
robust to noise and fine surface detail, as it is computed in
screen space. While we observe good results using a simple
Lambertian shading model, incorporating global illumina-
tion effects like ambient occlusion (Shanmugam and Arikan
2007) could further improve the shading gradient.

Feature-based pose estimationmatches image features on
the photograph to features stored in a database and anchored
to 3D points (Aubry et al. 2014; Irschara et al. 2009; Li et al.
2010). A pose is typically estimated from these 2D-to-3D
correspondences using RANSAC. Irschara et al. (2009), Li
et al. (2008, 2010) use previously registered images to derive
image features and Wendel et al. (2011) extends (Irschara
et al. 2009) by exploiting temporal coherency of camera
poses when moving through a scene. In our work we drop
the requirement of having pre-aligned images and instead
use only a 3D model from which we render synthetic views.
Aubry et al. (2014), Russell et al. (2011) also take this
approach for aligning paintings to geometry. They lever-
age the ground plane to generate novel viewpoints, while we
sample camera poses around key points on the 3D object.
Also, while Aubry et al. (2014), Russell et al. (2011) use 3D
models with texture information, we address the more gen-
eral setting of having an untextured 3Dmodel of a real-world
object. While in our experiments the 3Dmodel is represented
as an untexturedmesh, Sibbing et al. (2013) use colored point
clouds from which they create renderings. They propose
a novel splat rendering technique that generates complete
synthetic views from sparse point clouds while maintaining
sharp gradients. For ground-to-aerial image matching Shan
et al. (2014) leverage a multi-view stereo reconstruction to
warp ground images into novel views from aerial camera per-
spectives. This reduces viewpoint differences to real aerial
images, allowing for robust matching of image features.

Our two-phase pose estimation strategy is related to (Li
et al. 2008; Russell et al. 2011), which use GIST descrip-
tors (Oliva and Torralba 2001) for retrieving similar views
and thereby also first generate initial pose estimates, which
are subsequently refined. In our work, the first phase relies
on image patches instead of complete views, allowing for a

wider sampling of viewpoints. Using affine transformations
induced by single feature point correspondences for gener-
ating relative poses between two images has been used in
image retrieval (Philbin et al. 2007) to re-rank initial search
results based on spatial verification. Similarly, Lowe (2004)
treats object detection as an image retrieval problem. Putative
object poses are identified by matching image features on a
test image to those obtained from training images of objects,
where each feature correspondence induces an affine trans-
formation of a training image. To remove spurious detections
due to background and clutter, Lowe (2004) clusters these
transformations with a Hough transform, which is related to
our verification step. However, in this paper we use affine
transformations for generating initial poses instead of vali-
dating featurematches. Since the difficulty of our registration
problem comes from very few correspondences being cor-
rect, we postpone verification after the refinement step to
obtain a robust verification criterion by looking at the mutual
reprojection error of pairs of pose hypotheses.

Regarding the descriptor used for matching, we found
standardHoGdescriptors (Dalal and Triggs 2005) to perform
well in our setting, but other specializeddescriptors havebeen
proposed as well. Baatz et al. (2012) use contourlets to match
the horizon line of a query photograph to renderings of a dig-
ital elevation model, thus enabling accurate geo-localization
in mountainous environments. Arandjelović and Zisserman
(2011) incorporate domain knowledge into their descriptor
by combining HoG features with an occupancy map derived
from a figure-background segmentation. The segmentation
is based on a superpixel classifier trained for distinguishing
statues from background. The enhanced descriptor shows
significant improvements for retrieving similar views of tex-
tureless statues from a database of real photographs. Liu and
Stamos (2012), in contrast, rely on global features such as
lines that are typically found in urban scenes.

Recently, learning-based approaches for object-level pose
estimation have shown great success. Brachmann et al.
(2014) estimate the 6 degrees-of-freedom (DoF) extrinsic
camera pose from a single RGB-D image for a predefined
class of objects. First, pixel-wise estimates of 3D object
coordinates are regressed and afterwards the local noisy
information is aggregated to a robust pose estimate using
RANSAC. Instead of scoring pose hypotheses using a hand-
crafted energy, Krull et al. (2015) employ a convolutional
neural network (CNN) to model the energy; optimization is
still done by RANSAC. As shown by Kendall et al. (2015),
Kendall and Cipolla (2016) it is also possible to directly
regress the 6D camera pose from a single image using a
CNN. These networks are trained on images with known
camera poses that were previously obtained using structure-
from-motion. For retrieval of single objects and joint pose
estimation, Bansal et al. (2016) propose to first predict an
intermediate 2.5D representation from a 2D input image by
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regressing surface normals. Subsequently, a CNN trained on
rendered views of CAD models predicts object pose and
style. It remains open, how well synthesized images can
be used as a proxy of real training data without sacrificing
performance. To bridge the gap between synthetic renderings
and realistic images, Su et al. (2015) propose a pipeline for
rendering 3D objects in common poses onto realistic back-
grounds. Based on this, Massa et al. (2016) learn a mapping
from CNN features computed on a realistic photo to features
from a rendering, both showing the same object in the same
pose, thus improvingmatching. In contrast to learning-based
methods, our registration algorithm is non-parametric since
it leverages a database of 2D image descriptors. Hence, it is
possible to update this database online, e.g. for incorporat-
ing prior successful registrations, without the need to retrain
a model.

Techniques for pose refinement often involve optimizing
some measure of alignment between the photograph and a
rendering of the model. Viola and Wells (1997) pioneered
mutual information based alignment, which assumes that
pixel values are spatially independent, but come from a joint
distribution over pixel values of photograph and rendering.
The objective is to maximize their statistical dependency.
This results in a highly non-convex optimization problem,
hence good initialization is crucial. The rendering technique
itself turns out to be crucial as well. Corsini et al. (2009) pro-
pose a blending of normal and ambient occlusion maps and
Dellepiane and Scopigno (2013) additionally render colors
induced from other images whenever possible. Other refine-
ment approaches try to align the silhouette lines of the ren-
derings and photograph (Neugebauer and Klein 1999). This
approach, however, requires the full object to be depicted,
whereas our approach does not assume silhouette lines to be
visible. Also note that our approach for generating coarse
pose hypotheses complements these refinement algorithms.

3 Average Shading Gradients

To match feature points between renderings of untextured
models and photographs, we need to define a suitable
representation that allows assessing their similarity. This rep-
resentation should depend on local image variation that is
present in both source modalities. Here, we propose to use
gradients from shading, since they are detectable in both pho-
tographs and on renderings of the 3D model. In general, the
gradient magnitude of an image is defined as

‖∇ I‖ =
√

(hx ∗ I )2 + (
hy ∗ I

)2
, (1)

where I denotes the image, hx and hy are derivative filters in
x and y direction, and ∗ denotes the convolution operation.
All other operations are pixel-wise.

Aside from the 3D geometry and camera pose, the image
formation process also depends on the context of the scene
(e.g., the background), as well as the lighting conditions and
the reflectancemodel of the 3D surface.Without prior knowl-
edge, we assume the background to be constant and the
reflectance model to be Lambertian with constant albedo.
For the lighting, we assume a single point light source
with unknown lighting direction. Under this simple shad-
ing model, we can express the image I of the untextured 3D
model given a certain camera pose in terms of a normal map
n and lighting direction l as

I = max(0,−n�l). (2)

Inserting Eq. (2) into (1) allows to compute gradients on
the rendered image. However, the light direction l is still
unknown. Assuming a fixed lighting direction is possible;
setting it to coincide with the camera viewing direction
(“headlight” assumption), for example, results in a gradient
magnitude that is related to suggestive contours (DeCarlo
et al. 2003). However, for a fixed lighting direction some
discontinuities in the normal map will not give rise to gradi-
ents. Yet, these discontinuities may be strongly present for
other lighting directions. In order to be able to nevertheless
recognize these gradients, in this paper we thus average the
gradient magnitude over all possible light directions of the
unit sphere S. Specifically, we propose the average shading
gradient

‖∇ I‖ =
∫

S
‖∇ I (l)‖ dl (3a)

=
∫

S

[ (
hx ∗ max(0,−n�l)

)2

+
(
hy ∗ max(0,−n�l)

)2 ] 1
2
dl. (3b)

Even for the simple Lambertian shading model computing
the average gradient magnitude in Eq. (3a) in closed form is
challenging due to the complex form of the integrand. Hence,
we make two approximations to arrive at a more tractable
expression. First, we replace max(0,−n�l) by 1

2 (n
�l), since

the square of the dot product is symmetric in the light direc-
tion and every pixel is visible for only half of the lighting
directions that we integrate over. In other words, pixels on
the normal map, for which the inner product is positive, will
be clipped for the opposite light direction, and vice versa.
Only when the stencil of the derivative filter covers an area
across which the visibility (i.e., the sign of the dot product)
changes, this approximation is inexact. However, we found
this effect to be negligible in practice (see Fig. 2 and Sect. 5).
As a second approximation, we apply Jensen’s inequality,
which allows deriving a closed form upper bound on the
approximation as follows:
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‖∇ I‖ ≈ 1

2

∫

S

√(
hx ∗ (n�l)

)2 + (
hy ∗ (n�l)

)2 dl (4)

≤ 1

2

√∫

S

(
hx ∗ (n�l)

)2 + (
hy ∗ (n�l)

)2 dl

= 1

2

√∫

S

(
(hx ∗ n)�l

)2 dl +
∫

S

(
(hy ∗ n)�l

)2 dl

=
√

π

3

√√√√
3∑

i=1

(hx ∗ ni )2 + (hy ∗ ni )2. (5)

To obtain the last equality, we linearize the squared filter
response by applying the following transformation to all vec-
tors:

x̂ = [x21 x22 x23 2x1x2 2x1x3 2x2x3]�, (6)

whichmaps a three-dimensional vector into a six-dimensional
space such that x̂�ŷ = (x�y)2. We obtain

∫

S

(
(h ∗ n)�l

)2
dl =

∫

S

̂(h ∗ n)
�

l̂ dl

= ̂(h ∗ n)
� ∫

S
l̂ dl

= 4

3
π

3∑
i=1

(h ∗ ni )
2, (7)

where the ni denote the x, y, z components of the normal
field. A proof for the last equality can be found in the
appendix. The bound fromEq. (5) is very efficient to compute
as it only involves convolutions of the normal map and pixel-
wise operations. While it may seem intuitive to compute
gradient information from the normal map, it is not immedi-
ately clear how to do this due to its multivariate nature. Our
result in Eq. (5) shows how this intuitive idea can be real-
ized and, moreover, formally justified as an approximation
of the average shading gradient. Furthermore, having this
gradient information allows deriving common image fea-

tures, e.g. HoG (Dalal and Triggs 2005), from the normal
map. Undirected gradient orientations in the range [0, π ]
are obtained by computing image derivatives on the aver-
age shading gradient image with a central difference gradient
operator.

Benefits Figure 2 shows an example of the gradient magni-
tudes of a Lambertian shading model for the normal map of
a statue. For this illustration, we compute the average shad-
ing gradient using Monte Carlo estimation, i.e. we sample
2000 light directions and approximate the integral by aver-
aging the gradients of the shaded images. We also show
a Monte Carlo estimate of our approximation to the true
average shading gradients (Eq. 4). Note that this exhaus-
tive computation is not practical, however. Assuming only
a single light direction avoids this issue, but when making
a “headlight” assumption (b, DeCarlo et al. (2003)), i.e. the
light comes from the viewing direction, certain characteristic
structures like the contour of the chin get lost. On the arm
of the statue it can be seen, moreover, that gradients tend to
vanish for surfaces pointing towards the camera in the head-
light case, while they are present for our average shading
gradient. Our two approximations (d, e) to the exact aver-
age shading gradient have little visible impact, hence retain
all its benefits. Crucially, our closed-form bound is much
more efficient to compute. It requires roughly the same com-
putational effort as calculating the gradients of the shaded
image for a single light direction. To further investigate the
approximation error, Fig. 3 shows the differences between
the Monte Carlo estimate of the true average shading gra-
dients and the Monte Carlo estimate with the approximated
Lambertian shading, as well as the differences to the gradi-
ents obtained by evaluating our closed-form bound. Overall,
the error is very small in both cases with less then one per-
cent of the maximum gradient magnitude. Moreover, we
can see that in areas of low curvature the bound is tight,
whereas in areas of high curvature and along the silhouette
the closed-form bound overestimates the gradient magnitude
slightly.

Fig. 2 Image gradients for the normal map from (a). From left to right
b Gradient magnitude computed with Lambertian shading and “head-
light” assumption (DeCarlo et al. 2003). Monte Carlo estimate of the

average gradient magnitude using the (c) correct (Eq. 3a) and d approx-
imated (Eq. 4) Lambertian shading. e Our closed-form bound (Eq. 5)
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Fig. 3 Left: differences between Fig. 2c and d. Right: differences
between Fig. 2c and e. Red and blue colors mean that the true average
shading gradients are stronger or weaker, respectively, than the com-
pared gradient magnitudes. Shades of grey indicate that the gradient
magnitudes coincide. Differences are normalized by the largest gradi-
ent magnitude in Fig. 2c

Fig. 4 Comparison of apparent ridges (a) and our average shading
gradients (b), after non-maximum suppression and hysteresis, on a high
quality mesh (top) and a noisy mesh (bottom)

Connection to apparent ridges Judd et al. (2007) observed
that apparent ridges coincide well with the output of a Canny
edge detector on renderings assuming Lambertian shading,
averaged over many light configurations. This suggests inter-
preting our gradient rendering algorithm as a screen space
approximation to apparent ridges.We compare both in Fig. 4,
after non-maximumsuppression andhysteresis, as in aCanny
edge detector. On a high quality mesh (top) the obtained
lines for both renderings coincide very well, whereas on a
mesh with a noisier surface (bottom), especially on slanted
parts, apparent ridges produce more spurious lines that are
not related to meaningful edges. In Sect. 5 we show the
improved noise behavior of our average shading gradients

quantitatively. Additionally, our approach can be used with
any linear gradient operator and is more efficient as it avoids
the costly computation of the view-dependent curvature in
object space for each frame.

4 Pose Estimation

To estimate the camera pose of an input image relative to
the untextured 3Dmodel, we nowmatch patches of the input
image to patches generated from renderings of the 3Dmodel,
using gradients as basic building block of the representation.
This yields 2D-to-3D point correspondences from which a
pose is then estimated. Similar approaches have recently
been used for image-to-painting alignment (Shrivastava et al.
2011), painting-to-geometry registration (Aubry et al. 2014),
and location estimation (Irschara et al. 2009; Li et al. 2010).
As matching to untextured models leads to more false corre-
spondences, we divide the registration process into two steps.
First, we estimate a set of coarse poses, each from just a single
correspondence between an image patch and a patch in the
database of renderedviewsof themodel.Compared tomatch-
ing entire rendered images (Russell et al. 2011), matching
individual patches increases flexibility and reduces the size
of the database of renderings, since translations and scalings
of patches do not need to be considered at this stage. In the
second stepwe refine the coarse poses into full 11 degrees-of-
freedom poses by alternating between dense flow estimation
between rendering and photograph, and re-estimating the
pose from the correspondences induced by the flow field.
Finally, a verification step assesses whether the registration
process was successful at all, since we do not expect our
algorithm to register all images perfectly. Figure 5 illustrates
this pipeline.

4.1 Patch Database

Topopulate the databasewith rendered patches,we randomly
sample camera poses from which the 3D model can be ren-
dered. To reduce the space of possible camera poses, we
first identify characteristic points on the 3Dmodel that likely
give rise to discriminative features in renderings that show
this point. We find 100 characteristic points using Harris3D
(Sipiran and Bustos 2011), a 3D keypoint detector for point
clouds andmeshes. It approximates the local surface around a
vertex as a two-dimensional quadratic function, and applies a
continuous version of the well-known Harris operator. This
yields a score that correlates well with the local curvature
around the vertex, favoring corners or spike-like structures.

Specifically, we evaluate theHarris3D score at a randomly
chosen subset of all vertices, and use non-maximum suppres-
sion in 3D space to yield thinned out keypoints. For each
keypoint we randomly sample 10 camera poses viewing this
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Fig. 5 Registration pipeline using average shading gradients

particular point. To cover a reasonable range of different
viewpoints, we sample uniformly across all camera direc-
tions from which the surface point is visible. The camera
distance is sampled from a log-normal distribution such that
the relative distance to a mean distance is Gaussian. This
allows to sample camera poses nearby and far away. We
choose the mean to be a fixed value relative to the size of
the 3D model. However, one could also make it dependent
on a measure of scale of the 3D keypoint. Note, that we do
not need to estimate a ground plane and we do not intro-
duce a bias toward camera poses that are at a certain height
above ground, or have a fixed set of possible viewing angles
relative to the 3D object. We only assume a photographer’s
bias to upright pictures; i.e. we choose the in-plane rota-
tion such that the up-axis of the model coincides with y-axis
of the view. While this random sampling of poses gives our
method the flexibility to register photographs frommany dif-
ferent viewpoints, it is also possible to constrain the sampling
process if prior knowledge about the query photographs is
available.

We then render each view using the average shading gradi-
ent fromSect. 3, afterwhichwe identify 2Dkeypoints thatwe
can match to those of the image to be registered. In our expe-
rience blob detectors, such as the difference of Gaussians
(Lowe 2004), do not lead to stable keypoints. The reason
is that photographic images also contain texture gradients
not present in the average shading gradient-representation of
the 3D model, which can have significant influence on blob
localization. In contrast, corners are stable features that can
be localized reliably in both the average shading gradient
image and the gradient image of a query photograph, even in
the presence of additional edges in one modality. We detect
corner points on multiple scales using a (2D) Harris detec-
tor, and extract patches of size 120σ , where σ is the scale of
the key point. All extracted patches are resized to 256× 256
pixels to gain scale invariance.

4.2 Feature Descriptor

We compute a HoG descriptor (Dalal and Triggs 2005) from
the gradient patches. To this end, we consider two different
strategies: (i) HoG from first-order gradients, where gradi-
ent magnitudes from the photograph respectively the normal
map are binned directly into gradient histograms; (ii) HoG
from second-order gradients, wherewe apply a central differ-
ence gradient operator on the gradient magnitude images of
the photograph and normal map, respectively. The oriented
gradients obtained from this second gradient operator are
then sorted into the gradient histograms of HoG. The reason
for evaluating the second alternative is that Eitz et al. (2012)
found a similar representation to be beneficial for sketch-
based shape retrieval. They compute a descriptor from the
responses of oriented Gabor filters on line drawings and line
renderings. Their GALIF descriptor can also be seen as cal-
culating histograms over oriented gradient information of a
gradient image.

When inserting the gradients into the histogram bins we
linearly interpolate spatially and in terms of orientation. We
use 8 × 8 blocks on a regular grid with 9 undirected orien-
tation bins, resulting in a 576-dimensional descriptor, which
is stored in the database. We also try a circular HoG descrip-
tor with 4 undirected orientation bins in a circular layout
with 8 angular bins and 4 bins along the radius resulting in
a 132 dimensional descriptor. Note that we do not use non-
maximum suppression on the gradients, as we found this to
deteriorate performance.

4.3 Coarse Pose Estimation

Given an input photograph that shouldbe registered,we apply
the same feature detection pipeline as for the renderings,
using the same linear gradient operator. To obtain 2D-to-3D
patch correspondences, for each feature in the query image
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we search the nearest neighbor within the database. To com-
pare a query descriptor dq to a database descriptor ddb, we
use the similarity score proposed by Aubry et al. (2014):

s(dq , ddb) = (ddb − µ)�Σ−1dq . (8)

Here, Σ and µ are the covariance matrix and mean, respec-
tively, over all descriptors in the database. At query time,
evaluating s(dq , ddb) can be done by taking the inner prod-
uct between dq and a transformed set of database descriptors,
which can be pre-computed. Equation (8) can be inter-
preted as the calibrated classification score of dq for an
one-vs-all classifier that discriminates ddb from all other
descriptors using linear discriminant analysis (LDA) (Aubry
et al. 2014). Like Aubry et al. we found that transforming
the database descriptors increases the matching quality over
the raw descriptors as non-discriminative features have less
influence.

As we do not rely on textured 3D models, we need to
deal with an increased number of false correspondences in
the matching process. For example, on the Statue dataset
shown in Fig. 2, on average only 4% of all putative corre-
spondences from nearest neighbors are correct in the sense
that the 3D point projects within a distance of 50 pixels to
the matched 2D point. Moreover, we found that the com-
monly used ratio test (Lowe 2004) is not applicable in our
scenario as the distribution of the ratios is almost identical
for both inlier and outlier correspondences. Hence, regular
RANSAC (Fischler and Bolles 1981) is likely to fail as we
need to sample 3 (Kneip et al. 2011) or more correct cor-
respondences (Lepetit et al. 2009) to estimate the extrinsic
camera pose, or at least 6 correspondences to estimate the full
pose.

To cope with this, we first estimate a coarse pose from
just a single correspondence, making this viable even for
low rates of correct putative correspondences. For every cor-
respondence between an image and a database patch, we
compute an affine transformation from the relative position
and isotropic scale of the Harris keypoints. Philbin et al.
(2007) observed this similarity transform to provide very
goodperformance in the context of re-ranking image retrieval
results and that additionally estimating an anisotropic scale
or shear factor yields only marginal improvements. After
applying the transformation to the known pose of the ren-
dered view, the support of the rendered patch is transformed
to the support of the patch within the image (see Fig. 6).
Note that the admissible poses relative to the pose of the
rendered view in the database are limited to scaled and
translated variants. However, we argue and show in Sect. 5
that this provides a good and efficient initialization for pose
refinement.

Fig. 6 Estimating a camera pose from a single correspondence: the
query patch (red box on the left) was matched to a database patch
(middle). We generate a coarse estimate of the true camera pose by
concatenating the known pose of the database patch with the relative
scale and translation of the matching 2D Harris keypoint. This figure
shows the photograph and the aligned normal map for better visualiza-
tion; the matching uses gradient representations

4.4 Pose Refinement

The coarse pose estimates are ranked based on two crite-
ria. First, the number of inlier correspondences, i.e. those
whose 3D point projects within a 50 pixel distance to the
2D point. Second, the matching score of the descriptors as
a high matching score indicates that a highly discriminative
descriptor was matched well.We select up to 20 coarse poses
for iterative refinement by taking the 10 top ranked poses for
both criteria, respectively.

For refining the coarse poses we alternate between two
steps. First, we estimate a dense flow field between the aver-
age shading gradients of the rendering given the current
camera pose on the one hand and the gradient representation
of the photograph on the other hand. Second, we compute
a refined pose by leveraging the 2D-to-3D correspondences
that are induced by the flow field. For computing the dense
correspondences, we propose to use the SIFT flow algorithm
(Liu et al. 2011), which is similar in spirit to optical flow
algorithms, but matches dense feature vectors instead of raw
intensities. The flow field is estimated by minimizing the L1-
norm between warped image features, while simultaneously
regularizing the flow spatially and in magnitude (favoring
slow and smooth flows). Since we did not find the refine-
ment to be very sensitive to the choice of image features,
we used SIFT as originally proposed (Liu et al. 2011), as
well as the default parameters as provided by the authors’
implementation. Deviating from our previous work (Plötz
and Roth 2015), we adapt the SIFT flow energy such that
the pairwise term is only active between pixels that actually
show a part of the 3D scene. Thus, the flow at those pixels
becomes independent of the flow at pixels that do not show
the scene. This avoids a bias in flow estimation for the visible
pixels, which may be caused by empty parts of the rendering
being matched against big constant areas in the photo such
as the sky. We also experimented with Deformable Spatial
Pyramid Matching (Kim et al. 2013), another dense scene
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matching algorithm, but found the performance to be sub-
par compared to SIFT flow. Standard optical flow algorithms
tend to fail since brightness constancy is often violated when
matching across the two modalities.

The resulting flow field is now used to compute dense 2D-
to-3D correspondences. In contrast to the coarse step, we can
use RANSAC to estimate a refined pose from these, as there
are nowmany inliers if the coarse pose was sufficiently close
to the true one. In each iteration of the inner RANSAC loop
we sample 6 correspondences to estimate both the extrinsic
and intrinsic parameters using the direct linear transforma-
tion algorithm (Hartley and Zisserman 2004). Empirically,
we found that only few iterations of RANSAC suffice to find
a good refinement. We use three iterations of this alternat-
ing refinement in a coarse-to-fine fashion: First a downscaled
version of both rendering and photograph is used to refine the
pose from which a new rendering is created; this is repeated
on progressively finer resolutions. The refinement serves two
purposes. First, for coarse poses that originate from a wrong
matching, the refinement will usually diverge. Second, the
refinement of coarse poses from a “true” correspondencewill
usually converge to poses near the ground truth. These two
effects combined allow for a robust pose verification.

4.5 Pose Verification

Our pose verification step detects whether the registration
process was successful. For this we use the pairwise mutual
reprojection error between refined poses. Specifically, let P
be a pose that projects a 3Dpoint onto the 2D image plane and
V the set of vertices that are projected inside the image area,
i.e. visible within the image. Then the mutual reprojection
error δ between two poses P and P ′ measures the average
2D Euclidean distance of projected vertices visible in either
view:

δ(P,P ′) = 1

2

(
1

|V|
∑
x∈V

‖P(x) − P ′(x)‖2

+ 1

|V ′|
∑
x∈V ′

‖P(x) − P ′(x)‖2
)

. (9)

We compute the mutual reprojection error for every pair of
refined poses and treat them as compatible if the error is
below 5% of the longest image dimension. The compatibil-
ity relation defines a graph on the refined poses, in which we
find the largest connected component C. Finally, we regard a
photograph as correctly registered if C consists of at least 3
poses. Otherwise, our algorithm rejects the photograph as not
registered. The verified poses in the largest connected com-
ponent constitute the final output of our algorithm and can be
further refined by bootstrapping existing dense registration
approaches (e.g., Corsini et al. 2012).

While typical registration or localization approaches (e.g.,
Irschara et al. 2009; Li et al. 2010) employ a geometric veri-
fication based on the reprojection error of individual points,
e.g. to determine the number of inliers in the inner RANSAC
loop, our verification considers all visible points of the pose
hypotheses, thus reducing the probability that hypotheses are
compatible by chance. The robustness of the verification is
reflected in our experiments by the low false positive rate of
verified poses.

5 Experiments

To quantitatively evaluate our gradient rendering method as
well as our approach for image-to-geometry registration, we
use three different datasets. The first is a 3Dmesh of aGnome
alongwith 9 real images, whichwere registered usingmutual
information-based alignment (Corsini et al. 2009) with man-
ual initialization. The mesh is of high quality with little noise
on the vertex positions and normals. The photographs are
taken under controlled conditions and show the gnome fig-
urineon a smoothbackgroundandunder diffuse illumination.
These are favorable conditions for a good registration.

Additionally, we use two real world datasets—Statue and
Notre Dame—acquired from photographs via multi-view
stereo reconstruction using the publicly available multi-view
environment software package (MVE,Fuhrmannet al. 2015).
While this is a convenient way of acquiring 3D models with
registered images for evaluation, the models are significantly
“noisier” than the Gnome model, posing a greater challenge
to our registration algorithm. The Statue surface is quite
porous, but this fine detail is not reflected in the 3D geom-
etry, thus acting like a texture. Many of the images show
the 3D mesh on cluttered backgrounds and in changing light
conditions, further contributing to the difficulty of registra-
tion. While the photographs from the Statue dataset were
takenwith the intent of reconstructing thegeometry, theNotre
Dame dataset consists of community photos. We emphasize
that the images used for evaluation were only used to create
the 3D model and not in any part of our pipeline. For testing,
we sampled 69 diverse images from Statue, and 70 images
from Notre Dame. The query images are resized such that
the longest dimension has 1024 pixels.

5.1 Average Shading Gradients

We first evaluate how well our proposed average shading
gradients (ASG) match gradients and edges found on real
images. As rendering baseline we use apparent ridges (Judd
et al. 2007), a standard technique for conveying 3D shape via
line drawings. To have a fair comparison to apparent ridges,
which yield thin lines, we show results for our gradient ren-
dering method also after non-maximum suppression (NMS).
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Table 1 Similarity score between photograph and rendered patches for
various combinations of gradient/edge representations

Gnome Statue Notre Dame

Apparent ridges/sketch tokens 131.5 53.4 52.5

Apparent ridges/gradients + NMS 145.8 52.6 46.6

ASG + NMS/sketch tokens 110.9 64.6 63.7

ASG + NMS/gradients + NMS 130.6 70.6 65.2

ASG/gradients 159.3 82.5 72.4

Results with highest similarity score marked in bold

Fig. 7 Similarity score (Eq. 8) between descriptors from renderings
of a noiseless mesh and of meshes with artificial noise on the vertex
positions. Higher scores mean more robustness to noise

On the photograph, we compute gradients or detect edges
using the gradient operator of the well-known Canny detec-
tor (Gradients, Canny 1986), as well as using sketch tokens
(Lim et al. 2013b), a state-of-the-art, learned edge detector.

To measure how well the representations for rendering
and photograph match, we compute the descriptor similarity
score from Eq. (8) from patches in correct correspondence.
Higher scores mean higher similarity. Since the coarse reg-
istration algorithm (Sect. 4.3) is based on nearest neighbors
in descriptor space, this directly relates to its ability to find
a correct image-to-model correspondence. Table 1 shows
the results on the three datasets. As can be seen, the high-
est descriptor similarity is achieved between our average
shading gradient-representation of the 3D geometry and gra-
dients extracted on corresponding images. This confirms our
intuition that average shading gradients computed from the
normal map of an untextured surface are highly correlated
to the gradients of photographs. Moreover, our gradient rep-
resentation clearly outperforms apparent ridges, except after
NMS on the easy Gnome dataset. Note however, as men-
tioned before, that NMS generally does not help here.

In a second experiment we analyze the robustness to geo-
metric noise.We take the high-qualityGnomemodel and add
increasing amounts of Gaussian noise to each vertex along its

normal. As before, we render themeshes fromdifferent poses
and extract descriptors on the rendering. Figure 7 shows the
similarity score (Eq. 8) between descriptors from renderings
of the original mesh and from the noisy mesh. The noise
level denotes the standard deviation of the Gaussian noise as
a fraction of the object diameter. It can be seen that apparent
ridges are sensitive to even small amounts of noise, while
average shading gradients degrade gracefully.

5.2 Pose Estimation

Next we evaluate our registration pipeline in terms of success
rate and accuracy of the registration as well as the robustness
of the verification.

Experimental Setting In order to disentangle the effects of
the different parts of our descriptor, we create baselines by
changing descriptor parameters along the following design
dimensions:

– We compare the proposed average shading gradients to
headlight-shading gradients (HSG), i.e. gradients from
a single Lambertian shading under a headlight assump-
tion where the light direction of the single point light
coincides with the camera viewing direction.

– Wecompare the case of 1st-order and 2nd-order gradients
as described in Sect. 4.2.

– We compare the HoG descriptor obtained on a regular
grid (HoG) to the circular HoG descriptor (CHoG) to
assess the importance of the layout.

The descriptor proposed in our previous work (Plötz and
Roth 2015) corresponds to using average shading gradients,
binning second-order gradients, and using the regular HoG
layout. The gradient operator h for average shading gradients
is a central difference filter together with Gaussian smooth-
ing with standard deviation of 2 pixels. This descriptor is
used in the experiments of this paper if not stated other-
wise. The “shaded” baseline in our previous paper (Plötz and
Roth 2015) corresponds to gradients from headlight shad-
ing that are directly binned into a regular HoG descriptor
(denoted “1st (no smoothing)” here). To better compare the
two gradient renderings, we also evaluate headlight shading
with additional smoothing (denoted “1st”). For evaluating
descriptor similarity for CHoG we use the inner product on
the raw descriptors, since the LDA transformation led to sig-
nificantly worse performance here.

Moreover, we compare to a RANSAC baseline for esti-
mating just the extrinsic pose while assuming the intrinsic
pose to be known. Note, that our algorithm estimates a full
11 DoF pose without knowledge of the intrinsic parameters.
The RANSAC baseline operates on the original descriptor
(i.e.HoG from2nd-order gradients, usingASGon the normal
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Table 2 Registration success rate. For each query image only the pose with the most inliers is considered

Pose estimation Descriptor Gradient type Gradient order Gnome Statue Notre Dame

Our CHoG HSG 1st (no smoothing) 1 0.04 0.44

Our CHoG HSG 1st 1 0.16 0.47

Our CHoG HSG 2nd 0.89 0.09 0.56

Our CHoG ASG 1st 1 0.26 0.64

Our CHoG ASG 2nd 1 0.20 0.64

Our HoG HSG 1st (no smoothing) 1 0.13 0.54

Our HoG HSG 1st 0.89 0.28 0.53

Our HoG HSG 2nd 1 0.38 0.59

Our HoG ASG 1st 1 0.38 0.71

Our HoG ASG 2nd 1 0.42 0.66

RANSAC HoG ASG 2nd 0.78 0.16 0.56

map) in the following way: The correspondences between
2D feature points on the input photograph and 3D keypoints
on the model form putative inliers. In each of up to 50,000
iterations of the RANSAC loop we sample 3 correspon-
dences using the PROSAC method (Chum and Matas 2005)
and ranking correspondences according to the scores from
descriptor matching. Next, we estimate the extrinsic pose
(i.e., camera rotation and translation) with the P3P algorithm
of Kneip et al. (2011), yielding four estimates of the extrinsic
pose. Poses that pass the T1,1 test (Matas and Chum 2002) on
a fourth sampled correspondence are improved further with
a local optimization (Chum et al. 2003), where we employ
10 inner RANSAC iterations on the inlier set. In each inner
iteration, we sample 6 correspondences from the inlier set
and use the non-minimal EPnP pose solver of Lepetit et al.
(2009) to calculate an improved extrinsic pose.

We measure the registration quality by means of the
mutual reprojection error (Eq. 9) to the ground truth pose.

Registration Success Rate In a first experiment,1 Table 2
shows the success rate of the coarse registration stage with
the different variants of the descriptor and the RANSAC
baseline. More precisely, we count a registration as success-
ful if the coarse pose with most inliers achieves a mutual
reprojection error below 150 pixels, since empirically this
is accurate enough for the refinement to improve the pose
significantly. Likewise, we apply the same threshold to the
poses found by RANSAC to determine if it has found a cor-
rect registration. We make the following observations from
the results: First, the HoG descriptor on the regular grid is
superior to CHoG, which we attribute to the low dimension-
ality of the CHoG descriptor. Second, our proposed average

1 Numbers differ compared to (Plötz and Roth 2015) due to stochastic-
ity in the algorithm and improvements to the refinement.

shading gradients lead to a consistently higher registration
success than when using the headlight shading gradients,
even when the same amount of smoothing is applied in
both cases. This fact holds across all combinations of the
other descriptor parameters, emphasizing the superiority of
average shading gradients. Third, there is no clear ranking
between using first- or second-order gradients. Fourth, our
coarse registration stage is superior to RANSAC in finding
suitable pose estimates, despite RANSAC assuming known
intrinsics. This effect is especially pronounced on the chal-
lenging Statue dataset that exhibits a low ratio of correct
matches.

For the Statue and Notre Dame datasets and the HoG
descriptor only, Fig. 8 plots the fraction of correctly regis-
tered photographs among the top k coarse hypotheses, ranked
according to the number of inlier 2D-to-3D correspondences.
We see that findings for the top hypothesis carry over when
looking at more hypotheses. We also note, that performance
saturates, especially on theNotreDame dataset, meaning that
for some photographs the coarse matching does not produce
a single good hypothesis. Nonetheless, since the setting of
registering images of an arbitrary viewpoint to untextured
geometry is challenging, it is to be expected that coarse reg-
istration does not always succeed.

Registration Accuracy Next, we evaluate the accuracy of
the estimated poses. Here, we concentrate our analysis on
registration with HoG since it outperforms CHoG in terms
of registration success rate and since the refinement step
uses SIFT descriptors in both cases. To assess the registra-
tion accuracy, we evaluate the statistics of the reprojection
error (Eq. 9) of coarse and refined poses from our pipeline
as well as the RANSAC baseline. Specifically, we evaluate
the reprojection error on those images that can be success-
fully registered by all considered methods, thus enabling a
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Fig. 8 Fraction of correctly registered photographs when considering the first k ranked coarse hypotheses on two datasets. a Statue dataset. b
Notre Dame dataset

Table 3 Median reprojection error, as well as lower and upper quartiles for the pose with most inliers on images that can be registered correctly

Coarse poses Refined Gradient type Gradient order Gnome Statue Notre Dame

Our No HSG 1st (no smoothing) 17.6 (12.7/22.1) 46.2 (33.3/50.8) 20.7 (15.5/31.8)

Our No HSG 1st 16.0 (13.1/24.0) 28.2 (25.5/36.7) 24.5 (17.1/29.7)

Our No HSG 2nd 22.1 (11.1/28.8) 36.0 (29.0/40.0) 23.9 (18.7/29.3)

Our No ASG 1st 20.9 (18.4/24.4) 27.8 (23.0/33.3) 25.3 (14.6/30.7)

Our No ASG 2nd 20.5 (18.1/27.4) 25.4 (22.7/42.5) 19.5 (14.8/25.0)

Our Yes HSG 1st (no smoothing) 66.5 (33.8 / 98.5) 20.5 (11.1 / 46.0) 7.9 (2.6/15.6)

Our Yes HSG 1st 9.3 (8.4/9.9) 4.9 (4.1/14.4) 5.0 (2.6/9.7)

Our Yes HSG 2nd 8.8 (7.3/14.0) 7.9 (4.4/10.5) 7.5 (3.6/12.7)

Our Yes ASG 1st 8.6 (6.1/9.4) 4.8 (3.7/6.0) 4.0 (2.6/5.1)

Our Yes ASG 2nd 8.5 (4.7/9.5) 3.8 (3.6/6.6) 4.4 (2.5/8.5)

RANSAC No ASG 2nd 13.2 (7.9/17.0) 30.7 (18.4/43.7) 16.4 (10.4/19.5)

RANSAC Yes ASG 2nd 8.4 (4.4/9.4) 3.8 (3.5/4.6) 2.7 (2.1/4.2)

fair comparison across methods. In total we thus evaluate
6 images on Gnome, 5 on Statue and 20 on Notre Dame.
For each of these images we calculate the reprojection error
for the pose that has the highest number of inlier corre-
spondences. To robustly summarize the distribution of the
reprojection error, we evaluate the median as well as well as
the upper and lower quartiles across all considered images.
We also evaluate applying our refinement procedure to the
poses resulting from the RANSAC baseline.

Table 3 shows the error statistics. We make the following
observations: First, we generally observe that the proposed
refinement step greatly increases the registration accuracy
over the coarse poses. On Statue refined poses are approxi-
mately six times more accurate when using average shading
gradients and second-order gradients. On Notre Dame the
error is decreased to less than a quarter compared to coarse
poses. This observation holds even true for applying our
refinement to the RANSAC poses. Furthermore, average
shading gradients almost always lead tomore accurate coarse

poses thanwhen using the corresponding descriptorwith gra-
dients from headlight shading. On Statue coarse poses from
average shading gradients with second-order gradients are
30% more accurate than when using headlight shading. On
Notre Dame the error is decreased by 18%. For refined poses
we observe a similar trend.When comparing to theRANSAC
baseline, we see that coarse poses from our pipeline are out-
performing RANSAC poses on Statue, while RANSAC is
better on the other two datasets. However, the coarse poses
from RANSAC are already subject to a refinement by the
local optimization step. Moreover, recall that the RANSAC
baseline leads to a significantly smaller registration success
rate.

Verification Accuracy In a final experiment, we evaluate
the accuracy of the verification stage. As can be seen from
Table 4, the verification proposed in Sect. 4.5 is able to
identify very reliably when the registration succeeds. We do
not observe any false positives, meaning that each photo-
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Table 4 True positive and true negative rates of verification step

Gnome Statue Notre Dame

True positives (TP) 1 1 1

True negatives (TN) 1 0.79 0.68

graph that our system believes to be registered properly is
indeed correctly registered. This is an important property if
the estimated camera poses are to be used for subsequent
applications, e.g. color transfer, since it is very undesirable
to transfer false information. Note that we observe some false
negatives, showing that our system errs on the cautious side.
These results, moreover, suggest that our approach can be
used as a fully automatic registration system.

Qualitative Examples Figure 9 shows some examples of
successful registrations for the top-ranked verified pose. It
can be seen that our system is able to register photographs
with a great variety of viewing angles and scales due to
putting only few constraints on the sampled camera poses
for creating the database. Our system is also able to regis-
ter photographs on which only parts of the full 3D model
are depicted, and successfully copes with different lighting
conditions.

5.3 Painting-to-Geometry Registration

We furthermore test our registration method on the challeng-
ing task of registering paintings to 3D models. For this we

downloaded a set of 26 paintings and stylized photographs
of the Notre Dame front and applied our registration pipeline
on it. This task is more challenging than the registration of
natural photographs since paintings usually do not follow a
precise perspective projection and do not depict the world in
a realistic way on purpose.

Figure 10 shows examples of paintings forwhich our algo-
rithm finds a set of poses that pass the verification step. Each
image pair shows the query image as well as the verified
pose with most inliers. As can be seen, the accuracy of the
registration varies. This is mainly attributable to the refine-
ment step. Since the refinement estimates a full 11 DoF pose,
it can choose an unusual focal length to accommodate for
the deviations from a perspective projection. This results
in a distorted view of the 3D model. Restricting the set of
admissible poses during refinement to sensible values of the
intrinsic parameters could help to avoid these artifacts. In
total 13 out of 26 images resulted in a verified set of poses and
visual inspection revealed that all verified poses were sensi-
ble. This again highlights the robustness of our verification
step.

Figure 11 shows paintings for which our algorithm could
not find a valid registration, i.e. no set of hypotheses passed
the verification step. The main reason for this failure is
that already the coarse matching does not succeed in find-
ing good proposals for the refinement. A more elaborate
matching would certainly improve results on these hard
examples.

Fig. 9 Examples of successful registrations: the query photograph is shown on the left, the top-ranked verified pose on the right
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Fig. 10 Examples of verified pose estimates for painting-to-geometry registration. Images courtesy of David Roberts (1st row, center), Yuriy
Shevchuk (1st row, right), Andre Voyy (2nd row, left) and Dominic White (3rd row, right)

Fig. 11 Input paintings for which our algorithm fails to produce valid registrations. Center image courtesy of Alina Vidulescu

6 Conclusion

We presented a novel approach for the challenging problem
of registering images to untextured geometry based on sparse
feature matching between the query image and rendered
images obtained from the 3D model. Since we cannot rely
on textural information for matching, we propose average
shading gradients, a rendering technique for the untextured

geometry that averages over all lighting directions to cope
with the unknown lighting of the query image. As our exper-
iments have shown, average shading gradients coincide well
with shading-related gradients in real photographs. Our fully
automatic registration pipeline consists of two stages, and
is able to accurately register images across a wide range
of viewpoints and illumination conditions, without requir-
ing initialization or any other form of manual intervention.
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Moreover, it is also capable of aligning paintings to untex-
tured 3D models despite the lack of photo-realism.
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Appendix A: Proof of Eq. (7)

Here, we show that

̂(h ∗ n)
� ∫

S
l̂ dl = 4

3
π

3∑
i=1

(h ∗ ni )
2. (10)

We begin by first rewriting the integral over the surface of the
unit sphere by parameterizing the unit sphere with spherical
coordinates:

∫

S
l̂ dω =

∫ π

0

∫ 2π

0
l̂ · sin θ dφ dθ, (11)

where θ denotes the polar angle and φ the azimuth. The
factor sin θ within the integral is the surface element.We now
express the light direction l and also its augmented vector l̂
in terms of spherical coordinates as

l =
⎡
⎣
sin θ · cosφ

sin θ · sin φ

cos θ

⎤
⎦ , l̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

sin2 θ · cos2 φ

sin2 θ · sin2 φ

cos2 θ

2 sin2 θ · cosφ · sin φ

2 sin θ · cosφ · cos θ

2 sin θ · sin φ · cos θ

⎤
⎥⎥⎥⎥⎥⎥⎦

. (12)

We can integrate the vector l̂ component-wise and we will
see that the first three and the last three components of l̂
integrate to the same values, respectively. Here we show how
to integrate the first component of l̂:

∫ π

0

∫ 2π

0
sin2 θ · cos2 φ sin θ dφdθ (13a)

=
∫ π

0
sin3 θ dθ

∫ 2π

0
cos2 φ dφ (13b)

= 4

3

∫ 2π

0
cos2 φ dφ (13c)

= 4

3
π. (13d)

The first equality is straightforward. The second and third
equality can be arrived at by applying basic trigonometric
identities. Integrating the second and third component of l̂
works similarly and again yields the constant 4

3π . Now we

show how to integrate the fourth component of l̂:

∫ π

0

∫ 2π

0
2 sin θ · cosφ · sin φ sin θ dφdθ (14a)

=
∫ π

0
sin2 θdθ

∫ 2π

0
2 cosφ · sin φ dφ (14b)

=
∫ π

0
sin2 θ dθ · 0 (14c)

= 0. (14d)

The second equality can be seen by noting that cosφ ·sin φ is
an uneven function around π as cosφ is even around π and
sin φ is uneven around π . Integrating components five and
six also yields 0; the derivations can be obtained in a similar
fashion.

Plugging these results into the left hand side of Eq. (10)
proves the equality by noting that the first three components
of ̂(h ∗ n) are as follows:

̂(h ∗ n)i = (h ∗ ni )
2, ∀i ∈ {1, 2, 3}. (15)
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