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Abstract Multiple-inputmultiple-output (MIMO)detection algorithms have received
considerable research interest in recent years, as a result of the increasing need for high
data-rate communications. Detection techniques range from the low-complexity lin-
ear detectors to the maximum likelihood detector, which scales exponentially with the
number of transmit antennas. In between these two extremes are the tree search (TS)
algorithms, such as the popular sphere decoder, which have emerged as attractive
choices for implementing MIMO detection, due to their excellent performance-
complexity trade-offs. In this paper, we survey some of the state-of-the-art VLSI
implementations of TS algorithms and compare their results using various metrics
such as the throughput and power consumption. We also present notable contribu-
tions that have been made in the last three decades in implementing TS algorithms
for MIMO detection, especially with respect to achieving low-complexity, high-
throughput designs. Finally, a number of design considerations and trade-offs for
implementing MIMO detectors in hardware are presented.
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1 Introduction

Multiple-input multiple-output (MIMO) techniques are fast becoming vital com-
ponents of modern communications, especially with respect to achieving higher
transmission rates and improved reliability. Already, MIMO has found support in
the 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) [1] and
WiMAX [7] wireless standards, and it is expected that MIMO will play a prominent
role in the upcoming 5th generation (5G) standard, which is expected to offer data rates
of tens of gigabits per second [3]. As such, new approaches from both the theoretical
and hardware perspectives are needed in order to meet the expected challenges.

Despite its many advantages however, one key challenge of MIMO technology
is the complexity of the receiver, which is exacerbated due to the multiple interfer-
ing signals at each receive antenna. The maximum likelihood (ML) detector offers
the best bit error rate (BER) signal detection; however, its exponential complexity
makes it unsuitable for real-time hardware implementation. This problem has inspired
a large body of research work in investigating low-complexity alternatives to the
ML detector in recent years. In particular, the sphere decoder [53] and related tree
search (TS) algorithms have attracted significant research interest due to their excel-
lent performance-complexity trade-off and several VLSI implementations have been
reported [9,15,33,45,58].

In this paper, we survey some of the state-of-the-art VLSI implementations of TS
algorithms from the literature and compare their results using metrics such as the
throughput and power consumption. We also highlight a number of notable contri-
butions to tree search detection over the years as summarized in Table 1. A number
of papers (e.g. [51] and [38]) have focused on the algorithmic aspects of MIMO
detection—this paper fills the gap by focusing on the hardware implementation aspects
of MIMO detection, which will hopefully lead to a better understanding of the impli-
cations of design decisions in a practical scenario.

The remainder of the paper is organized as follows. Section 2 provides an overview
of the MIMO system model. In Sect. 3, we discuss some performance metrics for
comparingVLSI implementations ofMIMOdetectors. In Sect. 4, theML lattice search
is introduced. In Sects. 5–8,we discuss different TS algorithms and their corresponding
hardware implementations from the literature. A number of design considerations for
MIMO detectors are presented in Sect. 9 and the paper is concluded in Sect. 10.

The following notations are used in the paper. Ai, j represents the element of the
matrix A at the ith row and jth column. S and D represent the complex and real
constellations, respectively. Im represents an m × m identity matrix. (A)T and (A)H

represent the transpose and Hermitian transpose ofA, respectively. ‖a‖ represents the
2-norm of the vector a. x represents the complement of the bit, x . N0 represents the
noise power spectral density.

2 MIMO System Model

Figure 1 shows a simplified block diagram of a MIMO system with NT transmit
antennas and NR receive antennas. The information bits at the transmitter rep-
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Fig. 1 Simplified MIMO system block diagram

resented by x = [x<0>, x<1>, . . . , x<NT −1>] are mapped to the symbol vector,
s = [s<0>, s<1>, . . . , s<NT −1>], using quadrature amplitude modulation (QAM)
with Q bits per symbol. x<k> represents the kth 1 × Q bit vector, which is mapped
to the kth symbol, s<k>. A MIMO encoder then transmits the symbols spatially over
NT antennas using one of the several multiplexing/diversity techniques [20]. In this
survey, we consider the case of spatial-multiplexing only, which aims to achieve the
maximum data rate by transmitting independent substreams simultaneously over dif-
ferent antennas. Assuming a flat-fading channel, the received signal at the NR receive
antennas is given by

y = Hs + n, (1)

where y is the NR ×1 received signal;H is a NR ×NT matrix representing the MIMO
channel and n is the NR × 1 vector of additive white Gaussian noise (AWGN). The
channel matrixH, consists of independent and identically distributed (i.i.d) complex-
valued gains for each path from the transmitter to the receiver. In this paper, H is
assumed to be square, that is, NT = NR .

At the receiver, a MIMO detector estimates the transmitted symbols using one of
a broad range of detection schemes as illustrated in Fig. 2. A demapper converts the
symbols to their binary equivalent and a multiplexer converts the detected parallel bit
streams into a single bit stream to recover the transmitted bits. A channel decoder may
also be concatenated with theMIMO detector in a technique known as iterative decod-
ing [24] in order to improve theBER. In the next section, we present some performance
metrics for comparing the hardware implementations of the MIMO detector.

3 Performance Metrics

In this paper, the results of the MIMO detector implementations are compared using
the area, in kilo-gate equivalent (kGE), the throughput, hardware efficiency and the
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MIMO Detection Techniques

Linear Detectors

Non-Linear Detectors

Zero-forcing (ZF)
Minimum Mean Square Error (MMSE)

Successive Interference Cancellation
(SIC) Aided ZF/MMSE

Lattice Reduction Aided ZF/MMSE

ML

Tree Search

Depth-first Search (SD)

Breadth-first Search

Best-first Search

Fincke-Pohst SD
Schnorr-Euchner SD

K -best Detector
Fixed Complexity SD

Stack Decoder
Fano Decoder

Fig. 2 Classification of MIMO detection algorithms

energy per bit, Ebit, which is computed as the ratio of the power consumption to the
throughput and provides an indication of the energy efficiency of an implementation.
The hardware efficiency of an implementation is determined as the ratio between the
throughput and the area (TAR).The throughput andpower consumption are normalized
to the 65nm technology at a supply voltage (Vdd) of 1.2 V to ensure a fair comparison.
The throughput, Φ, is normalized as

Φnorm = (Tech./65nm) × Φ,

while the power consumption is normalized as

Powernorm = Power ×
(
1.2 V

Vdd

)2

×
(
65nm

Tech.

)
.
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Throughout this paper, references to the throughput and power consumption are made
with respect to these definitions.

4 Maximum Likelihood Detection

The maximum likelihood detector (MLD) carries out an exhaustive search within the
lattice,Hs, in order to find the closest point to the received vector y. In other words, it
tries to solve for the symbol vector, s, thatminimizes theEuclidean distance as follows:

sML = argmin
s∈SNT

‖y − Hs‖2 ,

whereSNT is an NT dimensional lattice with complex entries formed from all possible
combinations of the NT × 1 transmitted symbols.

The total number of points searched and compared in the exhaustive search is
|S|NT , which implies that the complexity of the MLD scales exponentially with the
number of transmit antennas. Thus, for NT = 4 and using 64-QAM, the MLD needs
to explore a total of 644 possible solutions; by contrast, the same detector would need
to explore only 24 possible solutions if using binary phase-shift keying (BPSK). The
computational cost of the ML search makes it impractical for hardware implementa-
tion; however, it offers the best BER performance in an uncoded scenario. In the next
section, the sphere decoder is introduced, which achieves the ML performance at a
significantly reduced complexity.

5 The Sphere Decoder

5.1 Algorithm Description

The sphere decoder (SD) reduces the complexity of the MLD by considering only
those lattice points that fall within the “sphere” bounded by r2 as illustrated in Fig. 3.
Mathematically, the lattice points that are considered are those whose Euclidean dis-
tances, d(s), satisfy the relation

d(s) = ‖y − Hs‖2 ≤ r2, (2)

where the minimum metric solution is the SD output. A QR decomposition is usually
performed on H to transform the Euclidean distance to

y

r2

Fig. 3 Basic concept of sphere decoding
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d(s) = ‖ŷ − Rs‖2, (3)

with ŷ = QHy. Due to the upper triangular property of R, the QR decomposition of
the channel matrix transforms the lattice search into an equivalent tree search, where
each level of the tree corresponds to a transmit antenna.

Figure 4 illustrates the SD tree search, where the numbers within the nodes indicate
a possible traversal of the tree. The tree is traversed using a depth-first search (DFS),
where one node is expanded in each level before descending to lower levels. If the
cumulativemetric of a path is greater than r2, then the path is pruned,which is indicated
by the dotted lines in the figure.

For the purpose of hardware implementation, it is also useful to perform a real-
valued decomposition (RVD) ofH, which simplifies the computation of the Euclidean
distance [55]. The RVD decouples the channel equation in (1) into a new real-valued
representation as follows:

[
R{y}
I{y}

]
=

[
R{H} −I{H}
I{H} R{H}

] [
R{s}
I{s}

]
+

[
R{n}
I{n}

]
,

whereR {.} and I {.} denote the real and imaginary parts of a complex number, respec-
tively. The complex constellation S is transformed into a real constellation,D, which
has odd-valued integer symbol entries defined as: {−√

M + 1, . . . ,
√
M − 1}, where

M is the modulation order. The M-ary tree is also converted to an equivalent tree with
2NT levels and

√
M children per parent node.

5.2 Partial Euclidean Distance Computation

The sequential nature of the DFS ensures that the Euclidean distance cannot be cal-
culated at once; instead, it must be computed incrementally as the detector progresses
deeper into the tree. The Euclidean distance up to any level in the tree is thus known
as the partial Euclidean distance (PED). By traversing the tree from level i = 2NT to
i = 1, the PED Ti , up to the ith level is given as

Ti = Ti+1 + |ei |2 , (4)

where |ei |2 is the PED increment at the ith level and is given by

|ei |2 = ∣∣bi − Ri,i si
∣∣2 , (5)

where si represents a symbol at the ith level and bi is defined as

bi = ŷi −
2NT∑
j=i+1

Ri, j s j . (6)

The use of the real-valued sphere detection greatly simplifies the PED computation
in hardware. For example, by setting I{ei } = 0 in the real model, the multiplication
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Fig. 4 Depth-first Tree Traversal using BPSK and NT = 3

required in computing (4) ismuch simpler comparedwith the complex sphere detection
[55]. Overall, the PED computation using the complex model is approximately three
times more complex than using the real implementation [39]. However, the complex
sphere detection is capable of achieving a higher throughput due to the fewer number
of tree levels that needs to be processed.

5.3 Orthogonal Real-Valued Decomposition

A different real-valued channel decomposition is presented by Azzam and Ayanoglu
[4], where the complex channel matrix is decomposed as follows:

H̃ =

⎡
⎢⎢⎢⎢⎢⎣

R{H1,1} −I{H1,1} . . . R{H1,NT } −I{H1,NT }
I{H1,1} R{H1,1} . . . I{H1,NT } R{H1,NT }

...
...

. . .
...

...

R{HNT ,1} −I{HNT ,1} . . . R{HNT ,NT } −I{HNT ,NT }
I{HNT ,1} R{HNT ,1} . . . I{HNT ,NT } R{HNT ,NT }

⎤
⎥⎥⎥⎥⎥⎦

. (7)

This new channel representation has the property that adjacent columns (i.e. H̃n

and H̃n+1) are orthogonal to each other, that is, H̃n · H̃ T
n+1= 0 for odd values of n

(1, 3, . . . , 2NT − 1). It can also be shown that the QR decomposition of the mod-
ified channel matrix results in R̃i,i+1 = 0 for all odd values of i . Thus, setting
R̃i,i+1si+1 = 0, the computation of (6) at the ith level is modified to

b̃i = ŷi −
2NT∑
j=i+1

R̃i, j s j

= ŷi −
2NT∑
j=i+2

R̃i, j s j .
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Meanwhile, b̃i+1 for the computation of the PED in the (i + 1)th level is computed
normally as

b̃i+1 = ŷi+1 −
2NT∑
j=i+2

R̃i+1, j s j .

Thus, |̃ei |2 for odd-valued levels can be computed concurrently with |̃ei+1|2 since b̃i
no longer depends on the previously detected symbol, si+1. The PED up to the ith
level is then computed as

Ti = Ti+2 + ∣∣̃bi+1 − R̃i+1,i+1si+1
∣∣2 + ∣∣̃bi − R̃i,i si

∣∣2 .

This result allows two adjacent levels to be processed concurrently, which can allow
higher throughputs to be achieved.

5.4 Schnorr Euchner Lattice Search

The original SD algorithm [53] does not follow a particular order when visiting the
nodes at a given level. This can be inefficient, as the SD might spend too much time
traversing non-promising paths. The Schnorr Euchner (SE) search [44] modifies the
SD algorithm by visiting the nodes according to their path metrics, which enables the
solution to be reached more quickly.

If Ri,i is factored out in (5), the PED increment at the i th level can be expressed
alternatively as

|ei |2 = ∣∣Ri,i (ci − si )
∣∣2 , (8)

where ci = bi/Ri,i and is referred to as the SE “centre”. The magnitude of the
PED increment is directly proportional to the distance of the symbol from the SE
centre. The PED does not have to be computed explicitly in order to determine the SE
enumeration; instead, a zigzag search can be carried out by iteratively determining the
closest constellation points to the SE centre [14]. The SE search also begins with an
infinity radius, which is updated any time a solutionwith a smallermetric is found. This
eliminates the problem of detection failure (where no point falls within the sphere),
and the complexity required in estimating the starting radius.

5.5 Soft-Input Soft-Output Sphere Decoding

In a practical system, the information bits are typically encoded using error correction
codes in order to improve reliability of the data transmission. This requires a channel
decoder for decoding the bits at the receiver, as well as a MIMO detector that is
capable of generating soft information regarding the reliability of each detected bit.
The channel decoder and the soft-input soft-output (SISO) detector are concatenated
in an iterative arrangement as shown in Fig. 5.

In each iteration, the SISO detector computes the probability, LD
i,b, that the bth bit

of the i th symbol in the output is a 1 or 0, given a channel observation, y. The a priori
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SISO
Detector

Channel
Decoder

+
LD

i,b LE
i,b

x̂ŷ,R

LA
i,b

-

Fig. 5 Block diagram of iterative MIMO detection

reliability information computed by the channel decoder, LA
i,b, in the previous iteration

is fed back to the SISO detector to derive the new extrinsic information, LE
i,b, which

in turn is fed to the channel decoder. LD
i,b is expressed as a log likelihood ratio (LLR)

and can be computed as [50]

LD
i,b � min

s∈X 0
i,b

{
1

N0
‖ŷ − Rs‖2 − log P[s]

}

− min
s∈X 1

i,b

{
1

N0
‖ŷ − Rs‖2 − log P[s]

}
, (9)

where X 0
i,b and X 1

i,b are the sets of symbol vectors with the bth bit equal to 0 and 1,
respectively, and P[s] is the a priori reliability information computed by the channel
decoder. Computing (9) for every bit is computationally expensive, and the SD can
be applied to reduce the complexity by considering only those s for which (2) is
small [24]. These solutions are stored in a candidate list and the decoder computes the
extrinsic information only for the solutions within that list. As such, the algorithm is
referred to as the “list” sphere decoder (LSD).

A different strategy from the LSD is the single tree search (STS) proposed by C.
Studer and H. Bolcskei [50], which does not require a list for storing the possible solu-
tions. The algorithm computes the maximum a posteriori probability (MAP) solution,
sMAP, and its bit-wise counter-hypotheses concurrently, in a single tree search. The
MAP solution is given as

sMAP = argmin
s∈SNT

{
1

N0
‖ŷ − Rs‖2 − log P[s]

}

and its corresponding reliability λMAP is computed as

λMAP = 1

N0
‖ŷ − RsMAP‖2 − log P[sMAP].

One of the two minima in (9) corresponds to the MAP solution, as such, LD
i,b can

be computed by determining sMAP, λMAP and its bit-wise counter-hypotheses λMAP,
which is computed as



3654 Circuits Syst Signal Process (2016) 35:3644–3674

λMAP = min
s∈XMAP

i,b

{
1

N0
‖ŷ − Rs‖2 − log P[s]

}
,

where XMAP
i,b = X xMAP

i,b
i,b . The STS-SD employs an efficient tree search strategy, where

a node is traversed only once, which is achieved by descending into a sub-tree only if
it would lead to an update to either λMAP or λMAP.

The inclusion of the a priori information in the STS also modifies the SE enumera-
tion and the geometric properties of S can no longer be directly applied to determine
the node with the smallest metric as described in Sect. 5.4. In this case, the met-
ric of a node, MP (si ), comprises of two separate components: the channel-based
PED denoted by MC (si ) and the a priori based metric, MA(si ), which is computed
as

MA(si ) = −log P[si ] ≈
Q∑

b=1

1

2
(|L A

i,b| − xi,bL
A
i,b),

for
∣∣∣L A

i,b

∣∣∣ > 2 [11]. In [30], a hybrid enumeration is proposed, where two candidates

(based onMC andMA, respectively) are selected in each iteration, and the node with
the smaller metric is selected for the next visit.

Due to the inclusion of the a priori information in the tree search, the STS achieves
a better performance than the LSD, which only considers candidates around the ML
solution for computing the extrinsic information. It also requires less area than the
LSD as it does not require a candidate list. A more in-depth discussion on the STS is
provided in [49,50].

5.6 Hardware Implementations

Burg et al. [15] presented two VLSI implementations of the SD, based on the complex
model of the channelmatrix. In the first implementation (ASIC I), the PED is computed
using the �2-norm as provided in (4), while in the second implementation (ASIC II),
the PED is computed using an �∞-norm approximation given as follows:

Ti ≈ max(Ti+1, |ei |). (10)

By using the �∞-norm, ASIC II is able to achieve area savings of about 50% compared
to ASIC I due to the elimination of the squaring term in (4). However, the �∞-norm-
based computation incurs a performance cost of 1.4 dB at high SNR values compared
to ASIC I, which practically achieves the ML performance.

Both ASIC I and ASIC II are based on a serial one-node-per-cycle (ONPC) archi-
tecture which is illustrated in Fig. 6. The processing element (PE) consists of a metric
computation unit, which computes the PED, and an enumeration unit, which deter-
mines the next node to visit according to the SE ordering. For a 4×4, 16-QAM system,
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Control
Unit

PE

Fig. 6 Serial architecture of the DFS

ASIC II achieves a normalized throughput of 650 Mbps at a reference SNR of 20 dB,
while ASIC I achieves a normalized throughput of 281 Mbps.

Borlenghi et al. [12] implemented the first STS detector based on the ONPC archi-
tecture described by Burg et al. [15]. Using a convolutional channel code with 1/2
code rate, the STS detector achieves an SNR gain of about 5 dB compared to the
hard-output SD for a target BER of 10−2 using 2 iterations. The implementation has
3 cores for 4-QAM, 16-QAM and 64-QAM. The 64-QAM implementation achieves
a throughput of 132.9 Mbps using 2 iterations at an SNR of 24 dB, while it is capable
of achieving a maximum throughput of more than 1 Gbps.

Yang et al. [59] adopt the use of a table enumeration [56], which stores precomputed
SE orderings in a lookup table. In this method, the 16-QAM complex plane is divided
into 64 sub-regions and the ordering is determined based on the location of the SE
centre as illustrated in Fig. 7. Due to the symmetry of the complex plane, only the
orderings based on the first quadrant need to be stored inmemory. The implementation
achieves a throughput of up to 231 Mbps at high SNR.

Jenkal and Davis [25] implemented a deeply pipelined detector that is capable of
processing multiple received signals in order to achieve a higher throughput. Each
independent received signal is assigned a separate memory unit for storing the sur-
viving nodes; however, the received signals share the same computation resources in
a time-multiplexed arrangement. The implementation achieves a throughput of 443
Mbps at 24 dB with an area consumption of 175 kGE.

Table 2 provides the relevant results of the VLSI implementations of the SD.
The implementation of Jenkal and Davis [25] reports the largest area consumption
among the hard-output detectors due to the additional memory required for processing
the multiple received signals. The implementation of Borlenghi et al. [12] expect-
edly achieves the highest Ebit and the largest area due to the support for iterative
decoding.

The throughput of the SD is variable, which necessitates additional I/O buffers in
a practical system [23]. An early termination strategy, which stops the search after a
given number of iterations, can be used to keep the complexity of the DFS bounded,
although this may have a detrimental effect on the BER [13]. Multiple cores can also
be employed in order to improve the attainable throughput of the SD [54]. In the next
section,we discuss the K -best detector, which offers better opportunities for pipelining
than the SD.
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Fig. 7 Table enumeration for 16-QAM. Here, the SE centre indicated by the shaded circle falls in region
5 and the first symbol in the enumeration is 3 + 1 j

6 The K -best Detector

6.1 Algorithm Description

The tree search described in Sect. 5 can also be carried out in a breadth-wise manner,
that is, by expanding all the nodes at a given level before descending to the next level.
In Fig. 8, a possible sequence of visited nodes in a breadth-first tree search using
a complex channel model is illustrated. At the end of the tree search, the detector
compares the metrics of paths {1, 3, 5} and {2, 4, 6} and the path with the smaller
metric is presented as the solution. One attractive feature of the breadth-first search
(BFS) is its better support for parallelism and pipelining, due to its forward-only tree
search. The implication, however, is that the BFS requires more memory than the DFS
since more intermediate results need to be stored per level. On the other hand, the
DFS expands only one node per level and the same processing unit can be reused over
several cycles.

Themost popular implementation of the BFS is the K -best detector, which expands
afixednumber of K nodes at each level. Thefixednumber of expandednodes allows the
K -best to have a highly pipelined architecture, such that the output of a previous stage
can serve as input to the subsequent stage with memory elements inserted in between
stages for storing intermediate results. To get the “best” K nodes at a level, the K -best
detector expands the children of each of the K parent nodes from the previous level
and passes them to a sorting unit which sorts the candidates in ascending order with
respect to their PEDs.
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Fig. 8 Breadth-first Tree Traversal using BPSK and NT = 3
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Fig. 9 Architecture of the K -best detector. a K -best detector pipeline. b Block diagram of a single PE

Figure 9 shows a simplified architecture for the K -best detector,where each pipeline
stage corresponds to a level of the tree. Apart from PE 1 and PE 2, the architecture
for each individual PE is basically the same for every level. PE 1 corresponds to the
topmost level of the tree and has

√
M inputs corresponding with the children of the

root node, that is, the constellation set. PE 2 corresponds to the second level of the
tree, and it selects the best K nodes out of a total of

√
M × √

M candidates. In the
remaining levels, the K best nodes are selected out of a total of K

√
M candidates

after a sorting operation. When
√
M < K , no sorter is required in PE 1, since all the

nodes would need to be expanded in that case.
An attractive feature of the K -best detector, and other breadth-first schemes, is its

suitability to soft-output generation. The competing solutions, which are computed
concurrently with the hard-detection output (and discarded in the last level), can be
used as the candidate list in the soft-output detection [23]. However, unlike the SD,
the K -best detector does not guarantee that the ML solution will be found as the fixed
number of extended nodes per level might exclude the actual ML solution.
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6.2 Hardware Implementations

The first VLSI implementation of the K -best detector was presented by Wong et al.
[58]. In this implementation, a radius constraint is computed by a ZF detector in a pre-
detection stage and is used alongwith the K parameter in carrying out the tree pruning.
Once the PEDof any of the K candidate nodes exceeds the Euclidean distance between
the ZF detector output and the received signal, the node is discarded subsequently from
the search. The implementation achieves a relatively modest throughput of 53.8Mbps.

Guo and Nilsson [23] implemented a similar detector to that of Wong et al. [58]
and achieve an improved throughput of 287 Mbps by using a smaller K value of 5
and other hardware-level optimizations. Certain PED operations are relegated to the
preprocessing stage, which reduces the complexity of the detector unit compared to
that of Wong et al. [58].

Both Wong et al. [58] and Guo and Nilsson [23] employ a bubble-sort unit, which
requires several cycles to select the best K nodes. Wenk et al. [55] implemented
a single-cycle list merge, which merges the partially sorted children of each parent
node, into one sorted list in a single step. The SE enumeration of the child nodes, for
each parent, is determined in a zigzag manner based on the position of bi on the real
axis. The implementation achieves a throughput of 1.63 Gbps.

Shabany and Gulak [46] proposed a serial sorting scheme that provides a com-
promise between the high latency bubble-sort unit of Wong et al. [58] and the low
latency, large area single-cycle merge of Wenk et al. [55]. This implementation is able
to deliver K best nodes out of K

√
M candidates in only K cycles. In the conventional

K -best algorithm [58], all the children of the parent nodes from the previous level are
expanded in parallel and sent to a bubble-sort unit. In this implementation, only the
minimum metric child of each parent node is expanded in a cycle and the minimum
amongst them is declared as the first node in the K -best list. Once a candidate is
selected as part of the list, it is replaced by its next best sibling in the next cycle and
the process is continued until all the K -best candidates are obtained.

The serial sorting procedure is illustrated in Fig. 10. In the first cycle, the minimum-
metric child of p1 (c1,1) is compared against the minimum metric child of p2 (c2,1).
In this case, c1,1 is the winner and is disregarded in the next cycle and replaced by its
next best sibling (i.e. c1,2). The attractive feature of this method is that the number
of cycles required to produce the K -best nodes depends only on the K value and is
constant irrespective of the constellation size that is employed.

A hardware implementation of the serial K -best detector is presented in [45] and
it is able to achieve a throughput of 655 Mbps. The implementation is extended in
[41] to support soft-output generation by using the generated K best paths at the end
of the detection to compute the LLR values. To improve the BER, selected discarded
paths are also included in generating the soft outputs using ZF augmentation, which
extends partial paths to full length by rounding them to the nearest constellation point
[11,23]. By using a convolutional turbo encoder (code rate = 1/2), the soft-output
implementation is able to achieve an SNR gain of 2.9 dB at a BER of 10−3 compared
to the hard-output detector.

Kim and Park [28] implemented a K -best detector based on the ORVD channel
model [4], which allows adjacent levels to be processed simultaneously in a pipeline
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Fig. 10 Serial K -best sorting [46] for 16-QAM system with K = 2 showing two parent nodes p1 and p2.
The respective PEDs are shown above each of the child nodes

stage. The total number of pipeline stages in their implementation is reduced from 8
to 3, which leads to a small area consumption. Another contribution of this work is
the use of an approximate sorting scheme, where only a subset of the children of the
parent nodes is considered for the sorting, which is carried out in a distributed fashion.

Two VLSI implementations of the K -best are presented. The first implementation
(KB-I) consists of a single K -best detector core,while the second implementation (KB-
II) consists of 4 detector cores that are interleaved in order to increase the throughput.
The single-core detector is able to achieve a throughput of 404 Mbps, while the multi-
core implementation improves the throughput by a factor of 4, with a corresponding
increase in the area.

Liu et al. [32] implemented a configurable K -best architecture that is able to support
different number of antennas (2× 2 up to 4× 4) and modulation schemes (quadrature
phase-shift keying (QPSK) up to 64-QAM). In this implementation, an “extension
number” is formulated to determine the number of nodes that are to be extended from
each parent node at a given level. More nodes are expanded from the more reliable
parent nodes (i.e. nodes with smaller metrics) than from the less reliable nodes. A
candidate generation unit calculates all the possible values of Ri, j s j in (6) and makes
them available to all the candidates at a given level. In a block-fading channel, the
computation of the Ri, j s j values can also be pushed back to the preprocessing unit
and performed once per frame, which leads to further energy savings.

All the previously discussed implementations are based on a multi-stage archi-
tecture, where a PE is assigned to each level of the tree. Moezzi-Madani et al. [35]
implemented a single-stage architecture where a single PE is used for all levels in a
folded arrangement similar to the DFS. A single-stage architecture is attractive for an
application requiring moderate throughputs and where area is premium. Similar to the
DFS, a higher throughput can be achieved by employing more than one detector core
to operate in parallel on independent received symbol vectors. Their implementation
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supports antenna configurations of 2×2 up to 4×4, and a single core is able to achieve
a throughput of 480 Mbps.

Table 3 provides the relevant results for the various VLSI implementations of the
K -best detector. The implementation of Wenk et al. [55] (SC1) achieves the highest
TARfigure, which is achieved as a result of the single-cycle sortmechanism employed.
Meanwhile, the implementation of Kim and Park [28] achieves the smallest Ebit as a
result of the relaxed sorting operation that is adopted.

6.3 Non-constant K -best Detector

The K value contributes significantly to the complexity of the K -best detector. How-
ever, a lower complexity can be achieved by using smaller K values at lower levels,
without significantly affecting the BER performance.

Moezzi-Madani and Davis [34] implemented a modified K -best algorithm, which
uses a non-constant K value that is decreased gradually at the lower levels. The imple-
mentation is able to save on area by up to 20% while incurring a loss of 0.03 dB at an
SNR of 20 dB compared to the conventional implementation. Another contribution of
this work is a novel parallel merge algorithm (PMA) that is able to merge two sorted
lists in one step, which makes it suited to high-throughput applications. However,
the area cost of the PMA is relatively high with a complexity of O(n2) [36]. The
throughput of the PMA-based detector is 540 Mbps with an area consumption of 131
kGE.

Tsai et al. [52] implemented a non-constant K -best detector utilizing the serial
sorting proposed by Shabany and Gulak [46]. Like Yang et al. [59], this is another
work that implements the SE enumeration using a table lookup; however, a real con-
stellation is considered in this case. Instead of deciding the SE ordering by finding the
nearest constellation points to the SE centre (which requires a divide operation), this
implementation decides the SE ordering through (6) by finding the closest Ri,i si to bi .
The enumeration module in this implementation consists only of 3 adders/subtractors
and one small table that is pre-calculated.

The results of the non-constant K -best detectors are presented in Table 4. Not
surprisingly, the implementations report much better TAR figures compared with the
conventional K -best detectors. The implementation of Tsai et al. [52] also reports an
Ebit figure that is smaller than that of any of the constant K -best implementations.

7 The Fixed-Complexity Sphere Decoder

7.1 Algorithm Description

The fixed-complexity sphere decoder (FSD) [8] is similar to the non-constant K -best
detector as it expands a variable number of nodes from each level in its breadth-first
detection. The FSD assigns a “node distribution” to the tree search, which determines
the number of children that are extended from each parent node at each level. Typically,
the FSD carries out an ML search at the topmost layer, that is nNT = M , where ni
is the number of nodes expanded in the ith layer. The ML search at the topmost level
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Fig. 11 FSD tree search with NT = 4 and |S| = 16

ensures that the FSD does notmiss theML solution right at the beginning of the search,
which is a pitfall of the K -best detector. The number of extended nodes is decreased in
subsequent layers to satisfy the relation nNT ≥ nNT −1 ≥ · · · ≥ n1 [9]. For example, a
node distribution of (1, 1, 1, 16)T implies that 16 nodes are expanded at the topmost
layer while only a single node is expanded from each parent in the remaining layers
as illustrated in Fig. 11. In subsequent layers, a simple decision feedback equalization
using a linear detector (such as zero-forcing) is carried out to extend a single node
from each parent.

Since all the nodes are expanded in the topmost layer and only a simple linear
detection is carried out in subsequent layers, the FSD is able to eliminate the sorting
operation that is required in the conventional K -best detector [10]. Although the FSD
was originally formulated for a complex constellation, it can also be used on real-
valued constellations.

The FSD also introduces a novel channel ordering at the preprocessing stage, where
theML expansion at the topmost level is executed on theweakest substream, that is, the
substream with the smallest post-detection SNR [57]. In subsequent layers, however,
the linear detection is carried out on the substreamwith the largest post-detection SNR
among the yet-to-be detected substreams, which is quite similar to ZF-SIC detection
in V-BLAST systems [57]. In this respect, the FSD can also be considered to be a
hybrid scheme combining ML and linear detection.

7.2 Hardware Implementations

The first hardware implementation of the FSD was by Barbero and Thompson [9],
which was realized on an FPGA device for a 4×4 16-QAM system employing a node
distribution of (1, 1, 1, 16)T . The performance degradation of the implementationwith
respect to the ML at a BER of 10−3 is only 0.06 dB. The implementation achieves a
throughput of 400 Mbps.
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Liu et al. [33] implemented a modified FSD algorithm that uses extension numbers
[32] to replace theML search in the top layer of the tree with a reliability-based search,
where more children are extended from the more reliable parent nodes. This results in
an “imbalanced” tree expansion, where an unequal number of nodes is extended from
each parent node. Similar to [32], this work employs the use of a candidate generation
unit for precomputing the Ri, j s j values required to detect a received symbol vector.
In this case, an ORVD channel model (7) is employed, which allows the precomputed
results to be shared by adjacent layers. The implementation achieves a throughput of
1.98 Gbps with an area consumption of 88.2 kGE.

Chen et al. [17] extended the imbalanced FSD architecture to support iterative
decoding. Unlike the STS-SD enumeration [30], which uses 2 symbols (channel-
based and a priori-based) in deciding the node for the next visit, this implementation
derives an extra symbol that is based on the a priori-based node, and is closest to the
channel-based node, in order to get a better estimate of the node with the minimum
MP . The implementation achieves a throughput of approximately 3Gbps per iteration
with an area consumption of 555 kGE.

The results of the VLSI implementation of the FSD are provided in Table 5. The
results show that the FSD is a good candidate for achieving a high-throughput perfor-
mance. Although the FSD requires a channel ordering in the preprocessing stage, the
operations can be considered to be negligible in a slow-fading channel [9]. However,
in a fast-fading channel, or when using orthogonal frequency division multiplexing
(OFDM), where the preprocessor needs to be invoked on a tone-by-tone basis, the
added preprocessing operations of the FSD could become significant.

8 The Best-first Tree Search

8.1 Algorithm Description

Unlike the DFS and BFS algorithms, the best-first search (BeFS) always extends along
the path of the least-metric node irrespective of its level on the tree. The most popular
implementation of the BeFS is the stack decoder [2], which maintains a sorted list for
storing all the expanded nodes and always extends the tree along the path of the node
at the top of the list (i.e. the least-metric node). The search is terminated whenever a
leaf node emerges on top of the list and its path is presented as the ML estimate [19].

The need for a sorted list to store all the expanded nodes obviously makes the BeFS
amemory-hungry algorithm, and a constraint is usually applied to thememory in order
to reduce its complexity in hardware [19]. The detector may also spend too much time
in the upper layers without reaching a leaf node under a given time constraint [31].

Figure 12a illustrates the BeFS for a 2-ary tree. The current best node is fetched
off the top of the stack and is replaced by all of its children. However, this may be
expensive if M is large. Alternatively, a node may be replaced by its best child and
best sibling as illustrated in Fig. 12b [47]. The modified BeFS reduces the complexity
of the BeFS as only the PED of two nodes needs to be computed at a time in order to
extend the tree.
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Stack

Push in

(a)

Stack

Push in

(b)

Fig. 12 Best-first tree search using BPSK [31]. The shaded node represents the current best node. a
Conventional BeFS. b Modified BeFS

Like the DFS, the BeFS has a variable complexity; however, it achieves a better
worst-case and average complexity than the DFS [18]. A more detailed discussion
of the BeFS is provided in [38], where it is indicated that the BeFS achieves the
best performance-complexity trade-off among all the TS algorithms as it expands the
fewest number of nodes on average.

8.2 Hardware Implementations

Liao et al. [31] implemented a soft-output BeFS detector, which is capable of support-
ing QPSK up to 64-QAM modulations and 2 × 2 up to 8 × 8 antenna configurations.
The stack is managed using a quad-dual-heap data structure [16], which reduces the
complexity of identifying the best and worst nodes. This work also computes the
PED incrementally, by distributing its computation over previous levels, which signif-
icantly reduces the critical path. The implementation achieves a maximum throughput
of 863.6 Mbps in the 4 × 4, 64-QAM configuration.

Shen et al. [48] implemented a soft-/hard-output BeFS detector, which adopts fea-
tures of depth-first and breadth-first search proposed by the authors in [47]. For any
selected node, the detector enumerates to its best child and next best sibling and then
extends along the path with the lower metric. Additionally, a Fano-like bias [42] is
used to enable the detector to generate full solutions more quickly. The implementa-
tion achieves an average throughput of 199.8 Mbps for the hard-detection case and
an average throughput of 83.3 Mbps for the soft-detection case over the entire SNR
range.

The relevant performance metrics are provided in Table 6. As expected, the imple-
mentation of Liao et al. [31] incurs a high area consumption due to its configurable
architecture, which is capable of supporting up to 8 antennas. The implementation also
achieves a comparatively high throughput by setting the maximum number of visited
nodes to a small value of 8 under good channel conditions; however, this degrades
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the performance compared to [48], which visits a larger number of nodes in its tree
search.

9 Design Considerations and Trade-Offs

In the preceding sections, several algorithms forMIMOdetection have been presented.
The question of which algorithm to adopt does not have a straightforward answer
and a number of constraints need to be considered as highlighted in Fig. 13. These
design objectives are usually conflicting and achieving the “optimal” performance for
one design target often means sacrificing one or more of the others. We discuss the
problem in more detail subsequently.

– Computational Complexity: The straightforward means of comparing different
TS algorithms is in terms of the computational complexity required to completely
detect one received symbol vector. From theoretical results [38], it is established
that the BeFS achieves the best performance-complexity trade-off, but this is
achieved at the cost of an exponential memory requirement. A constraint may
be applied to the memory of the BeFS; however, this sacrifices its attainable ML
performance. Like the SD, theBeFS also suffers from a variable complexity, giving
it a relatively poor worst-case throughput. The BFS schemes, in general, incur the
highest computational complexity; however, their SNR-independent throughput
makes them ideal for real-time applications.

– Bit Error Rate: The SNR required by an algorithm to meet a target BER has been
an important metric for comparing different detection algorithms, especially in
theoretical analyses. However, in hardware implementation, achieving the “opti-
mal” BER is likely to incur a very high complexity. For a performance-centric
application, the SD and BeFS algorithms are the best candidates as they achieve
theML performance.Whenmemory is abundant, the BeFSmay be preferred to the
SD in order to further reduce the computational complexity. On the other hand, the

MIMO
Detection

Computational
Complexity

Bit Error
Rate

Iterative
Decoding

Throughput

Area
Consumption

Power
Consumption

Fig. 13 Design trade-offs for MIMO detection implementation



3670 Circuits Syst Signal Process (2016) 35:3644–3674

BFS schemes deliver a near-ML performance, but with a much more predictable
complexity than either the SD or BeFS.

– PowerConsumption: It is very crucial that theMIMOdetector achieves a lowpower
consumption, given that it is only one part of a larger receiver unit, functioning on a
tight energy budget.Due to their pipelined architecture and requirement for sorting,
the K -best detectors have a tendency to incur a high power consumption; however,
this shortcoming is compensated by their high-throughput performance, which
generally leads to a highly energy efficient implementation. Several techniques
have been presented in the literature for reducing the power consumption of the
detector block. One notable observation in this regard is that the symbol detection
may be separated into symbol rate processing and channel rate processing, which
may be exploited in order to achieve further power reductions, especially in a
block-fading channel. For example, certain Euclidean distance computations may
be performed at the slower channel rate thereby simplifying the detector unit (e.g.
[32]). This fact also seems to favour linear equalization techniques, as the matrix
inversion can be performed once at the channel rate for multiple received symbol
vectors.

– Throughput: Even with a low power consumption, the detector must have a suffi-
ciently high throughput to achieve a high energy efficiency. From the results of the
works surveyed, the BFS schemes achieve the highest throughput performance,
due to their suitability to pipelining and their SNR-independent complexity. The
SD and BeFS may achieve a very high peak throughput at high SNR, but their
throughput degradation at low SNR limits their attainable energy efficiency to
an extent. Techniques for achieving high throughput include using single-cycle
merge [34,55] and approximate sorting algorithms [28] in the case of the K -best
detector, and the use of channel ordering [56] and runtime constraints [13] for the
SD algorithm.

– Area Consumption: The SD requires the smallest area to meet a given BER target
due to its one-node-per-cycle architecture [13]. Although the BFS algorithms can
be implemented using a similar folded architecture, they typically require more
area to achieve the same BER compared to the SD, due to the requirement for more
intermediate results and sorting (in the case of the K -best). In general, folded
architectures achieve a smaller area than pipelined implementations; however,
penalty is incurred on the achievable throughput. Other techniques for achieving a
low area consumption include the use of real-valued detection, serial sorting and
the use of norm approximations for the computation of the Euclidean distance.

– IterativeDecoding: In a practical system, theMIMOdetector is concatenatedwith a
channel decoder in order to improve the BER. A good hard-detection performance
is important in order to reduce the complexity of the iterative implementation.
For example, the STS-SD typically requires fewer iterations in order to meet a
given BER target compared to less “optimal” detectors [12,22]. Meanwhile, the
BFS schemes appear to be very attractive for soft-output generation, due to the
redundant solutions already present in the hard-output detection. By contrast, the
SD algorithm typically needs to be modified in order to generate soft outputs and
this may lead to a degradation in the throughput. For this reason, the SD algorithm
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is preferable when performance is vital, while BFS algorithms are preferable for
applications requiring a moderate performance at a higher throughput.

10 Conclusion and Future Works

MIMO technology has matured from a topic of mainly theoretical interest, to
becoming indispensable in modern communication systems. Although MIMO allows
vastly higher data rates to be achieved, this comes at the cost of a more com-
plex receiver design, which has inspired numerous research works in the past few
decades. The sphere decoder and related tree search algorithms provide an excellent
performance-complexity trade-off, which makes them suited to hardware implemen-
tation, especially for small antenna dimensions. The tree search algorithms have been
extended to iterative decoding as well, which allows improved error rate performances
to be achieved.

In the upcoming 5G standard, which is anticipated in the next few years, energy
efficiency is likely to be a major concern, as a diverse range of platforms will become
interconnected. As such, low-power design techniques and algorithms need to be
investigated in order to meet the new challenges. One possible means of achieving
highly energy efficient designs is by dispensingwith the channel estimation completely
and adopting non-coherent detection techniques. Apart from reducing the energy cost
of the receiver, this has the potential of allowing amore efficient bandwidth utilization,
due to the elimination of the training phase required by coherent receivers [60].

Another area for possible investigation is the use of adaptive MIMO detection,
which exploits the rich wireless channel in order to achieve further energy savings.
Most of the works surveyed in this paper implement a fixed-effort signal detection
regardless of the channel condition, which can lead to unnecessary energy con-
sumption. Hybrid detectors that switch to simpler detection strategies (e.g. linear
equalization) depending on the channel state appear promising in this regard and
merit more attention from future works.

Acknowledgments The authors wish to acknowledge the Petroleum Technology Development Fund
(PTDF), Nigeria, for supporting this work.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. I.F. Akyildiz, D.M. Gutierrez-Estevez, R. Balakrishnan, E. Chavarria-Reyes, LTE-advanced and the
evolution to beyond 4g (b4g) systems. Phys. Commun. 10, 31–60 (2014). doi:10.1016/j.phycom.2013.
11.009. ISSN 1874-4907

2. J.Anderson, S.Mohan, Sequential coding algorithms: a survey and cost analysis. IEEETrans.Commun.
32(2), 169–176 (1984)

3. J.G. Andrews, S. Buzzi, Wan Choi, S.V. Hanly, A. Lozano, A.C.K. Soong, J.C. Zhang, What will 5g
be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014). doi:10.1109/JSAC.2014.2328098. ISSN
0733-8716

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.phycom.2013.11.009
http://dx.doi.org/10.1016/j.phycom.2013.11.009
http://dx.doi.org/10.1109/JSAC.2014.2328098


3672 Circuits Syst Signal Process (2016) 35:3644–3674

4. L. Azzam, E. Ayanoglu, Reduced complexity sphere decoding for square QAM via a new lattice
representation, in IEEE Global Telecommunications Conference, 2007. GLOBECOM ’07 (Nov 2007),
pp. 4242–4246. doi:10.1109/GLOCOM.2007.807

5. L. Azzam, E. Ayanoglu, Reduced complexity sphere decoding via a reordered lattice representation.
IEEE Trans. Commun. 57(9), 2564–2569 (2009). doi:10.1109/TCOMM.2009.09.070238. ISSN 0090-
6778
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