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Partitioned preassigned pivot procedure. A procedure

for arranging the basis matrix of a linear-programming

problem into as near a lower triangular form as

possible. Such an arrangement helps in maintaining

a sparse inverse, given that the original data set for

the associated linear-programming problem is sparse.
See

▶Linear Programming

▶Revised Simplex Method
Packing Problem

The integer-programming problem defined as follows:

Maximize cTx

subject to Ex � e

where the components of E are either 1 or 0, the

components of the column vector e are all ones, and

the variables are restricted to be either 0 or 1. The idea

of the problem is to choose among items or

combinations of items that can be packed into

a container and to do so in the most effective way.

See

▶Bin-Packing

▶ Set-covering Problem

▶ Set-partitioning Problem
S.I. Gass, M.C. Fu (eds.), Encyclopedia of Operations Research an
DOI 10.1007/978-1-4419-1153-7, # Springer Science+Business M
Palm Measure

▶Markovian Arrival Process (MAP)
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Introduction

Parallel computing is the use of a computer system that

contains multiple, replicated arithmetic-logical units

(ALUs), programmable to cooperate concurrently on

a single task. Between 2000 and 2010, parallel

computing underwent a sea change. Prior to this

decade, the speed of single-processor computers

advanced steadily, and parallel computing was

generally employed only for applications requiring

more computing power than a standard PC processor

chip could deliver. Taking advantage of Moore’s Law

(Moore 1965), which predicts the steady increase in the

number of transistors that can be packed into a given

chip area, microprocessor manufacturers built

processors that could execute a single stream of

calculations at steadily increasing speeds. In the

2000–2010 decade, Moore’s law continued to hold, but

the way that chip builders used the ever-increasing

number of transistors began to change. Applying ever-

larger number of transistors to a single sequential stream

of instructions began to encounter diminishing returns,

and while smaller transistors enabled increasing clock
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speeds, clock speeds are limited by energy consumption

and heat dissipation issues. To use the ever-increasing

number of available transistors, processor designers

began placing multiple processor cores, essentially

multiple processors, on each CPU chip. In the laptop

and desktop markets, processors with four cores are now

common, and CPU chips with only a single processing

core are now rare. Thus, parallel processing is no longer

only an effort to advance over the power available from

mainstream computing platforms such as desktop and

laptop computers; it has now become an integral part of

such mainstream platforms.
Kinds of Parallel Computers

The taxonomy of Flynn (1972) classifies parallel

computers as either SIMD (Single Instruction,

Multiple Data) or MIMD (Multiple Instruction,

Multiple Data). In SIMD architectures, a single

instruction stream controls all the ALUs in

a synchronous manner. In MIMD architectures, each

ALU has its own instruction stream and its own

instruction decoding hardware. The two approaches

are not mutually exclusive: an approach sometimes

called MSIMD (Multiple SIMD) combines multiple

blocks of SIMD processors, with each block having

its own instruction stream. There was active

competition between SIMD and MIMD through the

1980s, but MIMD emerged as the clear winner in the

1990s. SIMD, however, has been staging a quiet

resurgence in the form of GPUs (Graphics Processing

Units), which typically have an MSIMD organization,

as discussed below. Some confusion surrounds the

term SIMD, as processor manufacturers also apply it

to certain graphics-oriented special machine

instructions that process blocks of data. These

instructions are not necessarily completely parallel in

the classic sense, but instead may simply take

advantage of pipelining techniques to achieve higher

utilization of ALU hardware than for standard

scalar-operand instructions.

Another important distinction is between local and

shared memory. In pure local-memory architectures,

each processor has its own memory bank, and

information may be moved between different

processors only by messages passed through

a communication network. On the other end of the

spectrum are pure shared-memory designs, also
called SMPs (Symmetric MultiProcessors), in which

there is a single global memory bank that is equally

accessible to all processors. Such designs provide

performance and ease of programming for small

numbers of processors, and are currently the most

common, since they are used in desktop- and

laptop-level multicore processor chips. In a more

powerful server or workstation, two or more

processor chips, each with four to six processor cores,

share a single global memory. As with MIMD and

SIMD, it is also possible to blend global and local

memory approaches. For example, a system might be

composed of dozens or hundreds of processing nodes,

each node consisting of two to twelve processor cores

sharing a single memory bank.

In large-scale systems without global memory, it is

not generally practical to provide a dedicated

connection between every pair of processors. Popular

interconnection patterns include rings, grids, meshes,

toroids, butterflies, and hypercubes. In academic

circles, there has been an extensive debate on the

merits of various interconnection topologies.

However, the details of the interconnection pattern

may not be critical for the kinds of parallel computers

that currently exist, which generally range in size from

a few processing nodes to thousands of nodes. At such

scales, the critical considerations are the speed of the

interconnection links, the overhead and latency

associated with communication, and elementary

non-interference properties. Non-interference means

that sending a message from processor A to processor

B should generally not interfere with processor C

sending to processor D.
One way to construct a parallel computing system is

simply to combine standard desktop or workstation

computers, an approach known as a cluster or CoW

(Cluster of Workstations). However, the local-area

networks that usually connect such systems may

significantly limit performance for some applications.

Faster, special-purpose communication networks such

as Myrinet or Infiniband may be used to improve the

performance of dedicated cluster systems. Cooling and

energy consumption can become significant limiting

factors in constructing large CoW systems, and are

also important design considerations in building

higher-performance parallel supercomputers.

Another approach is to assemble ad hoc parallel

systems from the background or off-hour capacity of

collections of desktop computers, an approach known
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as grid computing, a term meant to invoke an

infrastructure of computing resources resembling the

electric power grid. This approach requires no special

hardware, but does need specialized software such as

the Condor scheduling system (Litzkow et al. 1988).

Communication between instruction streams can be

particularly slow in such environments, however, and

algorithms must be fault tolerant, i.e., resilient to

processors unpredictably disappearing from the

available pool, possibly in mid-computation.

A nascent trend is GPU computing (Owens

et al. 2008). The demands of ever-more sophisticated

animation, driven mainly from the personal computer

gaming industry, have led graphics adaptors to evolve

into special-purpose parallel computing engines, often

far more powerful in terms of floating point operations

per second (flops) than their host processors. Modern

graphic processors typically have an MSIMD

structure, consisting of independent blocks of SIMD

processing units. Consumer level GPUs typically

contain hundreds of ALUs, at a cost of a few dollars

each. In GPU computing, one uses GPU hardware for

other purposes than graphics processing. Graphics

processors typically have a global memory with

a high bandwidth connection to their processors, but

this memory is often distinct from main CPU memory.
P

Programming Models

The primary distinction among styles of parallel

computer programming is between data-parallel and

control-parallel specification of concurrency. In the

data-parallel model, also called SPMD (Single

Program Multiple Data), the program essentially

specifies a single thread of control, but individual

statements may manipulate large arrays of data in an

implicitly parallel way. For example, if A, B, and C

are arrays of the same size of shape, the statement

A ¼ B + C might replace each element of A by the

sum of the corresponding elements of B and C.

Responsibility for portions of each array is typically

partitioned betweenmultiple processors, so they divide

the work and perform it concurrently. Communication

in data-parallel programs is typically invoked through

certain standard intrinsic functions. For instance, the

expression SUM(A) might represent the sum, across all

processors, of all A’s elements, computed by whatever

algorithm is optimal for the current hardware.
Data-parallel languages were originally developed

for SIMD architectures, but data-parallel and SIMD

are not synonymous. MIMD systems may be

programmed in a data-parallel manner when it

suits the application at hand. Currently, the most

prevalent data-parallel programming language is

High Performance FORTRAN, or HPF (Koelbel

et al. 1993). HPF has its roots in FORTRAN 90

(Metcalf and Reid 1990).

In control-parallel programming, the programmer

specifies a distinct thread of control for each

processing unit capable of one. Often, each

processing unit has the same program, but takes

a completely different path through it. If shared

memory is available, threads may communicate via

memory, using mechanisms called locks or critical

sections to prevent simultaneous or inconsistent

writes to the same location. Otherwise, threads must

communicate by sending and receiving messages,

a style called message passing. Note that

shared-memory systems may also be programmed in

a message-passing style, allowing for relatively

straightforward migration to larger, non-shared-

memory systems. Control parallel programs are

typically written in standard sequential programming

languages such as C, C++, or FORTRAN, handling

messages and memory interlocks via special

subroutine libraries. For message passing, the

principle standardized, portable subroutine libraries

are based on the MPI standard (Snir et al. 1996). At

least three open-source implementations of MPI are

available, and system manufacturers and integrators

often provide their own optimized implementations.

For shared-memory programming, common

standards include Posix threads (Butenhof 1997), in

which a process spawns new threads by calling special

operating system routines, and OpenMP (Dagum and

Menon 1998), in which parallelism is specified by

special compiler directives intermixed with standard

code from the underlying C, C++, or FORTRAN

language. Another alternative is Cilk (Blumofe et al.

1995; Leiserson 2009), which extends the

standard C and C++ languages with new parallelism-

specifying syntax.

It is generally accepted that control-parallel

programs are harder to analyze, understand, develop,

and debug than data-parallel programs, due to

complicated race and deadlock conditions that can

easily develop between threads. On the other hand,
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the data-parallel programmer must sacrifice

significant flexibility. Data parallelism is most readily

applied to problems that require large, extremely

regular array data structures. Irregular, sparse data

structures are more the norm in operations research,

and hence most of the field’s successful applications

of parallel computing have employed control

parallelism.

Control-parallel programs can also exhibit

nondeterminism: run twice on the same data, they

may obtain different solutions or exhibit very

different run times. Such effects occur because small

differences in the timing of events may cause

control-parallel programs to take complete different

execution paths (serial programs that base branching

decisions on measurements of clocks or timers may

exhibit similar behavior). Such nondeterminism can

typically be controlled and essentially eliminated, but

sometimes at significant cost in performance.
Speedup, Efficiency and Scalability

If Tp is the time to solve a give problem using p
processors, and T1 is the time to solve the same

problem with a single processor (using the best

sequential algorithm, if it can be defined), then

a key concept is speedup, defined to be Sp ¼ T1/Tp.

Efficiency is then defined to be Sp/p, or, roughly

speaking, the effectively used fraction of the raw

computing power available. The main goal of parallel

algorithm designers is to obtain linear speedups that

grow roughly linearly with p, or, equivalently,

efficiencies that do not approach 0 as p increases. In

principle, speedups cannot be above linear and

efficiencies cannot exceed 1; in practice, such effects

can sometimes occur for specific problem instance

because the “best” sequential algorithm for a particular

problem is not always easily defined. In a search

problem, for example, a run of a parallel algorithm

might explore early in its history a portion of the

search space that a standard serial implementation

might not encounter until the later portions of its

execution. If this portion of the search space contains

the problem solution, an apparently superlinear speedup

may result.

A key motivation for using parallel computing is to

solve ever-larger problems. Thus, rather than

concerning oneself with obtaining very large
speedups for a fixed-size problem, it may be more

important to study the effect on total solution time as

the problem data and number of processors grow in

some proportional or related way. This concept is

called scalability (Kumar and Gupta 1994).
Applications in Operations Research

Parallel computing is taking an increasing role in

operations research, but it has not had nearly the

effect on the practice of the field as it has, for

example, in computational fluid dynamics. This

phenomenon is due largely to the lack of efficient

parallel methods for factoring and related operations

on irregularly structured sparse matrices. Such

operations are essential to the sparse active set and

Newton methods that form the core of operations

research’s numerical optimization algorithms.

However, successes have been reported for specially

structured problems amenable to decomposition

methods, including stochastic programming — see

for example Gondzio and Grothey (2007) — and on

dense problems. Parallelism has also proved very

useful in branch-and-bound and related search

algorithms, and in a variety of randomized algorithms.

Currently, the leading vendors of linear/

integer-programming software all offer some form of

parallel branch-and-cut implementation for solving

mixed integer programs; such implementations are

typically for shared-memory systems; some are

deterministic, others nondeterministic, and some offer

the option of either a deterministic or nondeterministic

mode. Some software vendors also offer parallel interior

point linear-programming software, although speedups

in pure linear programming are less dependable than for

branch and bound.

Parallel open-source software for operations

research operations research is becoming increasingly

available. Several projects in the COIN-OR collection

(Lougee-Heimer 2003) are aimed at parallel

computing (typically through MPI), and several

others offer the option of parallel execution.

Simulation applications with many independent

trials or scenarios are also natural applications for

parallel computing. A general principle seems to be

that one should take advantage of problem structure to

localize troublesome operations, most typically sparse

matrix factorization, onto individual processors.
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Another approach is to try radically new algorithms

that avoid such operations completely, and are

highly parallelizable. One should remember,

however, that parallelism is not a panacea that can

easily make inappropriate or “brute force” methods

competitive.

Early references on the relationships between

parallel computing and OR/MS include Barr and

Hickman (1993) and Eckstein (1993).
See

▶ Integer and Combinatorial Optimization

▶ Simulation of Stochastic Discrete-Event Systems

▶ Stochastic Programming
P
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Parameter

A quantity appearing in a mathematical model that is

subject to controls beyond those affecting the decision

variables.
Parameter-Homogeneous Stochastic
Process

A stochastic process in which distribution properties

between the two index parameter points t1 and t2,

t1 � t2, depend only on the difference t2 � t1, and not

on the specific values of t1 and t2. In the many

applications where the parameter set is time, whether

discrete or continuous, it is called a time-homogeneous

stochastic process.
Parametric Bound

An optimal value function or solution point bound as

a function of problem parameters.
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Parametric Linear Programming

In the general linear-programming problem of
Minimize cTx

subject to Ax ¼ b

x � 0

it is often appropriate to study how the optimal solution

changes when some of the data are functions of a

single parameter l. Most mathematical programming

systems allow parametric analysis of the cost

coefficients (PAROBJ), the right-hand-side elements

(PARARHS), joint analysis of the objective function

and right-hand-side elements (PARARIM), and the

parametric analysis of the data in a row (PARAROW).
Parametric Programming

Tomas Gal

Fern Universit€at in Hagen, Hagen, Germany
Introduction

The meaning of a parameter as used here is best

explained by a simple example. Recall that a parabola

can be expressed as follows: y ¼ ax2, a 6¼ 0. Setting

a ¼ 1, a parabola is obtained that has a different shape

from the parabola when setting, for example, a ¼ 5. In

both cases, however, there are parabolas that obey

specific relationships; only the shapes are different.

Hence, the parabola y ¼ ax2 describes a family of

parabolas and the parameter a specifies the shape.

Consider the general mathematical-programming

problem:
Max z ¼ f ðxÞ (1)

subject to gðxÞ � 0 (2)

Introducing one or more parameters into f or g, the
model stays the same, but for each value of the

parameter(s) one obtains a specific problem.
In setting up a mathematical optimization model,

one of the first tasks is to collect data. The collected

data might, however, be inaccurate, be of a stochastic

character, be uncertain or be deficient in other ways.

Therefore, it is appropriate to introduce parameters

that enable to analyze the influence of specific data

elements on the optimal solution. This can be done by:

1. Introducing the parameter(s) at the beginning when

setting up the model, or

2. Introducing the parameter(s) after an optimal

solution has been found.

The latter case is called postoptimal analysis (POA)

and is applied much more frequently than the first case.

Postoptimal analysis is a very important tool that

should be used in the framework of a good report

generator (Gal 1993). The corresponding decision

maker (DM) would then have information with

which the DM can select a firm optimum. POA

consists of several analyses, the most important of

which is sensitivity analysis (SA). A sort of extended

SA is parametric programming (PP). In nonlinear

programming, SA corresponds to perturbation

analysis, in which, after having found an optimal

solution, some of the initial data are perturbed and

the influence of the perturbation on the outcome is

analyzed (Drud and Lasdon 1997).
Historical Sketch

Advanced methods for SA and PP for linear

programming have been developed. In the 1950s,

Orchard-Hays (in his master’s thesis), Manne (1953),

Saaty and Gass (1954), Gass and Saaty (1955)

published the first works on parametric programming.

By the end of the 1960s, the first monograph on

parametric programming appeared (Dinkelbach

1969), followed by the monograph and book by Gal

(1973, 1979). In 1979, the first Symposium on Data

Perturbation and Parametric Programming was

organized by A.V. Fiacco in Washington, D.C., with

such a symposium being held every year since. (From

1999, Adi Ben Israel has been the organizer). Several

monographs (Bank et al. 1982; Guddat et al. 1991) and

special journal issues have been published in the 1970s

and 1980s. More details on the history of PP are given

in Gal (1980, 1983). A bibliography with over 1,000

items is given in Gal (1994b); see also Gal and

Greenberg (1997).
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Postoptimal Analysis

Assume that the mathematical optimization model

under consideration is a linear program of the form:

Max z ¼ cTx (3)

subject to Ax ¼ b; x � 0 (4)

where c is an n-vector of objective function

coefficients (OFC) cj, x is an n-vector of the decision

variables xj, A is an m � n matrix of the technological

coefficients aij, m < n, b is an m vector of the

right-hand-side (RHS) elements bi. All vectors are

column vectors.

Suppose that the problem defined by (3) and (4) has

an optimal basic feasible solution xB ¼ B�1 b, where

B�1 is the inverse of the m � m basic matrix B (the

basis) consisting of m linearly independent columns of

A. Here, xB is an m-dimensional solution vector. This

means that the following solution elements and

simplex method elements are determined:

1. The maximal value of the objective function (OF),

zmax,

2. The values of the basic variables xi, i¼ 1,. . .,m, and

3. The reduced costs dj ¼ zj � cj, j ¼ 1,. . ., n.
In the framework of POA, an evaluation of the

above solution elements is to be performed. This

means that the DM is provided with information

about the meaning of the values of the basic

variables, the DM is told which resources are used

and are critical (values of slack variables), and

interpret the values of the opportunity costs and

shadow prices. It is also possible to carry out

a suboptimal analysis, that is, show the DM what

happens if one or several nonbasic variables were

introduced into the solution at a positive level.
Sensitivity Analysis

The POA would continue by performing a SA with

respect to the OF and the RHS. This analysis is

usually a part of the solution output for just about all

linear-programming software. It is called OFC-ranging

and RHS-ranging, respectively. Behind such analyses is

the introduction of a scalar parameter, t or l, in the form

cjðtÞ ¼ cj þ t; j fixed (5)
or
biðlÞ ¼ b i þ l; i fixed (6)

SA finds a critical interval Tj or Li, such that for all

t ∈ Tj or l ∈ Li, respectively, the (found) optimal

basis B remains the same (so called optimal basis

invariancy. For other kinds of invariancies see, e.g.,

Hladik 2010; Hadigheh et al. 2007). The critical

values, that is, the upper and lower bounds of the

critical interval can be easily determined by certain

formulas (Gass 1985). A change in a RHS element bi
causes, in general, the values of the basic variables

and the value of zmax to change, while a change in an

OFC cj causes, in general, the values of the reduced

costs and the value of zmax to change. Such

information is of great value to the DM. An

assumption of this type of SA is that to investigate

how the optimal solution would vary with respect to

a change in one data element, while holding all other

data fixed. Analysis of multiple changes can be done in

a limited manner by the techniques of the hundred

percent rule (Bradley et al. 1977) and tolerance

analysis (Ashram 2007; Filippi 2005; Hladik 2008a, b;

Wendell 1985, 2004).
Parametric Analysis

For an element bi of the RHS, the question is asked: for
what range of values of the parameter l in (6) does

there exist an optimal solution to (3) and (4)? Given

such values, one can move from the original optimal

basis and generate a sequence of optimal bases, with

each basis associated with a critical interval of the

parameter. Such an analysis provides the DM with

a full range of possible solutions from which a subset

of optimal solutions appropriate for the given problem

can be selected. The DM then chooses a certain value

of the parameter and, thus, a corresponding optimal

solution for the parametric range of bi (l).
Note that a similar analysis can be performed with

respect to the parametric OFC, as given by (5).

Moreover, taking into account the possibility that

a parameter introduced in the RHS may influence

some (or several) OFC or vice versa, it is possible to

perform a RIM parametric analysis, that is, find

a sequence of optimal bases to each of which a critical

interval for the RHS-and for the OFC-parameters are
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associated simultaneously. Standard RHS, OFC and

RIM parametric analysis procedures are usually

included in linear-programming software.

It is also possible to perform a sensitivity or

parametric analysis with respect to the elements aij of

the matrix A. The corresponding procedures are,

unfortunately, not incorporated into linear-

programming software as the underlying formulas

are a bit too complex. However, some software

enables one to compute a series of linear programs in

each of which slightly changed values of the {aij} are

chosen.

Up to now, the simplest parametric case having one

parameter with a coefficient equal to 1 has been

discussed. The above cases can, however, also be

carried out when:

(i) A scalar parameter is introduced into several

elements of the RHS and/or OFC with coefficients

which differ from 1, and

(ii) A parameter-vector (vector of parameters) is

introduced into several elements of the RHS and/

or OFC with their respective coefficients different

from 1.

As far as case (i) is concerned, to each optimal basis

a critical interval is associated. In case (ii), each

optimal basis is associated with a higher dimensional

convex polyhedral set of parameters. In the RIM case,

each optimal basis is associated with a higher

dimensional interval, a box, provided that the

parameters in the RHS and OFC are independent

from each other. The larger the number of parameters

in the parameter-vector, the more difficult it is to

interpret the results and for the DM to find an

appropriate optimal basis. In such cases, an

interactive approach is recommended in which the

parametric specialist helps the DM to select an

appropriate solution.
Applications

There are two kinds of uses of PP:

1. Introducing parameters into various classes of

mathematical-programming problems for solving

these problems via parameterization; and

2. Practical applications.

As to (1), the introduction of parameters helps to

solve problems from the areas of nonconcave

mathematical programming, decomposition,
approximation, and integer programming. Also, note

that by replacing the OFC in (3) and (4) with a matrixC

times a parameter-vector t the following problem is

obtained
Max z ¼ ðCT tÞx,
subject to Ax ¼ b; x � 0

which is a scalarized version of a linear

multiobjective-programming problem (Steuer 1986).

Methods for solving the corresponding homogeneous

multi-parameter-programming problem provide

a procedure to determine the set of all efficient

solutions of the corresponding multiobjective

problem (Gal 1994b).

As to (2), SA and/or PP has been used in the

pipeline industry, in capital budgeting, for farm

decision making, refinery operations, for return

maximization in an enterprise, and a number of other

applications (Gal 1994b).
SA and PP in Other Fields

Theoretical and methodological works have been

published about SA and/or PP in linear and

nonlinear complementarity problems, control of

dynamic systems, fractional programming, geometric

programming, integer and quadratic programming

problems, transportation problems. A more detailed

survey with corresponding references is given in Gal

(1994b) (1988), see also, e.g., Ravi and Wendell

(1988), Hladik (2008b), Dawande and Hooker

(2000), Faisca et al. (2009), Kheirfam (2010).
Degeneracy

Recall that a basic feasible solution to

a linear-programming problem is called primal

degenerate when at least one element of this solution

equals zero. The corresponding extreme point of the

feasible set, that is, of the convex polyhedron, is then

also called degenerate. Degeneracy causes various

kinds of efficiency and convergence problems and

special precautions must be taken when performing

SA for a degenerate extreme point. Degeneracy

influences even POA, especially the determination of
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opportunity costs and shadow prices. When

performing SA, the main rule – determining the

critical interval such that the original optimal basis

does not change – is no longer valid because for

a degenerate solution many bases are associated with

it. A theoretical discussion of this problem is given in

Kruse (1986), a bibliography is found in Gal (1994a).

Note that standard software analysis for RHS-or

OFC-ranging yield false results when degeneracy is

involved.
Concluding Remarks

For linear programming and related mathematical

areas, SA and PP have become important tools for

analyzing variations in initial data, for obtaining

better insight into and gaining more information

about the related mathematical model, for

improving understanding of model building in

general, and as aids in solving a wide range of

mathematical problems.
P

See

▶Degeneracy

▶Degeneracy Graphs

▶Linear Programming

▶Multiobjective Programming

▶ Perturbation Methods

▶ Sensitivity Analysis
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Parametric Solution

A solution expressed as a function of problem

parameters.
Pareto-Optimal Solution

If a feasible deviation from a solution to

a multiobjective problem causes one of the objectives

to improve while some other objective degrades, the

solution is termed a Pareto-optimal. Such a solution is

also called an efficient or nondominated solution.
See

▶Efficient Solution
Partial Balance Equations

In Markov chain models of queueing networks,

a subset of the global balance equations that may be

satisfied at a node (station), i.e., a balance of mean flow

rates or probability flux. Also known as local balance

equations, falling between global balance equations

and detailed balance equations.
See

▶Detailed Balance Equations

▶Global Balance Equations
▶Markov Chains

▶Networks of Queues

▶Queueing Theory
Partial Pricing

When determining a new variable to enter the basis by

the simplex method, it is somewhat computationally

inefficient to price out all nonbasic columns, as is the

way of the standard simplex algorithm or its multiple

pricing refinement. The scheme of partial pricing starts

by searching the nonbasic variables in index order until

a set of candidate vectors has been found. These vectors

are then used as possible vectors to enter the basis, as is

done in multiple pricing. After the candidate set is

depleted, another set is found by searching the nonbasic

vectors from the point where the first set stopped its

search. The process continues in this manner by

searching and selecting candidate sets until the optimal

solution is found. Although the total number of iterations

to solve a problem usually increases, computational time

is saved by this type of pricing strategy.
See

▶ Simplex Method (Algorithm)
Partially Observed Markov Decision
Processes

A Markov decision process (MDP) in which the state

of the system cannot be fully or precisely observed,

e.g., only part of the state is known and/or the state

observation has some error. In principle, such a model

can be converted to a fully observed MDP by

introducing an “information” or “belief” state that

may be infinite dimensional, corresponding to

a probability distribution over the original state.
See

▶Dynamic Programming

▶Markov Decision Processes
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Particle Swarm Optimization

A population-based search approach for global

optimization based on ideas from animal flocking.
See

▶Ant Colony Optimization

▶Metaheuristics

▶ Swarm Intelligence
References

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization.

Proceedings of IEEE International Conference on Neural
Networks, Vol. IV, pp. 1942–1948.
PASTA

Poisson Arrivals See Time Averages.

For a Poisson arrival process, the (limiting) fraction

of arrivals that find (see) a process in some state equals

the (limiting) overall fraction of time that the process is

in that state (Wolff 1982, 1990).
P

See

▶ Poisson Arrivals
References

Wolff, R. W. (1982). Poisson arrivals see time averages.

Operations Research, 30, 223–231.
Wolff, R. W. (1990). A note on PASTA and anti-PASTA for

continuous-time Markov chains. Operations Research, 38,
176–177.
Path

A path in a network is a sequence of nodes and arcs that

connect a designated initial node to a designated

terminal node.
See

▶Chain

▶Cycle
Payoff Function

In a game, the mapping from the players’ strategies

(decisions, actions) to the gains and losses they

receive. In a two-person finite action game, the

payoff function is often depicted in the form of

a matrix, with a single number for each matrix

element in a zero-sum game.

In financial engineering, the mapping from the

underlying asset(s) to the payout of a contingent

claim or financial derivative.
See

▶ Financial Engineering

▶Game Theory
Payoff Matrix

For a zero-sum, two-person game, the payoff matrix is

an m � n matrix of real numbers with the entry aij
representing the payoff to the maximizing player if the

maximizing player plays strategy i and the minimizing

player plays strategy j.
See

▶Game Theory
PDA

Parametric decomposition approach.
See

▶ Production Management
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PDF

Probability density function.
PDSA

Plan, do, study, act.
See

▶Total Quality Management
Periodic Review

A type of inventory control policy in which the

inventory position is assessed at the end of each of

a prescribed number of discrete time periods, in

contrast with continuous review, where the inventory

position is monitored continuously so that orders can

be placed at any time.
See

▶ Inventory Modeling
PERT

Program evaluation and review technique; an

event-oriented, project-network diagramming

technique used for planning and scheduling.
See

▶Network Planning

▶ Program Evaluation and Review Technique (PERT)

▶ Project Management

▶Research and Development
Perturbation

A change in a parameter, function or set.
Perturbation Analysis

Michael C. Fu

University of Maryland, College Park, MD, USA
Introduction

Perturbation analysis (PA) is a sample path technique

for analyzing changes in performance measures of

stochastic systems due to changes in system

parameters. In terms of stochastic simulation, which

is the main setting for PA, the objective is to estimate

sensitivities of the performance measures of interest

with respect to system parameters, preferably without

the need for additional simulation runs over what is

required to estimate the system performance itself.

The primary application is gradient estimation

during the simulation of discrete-event systems,

e.g., queueing and inventory systems. Besides their

importance in sensitivity analysis, these gradient

estimators are a critical component in gradient-based

simulation optimization methods.

Let l(y) be a performance measure of interest with

parameter (possibly vector) of interest y, focusing on

those systems where l(y) cannot be easily obtained

through analytical means and therefore must be

estimated from sample paths, e.g., via stochastic

simulation. Denote by L y;oð Þ the sample

performance obtained from a sample path realization

o such that l yð Þ ¼ E L y;oð Þ½ �. Although the

assumption here is that the performance measure is

an expectation, PA has also been applied more

recently to quantiles (Hong 2009; Fu et al. 2009). The

goal of PA is to efficiently estimate the effects on l of
a perturbation y ! yþ Dy, using information from

a sample path o at y. PA addresses two different

types of problems:

• Dy ! 0: estimating the gradient HlðyÞ; when l is

differentiable in y.
• Dy 6¼ 0: estimating changes due to a finite

perturbation, i.e., lðyþ DyÞ:

http://dx.doi.org/10.1007/978-1-4419-1153-7_1051
http://dx.doi.org/10.1007/978-1-4419-1153-7_479
http://dx.doi.org/10.1007/978-1-4419-1153-7_665
http://dx.doi.org/10.1007/978-1-4419-1153-7_200653
http://dx.doi.org/10.1007/978-1-4419-1153-7_817
http://dx.doi.org/10.1007/978-1-4419-1153-7_883
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In the former case, no perturbation is ever actually

introduced into the system (or simulation), although

the idea of a perturbation may be employed as

a heuristic tool in preliminary analysis.
P

Brief Taxonomy

To sort out the abundance of acronyms in the PA field,

a brief definition of each corresponding approach is

provided here, accompanied with at least one

reference. Among gradient estimation techniques, the

most well-known is infinitesimal perturbation analysis

(IPA), which simply uses the sample derivative dL/dy
to estimate dl/dy. It is straightforward to implement

and very computationally efficient; however, as shall

be discussed shortly in more detail, its applicability is

not universal. The books by Ho and Cao (1991),

Glasserman (1991), and Cao (1994) cover IPA in

detail. A very general and well-developed extension

of IPA is smoothed perturbation analysis (SPA), based

on the ideas of conditional expectation (Gong and Ho

1987) Although its applicability is quite broad, its

implementation is usually very problem dependent.

The book by Fu and Hu (1997) covers this method in

full generality. Other gradient estimation techniques

include rare perturbation analysis (RPA), originally

based on the thinning of point processes (Brémaud

and Vázquez-Abad 1992); structural IPA (SIPA),

dealing specifically with structural parameters

(Dai and Ho 1995); discontinuous perturbation

analysis (DPA), based on the use of generalized

functions (the Dirac-delta function) to model

discontinuities in the sample performance function

(Shi 1996); and augmented IPA (APA),

another extension of IPA different from SPA

(Gaivoronski et al. 1992). Techniques to estimate

the effect of a finite perturbation in the parameter

include finite perturbation analysis (FPA) – Ho

et al. (1983); extended perturbation analysis (EPA) –

Ho and Li (1988); and the augmented chain

method�Cassandras and Strickland (1989). A related

technique is the standard clock (SC) method, based on

the uniformization of Markov chains (Vakili 1991).

The books by Ho and Cao (1991) and Cassandras and

Lafortune (2008) provide further references. This entry

focuses on the gradient estimation techniques IPA and

SPA, the most well-known and developed of the PA

techniques.
Infinitesimal Perturbation Analysis

The applicability of IPA is illustrated through the use

of some simple examples, at the same time contrasting

the approach with the likelihood ratio/score function

(LR/SF) and weak derivative (WD) estimators.

Consider first the expectation of a single positive

random variable X, written in two forms:

E X½ � ¼
Z 1

0

xf x; yð Þdx

¼
Z 1

0

X y; uð Þdu;

where f is the PDF of X. In the first interpretation, the

parameter appears inside the density, whereas in

the second interpretation it appears inside the random

variable defined on an underlying U(0,1) random

number. For example, the latter could be the inverse

transform X ¼ F�1, where F is the CDF of X.
Differentiating E[X], assuming the interchange of

expectation and differentiation is permissible (via the

dominated convergence theorem),

dE X½ �
dy

¼
Z 1

0

x
df x; yð Þ

dy
dx (1)

¼
Z 1

0

dX y; uð Þ
dy

du: (2)

Notice, however, that the conditions for the

exchange will be quite different for the two

interpretations. In the first interpretation,

corresponding to the LR/SF and WD estimators, the

conditions will be placed on the underlying density; in

the case of discrete-event stochastic simulation, this

means the input distributions. Since the input

distributions must be known in order to perform the

simulation, it is relatively easy to check the conditions.

In the second interpretation, corresponding to PA

estimators, the conditions will be placed on the

sample performance function that is usually defined

on an output stochastic process of the system.

As an example, consider an exponential random

variable X with mean y. Then E X½ � ¼ y and

dE X½ �=dy ¼ 1. The respective PDF and one random

variable representation are given by

f x; yð Þ ¼ 1

y
e�x=y1 x > 0f g;

X y; uð Þ ¼ �y ln u;
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where 1{�} denotes the indicator function.

Differentiating,
df x; yð Þ
dy

¼ x

y2
1

y
e�x=y � 1

y2
e�x=y

� �
1 x > 0f g

¼ f x; yð Þ x

y2
� 1

y

� �

¼ 1

ye
e

y
1� x

y

� �
e�x=y1 0 < x � yf g

h
� e

y
x

y
� 1

� �
e�x=y1 x > yf g

i
;

dX y; uð Þ
dy

¼ � ln u ¼ X y; uð Þ
y

:

The last expression for the derivative of the density

(which is itself not a density) expresses the quantity

as the difference of two densities multiplied

by a constant, known as a weak derivative

representation; Fu (2006, 2008) for references.

Substituting each of the three expressions into the

corresponding equations (1) or (2), yields three

unbiased derivative estimators:

LR=SF :
X

y
X

y
� 1

� �
;

WD :
1

ye
Xð2Þ � Xð1Þ
h i

;

IPA :
X

y
;

where X(1) and X(2) are random variables with PDFs
e
y

x
y � 1
� 	

e�x=y; x > y; and e
y 1� x

y

� 	
e�x=y; 0 < x � y,

respectively.

Extending to a function of the underlying random

variable,
dE LðXÞ½ �
dy

¼
Z 1

0

LðxÞ df ðx; yÞ
dy

dx

¼
Z 1

0

dL

dX

dX y; uð Þ
dy

du:

The conditions for interchanging expectation and

differentiation are unaltered when differentiating the

underlying density, since that portion remains

unchanged, whereas they are more involved for the

sample path derivative. Basically, for the chain rule

to be applicable requires some sort of continuity
to hold for the sample performance function with

respect to the underlying random variable. This

translates into requirements on the form of

the performance measure and on the dynamics of the

underlying stochastic system such that the interchange
dE L½ �
dy

¼ E
dL

dy

� �
(3)

holds. Roughly speaking, sample pathwise continuity

of L with respect to y will result in the interchange

being valid. An important structural condition for

determining the applicability of IPA for general

discrete-event systems modeled as generalized

semi-Markov processes is the commuting condition

(Glasserman 1991).
Smoothed Perturbation Analysis

The main idea of smoothed perturbation analysis

(SPA) is to use conditional expectation to smooth out

discontinuities in L that cause IPA to fail. This is

achieved by selecting a set of sample path quantities

Z, called the characterization, such that E[L|Z] – as

opposed to L itself – will satisfy the interchange in (3):
dE E LjZ½ �½ �
dy

¼ E
dE LjZ½ �

dy

� �
:

Applying SPA is analogous to the variance

reduction technique of conditional Monte Carlo,

consisting of two main steps: choosing an appropriate

Z and calculating dE LjZ½ �=dy. For generalized

semi-Markov processes, as well as for other

stochastic systems, this is fully explored in Fu and

Hu (1997).
Queueing Example

IPA and SPA estimators are illustrated for

a single-server, first come, first-served (FCFS) queue.

Let An be the interarrival time between the (n � 1)th

and nth customer (i.i.d. with PDF f1 and CDF F1), Xn

the service time of the nth customer (i.i.d. with PDF f2
and CDF F2), and Tn the system time (in queue plus in

service) of the nth customer. Consider the case where y
is a parameter in the service time distribution, and the
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sample performance of interest is the average system

time over the first N customers TN ¼ 1
N

PN
n¼1 Tn. The

system time of a customer for a FCFS single-server

queue satisfies the well-known recursive Lindley

equation:
Tnþ1 ¼ Xnþ1 þ ðTn � Anþ1Þþ: (4)

The IPA estimator is obtained by differentiating (4):
dTnþ1

dy
¼ dXnþ1

dy
þ dTn

dy
1 Tn � Anþ1f g; (5)

where
P

dX

dy
¼ � dF2 X; yð Þ=dy

dF2 X; yð Þ=dX :

For example, for scale parameters, such as if y is the
mean of an exponential distribution, dX=dy ¼ X=y.
Using the above recursion, the IPA estimator for the

derivative of average system time is given by

dTN

dy
¼ 1

N

XN
n¼1

dTn
dy

¼ 1

N

XM
m¼1

Xnm
i¼nm�1þ1

Xi
j¼nm�1þ1

dXj

dy
;

(6)

where M is the number of busy periods observed and

nm is the index of the last customer served in the mth

busy period (n0 ¼ 0). Implementation of the estimator

involves keeping track of two running quantities, one

for (5) and another for the summation in (6); thus, the

additional computational overhead is minimal, and no

alteration of the underlying simulation is required.
IPA is also applicable to multi-server queues and

Jackson-like queueing networks (Jackson networks

without the exponential distribution assumptions).

The implicit assumption used in deriving an IPA

estimator is that small changes in the parameter will

result in small changes in the sample performance. For

example, small changes in the interarrival and service

times lead to small changes in system times, as can be

seen by the Lindley equation (4), but can lead to large

changes in the derivative given by (5), due to the

indicator function. In general, the interchange (3) will

hold if the sample performance is continuous with
respect to the parameter. For the Lindley equation,

although Tn+1 in (4) has a kink at Tn ¼ Anþ1, it is still

continuous at that point, which explains why IPA

works. Unfortunately, the kink means that the

derivative given by (5) has a discontinuity at

Tn ¼ Anþ1, so that IPA will fail for the second

derivative.

For the FCFS single-server queue, SPA can be used

to derive the following estimator for the second

derivative of mean system time:
d2TN

dy2

� �
SPA

¼ 1

N

XM
m¼1

Xnm
i¼nm�1þ1

Xi
j¼nm�1þ1

d2Xj

dy2

þ 1

M

XM
m¼1

f1 Tnmð Þ
1� F1ðTnmÞ

Xnm
i¼nm�1þ1

dXi

dy

 !2

;

where d2X=dy2 is well-defined when F2 X; yð Þ is twice
differentiable.
Inventory Example

IPA and SPA estimators are illustrated for

a single-item periodic review (s, S) inventory system,

in which once every period the inventory level is

reviewed and, if necessary, orders are placed to

replenish depleted inventory. An (s, S) ordering

policy specifies that an order be placed when the

level of inventory on hand plus that on order (known

as inventory position) falls below the level s, and that

the amount of the order be the difference between

S and the present inventory position, i.e., order

amounts are placed “up to S.” For average inventory

as the performance measure of interest, derivative

estimators with respect to the policy parameters

s and q ¼ S� s are provided. Note that the

parameters in this example are structural, as opposed

to distributional in the previous queueing example.

In the model considered, all excess demand is

backlogged and eventually filled, and orders are

immediately received (zero lead time), so that.

inventory level and inventory position coincide. At

the end of a period, demand is satisfied before the

order placement decision is made. Let Dn be the

demand in period n (i.i.d. with PDF f and CDF F),

and Vn be the inventory level in period n after demand
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satisfaction. This quantity satisfies a recursive equation

somewhat analogous to the Lindley equation:

Vnþ1 ¼ Vn � Dnþ1 if Vn � s;
S� Dnþ1 if Vn < s:



(7)

The sample performance is the average inventory

level over N periods given by VN ¼ 1
N

PN
n¼1 Vn:

From a sample path point of view, the key discrete

event in the system is the ordering decision each

period. A change in s, with q held fixed, has no effect

on these decisions, so infinitesimal perturbations in s

result in infinitesimal changes in the inventory level,

and hence in the sample performance function VN . In

particular, for a perturbation of sizeDs (of any size, not
necessarily infinitesimal), Vnðsþ DsÞ ¼ VnðsÞ þ Ds,
and hence @ VN =@s ¼ 1 is an unbiased estimator for

@E VN

� �
=@s. Intuitively, the shape of sample paths are

unaltered by changes in s if q is held constant; the

entire sample path is merely shifted by the size of the

change. The IPA estimator can also be obtained by

simply differentiating the recursive relationship (7),

noting that Dn does not depend on s or q:

dVnþ1

dy
¼

dVn

dy if Vn � s;
1 if Vn < s:




for either y ¼ s or y ¼ q. Taking V0 ¼ S ¼ sþ q, the
expression reduces to 1 for all n, which is in accord

with the sample path analysis.

On the other hand, a change in q with s held fixed

may cause a change in the set of ordering decisions,

resulting in radical changes in the sample path and

hence in the sample performance function VN . Thus,

SPA is required to derive an unbiased derivative

estimator with respect to y ¼ q. An SPA estimator for

@E VN

� �
=@s that can be easily and efficiently estimated

from the original sample path is given by

1þ 1

N

X
n�N:Vn<s

f Vn þ Dn � sð Þ
1� F Vn þ Dn � sð Þ s� E D½ � � VN

� �
:

Real-World Application Example

In the October 30, 2000 issue of Fortunemagazine, an

article entitled, “New Victories in the Supply-Chain

Revolution” (Siekman 2000) describes “a classic

distribution challenge: how to avoid lost sales
without incurring the cost of carrying extra

inventory” when Caterpillar, the “world’s largest

builder of construction equipment . . . posed daunting

supply chain questions” regarding the distribution of

a new line of compact construction machines,

specifically related to determining appropriate

inventory levels for the U.S. market. “Among

the techniques . . . used to attack this complex (supply

chain inventory control) problem was . . . infinitesimal

perturbation analysis, for which no complete

explanation is possible for the faint-hearted or

mathematically disadvantaged.”
Historical Notes

PA was developed by Ho et al. (1979) when the first

author was consulting on a real-world buffer design

problem for a Fiat Motor Company serial production

line. The single-server queue example was first

considered in Suri and Zazanis (1988), and the

inventory example in Fu (1994). The other area in

which PA has been most widely used after queueing

and inventory is financial engineering, where IPA is

called the pathwise method in Glasserman (2004);

see also Fu and Hu (1995). Other applications

include PERT networks, dams, insurance, preventive

maintenance, statistical process control, and traffic

light signal control; see Ho and Cao (1991), Fu and

Hu (1997), and Fu (2006) for examples and references.
See

▶ Inverse Transform Method

▶ Score Functions

▶ Sensitivity Analysis

▶ Simulation of Stochastic Discrete-Event Systems

▶ Simulation Optimization

▶Variance Reduction Techniques in Monte Carlo

Methods
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Perturbation Methods

Procedures that modify the constraints of

a linear-programming problem so that all basic

feasible solutions will be nondegenerate, thus

removing the possibility of cycling in the simplex

method. The modification can be either explicitly

done by adding small quantities to the right-hand

sides or implicitly by using lexicographic procedures.
See

▶Cycling

▶Degeneracy

▶Lexicographic Ordering
Petroleum Refining

David S. Hirshfeld

MathPro Inc., Bethesda, MD, USA
Introduction

By many financial and physical measures, the

petroleum industry is the world’s largest industry.

The industry’s operations comprise a global supply

chain that produces, transports, refines, and distributes

more than 85 million barrels of oil per day – nearly 5

billion tons per year.

Because of its scale, global scope, and huge capital

requirements, the petroleum industry is populated

with many large, vertically-integrated companies

(many of them national oil companies) with global

operations. The industry is highly competitive

because it has many participants and because it

produces basic commodities (e.g., gasoline, diesel

fuel, petrochemical feedstocks, etc.) that are difficult

to differentiate by brand. The industry’s huge volume

and low margins mean that even small changes in

operating costs have important effects on operating

results. The petroleum industry is a leader in the

development and application of new technology; it

develops and applies advanced technologies in every

phase of operations. Consequently, the industry

http://dx.doi.org/10.1007/978-1-4419-1153-7_200118
http://dx.doi.org/10.1007/978-1-4419-1153-7_200126
http://dx.doi.org/10.1007/978-1-4419-1153-7_200391
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employs large numbers of scientists, engineers,

and applied mathematicians, many with advanced

degrees.

For these and other reasons, the petroleum industry

has been a pioneer in the application of OR/MS across

all of its primary operations and has successfully

applied virtually every OR/MS tool in these

operations. During the 1960s and 1970s, most large

integrated oil companies had strong OR/MS groups or

departments with concentrations of expertise in linear

programming, simulation, and statistical analysis

(Baker, 2000). These groups consistently stretched

the limits of OR/MS tools and methods, and they

provided the impetus and the financial support for

many advances in OR/MS software tools and

analytical methods. Most of these groups no longer

exist. But even so, OR/MS applications in the

petroleum industry are ubiquitous and fully

embedded in the various business functions that use

them. Nowhere is this more evident than in the

petroleum refining sector.
OR/MS and Petroleum Refining

Petroleum refining is a unique and critical link in the

petroleum supply chain. The other links add value

mainly by performing spatial transformations on

petroleum (e.g., lifting crude oil to the surface;

moving crude oil from oil fields to storage facilities

and then to refineries; moving refined products from

refinery to terminals and end-use locations, etc.).

Refining adds value by performing chemical

transformations and blending operations on

petroleum – converting crude oil (which in itself has

little end-use value) into a broad spectrum of valuable

refined products. The primary economic objective in

refining is to maximize that added value.

Petroleum refineries are large, continuous-flow

process plants with extremely complex processing

schemes for processing multiple crude oils and other

input streams into a large number of refined (co-)

products, most notably LPG, gasoline, jet fuel, diesel

fuel, petrochemical feedstocks, home heating oil, fuel

oil, and asphalt. Each refinery has a unique

configuration and operating characteristics,

determined primarily by its location, vintage,

preferred crude oil slate, and market requirements

for refined products. More than 660 refineries, in
116 countries, are currently in operation; virtually

every one has OR/MS tools, including optimization

models, embedded in its operations.

Since the earliest days of OR/MS and continuing to

the present, refining has been a particularly rewarding

domain for applying OR/MS methods in general, and

linear programming (LP) and its extensions in

particular (mixed integer programming (MIP),

special ordered sets (SOS1 and SOS2), and

successive linear programming (SLP), etc.).
OR/MS Applications in Petroleum Refining

Baker (2000) reports, “The refining industry began using

linear programming (LP) shortly after its invention

(Bodington and Baker 1990). In the early 1950s, many

major oil companies began using LP-based product

blending models (Charnes et al. 1952) which severely

tested the available computational capabilities of that

time. As computer capabilities expanded, so did the

scope of LP models, encompassing whole refineries

(Symonds 1955) and the US refining industry

(Manne 1958).”

“The nonlinear nature of petroleum and chemical

processes was first incorporated by Shell Oil via

successive linear programming (SLP), a straightforward

technique based on the iterative solution of linearized

models (Griffith and Stewart 1961). SLP... was applied

by most major companies in the 1960s (Baker and

Lasdon 1985). Distributed recursion (DR), a

specific form of SLP dealing with the distribution of

nonlinear error terms across [multiple] blended pools, is

widely used in contemporary models of petroleum

refining.”

“Literally. . . every other form of nonlinear

optimization has been applied in the [refining]

industry. Lasdon and Waren (1980) provided

a comprehensive survey of applications. Production

planning and scheduling has seen a wide variety

of hybrid approaches combining mathematical

programming, expert systems, decision support

systems, forecasting techniques and simulation.

Klingman et al. (1987) describes the integrated

logistics system developed at Citgo. A combination

of network flow algorithms, mixed-integer

programming, and decision support were applied to

ship scheduling at Ethyl Corporation (Miller, 1987).

Brown et al. (1987) reports on a vehicle loading and
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routing system developed for Mobil Oil. The design

and development of integrated systems for planning

and scheduling is an area of active interest both in

academic and industrial settings (Baker 1994).”

Today, mathematical programming and other

OR/MS techniques are embedded in numerous

refining sector functions, including (in roughly

decreasing order of time horizon):

• Capital investment planning

– Economic evaluation of alternative designs for

new refineries

– Evaluation of alternative configurations for

refinery upgrading projects

• Process design

• Tactical planning

– Evaluation of inter-company product exchanges

and processing agreements

– Optimization of multi-period operations of

multi-refinery, multi-terminal logistics systems

– Evaluation of new processes and technologies

– Regulatory compliance

• Operations planning

– Crude oil valuation and supply planning

– Crude oil cargo selection (Pawde and Singh

2010)

– Development of quarterly and monthly refinery

operating plans

– Integration of refinery operations and refined

product distribution (Guyonnet et al. 2009)

– Concurrent multi-product blending

• Operations scheduling

– Process sequencing

– Inventory (tankage) management

– Batch blending of refined products

• Process control

The planning and design applications have time

horizons measured in years or months, are forecast-

driven, and can return solutions in which multiple

operations or operating modes employing the same

resources or facilities are executed in the given time

period. Scheduling applications, on the other hand,

have much shorter time horizons (weeks or days), are

order- or sequence-driven, and recognize operating

policies or physical constraints on the utilization of

specific facilities – e.g., only one activity or operation

at a time can be performed in a particular facility. Plans

returned by planning models may not be physically

implementable without being subjected to a detailed

scheduling analysis.
Refining organizations use their refining

optimization models across many planning horizons:

• Long-term (3+ years): capital investment planning,

regulatory compliance, restructuring

• Annual: annual budgeting, evaluation of term

contracts for crude supply and product sales,

maintenance and turn-around planning

• Quarterly/monthly: operations planning to meet

product demands and seasonal transitions in

product specifications, evaluation of spot

transactions for crude purchases and product sales,

estimation of dispatches to product pipelines and

tankers

• Weekly: scheduling operations and batch blending

to make optimal use of crudes on hand and available

processes

Refinery planning applications are practiced not

only by refinery organizations but also by other

organizations having interest in the refining sector,

such as engineering firms, independent technology

providers (e.g., process licensors), catalyst and

chemical manufacturers, and consulting firms.

Government agencies also apply LP to analyze

refining operations, for various purposes – for

example, the U.S. Environmental Protection Agency

in estimating the costs of new regulatory standards for

transportation fuels, and the U.S. Energy Information

Administration in producing its annual projections of

U.S. energy supply and demand).
Refining Operations and the Driving Forces
for Refinery Modeling

Understanding the rationale for and benefits of OR/MS

methods in refining industry requires some

understanding of refining itself (The National

Petroleum Council (2000) Web site includes an

excellent tutorial on the fundamentals of refinery

operations).

Figure 1 is a highly simplified flow chart of

a notional complex refinery, illustrating a typical

pattern of oil flow through the refinery – from the

crude oil distillation unit that separates crude oil into

various boiling range fractions, or cuts, through the

various downstream processing units that chemically

transform these fractions into blendstocks (the refinery

streams that are the constituents of blended products)

and ultimately to product blending. For purposes of
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this discussion, the importance of Fig. 1 is not in its

details, but in the overall picture it conveys of the

complexity of refining operations in general.

Several broad aspects of refining operations

suggested by Fig. 1 merit comment in the context of

refinery modeling applications.

• Refinery operations are extremely complex.

Figure 1 only hints at the actual complexity of

refinery operations – with respect to the physical

facilities of the refinery, the interaction of these

facilities with one another, and the range of

operations of which they are capable. The complexity

is such that refinery operations can be fully understood

only with formal, refinery-wide models and can be

optimized, in an economic sense, only through the

use of mathematical programming.

Refiners can change the operations of their

refineries to respond to the continual changes in

crude oil and product markets, but only within

physical limits defined by the performance

characteristics of their refineries and the properties of
the crude oils they process. Mathematical

programming models of refinery operations that

express these physical constraints are the only

reliable means of generating achievable (i.e.,

feasible) and economic (i.e., optimal) responses to

changes in market environment.

• Refineries produce a wide range (or slate) of

products – actually co-products.

Refineries produce a range of co-products not only

because of market demand for the various products but

also because of the constraints imposed by the refining

facilities themselves. Refiners need to know the

marginal cost of production for each refined product,

because these marginal costs are the primary

determinants of the products’ spot prices – the prices

at which products change hands at the refinery gate.

Mathematical programming models of refinery

operations routinely produce rigorous estimates of

marginal production costs that are well grounded in

theory, for every co-product produced (The solution

values for certain of the dual variables in a refinery
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Primary Classes of Refining Processes in Complex Refineries

Class Function Examples

Crude distillation Separate crude oil charge into boiling range Atmospheric distillation

fractions for further processing Vacuum distillation

Conversion Break down (“crack”) heavy crude fractions into lighter, Fluid cat cracking

higher-valued streams for further processing Coking, Hydrocracking

Upgrading Enhance the blending properties (e.g., octane) and value Reforming

of gasoline and diesel blendstocks Alkylation, Isomerization

Treating Remove hetero-atom impurities from refinery streams Hydrotreating

and blendstocks Caustic treating

Separation Separate, by physical or chemical means, constituents Fractionation

of refinery streams for further processing Extraction

Blending Combine blendstocks to produce finished products that

meet product specifications and environmental standards

Utilities Supply refinery fuel, power, steam, oil movements, Power generation

storage, emissions control, etc. Sulfur recovery
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model are precisely the marginal values in question).

Indeed, mathematical programming is essentially the

only practical and useful tool for computing the

marginal costs of refined products.

All of this was readily apparent to the engineers and

applied mathematicians working in the refining sector

in the 1950s and provided the impetus for the early

adoption of linear and mathematical programming

throughout the refining industry.
P

Refinery Processes and Operations

Complex, world-class refineries (including virtually all

U.S. refineries) comprise as many as fifty or more

distinct refining processes, which carry out multiple

physical and chemical transformations to convert

crude oil into a broad slate of refined products.

Despite their number and diversity, refining processes

can be thought of in terms of a few broad classes based

on their functions, as shown in Table 1.
Crude Oil and the Crude Oil Distillation
Process

Crude oil distillation, the process at the front end of

every refinery, regardless of size or overall

configuration, has a unique function that affects all of

the processes downstream of it. In a refinery model, the
representation of crude oil properties and of the crude

distillation process in a refinery model influences all of

the other process representations in the model.

Crude oil comprises tens of thousands of chemical

compounds (primarily hydrocarbons). These

compounds range from the very light – low

molecular weight, simple structure, low density, low

boiling point (<60o F) – to the very heavy – high

molecular weight, complex structure, high density,

high boiling point (>1000o F).

Each of the more than 1,500 crude oils in commerce

has its own unique signature, with respect to

composition, proportions of light and heavy

components, and physical properties. The unique

composition and properties of a crude oil largely

determine its value as a refinery input and the range

of refined products that a given refinery can produce

from it.

The crude distillation unit in a refinery accepts

a combination of different crude oils and separates it

into a number of streams (known as crude fractions or

cuts). Each fraction leaving the crude distillation unit

(1) is defined by a unique boiling point range (e.g.,

180o–250o F, 250o–350o F, etc.), (2) contains material

from each crude oil fed to the crude distillation unit,

and (3) is made up of hundreds of distinct hydrocarbon

compounds, all of which have boiling points within the

cut range. An essential simplifying assumption in

the analysis of refining operations is that the crude

distillation unit makes “sharp” cuts – that is, any
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given hydrocarbon species in the crude oil mixture is

present in one and only one cut (i.e., there is no

“overlap” between the crude fractions leaving the

crude distillation unit).

Each crude fraction leaving the crude distillation

goes to a different refinery process for further

processing (Fig. 1). The highest boiling fractions of the

crude, collectively known as the heavy ends, have

relatively little economic value – indeed lower value

than the crude oil from which they come. Refineries

must convert, or upgrade, these heavy ends into more

valuable light products (gasoline, jet fuel, diesel fuel, etc.).
Stream Properties and Refining Processes

In a refinery model, the specification of the

temperature ranges of the cuts and the representation

of the various properties of the crude fractions exerts

a strong influence on the representations of all of

refining processes downstream of the crude

distillation and on the results returned by the model.

In general, each refining process handles multiple

feed streams and produces multiple outputs

(co-products). The yields of the co-products, their

physical and chemical properties, and the direct

operating costs of each process depend on the

properties of the input streams (which in turn depend

on the mixture of crude oils processed and the

temperature ranges of the crude cuts). Consequently,

analyzing refinery operations requires keeping track of

not only the various streams flowing through the

refinery but also numerous properties associated with

each stream.

Tracking stream properties is essential in analyzing

the blending operations at the back end of every

refinery. Refineries produce a diverse set of

co-products (e.g., gasolines, jet fuel, diesel fuels,

petrochemical feedstocks, etc.); large, complex

refineries may produce as many as forty distinct

products. Most of these products are blends of

various streams produced in crude distillation or in

the downstream processes (usually five to ten refinery

streams per product). Each product is blended to meet

a vector of specifications on the products’ properties

(e.g., density, sulfur content) and performance

characteristics (e.g., octane, emissions from vehicle

tailpipes, etc.). These specifications represent

industry standards and government regulations.
The Content of Refinery LP/MP Models

Structure

An LP orMPmodel of a single refinery in a single time

period is essentially an assembly of

• Equations and inequalities representing

– Volume balances on refinery inputs,

refinery-produced streams, and refinery outputs

(volume supplied + volume produced ¼ volume

consumed + volume blended or sold)

– Mass balances and energy balances

(conservation of mass and energy)

– Blending property balances linking individual

refinery streams and their blending properties

to specification-blended product pools

– Accounting identities to capture refinery-wide

operating costs, consumption of energy and

utilities, and generation of effluents (including

CO2)

– Upper limits on the through-put capacity of the

various refining processes

– Special constraints reflecting internal technical

restrictions or limitations

– Special constraints reflecting external

requirements

– Regulatory standards (such as the federal and

California standards for reformulated gasoline).

• Variables representing

– Volumes of refinery inputs, such as crude oil

purchases

– Volumes of refinery streams flowing into or out

of each process unit (such as those shown in

Fig. 1) at specified operating conditions

– Volumes of produced refinery streams going to

each blended product pools

– Volumes of finished products leaving the refinery

– Amounts of new refinery process capacity (if

any) added through capital investment

Multi-time-period models contain, in addition to the

above elements, equations and variables representing

inventory transfers from one time to the next of crude

oils, other refinery inputs, certain intermediate refinery

streams, and finished products.

Multi-refinery models contain, in addition to the

above elements, equations and variables representing

the transport of refined products from the refineries to

individual destinations (product terminals, end-use

sites, etc.) or destination regions, through various

capacitated transportation modes.
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In all of these variants, the objective function

usually represents gross profit or, as it sometimes

called, profit contribution:

Refinery netback minus (the sum of direct

operating costs + capital recovery charges)

where

• Refinery netback is the net revenues

(price*quantity) received by the refinery from the

sale of all refined products

• Direct operating costs include the total purchase

costs (price*quantity) of crude oil and other refinery

inputs, purchased utilities, and catalyst and

chemicals consumption; inventory carrying costs

(in multi-period models); transportation costs

for product movements to demand sites

(in multi-refinery models), and regulatory

compliance costs

• Capital recovery charges denote return on

un-depreciated refinery investment, per unit of

throughput.

In multi-period models, the profit contribution

terms for future time periods can be discounted

by multiplying them by a discount rate factor:

(1+ discount rate)-t, where t is the time-period index.

Models of refinery operations contain distinct

representations of each of the refining processes that

have a significant effect on the refinery’s economics.

A complex refinery can comprise forty or more such

processes. Each process (or process/refinery

combination, in a multi-refinery model) is

represented in a discrete sub-matrix of the overall

model. Each process sub-matrix consists of one or

more operating mode or input/output variables, any

number of which can be active in a given solution.

Each operating mode variable intersects certain

equations representing volume balances on the

streams flowing into and out of the process, energy

balances, and accounting relationships. The vector of

input/output coefficients associated with each

operating mode variable denote the quantities of

individual inputs (refinery streams, utilities, capacity,

costs) and outputs (different refinery streams) per unit

of process throughput in a particular operating mode,

as well as the relevant properties of the output streams.

Depending on the number of processes and

refinery streams represented, a typical single-refinery,

single-time-period LP model contains about

1,500–5,000 constraints, and 5,000–15,000 variables.

Refinery models have highly structured matrices,
composed of the various process and blending

sub-matrices, linked by the volume balance and

property balance constraints. The matrices are

relatively dense, but have low super-sparsity (because

the input/output coefficients in the process

representations tend to be unique).

Coefficients

The coefficients for the crude oil distillation

sub-matrix usually are drawn from crude oil assays.

A crude oil assay is an assembly of data on the

composition and property of a whole crude oil and of

15–20 boiling range fractions of that of that crude,

developed through laboratory testing.

Crude assays exist for all crude oils in commerce;

many, but not all, of these assays are in the public

domain.

Commercial software products called crude oil

assay managers with associated assay libraries are

widely used to generate the coefficients for

representing the crude oil distillation process in

a refinery model, with user-specified boiling ranges

for the crude fractions.

The coefficients for the sub-matrices representing the

refining processes are refinery-specific in most models

and are derived, directly or indirectly, from experimental

data. Depending on the process, the data may come from

laboratory testing, pilot plant operations, refinery-level

plant testing, refinery accounting systems, and process

simulators (detailed engineering models of individual

refining processes). In general, all of these sources of

refinery data are proprietary.

Some non-proprietary, generalized correlations and

data for characterizing refining processes are available

in the open literature, primarily in a few textbooks

(e.g., Maples (2000), Gary et al. (2000)) and articles

in refining industry trade journals.

Populating a refinery optimization model with

realistic input/output coefficients is a highly

specialized undertaking, requiring considerable

knowledge of refinery operations and refining

technology – subjects that are at some remove from

operations research.
Nonlinearities in Refinery Models

To this point, this overview of refinery optimization

models seems to imply that refining operations are
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linear in nature and therefore can be suitably

represented as linear programming models.

Refining operations are subject to mass balance,

energy balance, and volume balance constraints, all

of which are linear, as are the constraints that

govern multi-ingredient blending to meet

product specifications (as long as the blending is

simply physical mixing with no chemical interactions

between ingredients). Consequently, refinery

optimization was a natural pioneering application for

linear programming. And even today, LP remains the

optimization method of choice for many refinery

modeling applications.

However, refinery operations actually embody

many nonlinear phenomena, some of which can have

a strong influence on refining operations and

economics. Almost from the beginning, a steadily

increasing number of refining organizations have

sought to enhance their capabilities to capture these

nonlinearities in their refinery optimization models and

thereby more accurately represent the true capabilities

and limitations of their refining facilities.

Some of the nonlinearities of interest are economic in

nature and bear on the objective function; others involve

underlying physical processes and relationships and bear

on the constraint set. Many of these nonlinearities,

including the five discussed below, are incorporated

readily in refinery models, facilitated in many instances

by the capabilities of commercial solvers.

Investments in New Refining Capacity

Existing refineries often invest in additional processing

capacity – either new process units or expansion of

existing ones – in order to increase total production

capacity, produce new products, upgrade the value of

existing products, or comply with new regulatory

standards bearing on product quality or performance

characteristics.

Often, the capacity added for a given process

is represented by a continuous variable (whose value is

expressed in a capacity measure, such as K barrels/day),

and the corresponding investment is approximated by

multiplying this variable by a constant investment rate

coefficient (whose value is in $/(barrel/day)).
I ¼ a�Q (1)

where I is the investment (in K$), Q is the capacity

added (in $/barrel/day), and a is the investment rate
factor ($/(barrel/day)). The value of the investment

rate factor depends on the refining process and the

refinery’s location.

However, the capital investment required to add

new refining capacity enjoys economies of scale; that

is, the investment per unit of added capacity is not

a constant, but decreases with increasing total amount

of added capacity. The standard relationship between

the amount of new capacity added and the required

capital investment is
I ¼ b�Qb (2)

where I is the investment (in K $), Q is the capacity

added (in K barrels/day), b is a constant whose value

depends on the refinery’s location, and b is an

exponent whose value depends on the refining

process in question. Most refining processes have a b
value in the range of 0.6–0.7.

Equation (2) is a non-convex function. It can be

represented in a refinery MP model in one of several

ways.

One approach is to (1) assign a set of binary (0–1)

variables to each of three or four standard levels of new

capacity addition (e.g., 10 K barrels/day, 20 K barrels/

day, etc.) for each refining process that is a candidate

for investment and (2) for each such set, add

a constraint specifying that at most one of the

variables in the set can take on the value 1 in an

optimal solution (or, equivalently, define the set of

binary variables for each refining process as a Special

Ordered Set Type 1 (SOS1)). Each of the binary

variables carries a coefficient denoting the capital

investment for the capacity addition it represents,

obtained from the (2) for each process.

Another approach is to represent (2) for each

process that is a candidate for investment as

a piecewise linear function by means of a Special

Ordered Set Type 2 (SOS2) for each such process.

Semi-Continuous Quantities

In many situations, restrictions exist on the minimum

and maximum volume of a particular flow or the

minimum and maximum extents to which

a particular operation can be performed. For example,

pipeline off-takes from a refinery are subject to the

pipeline’s regulations on the minimum and

maximum size shipments that it will accept.

Similarly, purchases of tanker-borne crude oil are
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subject to volume to volume limits determined by the

size of the tanker and its cargo compartments.

These and similar constraints can be represented in

refinery models by means of semi-continuous

variables: variables that can be either zero or

continuous within a range defined by a strictly non-

zero lower bound and (optionally) an upper bound.

Semi-continuous variable capability is available in

most commercial having mixed-integer-programming

(MIP) capability.

Quality Blending

In the canonical product blending problem, the

ingredients blend linearly with respect to the blend

properties that are subject to limits (specifications).

That is, the properties of the blended product

requirements are the weighted averages of the

corresponding properties of the various ingredients.

This is linear blending.

Many refinery models represent the blending of

refined products to specifications just that way.

However, there is more to the specification blending

of refined products than simple linear blending. Some

of the specifications to which refined products are

blended pertain to purely physical properties

(e.g., sulfur content, density); other to chemical

properties (e.g., octane, volatility, etc.). Blending to

specifications on physical properties is indeed linear,

as defined above. However, blending of chemical

properties often is not linear, because of the

interactions among different chemical interactions

that occur when individual ingredients (blendstocks

in refining parlance) are blended together. For

example, consider two gasoline blendstocks, one

having 90 octane, the other 70 octane. A 50/50 blend

of the two might yield a blend octane of, say, 82 or 77

(not 80), depending on the chemical interactions

involved. Moreover, the blend octane may vary with

the relative amounts of the two blendstocks. This is

nonlinear blending.

Several techniques are available for representing

nonlinear blending. The most widely used one

involves the use of blending indices in place of

blendstock properties. A blending index for a given

nonlinear property is an empirically determined

function of that property such that the function blends

linearly, even though the property itself does not. For

example, consider the property Reid Vapor Pressure

(RVP), a standard measure of gasoline volatility. RVP
blends nonlinearly, but the RVP Index, defined here,

blends linearly.
RVP Index ¼ RVPr (3)

where the value of the exponent r is about 1.17

(Different refiners may use slightly different values

for r).
Some blending indices involve more complicated

functions of the underlying property. For example,

Pour Point (PP), a measure of diesel fuel’s ability to

flow at low temperature, has a Pour Point Index

given by:
PP Index ¼ EXP 1:85þ 0:042� PPð Þ½ � (4)

Many gasoline and diesel fuel blending properties

are represented by such blending indices in refinery

models.

Gasoline octane blending is a special instance of

nonlinear blending for two reasons. First, octane has

a relatively high marginal refining cost; refiners do not

wish to “give away” octane in the course of meeting

the octane standards. Second, the blending octane of

a gasoline blendstock (i.e., the apparent octane

contribution of the blendstock to the finished blend)

is a function not only of the blendstock’s native octane

but also the composition of the finished blend.

The refining industry has developed special methods,

based on laboratory data, to estimate blend octanes

over a range of compositions. These methods,

outlined by Maples (2000), are beyond the scope of

this article.

Pooling

Pooling is the mixing or commingling of multiple

streams (crude fractions or refinery streams)

into a new stream (the pool), whose

properties (e.g., density, sulfur content, etc.) are the

volume-weighted averages of the properties of the

individual streams entering the pool:
QjV ¼ SiqijVi ) Qj ¼ SiqijVi = SiVi (5)

where V is the volume of the pool stream, Qj is the j
th

property (e.g., density) of the pooled stream, Vi is the

volume of the ith stream making up the pool, and qij is

the jth property of that stream.
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The qij are constant coefficients, but V and the Vi

are variables, whose values are known only when the

model returns a solution. Thus, the properties (Qj) of

the pooled stream are nonlinear function of model

variables and can be determined only after a solution

is in hand.

Consequently, it is not possible to define exact

representations of those effects on downstream

refining operations that depend on the properties of

the pooled stream. These effects reside in the refining

process and specification blending sub-matrices. Thus,

not only do the optimal volumes of the pooled stream,

V, and the streams making up the pool, Vi, depend on

the properties of the pool stream, but also the economic

value of the pool stream V.
The original, or traditional, approach to formulating

refinery models does not address pooling at all – not

because the problem was not recognized but because

the analytical tools needed to address it were not then

at hand. In the traditional approach (still widely used),

crude distillation and each of the downstream refining

processes are represented in discrete sub-matrices. In

the crude distillation sub-matrix, each crude oil is

represented by its own input/output vector, in which

the output coefficients are the volumetric yields of the

various cuts. This representation implies that (1) the

various crude oils, each with their own properties and

yield patterns, are segregated from one another as they

go through the crude distillation unit and (2) the

boiling range cuts from the various crude oils are

likewise segregated from one another as they move to

the downstream processes. In the downstream process

sub-matrices, each feed is attributable to a particular

crude oil and each is represented by its own input/out

vector. This scheme represents each process operating

as if it were processing a group of segregated feed

streams, each with its own operating mode, rather

than one pool stream.

Refinery models formulated in this way tend to

contain many more stream flow variables, and many

more blendstock variables and blending options, than

there are in the “real” refinery. This can lead, in certain

situations, to over-optimization – the model’s

returning solutions indicating better refining

economics than the real refinery can achieve.

Explicit representation of the stream pooling that

occurs in real refineries calls for special model

formulation and solution techniques. The most
widely used modeling technique is called Distributive

Recursion (DR), a variant of SLP developed expressly

to deal with the pooling problem in models of refining

and other process flow industries. First developed in

the late 1970s, DR has come into increasingly wide use

as the required software tools have become more

widely available.

In DR, the model user provides initial estimates of

the Qi for all of the pool streams. The procedure uses

these estimates to conduct an initial solution pass,

which returns (1) the downstream dispositions and

marginal value of each pool and (2) the volumes, Vi,

of each stream entering each pool. Using the new set of

Vi values, the DR procedure re-estimates the various

pool qualities. The difference between the nth and

n + 1st estimates for a given pool is called its quality

error. DR distributes each quality error across the

various downstream dispositions of each pool and

initiates a new solution pass incorporating the new

estimates of pool qualities and quality errors. DR

conducts a series of such solution passes that seek to

converge to an optimal solution in which the quality

errors are driven to zero (to within a user-specified

tolerance).

Performance of Refining Processes

In the original, or traditional, approach to formulating

refinery models, each downstream process is

represented in a discrete sub-matrix. Each process

sub-matrix comprises a set of variables (vectors),

each denoting a unique combination of

(1) a segregated (not pooled) feed stream to the

process and (2) a particular operating mode for the

process (defined by physical operating conditions,

such as temperature). Each such variable has a unique

set of input/out coefficients, defining the operation of

the process. This representation implies that

(1) processes behave linearly, independent of the

composition and properties of their feeds and

(2) each (notionally) segregated stream can be

processed at its own set of operating conditions as it

flows through the process. In reality, process

performance depends on the properties of the pooled

feed to the process.

With the advent of DR, some refining companies

sought a more rigorous representation of refining

processes that used pooled input streams and

captured the effects of input stream properties on the
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yields and properties of the output streams. This effort

led to the base-delta (B-D) approach to

representing refining processes in optimization

models (Bodington 1995).

In the B-D approach, each downstream process is

represented in a discrete sub-matrix, comprising:

• One or more base vectors, each denoting operation

of the process with a typical, or base, feed and

a standard, or base, operating mode.

The input coefficients on the base vector(s) denote

those properties of the pooled feed that affect the

yields and properties of the process outputs. The

output coefficients denote the yields and properties

of the various outputs, when the process is operating

at base conditions.

• A set of delta vectors for each base vector. The

solution values taken on by the various delta

vectors are determined as part of the overall model

solution obtained via DR.

The coefficients on each delta vector denote the

effects of a small change in one pooled feed

property (relative to the base property) on the

yields and properties of the various outputs. Each

delta vector coefficient is, in effect, the partial first

derivative of a particular process output property

with respect to an input property. The set of all delta

vector coefficients for a process is equivalent to

a Jacobian matrix for the process.

Both the base yield coefficients and the delta vector

coefficients usually are generated by means of detailed

engineering models (called process simulators) of the

various processes, or (less likely) by generalized

correlations or plant testing. Modern refinery

modeling systems that offer DR now provide

interfaces to process simulators. These interfaces link

the process simulators directly to a refinery

optimization model and allow them to be invoked at

each DR solution pass to dynamically update the some

or all of the delta coefficients in response to the current

DR solution. Use of this facility increases the

likelihood of reaching a local optimum.

Finally, the traditional representation of crude

distillation, the refinery’s front-end process, treats the

cut point temperatures of the various crude fractions

(e.g., 160o–250o F for a light naphtha stream) as

constants. The advent of DR allows the cut points

themselves to be recursed variables, an option that is

now widely used.
Comments on Distributed Recursion (DR)

As with any non-linear technique, DR can – and often

does – return solutions that are only locally optimal. In

particular, the DR procedure requires initial estimates

of the properties of each pool and the fractional

distributions of each pool to its various downstream

dispositions. The specific values of these estimates

determine whether the DR procedure converges to

a global optimum or to a local optimum. The more

pooled streams and the greater the number of pool

dispositions in the model, the more likely that the

model will return a local optimum.

Capturing the analytical benefits of DR requires

considerable software and intellectual resources,

including:

• Some means – whether process simulators or sets of

correlations – of dynamically representing the

effects of process input properties on process

output yields and properties;

• An array of special software, including a crude oil

assay manager, process simulators (or their

functional equivalent), and facilities to execute

and control the recursive solution process; and

• Sound model formulation practices, careful

estimation of the initial values of stream properties

and distributions, and proper settings for the

DR procedure’s control parameters and tolerances.

Only analysts with access to the necessary system

resources and with extensive experience in refinery

modeling in general and DR in particular are likely to

obtain useful and timely results with DR.

However, many refinery modeling applications do

not require the degree of precision that DR is intended

to provide in representing the capabilities and

limitations of refining facilities. In particular, high

accuracy in representing refining facilities may not be

warranted in applications, such as tactical and strategic

planning, that have planning horizons measured in

years, rather than months or weeks. Long planning

horizons involve substantial uncertainty regarding

crude oil prices, product demands, and other

economic factors. These applications place

a premium on the ability to rapidly analyze and

compare many different model instances, each

representing a future economic scenario – as opposed

to analyzing a few model instances with greater

precision in the representation of refining facilities.



P 1130 Petroleum Refining
In these situations, the conventional refinery modeling

approach, not the DR approach, is usually the method

of choice.
Model Management for Refinery Models

Model management is “the care and feeding” of large

scale modeling applications. It is a complex of

information processing functions that includes model

formulation (in an electronic format), data up-dating,

case management, matrix generation, optimizer

control, solution reporting, model and solution

analysis, and model maintenance. All operational use

of large scale optimization models involves the

performance of these and other functions – whether

manually, with an ad hoc collection of software tools,

or with a purpose-built software system.

As the size and scope of refinery optimization

models increased, the burdens of model management

became apparent. The first software tools designed

specifically to address elements of model

management (as opposed to model solution) were the

matrix generation languages fielded in the late 1950s

and early 1960s (e.g., Haverly System’s MaGen™ and

(later) OMNI™; Bonner & Moore’s MARVEL™ and

(later) GAMMA™). These were procedural

programming languages with special functionality

and features for generating refinery LP models in

optimizer input format and generating output reports

on model solutions. The matrix generation languages

were a large step forward, but they did not provide

a full range of model management functionality.

Somewhat later, a new set of software tools for

matrix generation and reporting entered commercial

use: the algebraic modeling languages: (e.g.,

GAMS™, AMPL™, MPL™, MODELER™, and

AIMMS™). These are symbolic modeling languages,

in which the model formulator expresses the model’s

constraints and variables symbolically, in an

algebra-like syntax. They also provide facilities for

model up-dating and report generation.

Starting in the 1950s, many of the major refining

companies undertook development of their own

comprehensive refinery modeling systems, some

using commercial matrix generation languages,

others using standard programming languages of the

times. Beale (1978) describes British Petroleum’s
approach to model management. Palmer et al. (1984)

describes the conceptual and design foundations for

Exxon’s PLATOFORM™ model management system.

At one time, PLATOFORM routinely handled more

than one hundred mathematical programming

applications in Exxon. Bodington and Baker (1990)

reference other companies’ efforts in model

management system development.

As a consequence of the waves of consolidation and

down-sizing that swept through the petroleum industry

starting in the 1980s, most refining companies

curtailed or abandoned their efforts to develop and

maintain their own model management systems.

A few companies still maintain their in-house model

management systems. But most refining companies

have now supplanted their in-house systems with

one of the generalized refinery modeling systems

brought into commerce by independent developers

(e.g., PIMS™ (AspenTech), GRTMPS™ (Haverly

Systems), and RPMS™ (Honeywell Hi-Spec

Solutions)).

Commercially available modeling systems must be

instantiated with data specific to the refinery of

interest: crude oil assays, process capacities and

performance characteristics, stream properties, and

product specifications. Once instantiated, the

generalized refinery modeling systems offer

extensive functionality for refinery modeling,

including DR (as an option), comprehensive model

management functionality, and compatibility with

crude oil assay managers, process simulators,

spreadsheets, relational databases, and a number of

standard commercial solvers.
Concluding Remarks

The petroleum industry pioneered the application of

OR/MS across all of its primary operations, and has

provided the impetus and the financial support for

many advances in OR/MS software tools and

analytical methods. This symbiotic relationship is

particularly strong in the petroleum refining sector.

Since the earliest days of OR/MS, refining has been

a particularly rewarding domain for applying OR/MS

methods in general, and especially linear programming

(LP) and its extensions (in particular, mixed

integer programming (MIP), special ordered sets
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(SOS1 and SOS2), and successive linear programming

(SLP)). As a result, OR/MS applications – especially

linear and mathematical programming applications – are

ubiquitous and fully embedded in refining operations.

Although petroleum refining is a mature area of

application for OR/MS, the tools and methods

available to refining industry practitioners continue to

improve in terms of speed and functionality. Further

advances are likely to come in the realm of model

management.

Development and application of optimization

models in the refining sector requires deep

knowledge of refining technology and economics.

Knowledge of optimization algorithms and software

tools is necessary but not sufficient for successful

application of OR/MS in the refining sector.
See

▶Linear Programming

▶Mathematical Programming

▶Model Management

▶Nonlinear Programming

▶ Special-Ordered Sets (SOS)
P
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PFI

▶ Product Form of the Inverse (PFI)
Phase I Procedure

That part of the simplex method directed towards

finding a first basic feasible solution.
See

▶Artificial Variables

▶Linear Programming

▶ Phase II Procedure

▶ Simplex Method (Algorithm)
Phase II Procedure

The part of the simplex algorithm that finds an optimal

basic feasible solution, starting with Phase I basic

feasible solution or an initial basic feasible solution.
See

▶Linear Programming

▶ Phase I Procedure

▶ Simplex Method (Algorithm)
Phase-type Distribution

▶ Phase-type Probability Distributions
Phase-type Probability Distributions

Marcel F. Neuts

The University of Arizona, Tucson, AZ, USA
The probability distributions of phase-type, or

PH-distributions, form a useful general class for the
representation of nonnegative random variables.

A comprehensive discussion of their basic properties

is given in Neuts (1981). There are parallel definitions

and properties of discrete and continuous

PH-distributions, but the discussion here emphasizes

the continuous case.

The simplest example is the Erlang random

variable, which can be expressed as the sum of

independent exponentially distributed random

variables. As a result, one can construct a realization

of an Erlang random variable by going through a series

of phases, one for each exponential random variable;

hence, the Erlang distribution is a phase-type

distribution. Generalizing this phase-type idea

governs the movement through the phases by

a Markov chain that permits movement back and

forth between the interior phases, with the final stage

being an absorbing barrier.

More specifically, a probability distribution F(�) on
[0, 1) is of phase type if it can arise as the absorption

time distribution of an (m + 1)-state Markov chain with

m transient states 1,. . .,m and an absorbing state 0. The

generator Q of such a Markov chain is written as
Q ¼ T T0

0 0

� �
;

where T is a nonsingular m � m matrix with negative

diagonal elements and nonnegative off-diagonal

elements. If e denotes a column vector with all

components equal to one, then the vector T0 satisfies

T0¼�Te. The initial probability vector of the Markov

chain is specified as ða; a0Þ. Without loss of generality,

it may be assumed that the generator,

Q� ¼ T þ ð1� a0Þ�1T0a, is irreducible.
The general formula for the PH-distribution F(�) is

then

FðxÞ ¼ 1� a exp ðTxÞe; for x � 0:

The pair ða; TÞ is called a representation of F(�).
The PH-distribution F(�) has a point mass a0 at 0 and

a density F0ðxÞ ¼ � exp ðTxÞTe ¼ a exp ðTxÞT0
, on

(0, 1). The Laplace-Stieltjes transform f(s) of F(�) is
f ðsÞ ¼ amþ1 þ aðsI � TÞ�1T0; for Re s � 0:

Its moments ln; n � 1, are all finite and given by

ln ¼ ð�1Þn n ! aT�n e. Some special classes of

http://dx.doi.org/10.1007/978-1-4419-1153-7_200648
http://dx.doi.org/10.1007/978-1-4419-1153-7_200964
http://dx.doi.org/10.1007/978-1-4419-1153-7_545
http://dx.doi.org/10.1007/978-1-4419-1153-7_200595
http://dx.doi.org/10.1007/978-1-4419-1153-7_200768
http://dx.doi.org/10.1007/978-1-4419-1153-7_545
http://dx.doi.org/10.1007/978-1-4419-1153-7_200594
http://dx.doi.org/10.1007/978-1-4419-1153-7_200768
http://dx.doi.org/10.1007/978-1-4419-1153-7_755
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PH-distributions are the hyperexponential

distributions

FðxÞ ¼
Xm
v¼1

av 1� e�lvx
� 	

;

which may be represented by a ¼ ða1; . . . ; amÞ;
amþ1 ¼ 0, and T ¼ �diagðl1; . . . ; lmÞ, and the

(mixed) Erlang distributions
FðxÞ ¼
Xm
v¼1

pvEvðl; xÞ;

which are represented by

a ¼ ðpm; pm�1 ; . . . ; p1Þ; amþ1 ¼ 0, and
T ¼

�l l 0 � � � 0 0 0

0 �l l � � � 0 0 0

� � � � � �
0 0 0 � � � 0 �l l
0 0 0 � � � 0 0 �l

2
66664

3
77775
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Uses of Phase-type Distributions

The utility of PH-distributions is due to their closure

properties, which allow standard operations such as

convolution and mixing to be represented by matrix

operations. Many classical simplifying properties of

the exponential distribution have analogs in the

matrix formalism for PH-distributions. In the analysis

of probability models, PH-distributions often lead to

tractable results without the severe restriction of

exponential assumptions. Integrals involving

PH-distributions also can usually be evaluated by

stable recurrence relations or differential equations.

Moreover, the phase-type distributions form a dense

subset of the probability distributions on [0,1), in that

any such distribution can in principle be uniformly

approximated by a sequence of PH-distributions.
Examples of closure properties are:

(a) If F(�) is a PH-distribution with representation

ða;TÞ and mean l
0
1, the corresponding delay

distribution F ∗(�) with density ðl0
1Þ

�1½1� FðxÞ�
is PH with representation (p, T) where

p ¼ ðl0
1Þ

�1
að�TÞ�1

.

(b) If F(�) ðwith a0 ¼ 0Þ is the service time

distribution of a stable M/G/1 queue with arrival

rate y and service time distribution H(�) of mean

m
0
1, such that r ¼ ym

0
1 < 1, the (steady-state)

distribution W(�) of the waiting time is PH. Its
representation is given by (g, L), where g ¼ rp,
L ¼ T + rT0p. For the M/PH/1 queue, the

distribution W(�) may therefore be computed by

integrating a system of linear differential

equations, rather than by solving the

Pollaczek-Khinchin integral equation.

The fact that any probability distribution on [0, 1)

can be approximated by PH-distributions is of

somewhat limited practical application, although very

good PH-approximations to classes such as the

Weibull distributions have been obtained. Because of

the following general result, that denseness property is,

however, of considerable theoretical utility.

Suppose that a stochastic model involves

one or more general probability distributions Fj(�),
1 � j � N, on [0, 1), requiring evaluation of

a continuous functional F[F1(�),. . ., FN(�)]. If an

expression for F(�) can be found for the case where

F1(�),. . ., FN(�) are PH-distributions and if that

expression does not explicitly depend on the

formalism of PH-distributions, then it is also valid for

arbitrary distributions F1(�),. . ., FN(�). This result has
been used to establish various moment and other

formulas in the theory of queues.

There is an extensive literature on phase-type

distributions and their applications, including topics

such as the structural geometric properties of families

of PH-distributions, the approximation of other

families of distributions by those of phase-type, and

the fitting of PH-distributions to data. An important

characterization of PH-distributions was proved in

O’Cinneide (1990). Procedures for the approximation

by PH-distributions are discussed in Asmussen et al.

(1992), Johnson (1993) and Schmickler (1992). The

appearance of phase-type distributions in some

unexpected places in queueing theory was noted in

Asmussen (1992).
See

▶Erlang Distribution

▶Hyperexponential Distribution

http://dx.doi.org/10.1007/978-1-4419-1153-7_200188
http://dx.doi.org/10.1007/978-1-4419-1153-7_200299
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▶Markov Chains

▶Markov Processes

▶Queueing Theory
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Piecewise Linear Function

A function that is formed by linear segments or one

that approximates a nonlinear function by linear

segments.
Pivot Column

The column vector of coefficients associated with the

entering basis variable in a simplex method iteration.

Also, more generally, the column that contains the

pivot element of a Gaussian elimination step or

similar process.
See

▶Eta Vector

▶Gaussian Elimination

▶Matrices and Matrix Algebra

▶ Pivot Element

▶ Pivot Row

▶ Simplex Method (Algorithm)
Pivot Element

In the simplex method, the coefficient of the pivot

column whose row index corresponds to the basic

variable that is to be dropped from the basis. Also,

the element of the pivot column in a Gaussian

elimination step that is selected to be on the diagonal

of the associated upper triangular matrix.
See

▶Eta Vector

▶Gaussian Elimination

▶Matrices and Matrix Algebra

▶ Pivot Column

▶ Pivot Row

▶ Simplex Method (Algorithm)
Pivot Row

The row corresponding to the position of the basic

variable that is to be dropped from the basis in

a simplex method iteration. In general, the row

correspoding to the row position of a pivot element in

a Gaussian elimination step.
See

▶Eta Vector

▶Gaussian Elimination

▶Matrices and Matrix Algebra

▶ Pivot Column

▶ Pivot Element

▶ Simplex Method (Algorithm)
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Pivot-Selection Rules

In the simplex method, the pivot selection rules

determine which variable is to enter the basic solution

and which variable is to be dropped. Depending on the

solution at hand, the rules are designed to preserve

feasibility (nonnegativity) of the solution (primal-

simplex method), or to preserve the optimality

conditions (dual-simplex method). In either case, the

rules attempt to select an entering variable that would

cause and improvement in the objective function. These

rules are often augmented with anti-degeneracy or

anticycling rules, and procedures for maintaining

sparsity and numerical accuracy.
See

▶Bland’s Anticycling Rules

▶Density

▶Devex Pricing

▶Linear Programming

▶Matrices and Matrix Algebra

▶ Perturbation Methods

▶ Simplex Method (Algorithm)
P

PMF

Probability mass function.
PO

▶ Postoptimal Analysis
Point Stochastic Processes

Igor Ushakov

Qualcomm Inc., San Diego, CA, USA
Introduction

A point process is a stochastic process {N(t), t � 0},

where N(t) ¼ number of occurrences by time t, which
describes the appearance of a sequence of instant
random events in time. Usually (though not always)

intervals between two neighboring events are

considered to be independently distributed. A process

of this type is called a point process with restricted

memory. If times between occurrences are

a sequence of independent and identically distributed

(i.i.d.) random variables, the point process is

called a renewal or recurrent point process. The

Poisson process represents a particular case of

a renewal process in which the intervals between

occurrences are exponentially distributed (Cox and

Isham, 1980; Daley and Vere-Jones, 2002, 2007;

Franken et al. 1981).

A special type of point process can be formed

by two independent subsequences of random

variables that alternate, as in the sequence X1, Y1, X2,

Y2,.... Such a process is called an alternating point

process, and more specifically, an alternating renewal

process if the X and Y subsequences are themselves

ordinary renewal processes.
Thinning of a Point Process

In some cases, events are excluded from the point

process with a specified probability. For instance,

a unit failure leads to a system failure only if

several additional random circumstances happen. This

exclusion of events is called a thinning procedure. If the

thinning procedure results in the (normalized)

probability of the event exclusion going to 1, the

resulting point process converges to a Poisson process.

This statement is reflected in strong terms in Renyi’s

Limit Theorem and in its generalization made byYu. K.

Belyaev (see Gnedenko et al. 1969). For practical

purposes, the result means that if the mean time

between neighboring events in the initial recurrent

process equals T, and each event is excluded from this

process with the probability p close to 1, the resulting

process will be a Poisson process with parameter
l ¼ 1� p

T
:

The Superposition of Point Processes

The next important statement concerns the

superposition of point processes, which is formulated

http://dx.doi.org/10.1007/978-1-4419-1153-7_200009
http://dx.doi.org/10.1007/978-1-4419-1153-7_200131
http://dx.doi.org/10.1007/978-1-4419-1153-7_200140
http://dx.doi.org/10.1007/978-1-4419-1153-7_545
http://dx.doi.org/10.1007/978-1-4419-1153-7_597
http://dx.doi.org/10.1007/978-1-4419-1153-7_200592
http://dx.doi.org/10.1007/978-1-4419-1153-7_200768
http://dx.doi.org/10.1007/978-1-4419-1153-7_200618
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in the Khinchine-Osokov Limit Theorem (Khinchine

1960; Osokov 1956) and later generalized in the

Grigelionis-Pogozhev Limit Theorem (Grigelionis

1964; Pogozhev 1964). On a qualitative level, the

theorem states that a limiting point process, which is

formed by the superposition of independent

“infinitesimally rare” point processes, converges to

a Poisson process. For instance, if a piece of

equipment consists of a large number of blocks and

modules, the flow of its failures may well

be considered to form a Poisson process. The

parameter of this resulting process is expressed as

a sum of the parameters of the initial processes,

that is, if there are n recurrent processes (n >> 1),

each of them with mean Ti, then the resulting process

will be close to a Poisson process with parameter

l ¼
X
1�i�n

1

Ti
:

As a consequence of these results, the Poisson

process plays a role in the theory of stochastic

processes that is analogous to that of the normal

distribution in general probability and statistical

theory.
See

▶ Poisson Process

▶Queueing Theory

▶Renewal Process

▶ Stochastic Model
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Point-to-Set Map

A function that maps a point of one space into a subset

of another.
Poisson Arrivals

Term used when customers coming to a queueing

system follow a Poisson process; this also implies

that the time between customer arrivals are

independent and identical distributed random

variables following an exponential distribution with

mean equal to the inverse of the Poisson arrival rate.
See

▶Exponential Arrivals

▶ Poisson Process

▶Queueing Theory
Poisson Process

A stochastic, renewal-counting point process

beginning from time t ¼ 0 with N(0) ¼ 0 that

satisfies the following assumptions is called a Poisson

process with rate l: (1) the probability of one event

happening in the interval (t, t + h] is lh + o(h),

where o(h) is a function which goes to zero faster

than h; (2) the probability of more than one event

http://dx.doi.org/10.1007/978-1-4419-1153-7_200606
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
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http://dx.doi.org/10.1007/978-1-4419-1153-7_200202
http://dx.doi.org/10.1007/978-1-4419-1153-7_200606
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happening in (t, t + h] is o(h); and (3) events happening
in non-overlapping intervals are statistically

independent. (Either (1) or (2) can be replaced

by: the probability of no event happening in the

interval (t, t + h] is 1 � lh + o(h)). For such

a Poisson process, the times between events

(renewals) are independent and identically

exponentially distributed with mean 1/l. In Kendall’s

queueing notation, arrivals following a Poisson

process would be represented by “M” as in an M/G/1

queue. An important property of Poisson arrival

processes in queueing theory is PASTA (Poisson

arrivals see time averages).
See

▶Kendall’s Notation

▶Markov Chains

▶Markov Processes

▶ PASTA

▶Queueing Theory
P
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Introduction

Applications of OR/MS to the representation and

electoral processes are considered here. The narrower

definition of politics is followed, denoting the theory

and practice of managing political affairs in

a party sense (Webster’s New Collegiate Dictionary

1951). In particular, applications to the following are

considered:

• Apportionment

• Districting

• Voting methods and logistics, and

• Election analysis
Apportionment

This is the process of equitably assigning a fixed

number of legislators to a lesser number of political

subdivisions. In the United States, 435 congressional

districts must be apportioned to 50 states with each

state receiving at least one district. The method of

rounding to an integer solution influences the

political result.

Balinski and Young (1982) have provided an

exceptional mathematical analysis of the issue along

with an historical, nontechnical exposition. In 1791,

following the first U.S. census, Jefferson and Hamilton

proposed alternative methods for apportionment, the

method of greatest divisors (take the ratio of every

state’s population and the largest divisor such that the

integer portions of the ratios add up to the number of

representatives to allocate,) and the method of greatest

remainders (take the population in a political unit,

divide by the total population and multiply by the

number of seats, allocate the integer portion, allocate

the remaining seats in order of the size of the

remainders until there are none left). Washington

exercised the first presidential veto when he

disagreed with Congress’ support of Hamilton’s

method.

Most methods are biased; for example Jefferson’s

favors the more populated states while the method used

in the United States since 1941, the “method of equal

proportions” (also known as the Hill or Huntington

method) discriminates against them. In this method

a multiplier for adding the nth congressperson

to a state is constructed by taking the square root of

1/[n(n � 1)], n > 1. The product of the multipliers and

the states’ populations are sorted from highest to

lowest for all states together. After each state is given

one seat, the remaining seats are given to the 385

highest products of the populations and the

multipliers. Other methods exhibit the paradox of

a state’s apportioned number of seats declining as the

total number of representatives increases even when all

states’ populations are unchanged!

Balinski and Young (1982) conclude that there can

be no perfect method. However, Senator Daniel

Webster promoted a method called “major fractions”

(frequently used between 1842 and 1932), which has

been felt by many to be preferable. It is simple, and

exhibits neither bias nor the population paradox.

http://dx.doi.org/10.1007/978-1-4419-1153-7_200360
http://dx.doi.org/10.1007/978-1-4419-1153-7_579
http://dx.doi.org/10.1007/978-1-4419-1153-7_582
http://dx.doi.org/10.1007/978-1-4419-1153-7_200582
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
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Furthermore, Webster’s method (find a divisor for the

populations of each political unit such that the rounded

quotients sum to the total number of legislators to be

allocated), is more likely than the other methods to

give each state its proportional number of seats,

either rounded up or rounded down (Ernst 1994).

See Apportionment Politics for detailed descriptions

of apportionment methods and examples of the

paradoxes that result from the different apportionment

methods.

In most countries once the districts are established

the candidate with the most votes wins. In Switzerland

an alternative approach is taken to ensure that smaller

parties are represented, Beroggi (2010). First, seats are

allocated to states using major fractions. Second, seats

are allocated to parties at the national level using the

samemethod. With these allocations as constraints, the

seats in every district are allocated to parties,

minimizing the deviations between the real-valued

allocation and integer number of seats ultimately

given to each party in each district.
Redistricting

This is the process of defining geographic boundaries

for the representatives in a political unit such as a city,

state, province, or country. Historically, the party

controlling the legislature draws districting maps to

protect incumbents and increase their party’s chances

of maintaining control.

In 1962, the Supreme Court required population

equality among districts, demanding more careful

mapping than the usual prior political process (Baker

v. Carr 1962). A variety of techniques to computerize

the mapping process appeared. Most approaches

incorporated population equality with the additional

criteria that each district be:

– Contiguous, a single land parcel,

– Compact, consolidated rather than spread out, and

– Designed without political consideration.

Hess et al. (1965) solved a sequence of transportation

linear programs. In each LP, equal population was

allocated to trial district centers to minimize total cost.

The measure of cost was compactness defined as the

second moment of population about its district center.

Centroids of the resultant districts became new centers

for repeating the linear program. Successive solution of

the transportation problems trended to more
compactness while maintaining near population

equality. Their heuristic handled problems as large as

350 population units by 19 districts. Larger problems

were apportioned into smaller ones. This Ford

Foundation-supported program was used for

districting in at least seven states.

Hojati (1996) used Lagrangian relaxation to

determine the center of districts and then the

transportation model to assign population units to

districts, followed by a capacitated transportation

model to rejoin split population units. George et al.

(1997) have generalized the transportation LP into

a minimum-cost network-flow formulation that

permits more flexible objective functions. They

demonstrate objective (cost) functions that include

penalties for:

– District populations deviating from the average or

exceeding some maximum deviation,

– Districts crossing geographic barriers, and

– Changes from prior district boundaries.

The procedure has been applied in preparing

New Zealand legislative-district boundaries involving

assignment of 35,000 geographic units to 95

Parliamentary districts.

Garfinkel and Nemhauser (1969) developed a tree

search algorithm that minimizes compactness while

constraining maximum allowable population

deviation. Their measure of district compactness is

the diameter squared divided by area. Computation

speed and capacity limited the problem size to about

50 population units by seven districts.

Nygreen (1988) redistricted Wales by three

different solution methods: solving the integer

programming formulation directly, using set

partitioning (a variant of Garfinkel and Nemhauser’s

technique), and using implicit enumeration to structure

the search of the tree of solutions. Although his

example was small, he concluded that the integer

programming technique was inferior. He felt

problems to about 500 population units by

60 districts could be solved efficiently by set

partitioning. Twenty years of computer improvement

permit a tenfold larger problem!

All these redistricting techniques require

apportioning a problem too large for solution into

many smaller and solvable ones. Apportioning first

has added benefits: small political subdivisions are

more likely to remain intact and district boundaries

will more often coincide with political boundaries.
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Hess (1971) showed how first apportioning New York

legislative seats to groups of counties minimizes the

number of counties that must be in more than one

district.

Mehrotra et al. (1998) model the problem as

a constrained graph-partitioning problem as in

Garfinkel and Nemhauser (1969) and develop

a specialized branch-and-price based solution

methodology rather than use implicit enumeration.

Their reason for generating districts and solving the

partitioning problem is to guarantee contiguous districts.

They did not work directly with the facility location/

p median problem because ensuring contiguity would

require an exponential number of constraints as with

sub-tour elimination in the traveling salesman problem.

Bozkaya et al. (2003) developed a tabu search approach

to solving the problem while restricting the search to

contiguous districts, again, not representing contiguity

directly because of the perceived difficulty of capturing

contiguity.

For such a heavily researched problem with so

many successful researchers working on it over

decades one would not expect an important

breakthrough on a problem as difficult as the

contiguity problem. However, two approaches

represent contiguity directly in a model without any

combinatorial explosion. Williams (2002) shows how

to enforce contiguity using constraints on trees defined

over the primal and dual planar graphs of the districts.

Shirabe (2009), building on work by Zoltners and

Sinha (1983), imposes contiguity by modeling trees

with constraints that require the adjacent nodes

connected by a positive flow be in the same district

and the root node have an inflow that matches the

number of geographic units assigned to the district.

Thus, there has been substantial analytic progress in

developing usable models for doing districting using

integer programming formulations.

Meanwhile, the courts and legislatures have been

slow to articulate permissible or required criteria for

districting. A multitude of definitions or measures of

compactness are available for Court selection, but all

suffer from one flaw or another (Young 1988).

In the United States “one man, one vote” is still the

law of the land. The 1982 Voting Rights Act requires

states with histories of racial discrimination to provide

a reasonable chance of minority elections (Van Biema

1993). However, the Supreme Court (Shaw v. Hunt

1996) ruled that racial considerations cannot alone
justify bizarre shaped districts. While the courts

scrutinize the results of districting, they have not yet

challenged the process (Browdy 1990), let alone find

political gerrymandering to be unconstitutional.

Associate Supreme Court Justice Breyer has regretted

that the Court failed to take a stand (King 2010).

Political parties have been free to use proprietary

software to generate districting plans that would make

Governor Gerry blush. Computer services generated

over 1,000 plans for Florida alone, making it difficult

for the press and public to criticize gerrymandering

(Miniter 1992). It is possible to predict when

gerrymandering will happen: if only one political

party controls the legislature and the politicians

control the process without an independent oversight

board, the districts will be drawn to the advantage of

that party. That is, the process is important in

determining the outcome.

The problem with gerrymandered districts after

they are drawn is, like pornography, we know it when

we see it. However, it is very difficult to define what

gerrymandering is in advance. Consequently, any

effort to reduce the degree of gerrymandering has to

include not only good analytical models but also good

governance processes.

Should the courts order an open districting process

or bipartisanship necessitate, optimization models and

algorithms could provide a viable approach to aid in

redrawing representative boundaries (Browdy 1990).

Given the unwillingness of politicians to give up the

advantages that come from manipulating district

boundaries, the likely eventual outcome will be a mix

with optimization modeling establishing baselines and

politicians making limited adjustments. Designing

such a process will be an interesting challenge.
Voting Methods and Logistics

The application of approval voting was pioneered in

the election processes of The Institute of Management

Sciences (Fishburn and Little 1988). Here, a voter

checks off (approves) any number of the candidates

on a ballot, from a single one to potentially every one,

with the person having the most checks being declared

the winner. Regenwetter, and Grofman (1998) confirm

the value of approval voting by examining the

outcomes of seven elections, one of them being an

INFORMS election.
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Savas et al. (1972) reduced the number of New

York City election districts by locating multiple

voting machines at polling places. The City achieved

significant cost savings and increased the probability

voters would find functioning machines, without

a significant increase in voter distance to the polls.
Election Analysis

The literature on OR in elections is sparse. The main

roles seem to be in forecasting and game-theoretic

analyses of policies. Barkan and Bruno (1972) used

allocation techniques and statistical analysis to aid the

1970 California election campaign of Senator Tunney.

Their analyses targeted precincts for voter registration

and get-out-the-vote efforts. The key to their success

was the ability to identify swing precincts by

estimating party loyalty. Soberman and Sadoulet

(2007) provide a game-theoretic analysis of rules to

limit campaign spending.

A great deal of effort has been put into forecasting

the outcome of elections. Campbell and Lewis-Beck

(2008) survey past work in forecasting U.S.

presidential elections and Lewis-Beck (2010) covers

European election forecasting. Both of these articles

are introductions to special issues on election

forecasting, covering the broadly defined approaches

of surveys, econometric analyses, and crowd sourcing

such as the Iowa Electronic Market where people bet

on the outcome and the prices and odds are set as in

pari-mutuel betting. See also Kaplan and Barnett

(2003).
See

▶ Integer and Combinatorial Optimization

▶Linear Programming

▶Location Analysis

▶Transportation Problem
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Pollaczek-Khintchine Formula

For the M/G/1 queueing system, with L defined

as the steady-state expected number of customers

in the system, l the customer arrival rate, 1/m the

mean service time and s2 the variance of

the service distribution, the Pollaczek-Khintchine

(P-K) (mean-value) formula gives

L ¼ rþ r2 þ l2s2
� 	

=½2ð1� rÞ�

where r ¼ l=m. Sometimes, the formulas for mean

queue size, Lq, mean line delay, Wq, and mean

system waiting time, W, which can be easily derived

from L using Little’s formula, are also called the

P-K formulas. More generally, there are associated

transform relationships giving the generating function

of the steady-state number in system (or queue length)

and the Laplace transform of the steady-state

delay/waiting times in terms of the Laplace transform

of the service time distribution, which are referred to as

Pollaczek-Khintchine (P-K) transform formulas.
See

▶Queueing Theory
Polling System

Where a single server visits each group of customers

(queue) in cyclic order and then polls to see if there
is anyone present. If yes, the service facility

serves those customers under such rules as gated

(serve only those present when polled) or exhaustive

(serve until no customers are left at the location).
See

▶Networks of Queues

▶Queueing Theory
Polyhedron

The solution space defined by the intersection of

a finite number of linear constraints, an example of

which is the solution space of a linear-programming

problem. Such a space is convex.
See

▶Convex Set

▶Linear Programming
Polynomial Hierarchy

A general term used to refer to all of the various

computational complexity classes.
See

▶Computational Complexity
Polynomially Bounded (�Time)
Algorithm (Polynomial Algorithm)

An algorithm for which it can be shown that the

number of steps required to find a solution to

a problem is bounded by a polynomial function of the

problem’s data.
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See

▶Computational Complexity

▶Exponential-Bounded (–Time) Algorithm
Polynomial-Time

▶Computational Complexity
Polynomial-Time Reductions and
Transformations

▶Computational Complexity
POMDP

▶ Partially Observed Markov Decision Processes
Population-based Search Methods

Optimization search methods that propagate

a population of solutions from iteration to iteration of

the algorithm, generally using evolutionary operators.

Examples include genetic algorithms, ant colony

optimization, and particle swarm optimization.
See

▶Evolutionary Algorithms

▶Genetic Algorithms

▶ Particle Swarm Optimization

▶ Swarm Intelligence
Portfolio Analysis

▶ Financial Engineering

▶ Portfolio Theory: Mean-Variance Model
Portfolio Theory: Mean-Variance Model

John L. G. Board1, Charles M. S. Sutcliffe2 and

William T. Ziemba3,4

1Henley Business School, University of Reading,

Reading, UK
2University of Reading, Reading, UK
3University of British Columbia, Vancouver,

British Columbia, Canada
4Oxford University, Oxford, UK
Introduction

The heart of the portfolio problem is the selection of

an optimal set of investment assets by rational economic

agents. Although elements of portfolio problems

were discussed in the 1930s and 1950s by Allais, De

Finetti, Hicks, Marschak and others, the first formal

specification of such a selection model was by

Markowitz (1952, 1959), who defined a mean-variance

model for calculating optimal portfolios. Following

Tobin (1958, 1965), Sharpe (1970) and Roll (1972),

this portfolio selection model may be stated as

Minimize x0Vx
subject to x0r ¼ rp

x0e ¼ 1

(1)

where x is a column vector of investment proportions

in each of the risky assets, V is a positive semi-definite

variance-covariance matrix of asset returns, r is

a column vector of expected asset returns, rp is the

investor’s target rate of return and e is a column

unit vector. An explicit solution for the problem can

be found using the procedures described in Merton

(1972), Ziemba and Vickson (1975), or Roll (1972).

Restrictions on short selling can be modeled by

augmenting (1) by the constraints

x � 0 (2)

where 0 is a column vector of zeros. The problem

now becomes a classic example of quadratic

mathematical programming; indeed, the development

of the portfolio problem coincided with early

developments in nonlinear programming. Formal

investigations of the properties of both formulations,

http://dx.doi.org/10.1007/978-1-4419-1153-7_141
http://dx.doi.org/10.1007/978-1-4419-1153-7_200204
http://dx.doi.org/10.1007/978-1-4419-1153-7_141
http://dx.doi.org/10.1007/978-1-4419-1153-7_141
http://dx.doi.org/10.1007/978-1-4419-1153-7_200580
http://dx.doi.org/10.1007/978-1-4419-1153-7_308
http://dx.doi.org/10.1007/978-1-4419-1153-7_200261
http://dx.doi.org/10.1007/978-1-4419-1153-7_200581
http://dx.doi.org/10.1007/978-1-4419-1153-7_200832
http://dx.doi.org/10.1007/978-1-4419-1153-7_1144
http://dx.doi.org/10.1007/978-1-4419-1153-7_775
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and variants, appear in Szegö (1980), Huang and

Litzenberger (1988), and the references above.

The Use of Mean and Variance

The economic justification for this model is based

on the von Neumann-Morgenstern expected utility

results, discussed in this context by Markowitz (1959).

The model can also be viewed in terms of consumer

choice theory together with the characteristics model

developed by Lancaster (1971). His argument is that

goods purchased by consumers seldom yield a single,

well-defined service; instead, each good may be viewed

as a collection of attributes, each of which gives the

consumer some benefit (or disbenefit). Thus, preference

is defined over those characteristics embodied in a good

rather than over the good itself. The analysis focuses

attention on the attributes of assets rather than on

the assets per se. This requires the assumption that

utility depends only on the characteristics. With k

characteristics, Ck,
P

U ¼ f ðWÞ ¼ g Cl; . . . ;Ckð Þ

where U andW represent utility and wealth. Modeling

too few characteristics will yield apparently

false empirical results. Clearly, the benefits of

this approach increase as the number of assets rises

relative to the number of characteristics. The objects

of choice are the characteristics C1,. . ., Ck.

In portfolio theory, these are taken to be payoff

(return) and risk.

At Markowitz’s suggestion, when dealing

with choice among risky assets, payoff is measured

as the expected return of the distribution of returns,

and risk by the standard deviation of returns. Apart

from minor exceptions (Ziemba and Vickson 1975),

this pair of characteristics form a complete description

of assets which is consistent with expected utility

theory in only two cases: assets have normal

distributions, or investors have quadratic utility of

wealth functions. The adequacy of these assumptions

has been investigated by a number of authors

(e.g., Borch 1969; Feldstein 1969; Tsiang 1972).

Although returns have been found to be non-normal

and the quadratic utility has a number of objectionable

features (not least diminishing marginal utility

of wealth for high wealth), several authors

demonstrate approximation results that are sufficient
for mean-variance analysis (Samuelson 1970; Ohlson

1975; Levy and Markowitz 1979).

A number of authors, including Markowitz (1959),

consider alternatives to the variance and suggest the use

of the semi-variance. This suggestion has been extended

into workable portfolio selection rules. Fama (1971)

and Tsiang (1973) have argued the usefulness of the

semi-interquartile range as a measure of risk. Kraus

and Litzenberger (1976) and others have examined

the effect of preferences defined in terms of the third

moment, which allows investor choice in terms of

skewness. Kallberg and Ziemba (1979, 1983) show

that risk aversion preferences are sufficient to

determine optimal portfolio choice if assets have

normally distributed returns whatever the form of the

assumed, concave, utility function.

Solution of Portfolio Selection Model

In the absence of short sales restrictions, (1) can be

rewritten as

Minimize L ¼ 1
2
x0Vx� l1 x0r � rp

� 	
� l2 x0e� 1ð Þ (3)

The first-order conditions are
Vx ¼ l1r þ l2e

which shows that, for any efficient x, there is a linear

relation between expected returns r and their

covariances, Vx.

Solving for x:

x ¼ l1V�1r þ l2V�1e ¼ V�1 r e½ �A�1 rp1
� �0

(4)

where
A ¼ a b
b c

� �
¼ r0V�1r r0V�1e

r0V�1e e0V�1e

� �

Substituting (4) into the definition of portfolio

variance, x0Vx, yields
Vp ¼ rp1
� �

A�1 rp1
� �0

; and

Sp ¼
cr2p � 2brp þ a

ac� b2

" #1 2=
(5)
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where Vp and Sp represent portfolio variance and

standard deviation, respectively. This defines

the efficient set, which is a hyperbola in

mean/standard-deviation space (or a parabola

in mean/variance space). The minimum risk is at

Smin ¼ c1 2= and rmin ¼ b c= (both strictly positive).

Rational risk averse investors will hold portfolios

lying on this boundary with r � rmin.

Each efficient portfolio, p, has an orthogonal

portfolio z (i.e., such that Cov(rp, rz) ¼ 0) with return

rz ¼ a� brp
� 	

b� crp
� 	

Using this, the efficient set degenerates into the

straight line tangent to the hyperbola at p which has

intercept rz,
r ¼ rz þ ls (6)

where r and s represent vectors of the expected return

and risks of efficient portfolios, and l ¼ rp � rz
� 	

Sp


can be interpreted as the additional expected return per

unit of risk. This is known as the Sharpe ratio

(Sharpe 1966, 1994). Equation (6) shows a two-fund

separation theorem, such that linear combinations of

only two portfolios are sufficient to describe the

entire efficient set.

Under the additional assumptions of homogeneous

beliefs (so that all investors perceive the same

parameters) and equilibrium, (6) becomes the Capital

Market Line. The Security Market Line (i.e.,

the relationship between expected returns and

systematic risk or b), which is the outcome of the

Capital Asset Pricing Model (CAPM), can be derived

by pre-multiplying (4) by V and simplifying using the

definitions of Vp and rz:
r ¼ rzeþ rp � rz
� 	

b (7)

where b ¼ Vx Vp


. If it exists, the risk-free rate of

interest may be substituted for rz (definitionally,

the risk-free return will be uncorrelated with the

return on all risky assets). Equation (7) then becomes

the original CAPM in which expected return is

calculated as the risk-free rate plus a risk premium

(measured in terms of an asset’s covariance with the

market portfolio). The CAPM forms one of

the cornerstones of modern finance theory and is not

appropriately addressed here. Discussion of the CAPM
can be found in Huang and Litzenberger (1988)

and Ferson (1995), while systematic fundamental and

seasonal violations of the theory are presented in

Ziemba (1994) and Keim and Ziemba (1999).
Short Selling

The assumption that assets may be sold short

(i.e., xi < 0) is justified when the model is used to

derive analytical results for the portfolio problem.

Also, when considering equilibrium (e.g., the

CAPM), none of the short selling constraints

should be binding (because in aggregate, short selling

must net out to zero). However, significant short

selling restrictions do face investors in most real

markets. These restrictions may be in the form of

absolute prohibition, the extra cost of deposits to

back short selling or self imposed controls designed

to limit potential losses.

The set of quadratic programming problems to

find the efficient frontier when short sales are ruled

out can be formulated as either minimizing

the portfolio risk for a specified sequence of portfolio

returns (rp) by repeatedly solving (1) and (2), or

maximizing the weighted sum of portfolio risk and

return for a chosen range of risk-return tradeoff

parameters (m) by repeatedly solving (8) as below.

This latter approach has the advantages of locating

only points on the efficient frontier and, for

evenly spaced increments in m, locating more points

on the efficient frontier where its curvature is greatest:

Maximize a ¼ x0Vx� m x0r � rp
� 	

Subject to x � 0

x0e ¼ 1
(8)

When short sales are permitted, a position (long or

short) is taken in every asset, while when short

selling is ruled out, the solution involves long

positions in only about 10% of the available assets.

When short selling is permitted, about half the assets

are required to be sold short, often in large amounts,

and sometimes in amounts exceeding the initial

value of the investment portfolio. Indeed, this is the

main activity of ‘short seller’ funds.

In contrast, most models based on portfolio theory,

in particular the CAPM, ignore short selling
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constraints (Markowitz 1983, 1987). This change is

consistent with the development of equilibrium

models for which institutional restrictions are

inappropriate (and if imposed would not be binding).

However, when short selling is permitted, the number

of asset return observations is required to exceed

the number of assets, while complementary slackness

means that this condition need not be met when

short selling is ruled out. Computational procedures

to solve mean-variance models with various types of

constraints, and the optimal combination of safe and

risky assets for various utility functions are discussed

by Ziemba et al. (1974).
P

Estimation Problems

The model (1) requires estimates of r and V for

the period during which the portfolio is to be held.

This estimation problem has been given

relatively little attention, and many authors, both

practitioners and academics, have used historical

values as if they were precise estimates of future

values. However, Hodges and Brealey (1973), among

others, demonstrate the benefits obtained from

even slight improvements on historical data.

Estimation risk can be allowed for either by

using different methods to forecast asset returns,

variances and covariances, which are then used in

place of the historical values in the portfolio model,

or by using the historical values in a modified

portfolio selection technique (Bawa et al. 1979).

Since the portfolio selection model of Markowitz

takes these estimates as parametric, there is no

theoretical guidance on the estimation method and

a variety of methods have been proposed to provide

the estimates. The single index market model of

Sharpe (1963) has been widely applied in the

literature to forecast the covariance matrix.

Originally proposed to reduce the computation

required by the full model, it assumes a linear

relation between stock returns and some measure of

the market, r ¼ aþ b0m ¼ « (for market indexm and

residuals «). This uses historical estimates of the

means and variances. However, the implied

covariance matrix is V1 ¼ umbb0 þ V, where um is

the variance of the index, b is a column vector of

slope coefficients from regressing each asset on

the market index and V is a diagonal matrix of the
variances of the residuals from each of these

regressions. A number of studies have found

that models based on the single index model

outperform those based on the full historical

method (e.g., Board and Sutcliffe 1994).

The overall mean method, first proposed by

Elton and Gruber (1973), is based on the finding

that, although historical estimates of means are

satisfactory, data are typically not stable enough to

allow accurate estimation of the N N � 1ð Þ 2=

covariance terms. The crudest solution is to assume

that the correlations between all pairs of assets

expected in the next period are equal to the mean of

all the historic correlations. An estimate of V can then

be derived from this. Elton et al. (1978) compared the

overall mean method of forecasting the covariance

matrix with forecasts made using historical values,

and four alternative versions of the single index

model. They concluded that the overall mean model

was clearly superior. A simplified procedure for

estimating the overall mean correlation appears in

Aneja et al. (1989).

Statisticians have shown increasing interest in

Bayesian methods (Hodges 1976) and particularly

James-Stein estimators (Efron and Morris 1975,

1977; Judge and Bock 1978; Morris 1983). The

intuition behind this approach is that returns that

are far from the norm have a higher chance of

containing measurement error than those close to it.

Thus, estimates of returns, based on individual share

data, are cross-sectionally ‘shrunk’ towards a global

estimate of expected returns which is based on

all the data. Although these estimators have unusual

properties, they are generally expected to perform well

in large samples.

Jorion (1985, 1986) examined the performance

of Bayes-Stein estimation using both simulated

and small real data sets and concluded that the

Bayes-Stein approach outperformed the use of

historical estimates of returns and the covariance

matrix. However, Jorion (1991) found that the index

model outperformed Stein and historical models.

Board and Sutcliffe (1994) applied these and other

methods to large data sets. They found that, in contrast

to earlier studies, the relative performance of Bayes-

Stein was mixed. While it produced reasonable

estimates of the mean returns vector, there

were superior methods (e.g., use of the overall mean)

for estimating the covariance matrix when short sales
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were permitted. They also found that, when

short sales were prohibited, actual portfolio

performance was clearly improved, although there was

little to choose between the various estimationmethods.

An alternative approach is to try to control for errors

in the parameter estimates by imposing

additional constraints on (1). Clearly, ex-ante

the solution to such a model cannot dominate (1),

however, ex-post, dominance might emerge (i.e.,

what seems, in advance, to be an inferior portfolio

might actually perform better than others).

The argument is that adding constraints to (1) to

impose lower bounds (i.e., prohibiting short sales)

and/or upper bounds (forcing diversification) can be

used as an ad hoc method of avoiding the worst

effects of estimation risk. Of course, extreme,

but possibly desirable, corner solutions will also

be excluded by this technique. Cohen and Pogue

(1967) imposed upper bounds of 2.5% on any

asset. Board and Sutcliffe (1988) studied the

effects of placing upper bounds on the investment

proportions, which may be interpreted as a response

to estimation risk. Using historical forecasts of

returns and the covariance matrix, and with short

sales excluded, they found that forcing diversification

leads to improved actual performance over the

unconstrained model. Hensel and Turner (1998) have

also studied adjusting the inputs and outputs to

improve portfolio performance.

Chopra and Ziemba (1993), following the work of

Kallberg and Ziemba (1984), showed that errors in

the mean values have a much greater effect than

errors in the variances, which are in turn more

important than errors in the covariances. Their

simulations show errors of the order of 20 to 2 to 1.

This quantifies the earlier findings and stresses the

importance of having good estimates of the asset

means.

Another approach is to use fundamental analysis

to provide external information to modify the

estimates (Hodges and Brealey 1973). Clearly,

among the simplest external data to add are the

seasonal (e.g., turn of the year, and month and

weekend) effects that have been found in most stock

markets around the world. Incorporation of these

into the parameter estimates can substantially

improve the performance of the model. Ziemba

(1994) demonstrated the benefits of factor models to

estimate the mean returns.
Concluding Remarks

Only the single period mean-variance portfolio

theory model has been considered here. Most of

the extensions to multi-period models assume

frictionless capital markets, which require the solution

of a sequence of instantaneous mean-variancemodels in

which the existence of transactions costs adds

enormously to the complexity of the problem. Surveys

covering dynamic portfolio theory appear in

Constantinides and Malliaris (1995), Ziemba

and Vickson (1975), Huang and Litzenberger (1988),

and Ingersoll (1987); see also Ziemba and

Mulvey (1998).
See

▶Banking

▶ Financial Engineering

▶ Financial Markets

▶Linear Programming

▶Nonlinear Programming

▶Quadratic Programming
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The study of how a solution changes with respect to

(usually) small changes in the problem’s data. In

particular, this term is applied to the sensitivity

analysis and parametric analysis of a solution to

a linear-programming problem.
See
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Practice of Operations Research and
Management Science

Hugh J. Miser

Farmington, CT, USA
Introduction

The practice of OR/MS here will mean using the

appropriate models, tools, techniques, and craft

skills of these sciences to understand the problems of

people/machine/nature systems with a view toward

ameliorating these problems, possibly by new

understandings, new decisions, new procedures, new

structures, or new policies. Such practice calls for

a suitable form of professionalism in dealing not only

with the phenomena of the problem situation but also

with the persons with relevant responsibilities, as well

as other parties at interest.
OR/MS as a Science

Following Ravetz (1971), science in general may be

described as “craft work operating on intellectually

constructed objects,” each object defining a class.

Scientific work is thus aimed at establishing new

properties of these objects and verifying that they

reflect the reality of the classes of phenomena that

http://dx.doi.org/10.1007/978-1-4419-1153-7_889
http://dx.doi.org/10.1007/978-1-4419-1153-7_545
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http://dx.doi.org/10.1007/978-1-4419-1153-7_526
http://dx.doi.org/10.1007/978-1-4419-1153-7_733
http://dx.doi.org/10.1007/978-1-4419-1153-7_174
http://dx.doi.org/10.1007/978-1-4419-1153-7_615
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they represent (Miser 1993). This description has four

implications:

1. The intellectual objects – that OR/MS workers

usually call models – are created by the

imagination, informed by earlier knowledge of the

phenomena and objects that have described them

successfully, as well as innovative ideas or new

evidence from reality.

2. There is a continuing reference to the phenomena of

reality.

3. Scientific inquiry then becomes the search for new

properties of the classes both by manipulating the

objects and seeking new evidence from reality as

a basis for revising them.

4. The new properties deduced from the objects – or

models – must then be compared with the

appropriate aspects of the phenomena of reality.

It is essential to observe that the different

sciences – such as physics, biology, or OR/MS – are

distinguished, not by their methods, techniques, or

models (many of which are widely shared among the

sciences), but by the portions of reality in which they

are undertaking to understand, explain, and solve

problems (Kemeny 1959).

Within the framework established by this

conception, it is convenient to distinguish three

classes of problems, depending on their goals:

to paraphrase Ravetz (1971), scientific problems

(where the goal of the work is to establish new

properties of the objects of inquiry, and the ultimate

function is to achieve knowledge in its field); technical

problems (those where the function to be performed

specifies the problem); and practical problems

(where the goal of the task is to serve or achieve

some human purpose and the problem is brought into

being by recognizing a problem situation in which

some aspect of human welfare should be improved).

Against this background, practice can be recognized

as the activity centered on practical problems, even

while noting that to solve a practical problem often

involves solving technical problems, and, when the

basic phenomena underlying a problem situation are

not understood, solving scientific problems in order to

have the models needed for understanding the practical

problem. It is also important to note that this view of

science includes work on all three classes of problems

within the conception of science as a whole. (For a more

extended summary of Ravetz’s view of science, see

Miser and Quade 1988).
The Context of OR/MS

Since sciences are distinguished by their fields of

inquiry, it is important to describe this context for

OR/MS if it is to be differentiated from other

sciences. In this endeavor the OR/MS community has

not reached any sort of brief consensus, so what is said

here must be regarded as a personal view, based in part

on the literature and in part on personal experience.

While OR/MS deals with systems involving people,

elements of nature, and machines (where this last term

is intended to include not only artifacts but also laws,

standard procedures, common behaviors, and social

structures and customs), attempts to take the concept

of system beyond this primitive statement as the basis

for describing the context of OR/MS have, however,

not proved fruitful.

The concept of an action program (Boothroyd 1978)

is more useful: a function, operation, or response that is

related to and given coherence by a human objective,

need, or problem, together with the system of people,

equipment, portion of nature, organizational elements,

and management or social structure involved.

It is easy to see that an element in an action program

may also have membership in other action programs; for

example, an executive in one may also play a role in

many others, as may also be the case for a major facility

or organization, such as a large corporation or a

government. Too, an action program may produce

effects on other action programs, both through the cross

memberships of elements and by the direct impacts of

what it does. (For a more extended summary of

Boothroyd’s concept, see Miser and Quade 1988).

The practice of OR/MS can then be described as

the activity that brings the knowledge and skills of

the science of OR/MS to bear on the problems of

action programs (Miser 1997). While this

brief description will suffice as a basis for the

argument here, the reader should be aware of the facts

that, while it is quite general and covers most of what

OR/MS does in practice now, it not only may not cover

all of today’s activities of practice but also may become

even more incomplete with the passage of time.
The Situations of Practice

While each situation in practice may properly be seen

as unique, it is nevertheless possible to describe one
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that contains elements central to most – if not all – of

practice, as follows.

An OR/MS analyst is often consulted when

someone with a suitable responsibility in an action

program discerns a problem situation that needs

improvement. While this responsible person may

have diagnosed the problem and even may have

a notion about a possible solution, it is commonly the

case that the forces actually yielding the source of

dissatisfaction lie buried deeply enough to make such

a diagnosis questionable, and the preconceived fix

inappropriate. Thus, typically it is best for the

analyst – or the team of analysts if the problem

situation is complex – to approach it with an open

mind, and aim to explore it thoroughly before

deducing its properties and using them to devise

a scheme for ameliorating its undesirable properties.

The analysts may be drawn from two sources:

1. There may be an analysis group inside the

organization or action program with which

the responsible problem-situation identifier – or

client – is associated.

2. Analysts may have to be drawn from outside this

organization or action program. In either case, there

is abundant experience to support the conclusion

that a successful outcome of the practice

engagement calls for creating a constructive

partnership between the analysis team and the

parties at interest in the problem situation, as will

be discussed in more detail later.
The Processes of Practice

Figure 1 offers a synoptic view of the elements that

may be included in a practice engagement that

proceeds from the general unease of a problem

situation to the implementation of some policy or

course of action and evaluates its effects. Since each

situation has its own unique properties, few OR/MS

practice engagements follow such a procedure exactly,

but it is a common experience for many – if not

most – of these elements to occur at some stage of

the work.

Formulation – The work begins with a thorough

exploration of the problem situation in which the

client and his/her action program cooperate.

The purpose is to formulate the problem to be

addressed, which commonly is quite different from
the one originally conceived by the client. Once this

is done, and the client has agreed with the analysis

team on the problem, it is possible to plan the work to

be done. This early work also identifies the values and

criteria that should inform the choice of what

eventually will be done to ameliorate the client’s

concerns, sets up the objectives to be sought by the

solution, and agrees with the client on the boundaries

and constraints that must be observed in devising it.

Usually this problem formulation step is one in

which the analysts take the lead and work through it

in informal cooperation with the client’s staff.

On occasion, however, it is best for a group

consisting of both analysts and members of the

client’s staff to work together somewhat more

formally toward a problem structure. To this end,

there are various types of methods (Rosenhead 1996)

that can be adapted to these situations. While the

results of such a problem-structuring activity are

usually a prelude to a more detailed analysis to

follow, it sometimes happens that the insights from

the group activity shared between the analysts and

the client’s staff are adequate to show what should be

done to ameliorate the problem situation.

Research – This stage extends the information-and

data-gathering that began in the formulation stage. The

findings that emerge from processing these results

allow the analysis team to identify, design, and

screen possible alternatives that may help with the

problem. Against this background, the analysis team

can build models capable of deducing the

consequences of adopting each of the alternatives

chosen for further investigation within the contexts of

possible future conditions.

Evaluation and Presentation –With estimates of the

consequences in hand, the analysts may compare – and

possibly rank – the alternatives against the criteria

chosen earlier in the analysis, plus any new ones that

may have emerged during the work. These findings

must then be presented to the client and other parties

at interest in a way that enables them not only to

appreciate the results but also have at least a broad

overview of the logic that produced them. These

understandings may then enable the client to adopt

a suitable policy or course of action.

Although the client, and not the analysts, must

decide on what to do and how to carry it out

effectively, experience shows that it is very important

for the analysis team, or at least analysts who
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understand and appreciate what was done, to work

cooperatively throughout the implementation stage,

as discussed later.
Variations

While it is possible to specify a core diagram of the

principal elements of OR/MS practice, it must

be admitted immediately that few, if any, such

engagements follow this outline exactly. Rather,

since each problem situation is different, the analysis

activity must be adapted to it. Thus, in studying a series

of cases, one sees variations like these:

– Instead of proceeding linearly from the top to the

bottom of Fig. 1, the work cycles from intermediate

stages back to earlier ones as the progress brings

new insights and fresh intermediate results that
may prompt reconsideration of the beginning

foundations of the work.

– Some work may be aimed more at fleshing out the

client’s understanding of his situation than

prompting him/her to change it significantly, so it

may stop at one of the intermediate stages.

– The relative effort expended in the various

stages may vary tremendously from case to

case: one case may have to expend its major

effort in just the information-and data-gathering

stage, after which what needs to be done may be

fairly apparent without much further analysis.

Another case may proceed fairly expeditiously

through the outline of Fig. 1 and then have

a very long and complicated period of work to

achieve what may appear to the outsider to be the

implementation of a relatively simple set of

proposals.
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– In some cases an intermediate stage may dominate

the work, owing to such factors as technical

difficulty in devising proper models, major

uncertainties in forecasting future contexts,

complexities of the underlying situation, and so on.

In any case, the procedure specified here as the basis

for discussion must be regarded as one that has stitched

together the key elements that may enter OR/MS

practice to varying extents depending on the

peculiarities of the situation being studied.
The Importance of Following Through

The interest of the OR/MS professional, particularly if

academically oriented, may flag after the research

stage is completed and its results obtained. However,

experience shows strongly that to stop there is almost

always to waste the earlier effort. Two essential steps

must follow: effective communication of the results,

and cooperative aid in the implementation process.

Communication – This process, which may not be

as appealing to the analyst as the research that

preceded it, is nevertheless equally important and

deserves great care, since communicating the findings

inadequately can vitiate their potential effect, and thus

waste the earlier effort. In view of the importance of

this step in the OR/MS process, it is surprising that

there is no systematic literature describing the skills

needed and setting forth how they are best used

(for a brief exception see Miser 1985). The

discussion will be restricted to these points:

– Few clients will devote a large block of time to such

communications, so it is very important to work

very hard to condense the principal ideas and

findings into as economical a space as possible,

whether the form used is oral or written. For

example, a top executive may want the key

findings presented to him or her in a two-page

memorandum or a 20-min briefing. It is perhaps

surprising to the uninitiated to see how much

important information can be condensed into so

small a space, but only if great care is taken to

make the best use of it. Graphs and charts

accompanying the words can do much to aid this

condensation.

– To communicate effectively, the client’s

vocabulary must be used, with as few technical

terms introduced as possible.
– The whole must be focused on the interests of the

client or the audience; after a major study many

different groups may have to be addressed, and

when this is the case the communication

instruments must in each case be tailored to the

group in view.

– The analysts must be prepared to stand behind their

work and to discuss its implications, even those that

may go beyond what was done as part of the

analysis.

Implementation – It is clear that, if the findings of an

OR/MS practice engagement do not find their way into

some sort of changed reality, the work is ineffective.

Therefore, it is obviously important for the analysis to

consider the issue of eventual implementation

throughout the work, keeping these points in mind:

1. Since the setting in which the work is being done

has properties that will affect how change can

be achieved, it is important for the peculiarities of

this setting to be kept in mind from the beginning

of the analysis. For example, can possible

prospective changes be accommodated easily

within the existing structure, or will it need to be

changed significantly?

2. Since the settings in which OR/MS work is done are

so various, it is impossible to stipulate a standard

pattern for implementation work. This implies that

the findings of the analysis may have to include

a prospective implementation structure and

program for the decision makers to consider as

part of their judgment about the worth of the

findings.

3. If the analysis considers different programs of

action, the comparisons leading to a preferred

choice should consider the relative difficulties of

implementation as part of the analysis.

4. The history of analysis records that many well

developed and clearly desirable program proposals

failed to be implemented because the needed

resources either did not exist or could not be

made available. Therefore, in conceiving an

implementation program as part of the findings of

an OR/MS study, it is important to consider its

resource requirements, as they will almost surely

be an important issue to consider in whether or not

to adopt the findings and translate them into action.

No matter how thoroughly the client – or members

of his or her staff who participated in the

analysis – understand what was found and its
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prospective implementation, it is a common

experience that the implementation process demands

the continuing interest and cooperation of the analysis

team, or at least some member of it who is able to

follow through. The process of change invariably

brings up new problems and issues that, wrongly

handled, can vitiate the effects of what the original

implementation set out to do. Too, these new

problems may call for additional complementary

analysis that must take account of what was

done earlier.

This continuing involvement by analysts in the

implementation process may take a variety of forms,

ranging from occasional consultation to a continuing

direct involvement of a substantial effort over such

a long period of time as to make the implementation

involvement a more ambitious enterprise than the

original analysis (for an example illustrating this last

point, see, Mechling 1995).

The roles of the analysts during implementation

may include such activities as these:

1. Conducting supplementary analyses when

situations arise calling for such work.

2. Helping all concerned keep the goals of the

implementation program in sight. (It is all too easy

for staff members involved, all of whom have

personal in institutional goals in mind, to corrupt

what is being done sufficiently that the original

goals emerging from the analysis are vitiated.)

3. Proposing changes in the implementation strategy

when they are called for by changing circumstance

or the appearance of difficulties not foreseen in the

beginning.

4. Acting as an on-site agent of persuasion when those

directly involved in the implementation program

need to have its goals clarified.

In sum, since an effective implementation phase is

essential to the success of an OR/MS engagement,

analysts should give it as much analytic and

administrative importance and support as the analysis

phase itself. For further elaboration of these points

about implementation, see Tomlinson et al. (1985).
Outcome evaluation – It not infrequently happens

that the outcomes of implementations are sufficiently

clear to satisfy all concerned. Sometimes, however, in

situations complex enough to make the outcomes

unclear, it is necessary to conduct additional analysis

to estimate the effectiveness of the implemented

program or policy. The familiarity of the analysis
team with the situation gives it an advantage in

conducting such an analysis. However, to eliminate

what may appear to be the original analysis team’s

bias in favor of a good outcome, clients may prefer to

call in a new group to conduct such an outcome

evaluation.
The Relation Between Analyst and Client

Emerging from a close scrutiny of the relations

that should exist between analyst and client for

effective cooperation, Schön (1983) advocates

a “reflective contract” that works in this way:

“. . . in a reflective contract between practitioner and

client, the client does not agree to accept the

practitioner’s authority but to suspend disbelief in it.

He agrees to join the practitioner in inquiring into the

situation for which the client seeks help; to try to

understand what he is experiencing and to make that

understanding accessible to the practitioner; to confront

the practitionerwhen he does not understand or agree; to

test the practitioner’s competence by observing his

effectiveness and to make public his questions over

what should be counted as effectiveness; to pay for

services rendered and to appreciate competence

demonstrated. The practitioner agrees to deliver

competent performance to the limits of his capacity; to

help the client understand the meaning of the

professional’s advice and the rationale for his actions,

while at the same time he tries to learn the meanings his

actions have for the client; and to reflect on his own tacit

understanding when he needs to do so in order to play

his part in fulfilling the contract.”

Under this concept for OR/MS work, the client’s

obligation to share his experience and understanding of

the problem situation is often discharged by assigning

a member of his staff to work with the analysis team,

an arrangement that has many benefits, among which

these may be listed: it helps the analysis team identify

and gather the information that it needs as

a background and basis for its work; it helps the

analysts avoid foolish mistakes related to the client’s

operations; and it acts to keep the client informed of

what is emerging from the analysis, which often helps

to pre-sell the findings that eventually merge.

Since OR/MS practice may be viewed as a dialogue

between analyst and client related to the problem

situation and the problem from it that is eventually
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chosen for analysis, this arrangement serves as a useful

continuing conduit for this dialogue, beyond what can

be achieved with periodic progress meetings with the

client (Miser 1994).

Other practical arrangements between the analysis

team and the client to implement Schön’s concept of

a reflective contract must, of necessity, be evolved in

the light of the circumstances peculiar to each

engagement. An inhouse analysis group that has been

able to achieve a reflective contract with the

organization of which it is a part has a special

opportunity: it can often identify problem situations

that may not yet have been observed by executives in

the organization, and thus set to work on them before

they grow in size and importance.
How to Learn the Skills of Practice

The OR/MS community has, unfortunately, not

evolved a comprehensive epistemology of practice

and set it down in easily accessible literature that can

be used widely in training courses. Some first steps in

this direction for systems analysis, the large-scale

efforts that can be thought of as part of OR/MS

practice, are taken in Miser and Quade (1985,1988)

and Miser (1995); much of what they say can apply

equally to OR/MS as a whole. Thus, to learn the

needed scientific and craft skills, someone aiming for

an OR/MS career must pursue a tripartite program

assembled from a variety of sources.

The intellectual basis – The foundation of effective

OR/MS practice must be a thorough education in

mathematics, with special attention to probability and

statistics. Since by now certain models have become

associated with OR/MS (as any introductory college

textbook makes clear), these should be mastered as

well. And a broad view of science with knowledge of

other branches is also sure to be helpful.

Beyond a good mathematical and scientific

education, however, the potential practitioner must

not only be willing but also eager to learn from the

problem situation, from the people in it, and from the

representatives of other specialties, both practical and

intellectual, that may have to be called on to help. As

Schön’s concept makes clear, to undertake an

engagement in practice is to enter a multipartite

partnership, and the flow of information must reflect

this if the work is to be effective.
Since the action programs that OR/MS

practice deals with contain people as essential

elements, the analysts must know how to deal

effectively and sympathetically with them, since they

will enter the problem situation at many levels. In

sum, interpersonal skills are an important requisite of

good practice.

Familiarity with successful cases – There are by

now a great many published accounts of successful

cases of OR/MS practice. The journal Interfaces

specializes in presenting them, and since 1975

has been a treasure-house of such accounts, as well as

proven advice about the arts of practice. Assad et al.

(1992) accompany a selection of these cases with

valuable commentary. For a much wider view, one

can consult the “Applications Oriented” section of

the International Abstracts in Operations Research,

the comprehensive abstract journal that has been

published since 1961; it will not only exhibit the

wide variety of practice being undertaken throughout

the world but also identify the many journals and books

in which cases appear. Rivett (1994) offers a broad

introduction to successful practice based on a lifetime

of varied experience.

Apprenticeship – Since the OR/MS community has

yet to achieve a widely agreed and centrally

documented view of its epistemology of practice, the

best way for a person to observe and learn the myriad

craft skills of practice is to work with an accomplished

and skillful analysis team – in sum, to serve an

apprenticeship (Miser and Quade 1985, 1988, offer

a substantial body of additional information relating

to the craft skills needed for effective OR/MS).
Examples of Good Practice

Since 1975, Interfaces has published the finalist papers

in the Franz Edelman competition for the best papers

on practice each year; there are five or more finalists in

each competition. These accounts are an excellent

central source of examples of good practice; in recent

years tapes of the finalist presentations have also been

made available.

There are many other sources of such work – too

many to list here; however, both Operations Research

and the Journal of the Operational Research Society

contain one or more examples of good practice in each

issue, as do the sources mentioned earlier.
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Precedence Diagramming

A graphic analysis of a project plan in which the

nodes are the work activities (or tasks) and are

connected by arrows. Relationships among tasks

are designated as start-to-start, start-to-finish, and

finish-to-finish, which eliminates the use of dummy

arrows.
See

▶Network Planning
Predictive Model

Amodel used to predict the future course of events and

as an aid to decision making.
See

▶Decision Problem

▶Descriptive Model

▶Mathematical Model

▶Model

▶Normative Model

▶ Prescriptive Model
Preemption

Concept having to do with how priorities are treated.

In queueing theory, this means that an arriving higher

priority customer pushes a lower one out of service

because the newcomer has higher priority; service of

the preempted customer later can either continue from

the point of its interruption (preemptive resume queue

discipline) or start totally anew. In goal programming

problem, it is a statement that stipulates the ordering of

the goals, so that a solution that satisfies the priority

k goal is always to be preferred to solutions that satisfy
the lower priority goals k + 1,....
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Introduction

Preference theory studies the fundamental aspects of

individual choice behavior, such as how to identify and

quantify an individual’s preferences over a set of

alternatives and how to construct appropriate

preference representation functions for decision

making. An important feature of preference theory is

that it is based on rigorous axioms which characterize

individual’s choice behavior. These preference axioms

are essential for establishing preference representation

functions, and provide the rationale for the quantitative

analysis of preference. Preference theory provides the

foundation for economics and the decision sciences.

A basic topic of microeconomics is the study of

consumer preferences and choices (Kreps 1990). In

decision analysis and operations research, knowledge

about the decision maker’s preference is necessary to

establish objective (or preference) functions that are

used for evaluating alternatives. Different decision

makers usually have different preference structures,

which may imply different objective functions for

them. Preference studies can also provide insights

into complex decision situations and guidance for

simplifying decision problems. The basic categories

of preference studies can be divided into
characterizations of preferences under conditions of

certainty or risk and over alternatives described by

a single attribute or by multiple attributes. This

article begins with the introduction of basic

preference relations and then discusses preference

representation under certainty and under risk.

A preference representation function under certainty

will be referred to as a value function, where as

a preference representation function under risk will

be referred to as a utility function.
Basic Preference Relations

Preference theory is primarily concerned with

properties of a binary preference relation >p on

a choice set X, where X could be a set of commodity

bundles, decision alternatives, or monetary gambles.

For example, an individual might be presented with

a pair of alternatives, say x and y (e.g., two cars), and

asked how they compare (e.g., do you prefer x or y?).
If the individual says that x is preferred to y, then write

x >p y, where >p means strict preference. If the

individual states that he or she is indifferent between

x and y, then this preference is represented as x 	p y.

Alternatively, define 	p as the absence of strict

preference, i.e., not x >p y and not y >p x. If

it is not the case that y >p x, then write x � p y,

where � p represents a weak preference

(or preference-indifference) relation. Also define

�p as the union of strict preference >p and

indifference 	p i.e., both x >p y and x 	p y.
Preference studies begin with some basic

assumptions (or axioms) of individual choice

behavior. First, it seems reasonable to assume that an

individual can state preference over a pair of

alternatives without contradiction, i.e., the individual

cannot strictly prefer x to y and y to x simultaneously.

This leads to the following definition for preference

asymmetry: preference is asymmetric if there is no pair

x and y in X such that x >p y and y >p x.
Asymmetry can be viewed as a criterion of

preference consistency. Furthermore, if’ an individual

makes the judgment that x is preferred to y, then he or

she should be able to place any other alternative z

somewhere on the ordinal scale determined by the

following: either better than y, or worse than x, or
both. Formally, define negative transitivity by

saying that preferences are negatively transitive if

http://dx.doi.org/10.1007/978-1-4419-1153-7_393
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
http://dx.doi.org/10.1007/978-1-4419-1153-7_393
http://dx.doi.org/10.1007/978-1-4419-1153-7_200625
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
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given x >p y in X and any third element z in X, it

follows that either x >p z or z >p y, or both.

If the preference relation >p is asymmetric and

negatively transitive, then it is called a weak order.

The weak order assumption implies some desirable

properties of a preference ordering, and is a basic

assumption in many preference studies. If the

preference relation >p is a weak order, then the

associated indifference and weak preference

relationships are well behaved. The following results

summarize some of these.

If strict preference >p is a weak order, then

1. strict preference>p is transitive (if x>p y and y>p z,

then x >p z);

2. indifference	 p is transitive, reflexive (x	p x for all
x), and symmetric (x 	p y implies y 	p x);

3. exactly one of x >p y, y >p x, x 	p y holds for each

pair x and y; and

4. weak preference �p is transitive and complete (for

a pair x and y, either x �p y or y �p x).

Thus, an individual whose preferences can be

represented by a weak order can rank all alternatives

considered in a unique order. Further discussions of the

properties of binary preference relations are presented

in Fishburn (1970, Chapter 2) and Kreps (1990,

Chapter 2).
P

Preference Representation Under Certainty

If strict preference >p on X is a weak order, then there

exists a numeric representation of preference,

a real-valued function v on X such that
x >p y if and only if vðxÞ > vðyÞ;

for all x and y in X (Fishburn 1970). A preference

representation function v under certainty is often

called a value function (Keeney and Raiffa 1976).

A value function is said to be order-preserving since

the values v(x), v(y), . . . ordered by > are consistent

with the preference order of x, y, . . ., under >p. Thus,

any monotonic transformations of v will be

order-preserving. As a result, the units of v have no

particular meaning.

It may be desirable to consider a “strength of

preference” notion that involves comparisons of

preference differences between pairs of alternatives.

To do so requires more restrictive preference
assumptions, including that of a weak order over

preferences between exchanges of pairs of

alternatives (Krantz et al. 1971, Chapter 4). These

axioms imply the existence of a real-valued function

v on x such that, for allw, x, y, and z inX, the difference

in the strength of preference between w and x exceeds
the difference between y and z if and only if
vðwÞ � vðxÞ > vðyÞ � vðzÞ:

Furthermore, v is unique up to a positive linear

transformation, i.e., if v’ also satisfies the above

difference inequality, then it must follow that

v’(x) ¼ a v(x) + b, where a (>0) and b are constants.

This means that v provides an interval scale of

measurement, such that v is often called a measurable

value function to distinguish it from an

order-preserving value function.

For multi-attribute decision problems,

X ¼ X1;X2 . . . ;Xn, where n is the number of attributes

and an element x ¼ x1; x2; . . . ; xnð Þ in X represents an

alternative. A multi-attribute value function can be

written as v(x1; x2; . . . ; xn). Using some preference

independence conditions, the multi-attribute value

model can be simplified.

The subset Y of attributes in X is said to be

preferentially independent of its complementary set �Y
if preferences for levels of these attributes Y do not

depend on the fixed levels of the complementary

attributes �Y. Attributes X1;X2; . . . ;Xn, are mutually

preferentially independent if every subset of these

attributes is preferentially independent of its

complementary set.

A multi-attribute value function v(x1; x2; . . . ; xn)

n � 3, has the following additive form
vðx1; x2; . . . ; xnÞ ¼
Xn
i¼1

viðxiÞ; (1)

where vi is a value function over Xi if and only if the

attributes are mutually preferentially independent

(Keeney and Raiffa 1976; Krantz et al. 1971). When

v is bounded, it may be more convenient to scale V

such that each of the single-attribute value functions

ranges from zero to one, leading to the following form

of the additive value function:

vðx1; x2; . . . ; xnÞ ¼
Xn
i¼1

wiviðxiÞ; (2)
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where v and vi are scaled from zero to one, and the wi

are positive scaling constants (usually called weights)

summing to one. The assessment of models (1) and (2)

are discussed in Keeney and Raiffa (1976, Chapter 3).

Dyer and Sarin (1979) proposed multi-attribute

measurable value functions based on the concept of

preference differences between alternatives that are

much easier to assess than the additive form based on

preferential independence. In addition to preferential

independence, they considered some additional

conditions that, loosely speaking, require that

the decision maker’s comparisons of preference

differences between pairs of alternatives that differ in

the levels of only a subset of the attributes do not

depend on the fixed levels of the other attributes.

These conditions allow the decomposition of

a multi-attribute value model into additive and

multiplicative forms. This development also provides

a link between the additive value function and the

multi-attribute utility model.
Preference Representation Under Risk

Perhaps the most significant contribution to the area of

preference representation for risky options (i.e., lotteries

or gambles) was the formalization of expected utility

theory by von Neumann and Morgenstern (1947). This

development has been refined by a number of

researchers and is most commonly presented in terms

of three basic axioms (Fishburn 1970).

Let P be a convex set of simple probability

distributions or lotteries {X, Y, Z, . . .} on a nonempty

set X of outcomes. (X, Y and Z will be used to refer to

probability distributions and random variables

interchangeably.) For lotteries X, Y, Z in P and all

l, 0 < l < 1, the expected utility axioms are:

A1. (Ordering) > p is a weak order;

A2. (Independence) If X >p Y; then lX þ ð1� lÞ
Z >p lY þ ð1� lÞZ for all Z in P;

A3. (Continuity) If X >p Y>p Z; then there exist some

0 < a < 1 and 0 < b < 1 such that aXþ
ð1� aÞZ >p Y>p bX þ ð1� bÞZ.
The von Neumann-Morgenstern expected utility

theory asserts that the above axioms hold if and only

if there exists a real-valued function u such that for all

X, Y in P,

X >p Y; if and only if E u Xð Þ½ � > E u Yð Þ½ �;
where the expectation is taken over the probability

distribution of a lottery. Moreover, such a u is unique

up to a positive linear transformation.

The expected utility model can also be used to

characterize an individual’s risk attitude (Keeney and

Raiffa 1976, Chapter 4). If an individual’s utility

function is concave, linear, or convex, then the

individual is risk averse, risk neutral, or risk seeking,

respectively. The von Neumann-Morgenstern theory

of risky choice presumes that the probabilities of the

outcomes of lotteries are provided to the decision

maker. Savage (1954) extended the theory of risk

choice to allow for the simultaneous development of

subjective probabilities for outcomes and for a utility

function u defined over those outcomes.

As a normative theory, the expected utility model has

played a major role in the prescriptive analysis of

decision problems. However, for descriptive purposes,

the assumptions of this theory have been challenged by

empirical studies (Kahneman and Tversky 1979). Some

of these empirical studies demonstrate that subjects may

choose alternatives that imply a violation of the

independence axiom (A2). Prospect theory (Kahneman

and Tversky 1979; Wakker 2010) attempts to explain

these discrepancies. One implication of A2 is that the

expected utility model is linear in probabilities.

A number of contributions have been made by

relaxing the independence axiom and developing some

nonlinear utility models to accommodate actual

decision behavior (Fishburn 1988).

For the case of multi-attribute decisions

under risk, when X ¼ X1 � X2 � . . .� Xn in a von

Neumann-Morgenstern utility model and the

decision maker’s preferences are consistent with

some additional independence conditions, then

uðx1; x2; . . . ; xnÞ; can be decomposed into additive,

multiplicative, and other well-structured forms that

simplify assessment.

The attributes X1;X2; . . . ;Xn are said to be additive

independent if preferences over lotteries on

X1;X2; . . . ;Xn depend only on the marginal

probabilities assigned to individual attribute levels,

but not on the joint probabilities assigned to two or

more attribute levels.

A multi-attribute utility function uðx1; x2; . . . ; xnÞ;
can be decomposed as

uðx1; x2; . . . ; xnÞ ¼
Xn
i¼1

wiuiðxiÞ; (3)
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P

if and only if the additive independence condition

holds, where ui is a single-attribute function over Xi

scaled from 0 to 1, and the wi are positive scaling

constants (or weights) summing to one. The additive

model (3) has been widely used in practice.

If the decision maker’s preferences are not

consistent with the additive independence condition,

a weaker independence condition that leads to

a multiplicative preference representation may be

satisfied.

An attribute Xi is said to be utility independent of its

complementary attributes if preferences over lotteries

with different levels of Xi do not depend on the fixed

levels of the remaining attributes. Attributes

X1;X2; . . . ;Xn are mutually utility independent if all

proper subsets of these attributes are utility

independent of their complementary subsets.

A multi-attribute utility function uðx1; x2; . . . ; xnÞ
can have the multiplicative form

1þ kuðx1; x2; . . . ; xnÞ ¼
Yn
i¼1

1þ kkiuiðxiÞ½ �; (4)

if and only if the attributes X1;X2; . . . ;Xn are mutually

utility independent, where ui is a single-attribute

function over Xi scaled from 0 to 1, the ki are positive
scaling constants, and k is an additional scaling

constant. For approaches to the assessment of model

(4) and other extensions of multi-attribute utility

theory, see Keeney and Raiffa (1976).

The research of multi-attribute utility theory has been

advanced from both theoretical and behavioral

considerations. In particular, the effort of behavioral

research tries to improve the descriptive power of multi-

attribute utility models by incorporating psychological

factors, such as aspiration level, goal and reference

effect, and loss aversion (Tversky and Kahneman

1991). Various decision support systems have also been

developed for multi-attribute decision making in the

past decades, and applications of the theory and models

have been expended to many new areas, including

e-commence, public policy and environmental

decisions, geographic information systems, and

engineering (Dyer et al. 1992; Wallenius et al. 2008).

See

▶Choice Theory

▶Decision Analysis
▶Multi-attribute Utility Theory

▶ Prospect Theory

▶Utility Theory
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making, multiattribute utility theory: Recent accomplishments

and what lies ahead.Management Science, 54, 1336–1349.
Prescriptive Model

A model that attempts to describe the best or optimal

solution of a man/machine system. For a decision

problem, such a model is used as an aid in selecting

the best alternative solution.
See

▶Decision Problem

▶Descriptive Model

▶Mathematical Model

▶Normative Model

http://dx.doi.org/10.1007/978-1-4419-1153-7_112
http://dx.doi.org/10.1007/978-1-4419-1153-7_215
http://dx.doi.org/10.1007/978-1-4419-1153-7_644
http://dx.doi.org/10.1007/978-1-4419-1153-7_200657
http://dx.doi.org/10.1007/978-1-4419-1153-7_1096
http://dx.doi.org/10.1007/978-1-4419-1153-7_200123
http://dx.doi.org/10.1007/978-1-4419-1153-7_200134
http://dx.doi.org/10.1007/978-1-4419-1153-7_200442
http://dx.doi.org/10.1007/978-1-4419-1153-7_200531
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Prices

In the simplex method, for a nonbasic variable xj, the
price is defined as dj¼ cj� zj or dj¼ zj� cj, where cj is

the variable’s original cost coefficient and zj ¼ pAj,

with Aj the variable’s original column of coefficients

and p the multiplier (pricing) vector of the current

basis. The dj is termed the reduced or relative cost. It

is the difference between the direct cost cj and indirect
cost zj. The dj indicates how much the objective

function would change per unit change in the value

of xj. The dj for the variables in the basic feasible

solution are equal to zero.
See

▶Devex Pricing

▶Opportunity Cost

▶ Simplex Method (Algorithm)
Pricing Multipliers

▶Multiplier Vector
Pricing Out

In the simplex method, the calculation of the prices

associated with the current basic solution.
See

▶ Prices

▶ Simplex Method (Algorithm)
Pricing Vector

▶Multiplier Vector

▶ Prices

▶ Simplex Method (Algorithm)
Prim’s Algorithm

A procedure for finding a minimum spanning tree in

a network. The method starts from any node and

connects it to the node nearest to it. Then, for those

nodes that are now connected, the unconnected

node that is closest to one of the nodes in the

connected set is found and connected to these closest

nodes. The process continues until all nodes are

connected. Ties are broken arbitrarily.
See

▶Greedy Algorithm

▶Kruskal’s Algorithm

▶Minimum Spanning Tree Problem
Primal Problem

The primal problem is usually taken to be the original

linear-programming problem under investigation.
See

▶Dual Linear-Programming Problem
Primal-Dual Algorithm

An adaptation of the simplex method that starts with

a solution to the dual problem and systematically

solves a restricted portion of the primal problem

while improving the solution to the dual. At each

step, a new restricted primal is defined and the

process continues until solutions to the original

primal and dual problems are obtained.
See

▶ Simplex Method (Algorithm)

http://dx.doi.org/10.1007/978-1-4419-1153-7_200140
http://dx.doi.org/10.1007/978-1-4419-1153-7_200545
http://dx.doi.org/10.1007/978-1-4419-1153-7_200768
http://dx.doi.org/10.1007/978-1-4419-1153-7_200502
http://dx.doi.org/10.1007/978-1-4419-1153-7_200628
http://dx.doi.org/10.1007/978-1-4419-1153-7_200768
http://dx.doi.org/10.1007/978-1-4419-1153-7_200502
http://dx.doi.org/10.1007/978-1-4419-1153-7_200628
http://dx.doi.org/10.1007/978-1-4419-1153-7_200768
http://dx.doi.org/10.1007/978-1-4419-1153-7_200276
http://dx.doi.org/10.1007/978-1-4419-1153-7_200370
http://dx.doi.org/10.1007/978-1-4419-1153-7_200467
http://dx.doi.org/10.1007/978-1-4419-1153-7_200158
http://dx.doi.org/10.1007/978-1-4419-1153-7_200768


Probability Density Function (PDF) 1161 P
Primal-Dual Linear-Programming
Problems

▶Dual Linear-Programming Problem

▶Linear Programming
Principle of Optimality

Condition that Richard Bellman derived for dynamic

programming: “An optimal policy has the property that

whatever the initial state and initial decision are, the

remaining decisions must constitute an optimal policy

with regard to the state resulting from the first

decision.” (Bellman 1957, Chap. III.3)
See

▶Bellman Optimality Equation

▶Dynamic Programming
References

Bellman, R. E. (1957). Dynamic programming. Princeton, NJ:
Princeton University Press.
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Prisoner’s Dilemma

A two-person game where neither player knows the

other’s play (action or decision) a priori. Imagine

a situation where two criminals are isolated from

each other and the police interrogator offers each

the following deal: if the prisoner confesses and the

confession leads to the conviction of the other prisoner,

he goes free and the other prisoner gets 10 years in

prison. However, if both confess, they each get 5 years.

If neither confesses, there is enough evidence to

convict both on a lesser offense and they both get one

year. If there is no trust, then both will confess,

whereas if there is complete trust, neither will. Since

complete trust is rare, when the game is played one

time, players almost always defect. When the game is

played repeatedly and there is a chance for a long-term

reward, wary cooperation with a willingness to punish
defection is the best strategy. This game illustrates

many social and business contracts and is important

for understanding group behavior, both cheating and

cooperation. It has also been used in studying political

and military strategies.
See

▶Game Theory
References

Poundstone, W. (1992). Prisoner’s dilemma. New York:

Doubleday.
Probabilistic Algorithm

An algorithm that employs probabilistic elements

(as opposed to a deterministic algorithm).
See

▶Genetic Algorithms

▶Randomized Algorithm
Probabilistic Programming

A mathematical programming problem in which some

or all of the data are random variables.
See

▶Chance-Constrained Programming

▶ Stochastic Programming
Probability Density Function (PDF)

When the derivative f(x) of a cumulative probability

distribution function F(x) exists, it is called the density
or probability density function.

http://dx.doi.org/10.1007/978-1-4419-1153-7_200158
http://dx.doi.org/10.1007/978-1-4419-1153-7_545
http://dx.doi.org/10.1007/978-1-4419-1153-7_200007
http://dx.doi.org/10.1007/978-1-4419-1153-7_264
http://dx.doi.org/10.1007/978-1-4419-1153-7_372
http://dx.doi.org/10.1007/978-1-4419-1153-7_200261
http://dx.doi.org/10.1007/978-1-4419-1153-7_200994
http://dx.doi.org/10.1007/978-1-4419-1153-7_200034
http://dx.doi.org/10.1007/978-1-4419-1153-7_1005
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Probability Distribution

Term used (loosely) to refer to a function describing the

probabilistic behavior of a random variable; could refer

to the probability measure, the cumulative distribution

function (CDF), the probability mass function

(PMF) for discrete random variables, or the probability

density function (PDF) for continuous-valued random

variables.
Probability Generating Function

For a non-negative integer-valued random variableXwith

probability mass function pj ¼ Pr{X ¼ j}, the

probability generating function (often just called

the generating function, and known in other fields as

the z-transform) is given by PðzÞ ¼ E½zX� ¼P1
j¼0

zjpj:

The definition can be extended to the setting where

X can take all integer values (i.e., including all

negative values).
Probability Integral Transformation
Method

One of the primary methods for generating random

variates for Monte Carlo or discrete-event simulation,

using the cumulative distribution function (CDF)

commonly known as the inverse transform method.
See

▶ Inverse Transform Method

▶Random Number Generators

▶Random Variates

▶ Simulation of Stochastic Discrete-Event Systems
Probability Mass Function (PMF)

Function giving the probability of taking on each of the

possible discrete values.
Problem Solving

The process of deciding on actions aimed at achieving

a goal. Initially, the goal is defined to represent a

solution to a problem. During the reasoning process,

subgoals are formed, and problem solving becomes

recursive.
See

▶Artificial Intelligence

▶Decision Analysis

▶Decision Making and Decision Analysis

▶Decision Support Systems (DSS)

▶Expert Systems
Problem Structuring Methods

Jonathan Rosenhead

The London School of Economics and Political

Science, London, UK
Introduction

Problem structuring methods (PSMs) are a broad

group of model-based problem handling approaches

whose purpose is to assist in the structuring of

problems rather than directly to derive a solution.

They are participative and interactive in character,

and normally operate with groups rather than

individual clients. In principle they offer OR/MS

access to a range of problem situations for

which more classical OR techniques have limited

applicability. The most widely adopted of these

methods are Soft Systems Methodology, the Strategic

Choice Approach, and Strategic Options Development

and Analysis (SODA).

PSMs developed out of, or at least intertwined with,

a critique of the restricted scope of traditional OR

techniques. From the 1970s there developed an active

debate over claims for the objectivity of OR/MS

models, and about the limitations imposed on OR/MS

practice by its concentration on well-defined problems.

Significant critical contributions were made by

http://dx.doi.org/10.1007/978-1-4419-1153-7_200343
http://dx.doi.org/10.1007/978-1-4419-1153-7_852
http://dx.doi.org/10.1007/978-1-4419-1153-7_200681
http://dx.doi.org/10.1007/978-1-4419-1153-7_959
http://dx.doi.org/10.1007/978-1-4419-1153-7_42
http://dx.doi.org/10.1007/978-1-4419-1153-7_215
http://dx.doi.org/10.1007/978-1-4419-1153-7_217
http://dx.doi.org/10.1007/978-1-4419-1153-7_219
http://dx.doi.org/10.1007/978-1-4419-1153-7_313
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Rittel and Webber (1973), Ackoff (1979), Checkland

(1981), Rosenhead and Thunhurst (1982), Eden

(1982), Rosenhead (1986), Jackson (1987), Flood and

Jackson (1991), Mingers (1992). The general thrust

was that standard OR techniques assume that relevant

factors, constraints, and objective function are both

established in advance and consensual; commonly

the function of the technique is to determine

an optimal setting of the controllable variables.

Consistently with this, standard formulations of

OR methodology were seen to assume a single

uncontested representation of the problematic

situation under consideration.

Critics have recognized that OR’s practice has been

considerably more diverse than this, and in particular is

far from dominated by considerations of optimality;

however, the available tools were held to offer little

appropriate assistance outside this area. The

methodological framework on offer was equally seen

as giving scant guidance to analysts confronting less

well-behaved circumstances. There are situations in

which intangibles, uncertainty, and value diversity as

well as complexity are crucial presences. Skilled

operational researchers have been able to make

progress in such situations, but only by using tacit

skills which are not part of the OR/MS canon. Yet the

more socially important the decision situation, the

more likely it is that such features will come to

dominate.

Out of this critique of the shortcomings of

traditional OR/MS a family of alternative methods

was developed, with both common features and also

differences of focus. When their similarities were

recognized the label used to describe them as a group

was Problem Structuring Methods (though other

names such as Soft OR are also in currency). The

over-arching emphasis which the methods share is on

helping groups of decision-makers to identify what

problem they could usefully work on together, and to

assist them in making progress with that task. There is

no assumption that the decision-makers share

a common perspective, so that they are perhaps

more accurately described as stakeholders. Nor are

these methods to any significant degree quantitative.

This is because the approaches are all based on

the participation of those who have the problem.

If mathematics were to be the language of the

discourse, some (perhaps many) of the participants

would be disempowered, or at least prevented from
enunciating perceptions important to them which

could not be expressed in that format, or only by

a distortion which changed their content.

Each of the methods within the PSM family consists

of a number of technical procedures linked together

through social processes. i.e., unlike the algorithmic

approaches that have tended to dominate OR/MS, the

consultant does not identify and then input some

starting conditions from which the ‘answer’ will be

produced without further human intervention. What

happens is that at various points the groups discuss

the implications of the analysis to date, and on that

basis (and aided by a facilitator) decide how to proceed

further, or maybe whether enough progress has been

made that the stakeholders can proceed without further

analytic assistance. For clarity one should perhaps

describe PSMs as ‘methodologies’ rather than

‘methods’, taking a methodology as an assembly of

technical and process elements.

In short these methods bear very little resemblance

to those developed within traditional OR/MS.

The one key unifying element is the central use

of cause-effect models. Each of them uses formal

models to represent the problematic situation

perceived by the decision-making group, in order

to summarise, coordinate and advance their

understanding of the situation they confront. The

types of model used are specific to each method, but

none of them are ‘computable’. Indeed quantification

has little if any role in any of them. The concepts that

are in play are more usually verbal, and the operations

on them are mostly performed by the group,

who through discussion transform the models based

on their changing understanding. The outcomes of

a successful application of a PSM will be a group of

decision-makers confident enough to take action;

a group of decision-makers who have gained a deeper

insight into their problem area; and a group of

decision-makers whose shared experience has led to

improved relations with each other.
Types of Problem

Before going on to outline the PSM field, it should be

helpful to address the apparent paradox of two very

different types of methodology, sometimes called

‘hard’ (i.e., traditional) and ‘soft’ (PSMs), each

addressing problems of complexity in an analytic
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manner. One simple explanation lies in the quite wide

recognition of two substantially different types of

problem situation. Rittel and Webber’s (1973)

characterization of them as tame vs. wicked has

achieved wide currency, as has Schon’s (1987)

extended metaphor of problems of the swamp

contrasted with those of the high ground. Tame

problems (on the high ground) have precise,

unproblematic formulations permitting powerful

analyses of great technical sophistication. Wicked

problems (in the swamp) have multiple stakeholders,

intangible objectives, key uncertainties, contested or

doubtful formulations, etc. In the latter there is

no unified representation of the issue or issues that

can be established ahead of analysis. Rather,

a representation or representations of the problematic

situation which participants find helpful may be

a major product of the analysis.

It follows from this diagnosis that methods that are

designed to be effective in handling tame problems

are likely to be largely irrelevant for wicked ones.

(And vice versa of course.) For the latter type of

problem situation, methods that assist argumentation,

promote negotiation or generate mutual understanding

are needed, rather than those that reliably and

efficiently identify an optimum. Methods that can

only start once there is an agreed problem (but have

no methods for reaching that agreement) are liable to

ignore or dismiss alternative perspectives and their

contrary formulations.

The much remarked difficulty which OR/MS

encountered from the late 1960s in securing access to

more strategic levels of decision-making may be

attributed at least in part to this factor. As Schon

observed, problems of major social importance are

commonly located in “swamp” conditions. Attempts

to address these “messes” using techniques and

methodology developed for handling well-structured

problems constituted inappropriate technology

transfer. Where solutions based on these methods

were adopted they were vulnerable to being savaged

in practice by the ‘wicked’ parts of the problem

situation that had been excluded. More commonly

however such representations were recognised

as an overly thin representation of the rich and

complex world that managers and decision-makers

inhabit – with the result that OR/MS was confined to

the tame (less strategic, more repetitive, operational)

aspects of organisational life.
Characteristics of Alternative Methods

Problem structuring methods constitute a family

of approaches offering appropriate support to decision-

making under these less pacified circumstances. They

were developed separately by individual innovators or

teams of innovators, and each emphasizes or is

organized around particular aspects of the wicked

problem environment. Indeed each had been

independently developed before a recognition arose of

their family resemblance. (Subsequent to that

recognition, however, many of the principal

originators entered into a constructive dialogue with

each other, in which a certain amount of mutual

borrowing of particular elements took place.: For

example, distinctive post-it ‘Ovals’, originated for use

within SODA, became widely used by other methods.)

In other words the new methods grew out of practice.

However their similarities are by nomeans coincidental.

Many leading developers of PSMs had been active

participants in the critique of traditional methods, and

their innovations were designed to remedy particular

inadequacies of the conventional repertoire in handling

wicked problems. So at that fundamental level therewas

a common theoretical base.

PSM methods have differing rationales, purposes,

technical apparatus, etc. Some of these distinctive

attributes will be indicated below. However it will be

useful, first, to identify the features which they hold in

common.

Rosenhead (1989) has provided one formulation,

based on inverting the characteristics of the

conventional OR/MS paradigm.

PSMs

• Seek solutions which satisfice on separate

dimensions (rather than trade-off onto a single

dimension to facilitate optimization);

• Integrate hard and soft data with social judgments

(reducing data greed with its problems of quality

and distortion);

• Produce transparent models which clarify

any conflicts (rather than basing a scientific

depoliticization on an assumed consensus);

• Treat people as subjects actively engaged in the

decision-making process (rather than as passive

objects to be modelled or disregarded);

• Facilitate planning from the bottom-up (and not as

a process driven by the abstract objectives of

a hierarchically located decision-maker); and
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• Accept that some uncertainty is irreducible and aim

to preserve options (rather than base current and

future decisions on a notionally certain future).

The methods clearly assume a decision-making

quite different from that of conventional OR/MS

applications, and this environment places particular

requirements on the interface with the client group.

Where consensual values cannot be assumed,

there will be a need to achieve agreement among

a range of stakeholders representing different

interests and/or holding different perspectives. It

follows from this that a PSM should be able to

accommodate multiple alternative perspectives,

often in a group situation in which holders of those

viewpoints are present and participating. From

this it follows that for a method to be helpful it must

operate iteratively and interactively; as participants

internalize and adjust to each others’ contributions,

new formulations of the problematic situation will

emerge which in turn feed new modelling and

structuring activity. And since participants have

different though overlapping organizational

agendas, and also because of the prevalence of

uncertainty, any resulting consensus on action is

likely to constitute a partial rather than

a comprehensive solution to the problems present

within the situation under discussion.

These social requirements on a PSM have

implications for the technical repertoire that it can

deploy. Its handling of complexity must not obstruct

lay participation — which points to graphical

(rather than, for example, algebraic) representations.

The existence of multiple perspectives invalidates the

search for an optimum; the need is rather for

systematic exploration of the solution space. To elicit

meaningful judgments from lay participants, abstract

continuous variables need to be eschewed in favour of

discrete concrete alternatives that can be compared.

And, given the need to avoid illusions of precision

when confronting uncertainties, possibilities will be

more helpful than probabilities, and alternative

scenarios will enrich discussion that forecasts might

close down.

These outline specifications for a more appropriate

decision-aiding technology eliminate much of the

scope for advanced mathematics, probability theory,

complex algorithms. They identify, rather, an

alternative approach employing representation of

relationships, symbolic manipulation, and limited
quantification within a systematic framework. These

are decidedly low-tech methods: some of them have no

software support, and even those that do can be

operated in manual mode. The lack of mathematics

should not however be taken for lack of rigour. These

are methods with their own rigour, which is qualitative

in nature.
The Methods

There is no definitive list of problem structuring

methods. However to give identity to the field it is

appropriate to provide some demarcation criteria.

PSMs

• Can be distinguished from traditional OR methods

by the six criteria listed in the previous section.

• Can be distinguished from non-OR modes of

working with groups, such as Organizational

Development, by the core element of an explicit

modelling of cause-effect relationships.

• Can be demarcated from other OR approaches

which purport to tackle messy, ambitious

problems (e.g., the Analytic Hierarchy Process) by

PSMs’ transparency of method, restricted

mathematization, and focus on supporting

judgment rather than representing it.

These limits are imprecise and arguable; and there

is scope for approaches developed for other or broader

purposes (e.g., spreadsheet models) to be used in

a similar spirit. Ackoff’s Interactive Planning is close

in both spirit and intent (see Ackoff 1999) but

nevertheless has never been regarded as falling

within PSMs. (Rather than changing this de facto if

not de jure circumstance, it will not be discussed

further.) Methods that have some degree of similarity

to PSMs but also significant differences are

(for coherence) best regarded as falling outside the

category. These include multi-criteria decision

methods, outranking methods such as PROMETHEE

and ELECTRE, decision conferencing, scenario

planning, system dynamics (in some of its versions)

and Viable System Diagnosis. Other parts of the PSM

perimeter are bordered by the focus group approach,

and by Rapid Rural Appraisal and other participative

third world development approaches (for which see

Rosenhead and Mingers 2001, pp. 345-7).

A brief introduction to the better established PSMs

follows (Rosenhead and Mingers 2001):
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Strategic Options Development and

Analysis (SODA)

This method is described fully in Eden and

Ackermann (1998). It is a general purpose problem

identification method that uses cognitive mapping as

a modelling device. The concepts that individuals use

to make sense of their problematic situation, and the

causal links thought to exist between those concepts,

are elicited in individual interviews and recorded in

map form. The maps drawn from separate interviews

with stakeholders are subsequently merged into

a single ‘strategic map’ through pinning together

concepts common to more than one of them. The

strategic map, commonly structured into clusters,

provides the framework for discussion in a workshop

of the group of map ‘owners’, at which a facilitator

uses the map to guide participants towards

commitment to a portfolio of actions. An alternative

and more rapid version known as the Oval Mapping

Technique operates in workshopmode throughout, and

can in principle achieve results in a 1 day session. The

participants commit their concepts to ‘Ovals’

(specially designed PostIt notes), which the facilitator

with the participation of workshop members organises

into an agreed structure. This then serves as the

strategic map for the discussion that follows.

Soft Systems Methodology (SSM)

Soft Systems Methodology is a general method for

system design or redesign, which aims to generate

debate about alternative system modifications. It

adopts a systems theoretic framework for exploring

the nature of problem situations, and how purposeful

action to change them might be agreed when there are

different perceptions of the situation based on

contrasting world views. A systematic exploration

of the world views of stakeholders leads to the

generation of definitions of alternative systems, the

investigation of which is expected to be of interest

from at least one of those world views. Each of these

abstract ‘root definitions’ is expanded into the

component activities which would be necessary for

it to operate successfully. This generates a range of

contrasting alternatives for the modification of the

system, which are used to generate debate about

which changes are both culturally feasible and

systemically desirable. Full descriptions of the

method are available in Checkland (1981, 2006,

1990).
Strategic Choice Approach (SCA)

Strategic Choice is a planning approach centred on the

management of uncertainty and commitment in

strategic situations. Typically a Strategic Choice

engagement takes place entirely in workshop format,

with no backroom work by the consultants. There are

four modes of analysis:

• Shaping – in which different areas for choice are

elicited from workshop members. A subset of these

is selected as a problem focus by reference to their

urgency, importance and inter-connectedness

• Designing – here the options for action for each of

the decision areas within the problem focus are

identified, as well as any incompatibilities

between option selections in different decision

areas. The feasible decision schemes (consisting

of one option choice within each decision area)

are derived

• Comparing – criteria for choice, often

non-quantitative, are agreed by the group. These

are used first in satisficing mode to establish

a working shortlist of schemes; pairwise

comparisons of shortlisted schemes are made,

establishing on each criterion a range of relative

advantage between the two schemes. This may be

repeated for different pairs. Commonly significant

uncertainties are revealed by this process. Other

uncertainties will usually have been identified in

previous modes

• Choosing – bearing in mind the surfaced

uncertainties, a ‘progress package’ is agreed

consisting of partial commitments to be made at

this stage, explorations to be launched to reduce

key uncertainties, contingency plans, and

a timetable for later choices.

Facilitators assist with the deployment of the

transparent tools available within the method, and in

guiding the, possibly recursive, switching between

modes. A detailed account of the method is available

in Friend and Hickling (2004).

Robustness Analysis

Robustness Analysis is another approach for use where

uncertainty is an important issue. It focuses on one

specific strategy for managing that uncertainty - that

of maintaining useful flexibility. The focus of

the approach is on initial commitments rather than on

future plans for the system. The flexibility of an initial

commitment relates to its compatibility with a range of
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acceptable or desirable future states of the system. It is

this flexibility left by an initial commitment that is

operationalised as a decision-making criterion by the

concept of the robustness. This is defined as a ratio

where the denominator is the number of states whose

performance at the planning horizon is ‘good enough’;

the numerator is the number of those states

which would remain accessible if the commitment

under consideration were to be made. Robustness

analysis can be conducted with either a single or

multiple futures employed to estimate system

performance; and it can be used in conventional

or interactive mode. In the latter, participants and

analysts assess both the compatibility of initial

commitments with possible future configurations

of the system, and the performance of each

configuration in feasible future environments. This

enables them to compare the flexibility maintained by

alternative initial commitments. It is in this latter mode

that Robustness Analysis qualifies as a PSM, though

even when used in non-participatory mode it maintains

an accessible transparency. For more detail, see

Rosenhead and Mingers (2001).

Drama theory

Drama Theory draws on two earlier approaches,

metagames and hypergames. It is an interactive

method of analysing co-operation and conflict among

multiple actors. A model is built from perceptions of

the options available to the various actors, and how

they are rated. Drama theory looks for the ‘dilemmas’

presented to the actors within this model of the

situation. Each dilemma is a change point, tending to

cause an actor to feel specific emotions and to produce

rational arguments by which the model itself is

redefined. When and only when such successive

redefinitions have eliminated all dilemmas is the

actors’ joint problem fully resolved. Analysts

commonly work with one of the parties, helping it

to be more effective in the rational-emotional

process of dramatic resolution. For more detail, see

Howard (1999).
Applications of PSMs

As can be inferred from their remit to structure wicked

problems, the problem situations to which PSMs have

been applied have a wide variety. A good source for
practical applications of the SCA is Chapter 13 of

Friend and Hickling 2004, pp. 298-360. An overview

of applications across the range of PSMs is provided

byMingers and Rosenhead (2004), which is the review

article for a special issue of the European Journal

of Operational Research on applications of PSMs

(Vidal 2004).

A diverse record of successful applications is an

indicator of wide relevance, but a disadvantage

when it comes to providing a coherent summary.

A literature survey covering the period up to

1998 (summarized in Mingers and Rosenhead 2004)

categorises 51 reported applications under the

headings general organizational/information systems/

technology, resources, planning/health services/

general research. Two comments seem appropriate:

(i) it is plausible to assume that reported cases are the

tip of the iceberg; and (ii) 1998 was relatively early in

the development of interest in PSMs.

The categories supplied in the previous paragraph

are so broad as to give little flavour of the reality of

PSM practice. To provide that, some short summaries

of projects using PSMs that are described in Mingers

and Rosenhead (2004) may be of assistance

• Organisational restructuring at Shell. SSM used to

provide the basis of a reconfiguration of a central

department of Shell International, in a series of

workshops with senior managers

• Models to support a claim for damages. SODA

(as well as System Dynamics) used to support

a legal case by the Canadian-based multinational

Bombardier against Trans Manche Link, for

damages resulting from delays in processing

designs for the Channel Tunnel shuttle wagons

• Supporting a tenants cooperative. This was an

engagement over several years to help

a cooperative of residents of an ex-mining village

to manage their own housing. Elements of various

PSMs, as well as other methods (e.g., spreadsheet

financial models) were used to support

strategic decisions, and help the cooperative gain

confidence

• IT strategy for a supermarket chain. This study

reported to the joint chief executives of the

leading British supermarket chain Sainsbury’s,

and worked with a 16-strong senior management

task force. SODA, SSM and SCA were all used at

different stages, to identify IT systems that would

support business objectives
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• Planning for a street festival. The largest European

street festival (Notting Hill Carnival) was a victim

of its own success, with issues of security,

congestion, cultural integrity etc. Working

with representatives of the carnivalists, local

government, transport and emergency services,

and arts organisations, SSM and SCA were used to

devise escape strategies

• National level planning in Venezuela. A version

of SCA has been used at various levels of the

state service in Venezuela, up to and including

the Cabinet, to agree on strategic decisions in

a range of areas

• Local pediatric care strategy. Health care managers

and specialists in an Inner London area with some

500,000 population needed to reduce the number of

inpatient paediatric care units. SCA was used in

a series of workshops to produce agreement

between representatives of all stakeholders on

(i) how many units should remain (ii) where they

should be; and (iii) what consequential changes

were needed to other aspects of the health service.

This list indicates the reach of these methods, from

grass-roots community groups through senior

corporate management issues to the highest levels of

national government. The content of many if not all

of the projects would have rendered them inaccessible

to conventional OR.
Using PSMs

Working with Clients

PSM practitioners have to be able to manage not

only the complexity of substantive subject matter but

also the dynamics of interaction among workshop

participants. The dual roles of analyst and of

facilitator of group process place heavy demands on

the consultant, who is called upon to deploy a wider

range of skills than in conventional operational

research practice. When operating as facilitator she

has the responsibilities of ensuring that all voices are

heard (not suppressed by psychological or hierarchical

effects); that apparent agreement is not based on

mutual misunderstanding of key terms; and that the

precious (and usually expensive) opportunity

presented by the gathering of key stakeholders

is exploited in a timely and effective manner.

(This experience is hard to simulate ‘off line’, and
training should, if possible, include at least a brief

experience of practical apprenticeship.) It is useful to

have two facilitators with differentiated roles. One of

them is likely to be heavily engaged, at times leading

the discussion, at others concentrating acutely on the

content of the discourse and also on the interpersonal

issues that it reveals. The second facilitator can be

principally involved with keeping a record, perhaps

by direct computer input, of the evolving model. But

he will also be able to intervene with insights that his

colleague might otherwise miss through following the

scent too closely.

PSMs are based on the working assumption that the

client is not a sole decision-maker but a client system.

Organisational politics is thus an integral aspect of

project process, to which the consultants must be

sensitive if they are not to be derailed. In order to

achieve an effective process and worthwhile outcome

it is important that all relevant stakeholders are

represented. This requirement may bump up against

numerical constraints – most practitioners cite a group

size in the range 6–10 as desirable, and 12 should be

the absolute maximum for a coherent group

conversation to take place. There may be pressures to

add people beyond this number for reasons of

organisational politics, or to exclude certain clearly

relevant stakeholders. These issues of the design of

the group are ones that the consultant must address.

To guide the workshop with the consent and indeed

respect of the group, the consultant must be, and be

seen to be, disinterested – that is, not operating on

behalf of any sectional interest. Where political

tensions are active, this can require both sensitivity

and agility from the facilitator. In inter-organisational

working (for which the multi-perspective approach of

PSMs makes them particularly appropriate), the

question of access to the problem domain potentially

acquires an additional twist. Initial contacts with one of

the organisational actors will be necessary to gain

entry to the problem forum - but that entry route may

itself occasion doubts among other stakeholders as to

the impartiality of the facilitation that follows.

Selecting Methods

There is no established process for the selection of

method or methods to use in a particular engagement.

This is often done on an intuitive basis – where

uncertainties are seen as particularly salient in the

problematic situation, Strategic Choice or Robustness
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Analysis are plausible candidate methods; an evident

conflict situation may suggest drama theory; and so on.

There is of course also a choice to be made between

using a traditional method or a PSM of any kind.

The most widely cited and discussed framework for

this higher-level choice is due to Jackson and Keys

(1984). Their ‘system of systems methodologies’

proposed two dimensions on which to describe the

context of a problem. These were the degree of

agreement among participants – which can be unitary

(consensus), pluralistic (several viewpoints but

agreement possible), or coercive (disagreements

resolved through exercise of power); and the nature

of the problem - simple or complex. This yielded six

cells into which OR/systems methods were placed.

For example, traditional hard OR was most suitable

for simple–unitary contexts, System Dynamics for

complex–unitary contexts, and Problem Structuring

Methods for complex–pluralistic contexts.

However the criticism has been advanced that this

framework makes the (unwarranted) assumption that

the nature of the problem context can unerringly be

identified in advance. Commonly, however, this will

not be the case in the messy situations that PSMs are

appropriate for. It may well be that only after the

investigation is underway will the view to be taken of

the problem context become clear. Furthermore, since

the use of PSMs is a form of organised finding out, it is

quite possible that this process will change the initial

understanding of the problem context. For example,

what was initially perceived by the relevant actors to

be pluralist in character may, as a result of the

intervention be reperceived as falling elsewhere on

the spectrum of degree of agreement.

Mixing Methods

Another feature undermining the simplicity of the

Jackson and Keys scheme is the fact that many PSMs

consist of a loosely articulated set of processes

(part technical, part social), with considerable

freedom to switch phase or to recycle. They therefore

lend themselves to creative re-assembly, in which

different methods or parts of different methods are

used in conjunction. Before theoretical discussion of

this potential took off in the 1990’s it was already a de

facto reality in practice. The most high profile of many

applications was the Sainsbury’s case study (Ormerod

1996) already mentioned above, in which SODA, SSM

and SCA were employed on a single engagement.
In fact several of the cases summarised in the

Applications section of this article involved the use

of parts or wholes of PSMs in combination, or indeed

the joint use of a PSM with a more conventional OR

technique.

This ongoing practice was systematised and given

a theoretical base by multimethodology (Mingers

and Gill 1997). This advocates seeking to combine

together a range of methods, perhaps across the

hard/soft divide, in order to deal effectively and

appropriately with the qualitatively different analytic

challenges which a single problem situation may pose.

Based on the work of Habermas (1984, 1987), any

real-world problem situation can be seen as

a complex mix of the material, the social, and the

personal. Different methods are appropriate for

analysing and making progress in these different

strata. Thus material or physical characteristics can

be modelled using traditional OR techniques, but

social conventions, politics and power, and personal

beliefs and values need quite different, qualitative

approaches.

Any practical project goes through several

stages - understanding and appreciating the situation,

analysing information, assessing different options, and

acting to bring about change. Moving from one phase

to another offers an opportunity to transfer, based on

the understanding achieved up to that point, to

a different level (say from the material to the social)

and to a corresponding type of analysis. The

appropriate use of varied methods allows the project

to evolve creatively, rather than pursuing the

methodology adopted at its start, regardless of the

understanding which is progressively developed.

These are complementary arguments for combining

together different PSMs, and indeed PSMs with other

methods. Multimethodology facilitates a more varied

palette, to match the developing richness of problem

understanding.

Software and Other Technology

Several established PSMs have associated software:

examples include STRAD (for Strategic Choice) and

Decision Explorer (for SODA). These packages

perform a variety of functions. They may display and

re-organize concepts and their inter-relationships;

identify a feasible range of options for action; elicit

preferences using paired comparisons; compute simple

quantitative attributes of options derived from the
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current problem structure, and so on. They may also

perform a variety of roles in the project, from technical

assistance to the facilitator between group sessions,

through enabling individual participants to pursue

solo investigations, to the provision of an online

Group Decision Support System. The use of the

software during group sessions undoubtedly has an

effect on group dynamics, focusing attention and

giving a degree of control to whoever is in charge of

inputting data or of changing the visual display. For

this reason some leading practitioners prefer not to

employ computers during the actual workshop

sessions. In SODA, however, the computer display of

sections of strategic maps is used deliberately in order

to influence the group conversation. The computer

model (i.e., map) is deployed as a ‘facilitative

device’, so that group members will more easily

accept and absorb concepts that are new to them.

A concept that is advanced by another group member

might provoke resistance – but one which whose

presentation is neutrally framed by the computer may

be easier to accommodate to.

The distinctive technology of PSMs is low- rather

than high-tech. Ongoing models and other notes

on deliberations are recoded on A1 flipchart sheets on

the meeting room walls. Oval ‘postit’ notes are used to

capture concepts in a way which facilitates

re-structuring of model relationships during the

session. At the end of a workshop it is normal for

these traces to be photographed, and then emailed to

participants. This visual record is a vivid reminder not

only of the outcome of a workshop, but also of the

process by which it was reached.

Implementation

A PSM workshop should leave time at the end for the

group to agree an implementation strategy. If it is an

intermediate workshop with others to follow, this

process will constitute the allocation of

responsibilities to group members (including the

facilitators) to pursue clarification or uncertainty

reduction activities that have been revealed as

advantageous, so that the following meeting can take

off from an improved position. With some PSMs the

intervening work may consist of model development

by the consultants – e.g., producing revised SSM ‘root

definitions’; in SODA reflecting the discussion in

redrawn maps; and in SCA carrying out explorations
to reduce relevant uncertainties. At what is expected to

be a final workshop, where some conclusions have

been agreed, the implementation strategy needs to be

articulated and bought into by the key players. This

will require a thorough discussion to identify the tasks

(including for example a dissemination strategy)

necessary for sustainable action to take place, and to

specify responsibilities for these.

The experience within a PSM workshop, when it is

working well, is frequently intense and the sense of

release and satisfaction when a breakthrough is made

can be palpable. Negotiated accommodations arrived

at in this way can be creative escapes from apparently

irresolvable tangles. However this almost cathartic

experience is not transferable to non-participants.

Generally only a part of the client system will be

present at the workshop, and those not present may

be reluctant to take its outputs on trust. Indeed it is

more likely than not that those who can actually set

the wheels in motion have not been members of

the workshop. A report in conventional form

which presents the case for the decisions arrived

at in linear fashion the may be needed. For work

within a single hierarchically structured organisation,

top-down authority may carry the outputs of

a PSM-based process towards implementation. In the

case of inter-organisational work the situation is more

complex, and the generation of acceptance among

the various organisational constituencies can be

problematic. It is clearly advisable for these problems

of multiple acceptance to be discussed by the group,

and to inform the implementation strategy.
Concluding Remarks

The progress of Problem Structuring Methods - in

development and sophistication of methods, in

applications, and in geographic spread - since they

were recognised as a category with strong family

resemblances has been fairly uninterrupted. There is

one exception: the United States. The development of

PSMs has been virtually ignored by the US OR/MS

community. This was pointed out in an unprecedented

letter to ORMS Today (Ackerman et al. 2009) signed

by 45 academics from 11 countries and four

continents. They cited as a strong contributory factor

the systematic exclusion of papers on this topic from
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US-based academic journals. An article in the same

issue (Mingers 2009) explored the phenomenon in

greater depth. For a further analysis of the difference

in treatment of PSMs between the U.S. and the U.K.,

see Paucar-Caceres (2011).

In much of the rest of the world, PSMs have effected

a breakout from the well developed but relatively

confined arena of technocratic solutions to

consensually defined problems occupied by OR’s

traditional methods. This outward movement has

brought decision-support modelling in touch with

a range of other methods and practices designed to

help groups make progress with their problems. It has

been suggested elsewhere (Rosenhead and Mingers

2001) that large group methods, development

planning methods and community operational

research are among the areas from which PSMs can

learn, and to which PSMs can contribute.

The presence of Community OR (Midgley and

Ochoa-Arias 2004) in this list is due to its natural fit

with PSMs. Community OR is an analytic practice

aimed at extending the customers of OR to include

disadvantaged and non-hierarchical groups. With few

resources, many of traditional OR’s resource

allocation tools are irrelevant. Furthermore the

weak are perhaps disproportionately confronted with

‘wicked’, less well-structured problems; and the

bottom-up nature of the PSM approach seems

appropriate for the defined clientele. Its transparent

modelling approach and group orientation does not

present as many obstacles to engagement as would

traditional OR’s more mathematical approaches. No

doubt these are among the reasons for the relatively

high penetration of PSMs in this area.

There is now a substantial record of achievement for

PSMs. There have been a wide variety of different types

of use, both in context and in content. Surveys have

shown there to be a good measure of user satisfaction.

And there is an exciting range of possible further

developments which appear to be reachable from the

base that has already been achieved.
See

▶Community OR

▶ Practice of Operations Research and

Management Science
▶Robustness Analysis

▶ Soft Systems Methodology

▶ Strategic Choice Approach (SCA)

▶ Strategic Options Development and Analysis

(SODA)

▶ System Dynamics

▶Wicked Problems
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Processor Sharing

A queueing discipline whereby the server shares its

effort over all customers present.
See

▶Queueing Theory
Product Form

▶ Product-Form Solution
Product Form of the Inverse (PFI)

The inverse of a matrix expressed as the product of

sequence of matrices. The matrices in the product are

elementary elimination matrices.
See

▶Eta File

▶ Simplex Method (Algorithm)
Product-Form Solution

When the steady-state joint probability of the number

of customers at each node (station) in a queueing

network is the product of the individual probabilities

times a multiplicative constant, as in Pr{N1 ¼ n1,

N2 ¼ n2,. . ., NJ ¼ nJ} ¼ Kp(n1)p(n2). . .p(nJ), the
network is said to have a product-form solution.

Sometimes the designation of a product-form solution

requires that the multiplicative constant K also

decompose into separate factors for each node, as

holds for open Jackson networks but not for closed

Jackson networks. Variants of such product-form

solutions also occur in some non-network queues,

such as those with vacations.
See

▶Networks of Queues

▶Queueing Theory
Product-Mix Problem

▶Activity-Analysis Problem

▶Blending Problem
Production Function

▶Economics and Operations Research
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Introduction

Some of the important objectives of a manufacturing

system are to produce in a timely manner products that

conform to specifications, while minimizing costs. The

strategic measures of performance of a manufacturing

system are cost, quality, flexibility, and delivery. Often

hundreds of products are produced by a facility, and

the entire production process may span several

facilities that are geographically dispersed. In many

industries the production network consists of plants

that are located in different countries.

Productionmanagement entails many decisions that

are made at all levels of the managerial hierarchy.

Manufacturing processes involve a large number

of people in many different departments and

organizations, and utilize a variety of resources. In

addition to the quality of human resources employed,

operational efficiency depends upon the location and

capacity of the plants, choice of technology,

organization of the production system, and planning

and control systems used for coordinating the

day-to-day activities. The complexity of the problems

associated with effectively and efficiently utilizing

all the resources — manpower, machines,

materials — needed for producing goods often

necessitates the development of mathematical models

to aid decision making.

Manufacturing decisions can be classified into three

categories: strategic, tactical and operational. Strategic

decisions pertain to decisions such as degree of vertical

integration, items to produced inhouse, size and

location of facilities, choice of technology, nature of

equipment (general versus special purpose), long-term

raw material and energy contacts, skills of employees,

organization design, and so forth, that have long-term

consequences and can not be easily reversed. Tactical

decisions have shorter horizons of 6 month to 2 years.
They include decisions such as aggregate production

planning (levels of production and inventory, work

force, and subcontracting), facility layout, and

incremental capacity expansion. Operational

decisions pertaining to issues such as order

processing, detailed production scheduling, follow

up, maintenance routines, and inventory control rules,

drive the day to day activities.

The nature of the problems faced by a production

manager depends on the characteristics of the market

that the facility is competing in. For this reason it is

useful to distinguish between different types of

manufacturing systems. The variety and volume of

products produced are critical for determining the

type of the manufacturing system. Manufacturing

systems have been classified into job shops, batch

shops, flow lines and continuous processes on the

basis of the volume and variety of the product mix.

Job shops produce many different products in small

quantities, each with different processing

requirements. Typically the products are customized

and are made only after receiving an order. At the other

end of the spectrum are flow lines and continuous

processes that produce a limited number of products

in very high volumes. Demand is met from finished

goods inventories. Batch shops lie in between these

two extremes. Models for aggregate production

planning are described first, followed by the models

for job shops, batch shops, flow lines and continuous

processes. Hopp and Spearman (2000) provide

a detailed coverage of these and related topics.

Aggregate Production Planning is concerned

with determination of the levels of production,

inventory, work force, and subcontracting to respond

to fluctuating demand. With a stable work force, the

level of production can be changed by using over-time

or undertime. The size of work force can be varied by

hiring and layoff. Fluctuating demand can also be met

by accumulating seasonal inventory. An organization

may also have the option of backordering or losing

sales. The relevant costs are for: (1) regular payroll

and overtime; (2) carrying inventory; (3) backordering

or lost sales (including the possible loss of customer

goodwill, lost revenue, and penalties for late delivery):

and (4) hiring (including training and learning) and

layoff.

Real-world production planning may involve as

many as 10,000 products (Hax and Candea 1984).

With 10 decision periods, this can mean more than
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100,000 variables. If the number of units sold is also

a decision variable, the problem may involve more

than 200,000 variables. Here quadratic and linear cost

models are described. Hwang and Cha (1995), Nam

and Logendran (1992), Silver et al. (1997), Thomas

and McClain (1993), and Venkataraman and

Smith (1996) have discussed other models and

methodologies. Penlesky and Srivastava (1994)

described the use of spreadsheets for production

planning.

Quadratic cost models — Models with quadratic

costs have several major advantages. They allow for

a realistic cost structure in the planning process. They

also allow uncertainties to be handled directly since

they minimize the expected cost if unbiased expected

demand forecasts are given (Hax and Candea 1984,

p. 88; Simon 1956). The resulting solution is fairly

insensitive to large errors in estimating cost

parameters (Hax and Candea 1984). Hax and Candea

also pointed out that this is an attractive property

because of the difficulty in providing accurate cost.

The production and work force smoothing model

developed by Holt et al. (1960) consists of a quadratic

cost function constrained by linear equations to

balance production, inventory, and sales. It selects

production and work force levels in each of T periods

so as to satisfy demand forecast while minimizing the

sum of the costs over the T periods. LetPt,Wt, It, andDt

represent production volume, work force level, end of

period inventory, and demand forecast for period t,
where the initial inventory and work force are given.

The cost in period t consists of the following

components:
Regular payroll costs : C1Wt

Hiring and layoff costs : C2ðWt �Wt�1 � C11Þ2
Overtime costs : C3ðPt � C4WtÞ2 þ C5Pt�

C6Wt þ C12PtWt

Inventory related costs : C7ðIt � C8 � C9DtÞ2

The model may be formulated as:
Minimize Z ¼
XT
t¼1

½ðC1�C6ÞWt þ C2ðWt � Wt�1�C11Þ2

þC3ðPt � C4WtÞ2þC5Pt

þC12PtWt þ C7ðIt � C8 � C9DtÞ2�
(1)
subject to:
Pt � Dt ¼ It � It�1 (2)

Holt et al. focused on an infinite planning horizon

with stationary costs and derived the following two

linear decision rules for the first period:
P1 ¼ y1 þ y2I0 þ y3W0 þ
XT
t¼1

ftDt

and W1 ¼ y4 þ y5I0 þ y6W0 þ
XT
t¼1

mtDt;

where y1, y2, y3, y4, y5, y6, yt, and mt (t¼ 1, 2,. . ., T) are
functions of the cost coefficients. The infinite series

can be truncated after an appropriate number of

periods T.
Singhal and Singhal (1996) developed simple

computational procedures for finite horizon cases.

These can be used for arbitrary time-varying cost

coefficients. The complexity of the procedures grows

only linearly with T. They generate the values of

production, work force, and inventory levels for each

period in the planning horizon. Finally, the procedures

lend themselves to sensitivity analysis with respect to

terminal values and to generate alternate plans.

It is beneficial to generate a collection of alternate

plans on the basis of alternative terminal conditions

and evaluate them more precisely according to the

actual cost structure. This is usually more complex

than the quadratic cost function used in the Holt et al.

model. Sensitivity analysis can also be used to

eliminate plans that may include negative values of

Pt,Wt, or It. If only IT is specified, one can compute Z as

a simple quadratic function of WT : Z ¼ h + kWT +

mW 2
T where h, k, and m are functions of the cost

coefficients, ending inventory, and demand forecasts.

The optimum value of WT is then easily computed as

WT ¼ �k/2m. If WT, rather than IT, is specified, then Z

can be obtained as a quadratic function of IT. If the

terminal condition is not specified for any variable, one

can obtain Z as a quadratic function of both WT and IT
(or PT).

One can compute optimal plans for a menu of

combinations of terminal values (IT, WT) so as to
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create a menu of alternative plans which can be

evaluated in more detail with respect to alternative

cost structures, constraints, and objectives. The

alternate plans provide considerable flexibility to the

decision maker because they can be evaluated in

the context of (a) constraints not included in the

model, (b) actual costs, and (c) implications beyond

the planning horizon.

Constraints not included in the model— The model

does not specify that Pt,Wt, or It be non-negative. The

solution approaches developed by Holt et al. (1960) or

Singhal and Singhal (1996) do not guarantee it either.

However, the values of y1, y2, y3, y4, y5, y6, yt, and mt
(t ¼ 1, 2,. . ., T) in the decision rules for an actual

problem (Holt et al. 1960) indicate that for most

problems, they will be nonnegative. For cases where

a solution may include negative values of Pt, Wt, or It,

sensitivity analysis can be used to determine the ranges

of the terminal boundary conditions for which

all values of Pt, Wt, and It are non-negative.

If implementation of the optimal solution is difficult

because of extremely low or extremely high levels of

inventory, production, or work force in some periods,

trade-offs can be made between the additional cost and

the ease of implementation of alternate plans that are

within the constraints on inventory, production, and

work force.

Actual costs — The costs of various plans,

including the optimal plan refer to the costs

approximated by the linear quadratic model, not to

the actual costs. In testing the model for a real-world

problem, one may obtain actual costs for one or more

alternate plans that are lower than those of the optimal

plan.

Implications beyond the planning horizon — The

organization may anticipate or plan some changes

beyond the planning horizon of the model.

For example, it may retire workers or introduce

technology that requires fewer or more workers. If

the organization plans to introduce technology that

requires fewer workers, it would choose a plan that

would require a smaller work force towards the end of

the planning horizon. Similarly, if some workers are

expected to retire in the near future, the organization

would choose a plan that would require hiring more

workers towards the end of the planning horizon.

The exact choice of the plan will depend on the

magnitude of the changes beyond the planning
horizon and the cost penalty during the planning

horizon. In some cases, the optimal levels of

inventory and work force in the final period may be

incompatible with the demand forecasts for periods

beyond the planning horizon (these forecasts may be

too imprecise to extend the length of the planning

horizon but they may indicate the overall magnitude

of demand). In such cases, trade-offs can be made by

comparing the possible benefits of an alternate plan

and the cost penalty associated with it.

Both the finite and infinite horizon versions can be

implemented on the rolling basis. In the infinite

horizon version, no consideration is given to

information beyond a certain period. In the finite

horizon version, the implications beyond the planning

horizon are first included in the specification of the

terminal conditions and then evaluated through

sensitivity analysis.

Bergstrom and Smith (1970) extended the Holt et al.

model to a multi-product situation. It is given as
Minimize TC ¼
XT
t¼1

C1Wt þ
XN
i¼1

½Ci7ðIit � Ci8 � Ci9DitÞ2�
"

þ C3

XN
i¼1

kiPit � C4Wt

 !2

þ
XN
n¼1

C5kiPit � C6Wt

þ C12Wt

XN
i¼1

kiPit

 !

þ C2ðWt �Wt�1 � C11Þ2
i

subject to:
Iit¼ Ii;t�1þPit�Dit; i¼1;2; . . . ;N; t¼1;2; . . . ;T;

where N and T denote the number of products and

periods respectively; Pit, Dit, and Iit represent the

production, demand forecast, and inventory of

product i during period n; ki represents the standard

labor time to complete one unit of product i; and Wt

represents the work force during period t. The Ci are

the cost coefficients. Aggregate production Lt,
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aggregate inventory It, and aggregate demand forecast

Dt can be written as

Lt ¼
Xki
i¼1

Pit; t ¼ 1; 2; . . . ; T

It ¼
Xki
i¼1

Iit; t ¼ 1; 2; . . . ; T

Dt ¼
Xki
i¼1

Dit; t ¼ 1; 2; . . . ; T

Iit ¼ It�1 þ Lt � Dt; t ¼ 1; 2; . . . ; T

All decision variables are unconstrained. Initial

conditions I0, W0, and I0i (i ¼ 1, 2,. . ., N) and the

final conditions (work force and aggregate inventory)

are specified. Singhal (1992) developed a simple

and efficient non-iterative algorithm for obtaining

the optimal values of the levels of production

management in, inventory, and work force during

the planning horizon. The efficiency is achieved by

exploiting the special structure of the recurrence

relations obtained by differentiating the cost function.

Once the input data are developed, the computation

time will remain the same irrespective of the number of

products which, as noted earlier, could be as many as

100,000.

Linear cost models — Linear programming models

are widely used because they can be easily tailored to

a specific situation. Many constraints can be directly

included in the model. A major advantage of linear

programming models is the availability of computer

codes that can solve very large problems. Most cost

structures are generally linear within the range of

interest. If they are not, one can use linear

approximations. Another advantage is parametric and

sensitivity analyses. The dual solution can be used to

obtain the costs of constraints and one can easily

perform sensitivity analysis on cost parameters and

demand forecasts. For a more detailed discussion of

linear programming models, see Hax and Candea

(1984) and Silver et al. (1997). Hax and Candea

(1984) described the following general purpose model:

Minimize Z ¼
XN
i¼1

XT
t¼1

ðditPit þ citI
þ
it þ bitI

�
it Þ

þ
XT
t¼1

ðwtWt þ otOt þ htHt þ ftFtÞ
subject to:
Pit þ Iþi;t�1 � I�i;t�1 � Dit ¼ Iþit � I�it i ¼ 1; 2; . . . ;N;

t ¼ 1; 2; . . . ;T;

Wt �Wt�1 ¼ Ht � Ft t ¼ 1; 2; . . . ;T;

Ot � pWt t ¼ 1; 2; . . . ; T;

Pit; I
þ
it ; I

�
it ;Wt;Ot;Ht;Ft � 0

i ¼ 1; 2; . . . ;N; t ¼ 1; 2; . . . ; T

Pit ¼ Units of item i to be produced in period t

Dit ¼ Forecast demand for item i in period t

dit¼ Cost of producing one unit of product i in period t
cit ¼ Cost of carrying one unit of inventory of product

i from period t to t + 1

bit ¼ Cost of backordering one unit of inventory of

product i from period t to t + 1

wt ¼ Cost of one regular labor hour in period t

Wt ¼ Regular labor hours employed in period t
ot ¼ Cost of one overtime labor hour in period t

Ot ¼ Overtime labor hours used in period t

ht ¼ Cost of hiring one labor hour in period t
Ht ¼ Labor hours of regular work force hired in

period t

ft ¼ Cost of laying off one labor hour in period t
Ft ¼ Labor hours of regular work force laid off in

period t

iþit ¼ Inventory of product i at the end of period t

I�it ¼ Units of product i backordered at the end of

period t

p ¼ An upper bound on overtime as a fraction of

regular hours

The first constraint is similar to the

production-inventory balance equation in

the linear-quadratic model when Iit ¼ Iþit � I�it ,
t ¼ 1, 2,. . ., T. The second constraint shows the

changes in the level for work force due to hiring and

layoff. The third constraint provides a limit on

the overtime; the limit is proportional to the level of

work force.

Job Shops

Job shops specialize in producing customized

products, and the production process has the

flexibility to produce many different products. Due to

the high variety the flows in job shops are jumbled,

thus making it very difficult to predict and manage the

completion times of jobs. Since most of the jobs are
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produced after receiving an order from a customer,

very important managerial tasks are to accurately

predict due dates, ensure that the quoted dates are not

violated, and use resources effectively and efficiently.

Operational Problems — The challenge of

managing day to day operations has given rise to

a rich set of combinatorial optimization problems.

The most basic operational problem is to determine

a schedule that specifies when each job will be

allocated different resources. Associated with each

job are the arrival time, a due date and a set of

operations. Each operation requires a set of resources

for some duration, and there may be precedence

constraints on the order in which the operations can

be performed.

A variety of performance measures have been

considered for evaluating alternative schedules.

Common performance measures are the average or

maximum time a set of jobs remains in the facility,

number of jobs that are late, or the average or

maximum tardiness for a set of jobs. Most of the

problems of job shop schedule optimization

problems, except for a small class, are

computationally intractable (Lenstra et al. 1977;

French 1982). Hence for most practical problems the

emphasis has been on heuristics.

Researchers have successfully analyzed job shops

with special structures. Many insights have been

gained into the single machine and single stage,

multiple machine scheduling problems. For multiple

stage job shops, analysis has been possible, provided

all the jobs follow the same route.

Job shop scheduling models can be classified into

static and dynamic models. In static models the set of

requirements including job arrival times and

processing requirement are known in advance. In

contrast, in dynamic job shop models new arrivals are

permitted. The arrival times may be stochastic and the

processing requirements may also vary dynamically.

Mathematical programming approaches have been

employed to study static job shop problems. For

performance measure that are non-decreasing in the

completion time of the job, dynamic programming

techniques have been employed to generate optimal

solutions for problems of modest size. Dynamic

programming based approaches have also been useful

in identifying dominance criteria to reduce the number

of schedules to be evaluated. Several heuristics have

been developed that exploit dominance criteria.
Integer programming formulations of scheduling

problems have also been used to generate near

optimal solutions. Typically some complicating

constraints in the integer program are relaxed to yield

tractable sub-problems.

While most of the theory focuses on static job shop

models that assume deterministic requirements, most

practical problems are dynamic and stochastic. For

such complex environments analysis has largely been

restricted to simulations of local dispatching rules.

Each station employs a dispatching rule — for

example, process jobs in increasing order of

processing times — and the overall performance of

the shop is evaluated via Monte Carlo simulations.

Many dispatching rules have been discussed in the

literature. Further details regarding scheduling

algorithms are given in Conway et al. (1967), Graves

(1981), and O’Eigeartaigh et al. (1985).

An important development in the area of scheduling

dynamic shops has been to approximate the job shop

scheduling problem by a Brownian control problem.

Although the size of the networks analyzed is small,

since the focus is on bottleneck stations the method is

useful in many practical situations. The Brownian

control problems have been useful in identifying near

optimal scheduling policies for minimizing the

average lead times (Wein 1990).

Strategic and tactical problems— Since most of the

operational problems of sequencing and scheduling

jobs through a shop floor are computationally

intractable, there is a need to design the job shops

such that simple real time control rules are adequate

to obtain good performance. The long term

performance of the shop will depend on the types of

jobs processed by the facility (product mix), the

capacity and technology of different stations, and the

rules employed to quote due dates and manage the flow

through the shop floor. Tactical and strategic decisions

regarding each of these variables require models that

predict the medium to long term performance of the

job shops.

One approach for assessing the long term

performance is to employ Monte Carlo simulations.

The strength of simulation models lies in their ability

to incorporate many features, such as (i) complex

control rules — for example, local dispatching rules,

control of input to the shop, etc.; (ii) complex arrival

patterns — for example, correlated demands,

non-stationary demand, etc.; and (iii) complex
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resource requirements and availability — for example,

multiple resources, machine failures, etc. A broad

range of performance measures can also be assessed

through simulation models. These models, however,

are time consuming and cannot identify optimal

parameters for the policies being investigated.

Open queueing network models have been

proposed to evaluate the long term performance of

job shops. Good approximation procedures have been

developed to estimate the average queue lengths in

networks with features such as general processing

and interarrival time distributions, multiple job

classes, and class dependent deterministic routing

through the network.

An approximation procedure that has been

frequently employed is the parametric decomposition

approach (PDA). Under the PDA, each node is treated

as being stochastically independent and all the

performance measures are estimated based on the

first two moments of the inter-arrival and service

time distributions at each node. Extensive testing has

shown that PDA provides accurate estimates of the

average queue length at each node in very general

networks. Limitations of the approach are that all the

measures are for steady state, only the average queue

lengths are accurately predicted, and the analysis is

based on the assumption that the jobs are processed

on a first come first served basis. Nevertheless, the

power of this approach lies in the ease with which

complex networks can be analyzed, which in turn

facilitates the design of networks.

The PDA has enabled the analysis of several

optimal facility design problems. One such problem is:

• Objective: Minimize total cost of equipment.

• Decision Variables: Capacity of each station in the

network, and technology.

• Constraints: Upper bounds on the average lead time

for different job classes.

This model addresses the relationship between

average lead times and the choice of equipment.

Since system design is based on multiple criteria,

it is useful to develop curves that reflect the

trade-off between lead times and cost of equipment.

This can be done by parametrically varying the

upper bound on the permissible lead times. Figure 1

provides a possible trade-off curve (Bitran and Tirupati

1989). Details regarding the application of queueing

models to job shops are given in Bitran and Dasu

(1992).
Batch Shops

The variety of jobs processed in a batch shop is less

than that in job shops; furthermore, the set of products

that are produced by the facility may be fixed.

Nevertheless, the production volume of each product

is such that several products may share the same

equipment. Often the demand for final goods is met

from finished goods inventory and production plans

are based on demand forecasts. A large number of

discrete part manufacturing systems can be classified

as batch shops.

Operational problems: The time and cost for

switching machines from one product to the next

poses one of the biggest problems in managing batch

shops. Although job shops can also have significant

set-ups, since each job is unique the set-up time can be

incorporated in that job’s total processing time.

On the other hand, in batch shops, the same products

are produced repeatedly and there is an opportunity to

mitigate the effect of set-ups by combining or splitting

orders. Consequently much attention has been paid to

problems of determining batch quantity of and

the sequence in which each item is produced.

The primary trade-offs are between inventory

carrying, shortage and set-up costs.

A classic lot sizing problem is the economic lot

scheduling problem (ELSP). The ELSP seeks the

optimal lot size at a single production stage when the

demand rate for each item is fixed and deterministic

(Panwalker and Iskander 1977). The objective of the

analysis is to determine the frequency with which each

item is to be produced so as to minimize the average

set-up and holding costs without ever stocking out.
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Many of the solution procedures for ELSP consist

of three steps. First, ignoring the capacity constraint,

the optimal production frequency for each item is

determined. Next the frequencies are rounded off to

an integer multiple of a base period. In the final step

a solution that specifies the sequence in which each

item is produced is generated. Roundy (1986) showed

that in the second step if the integer multiple is

restricted to some power of 2, then a near optimal

solution can be found. In recent years researchers

have begun to extend the approaches developed for

ELSP to multistage multi-machine problems.

ELSP is a continuous time model. In practice

production plans are made on a periodic basis,

prompting several researchers to develop and analyze

discrete time models of the lot-sizing problems. Below

a single-stage, multi-item, multi-period, capacitated

lot-sizing problem is formulated:
Minimize
XT
t¼1

ptðXtÞ þ htðItÞ þ
XI
i¼1

sitdðXitÞ
( )

subject to:
P

Ii;t�1þXit� Iit ¼Dit t¼ 1;2; . . . ;T; i¼ 1;2; . . . ;I:

XI
i¼1

Xit � Xt t¼ 1;2; . . . ;T:

dðXitÞ¼
1 if Xit ¼ 0

0 otherwise



Iit;Xit � 0 t¼ 1;2; . . . ;T; i¼ 1;2; . . . ;I:

where Xit, Iit, Ct, Dit and sit denote respectively for

period t and product i, the production quantity, the

ending inventory, the capacity, the demand, and the

setup cost; Xit and Iit are the only decision variables;

and Xt and It are vector with elements {Xit} and {Iit},

respectively. The functions pt(�) and ht(�) denote

respectively the variable production and inventory

holding costs.

Once again, except for a small class, the lot-sizing

problems are NP-hard (Garey and Johnson 1979);

Bitran and Yanasse 1982). The following two

lot-sizing problems, however, can be solved in

polynomial time and have been the basis of many

approximation procedures: (a) the single item

lot-sizing problem without capacity constraints, and

concave variable production and inventory holding
costs; and (b) single item problem, with constant

capacity, and concave variable production and

inventory holding costs.

Multistage systems producingmultiple products with

dynamic demands, usually require extensive

information and considerable computational effort to

find optimal solutions. For these reasons, hierarchical

planning systems have been proposed. At the highest

level in the hierarchy an aggregate plan with a horizon of

several, usually 12, months is developed. If the demand

is seasonal, the horizon should cover the full demand

cycle. Over such horizons it is impractical to obtain

detailed information about demand for each item and

the availability of every resource. Hence, it becomes

necessary to aggregate the items into families, and the

machines into machine centers, etc. The aggregate plan

determines the time phased allocation of aggregate

resources to different part families. The plan focuses

on the primary trade-offs among the cost of varying

production resources employed by the firm, the costs

of carrying inventory (and possibly backordering

demand), and major setup costs. The extended horizon

enables the facility to respond to seasonality in demand.

The aggregate plan becomes the basis for

determining the detailed production schedule for each

item. The detailed resource allocation decisions

are constrained by the decisions made at the

aggregate planning level.

The number of hierarchical planning stages, the

degree of aggregation at each level, and the planning

horizon lengths affect the quality of the plan and

must be carefully determined for each context.

Many researchers have studied hierarchical planning

systems. Bitran and Tirupati (1993) and Hax and

Candea (1984) contain discussions of this approach.

Once the plans have been disaggregated and the

monthly requirements of each item are known, there

are a number of approaches for scheduling and

controlling the flow of the items through the shop.

One approach is to time the release of the orders to

the shop so that the required quantities of the items

become available by the date specified by the

hierarchical planning system. In this approach, also

referred to as the push system, an estimate is made of

production lead times, and order releases are offset by

the lead times. The scheduling decisions at each work

station may be made on the basis of the queue in front

of each work station. Scheduling models developed for

job shops are also useful here.
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An alternate approach for operating the shop is the

pull system. Under this approach the work-in-process

inventory level after a production stage determines the

production decisions at that stage. The buffer

inventories are maintained at planned levels and

a production order is triggered if the inventory level

drops below the threshold.

Since the push system operates on the basis of

planned lead times, OR/MS models have been

developed to understand the relationship between

release rules, capacity and lead times. The key

decision variable in pull systems is the size of

each buffer. Several researchers have examined the

impact of buffer sizes on the shop performance

(Conway et al. 1988).

Strategic and Tactical Problem — An approach

advocated for simplifying the operations of batch

shops is to partition the facility into cells. Parts

produced by the facility are grouped into families and

each family is assigned to a cell. Ideally all operations

required for a family of parts are performed in the same

cell. The advantages of cellular manufacturing systems

are simplified flows, and reduced lead times and setup

costs. These benefits may be partially offset by the

need for additional equipment. Many different

criteria — such as part geometry, production

volumes, setups, and route through the shop — have

been proposed for forming part families. Researchers

have also investigated several algorithms for

identifying alternative partitions. Typically these

algorithms begin with a product-process matrix. In

this matrix rows correspond to parts and columns

correspond to machines. An element ij in this matrix

is one if a part i requires a machine j and zero

otherwise. The columns and rows of the matrix are

interchanged so as to produce a block diagonal

matrix. Each block identifies a set of resources and

jobs that does not interact with the remaining

operations, and so corresponds to a cell.

As in the case of job shops, batch shops system

design can be improved if the medium to long term

performance of the shop can be assessed. Closed and

open queueing network models and simulation based

models are useful for assessing the long term

performance of batch shops. The objective of these

models is to determine the relationship among

capacity of different cells, lot sizes, and lead times

(Bitran and Dasu 1992).
Queueing network models assume that the

processing rate at each station is fixed. In practice

the processing rate at each station may vary.

Variations may be due either to the allocation of

additional (human) resources to a stage or simply

because the queue length has a motivational effect on

the machine operator. Based on these observations, in

recent years an alternative class of tactical models of

the shop have been proposed (Graves 1986). Here the

production rates are assumed to vary as a function of

the size of the queue length. The processing rates at

each stage are allowed to vary so as to ensure that the

time spent at a station is the same for every job.

The model therefore enables managers to plan the

lead times for each stage.
Flow Lines and Continuous Operations

Included in this class are all systems that are dedicated

to the production of (one or few) items in large

volumes. Examples of such systems include assembly

lines, transfer lines, and continuous operations such as

cement and oil derivatives manufacture. The demand

is often met from finished goods inventory and thus the

main focus tends to be on the management of the

corresponding inventory levels and the supply chain.

The operational problems are relatively simple and are

omitted.

Tactical problems — An important operational

problem is to manage the trade-off between the cost

of varying the production rate and the cost of finished

goods inventory. The aggregate planning models

discussed earlier are applicable here. Typically, all

the stages of the production system have equal

capacity, hence, managing the flow through the

facility does not pose a significant problem. In

assembly lines, the balance is achieved by carefully

assigning tasks to different work stations — a complex

combinatorial optimization problem. Several

algorithms have been developed for assembly line

balancing.

Strategic problems — High volume production

systems frequently compete on the basis of low costs

and supply large geographically dispersed markets.

It is therefore not uncommon to have many plants

that cater to different markets. OR/MS models have

been developed to aid in the design of the multiplant
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networks and the distribution systems (Erlenkotter

1978; Federgruen and Zipkin 1984). Here the

discussion is restricted to the plant location problems.

The number of plants their capacity and location

have a big effect on production and distribution costs.

Models have been developed to analyze the trade-off

between the fixed costs of setting up plants and the

variable (transportation and production) costs of

operating the plants. The models assume that a set

of markets with known demands have to be supplied

and the decision variables are the number of plants,

their location and capacities (Erlenkotter 1978).
P

Concluding Remarks

Production management involves many complex trade-

offs. As a result many mathematical models have been

developed to aid decision makers. This is certainly not

an exhaustive list and excludesmany important problem

areas such as inventory management, preventive

maintenance, capacity expansion, and quality control.

The focus has been on models that are concerned with

the flow of goods through a manufacturing system.

Even within this domain, in order to provide a broad

overview, many important models that deal with

specialized systems were not discussed, such as

intelligent manufacturing systems.

The problems arising in each type of production

system were described as if each plant operated in

isolation. In practice, a production system is likely to

consist of a network of plants. While some plants may

be batch or job shops others are likely to be assembly

or continuous processes. The problems of coordinating

these networks was not discussed.

Most of the OR/MS models focus on managing the

trade-offs among setup costs, inventory carrying costs

and cost of varying production rates. On the other

hand, many gains in productivity are due to the

elimination (or mitigation of) the factors that give

rise to these trade-offs. For example reduction in

set-up costs and times reduces lead times, increases

the ability of the system to produce a wider mix of

products, diminishes the role of inventories and

simplifies the management of batch shops.

Researchers have begun to develop models that

quantify the benefits of and guide such process

improvement efforts (Porteus 1985; Silver 1993).
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Production Rule

A mapping from a state space to an action space,

generally used in modular knowledge representation.

With roots in syntax-directed parsing of language,

production rules comprise a basic reasoning

mechanism, particularly in heuristic search.

See

▶Artificial Intelligence

▶Expert Systems
Program Evaluation

Edward H. Kaplan and Todd Strauss

Yale University, New Haven, CT, USA
Introduction

Program evaluation is not about mathematical

programming, but about assessing the performance of

social programs and policies. Does capital punishment

deter homicide? Which job training programs are

worthy of government support? How can emergency

medical services be delivered more effectively? What

are the social benefits of energy conservation

programs? These are the types of questions

considered in program evaluation.

Notable evaluations include the Westinghouse

evaluation of the Head Start early childhood program

(Cicarelli et al. 1969), the Housing Allowance

experiment (Struyk and Bendick 1981), the Kansas

City preventive patrol experiment (Kelling et al.

1974), and evaluation of the New Haven needle

exchange program for preventing HIV transmission

among injecting drug users (Kaplan and O’Keefe

1993). As these examples suggest, questions and

issues deserving serious evaluation often are in the

forefront of social policy debates in areas such as

public housing, health services, education, welfare,

and criminal justice.

Closely related to program evaluation are the

activities of cost-benefit and cost-effectiveness

http://dx.doi.org/10.1007/978-1-4419-1153-7_42
http://dx.doi.org/10.1007/978-1-4419-1153-7_313
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analysis. These resource allocation methods help

decision makers decide which social programs are

worth sponsoring, and how much money should be

invested in competing interventions. Program

evaluation may be construed as an attempt to

understand and estimate the benefits associated with

the social program under study. While some

evaluations attempt to relate these benefits to the

costs of program activities, most program evaluations

are viewed as attempts to measure benefits alone.

Program evaluation is often conducted by social

scientists at the behest of organizations with some

interest in the program, either as participants,

administrators, legislators, managers, program

funders, or program advocates. In such a charged

atmosphere, how can OR/MS be useful? Program

evaluation contributes to policy making chiefly by

informing policy debate. Evaluation can be construed

as an activity that produces important information for

decision makers in the policy process (Larson and

Kaplan 1981). Evaluation is also useful for framing

issues, and for identifying and choosing among policy

options. Evaluation is crucial to program

administrators concerned with improving service

delivery. These tasks are about gathering, analyzing,

and using information. It is the orientation toward

decision making that renders OR/MS particularly

useful in the evaluation of public programs.
P

Program Components and the Scope of
Evaluation

In the language of systems analysis, the components of

social programs can be classified as inputs, processes,

and outputs (Rossi and Freeman 1993). Inputs are

resources devoted to the program, while outputs are

products of the program. In this framework, program

evaluation is usually about assessing a program’s

effects on outputs. Such evaluation is often called

outcome or impact evaluation. Typically, the result of

outcome evaluation is the answer to the question: Did

the program achieve its goals?

In contrast to outcome evaluation, process

evaluation is often referred to, perhaps pejoratively,

as program monitoring. As the myriad details of real

programs are classified simply as processes in

monitoring studies, programs become black boxes.
Such a framework is anti-operational. On the other

hand, an OR/MS approach to process evaluation

focuses on program operations, often with the

assistance of appropriate mathematical models.

Typical program evaluations too often lead to

simplistic conclusions regarding which programs

work. Focusing on program operations often results

in understanding why some programs are successful

and other programs fail. As an example, consider

Larson’s analysis of the Kansas City Preventive

Patrol Experiment (Larson 1975). This experiment

attempted to discern the impact of routine preventive

patrol on important outcomes such as crime rates and

citizen satisfaction, in addition to important

intermediate outcomes such as response time and

patrol visibility. The empirical results of this

experiment resulted in several findings of “no

difference” between patrol areas with supposedly

low, regular, and high intensities of police

preventive patrol. In contrast, Larson’s application of

back-of-the-envelope probabilistic models to this

experiment showed that one should have expected

such results due to the nature of the experimental

design. He showed, for example, that one should not

have expected large differences in police response

times given the peculiarities of patrol assignments

and call-for-service workloads evident in the

experiment. The same models suggested that

different experimental conditions, better reflecting

police operations in other large American cities,

could lead to different results.

An advantage of an OR/MS approach to program

evaluation is that goals and objectives are stated as

explicitly as possible. What is the purpose of the

program under study, and how does one characterize

good versus poor program performance? While the

importance of such questions may be self-evident to

OR/MS practitioners, most actors on the policy

stage are not accustomed to such explicitness. The

act of asking such questions is often, by itself,

a contribution to policy debate. A defining feature of

the OR/MS approach to problem solving is the

association of one or more performance measures

with program objectives. A performance measure

quantifies how well a system functions. Performance

measures should be measurable (computable if not

actually observable), understandable, valid and

reliable, and responsive to changes in program
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operations. Operational modeling of public programs

can even yield performance measures not apparent

a priori. For example, the evaluation of the New

Haven needle exchange program involved

a mathematical model of HIV transmission among

drug injectors as modified by the operations of needle

exchange (Kaplan and O’Keefe 1993). The model

revealed needle circulation time, that is, the amount

of time a needle is available for use by drug injectors,

as a critical performance measure. Reducing needle

circulation time reduces opportunities for needle

sharing on a per needle basis. This reduces both the

chance that a needle becomes infected, and the chance

that an injection with a used needle transmits infection.

Needle exchange adjusts the distribution of needle

circulation times. The model uncovered a direct link

between the exchange of needles and the probability of

HIV transmission.
Methodologies

Much of program evaluation is qualitative in nature.

Social science methods relying on field observation,

case histories, and the like are often used. However,

such qualitative data often fail to satisfy critics of

particular social programs. In addition, qualitative

data generally allow only coarse judgments about

program effectiveness. While no panacea,

quantitative assessment methods have become

standard in evaluating social programs and policies.

Assessments of program effects are often made by

statistically comparing a group participating in the

program to a control group. The randomized

experiment is the archetype for this kind of

comparison. Since true randomized experiments may

be difficult to execute under real program settings,

quasi-experimental designs are often used instead.

Rather than randomly assigning participants to

program and control groups, quasi-experimental

methods attempt to find natural or statistical

controls. Multiple regression, analysis of variance, or

other statistical techniques are often used;

Cook and Campbell (1979) is a classic reference on

quasi-experimental methods.

The model-based techniques of OR/MS are also

applicable to program evaluation. Decision analysis

is obviously useful in prospectively selecting among

policy options. Queueing theory may be used to
analyze the delivery of a wide range of programs,

including public housing assignments, 911 hotlines,

and dial-a-ride van services for the elderly and

disabled. Applied probability models are generally

useful, while statistical methods are widely valued.

Techniques for multicriteria optimization, data

envelopment analysis, and the analytical hierarchy

process may be useful in identifying tradeoffs among

multiple objectives.

While it seems that a solid understanding of OR/

MS modeling is useful in conducting program

evaluation, OR/MS has been underutilized. For

example, basic optimization techniques such as linear

programming have not been widely applied, perhaps

because formulating a consensus objective function is

usually very difficult. Training in OR/MS is less

common than training in statistics and other social

sciences. Few of those who have been trained in OR/

MS have chosen to concentrate their efforts in the

evaluation of public programs. Thus, social program

evaluation remains an important and fertile area for

further development and application of OR/MS

methods.
Professional Opportunities and
Organizations

Departments and agencies of federal, state, and

municipal government and international

organizations typically have offices that perform

evaluation activities. Examples include the U.S.

Environmental Protection Agency’s Office of Policy

Planning and Evaluation, the New York City Public

School’s Office of Research, Evaluation, and

Assessment, and the World Bank’s Operations

Evaluations Unit. A few large private or non-profit

organizations under-take many program evaluations.

Among such organizations are The Urban Institute,

Abt Associates, RAND Corporation, Mathematica

Policy Research, and Westat. Much program

evaluation is done by academics, largely social

scientists. There are opportunities for OR/MS

practitioners to get involved. One outlet is the

INFORMS College on Public Programs and

Processes. The American Evaluation Association is

an interdisciplinary group of several thousand

practitioners and academics. The journal Evaluation
Review publishes examples of quality evaluations.
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See

▶Cost Analysis

▶Cost-Effectiveness Analysis

▶Emergency Services

▶ Practice of Operations Research and Management

Science

▶ Problem Structuring Methods

▶ Public Policy Analysis

▶RAND Corporation

▶ Systems Analysis

▶Urban Services
P
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Program Evaluation and Review
Technique (PERT)

A method for planning and scheduling a project which

models uncertainties in activity by using optimistic,

likely and pessimistic time estimates for each activity.

PERT evolved when the U.S. Navy was developing

a system to plan and coordinate the Polaris missile

program (Malcolm et al. 1959).
See

▶Critical Path Method (CPM)

▶Network Planning

▶ Project Management

▶Research and Development
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Project Management

Mark Westcombe and Graham K. Rand

Lancaster University, Lancaster, UK
Project management means different things to different

people. Traditionally the domain of engineering, it

has concerned itself with managing anything from

small construction developments to large complex

systems integration projects in defense, aerospace

and other industries. A comprehensive survey of the

development of project management since the 1940s

and the issues involved in accomplishing projects is

available in The Management of Projects (Morris

1997). In this period, OR/MS almost exclusively

focused on the technical aspects of conforming to a

contract using the iron triangle paradigm of

management: to deliver a project to a pre-defined

specification, on time, with an efficient use of

resources within budget and with attention to safety. It

accepted the project focus as the activities associated

with the project lifecycle: defining scope; the

work breakdown of the project plan; scheduling

these activities; estimating costs; allocating resources

and monitoring and controlling progress. OR/MS

interested itself predominantly with techniques such as

Program Evaluation and Review Technique (PERT)

and the Critical Path Method (CPM).

Project management has since become ubiquitous

within commercial and public sector organizations

having been used to deliver organizational change
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(see Balogun et al. 2008). Businesses might now

use project management discourse and techniques

to manage anything from opening a new store to the

acquisition, a merger with an international corporation

or to complete an urban regeneration scheme.

They may conceive projects, form project teams and

appoint project managers to issues that previously

would have been dealt with by managers responsible

for day-to-day operations. A critique of this

projectification of operational management is offered

by Hodgson and Cicmil (2006).

This evolution of project management has led to

new ways of thinking about projects (Winter and

Szczepanek 2009) and the focus of the project

manager is now more concerned with defining project

success (Atkinson 1999), delivering long-term

project outcomes and ensuring benefits that add value

to an organization’s operations (Cooke-Davies 2007).

Similarly OR/MS is engaging more at a strategic level

of projects, offering, in particular, ideas from systems

thinking for the developing of processes rather than

just techniques, such as for the project front-end

(Winter 2009), negotiating project objectives

amongst differing stakeholder perspectives and

managing stakeholder relationships. OR/MS has also

contributed significantly to the risk analysis of projects

(Williams 1995) as risk management has come to the

fore, including: mathematical modeling (Chapman and

Ward 2002); qualitative modeling of the systemic

nature of risk (Ackerman et al. 2007); the cost impact

of disrupted learning curves (Howick and Eden 2001);

and the use of system dynamics to model disruption

and delay of projects in litigation (Eden et al. 2000).

It has also concerned itself with project selection,

Monte Carlo simulation of projects and project

portfolio management.

Outside of OR/MS, topics of current concern

include: project evaluation and improvement;

strategic alignment; organizational learning; program

management; project leadership; sustainability issues;

partnering; project governance; and procurement

(see Crawford et al. 2006). A special issue of the

International Journal of Project Management is of

particular interest (Winter et al. 2006), which reviews

future trends in the field as well as explores key

contemporary themes in depth. A comprehensive

breakdown of all the tactical elements of project
management can be found in the professional Bodies

of Knowledge (Association of Project Management

2006; Project Management Institute 2008), as well as

from the growing industry of professional courses and

certification in project management, such as

PRINCE2, which is widely used in UK public sector

projects and offers a particular step by step approach to

project management.

Professional association in project management

is available through the Association of Project

Management, Ibis House, Regent Park, Summerleys

Road, Princes Risborough, Buckinghamshire, UK

HP27 9LE, which publishes The International Journal

of Project Management; and the Project Management

Institute, which publishes the Project Management
Journal. Note that the term project management, or

project management skills, is often misleadingly

appropriated as a term in personal development to

cover such transferable skills as time management,

prioritization, presentation skills, etc.
See

▶Critical Path Method (CPM)

▶Network Planning

▶ Practice of Operations Research and Management

Science

▶ Program Evaluation and Review Technique (PERT)
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Project SCOOP

Project SCOOP (Scientific Computation of Optimal

Programs) was a research program of the U.S. Air

Force from the late 1940s to early 1950s whose main

objective was to study and solve Air Force

programming and scheduling problems. It was while

working on Project SCOOP problems that George B.

Dantzig formulated the linear-programming model

and developed the simplex method for solving such

problems.
Projection Matrix

For a given matrix A, its associated projection

matrix is defined as P ¼ A(ATA)�1AT. The matrix

P projects any vector b onto the column space of A.
See

▶Matrices and Matrix Algebra
Proper Coloring

An assignment of colors to nodes in a graph in which

adjacent nodes are colored differently.
See

▶Graph Theory
Prospect Theory

A descriptive theory of decision making under

uncertainty (human choice), which attempts to

explain certain deviations of observed empirical

behavior from expected utility theory.
See

▶Choice Theory

▶Utility Theory
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Protocols

The elicitation of an expert’s procedure by asking the

expert to describe aloud how he or she is solving

a problem, such as making a forecast or a decision.
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See

▶Artificial Intelligence

▶Expert Systems

▶ Forecasting
Pseudoconcave Function

Given a differentiable function f(�) on an open convex

set X, the function f is pseudoconcave if f(y) > f(x)

implies that (y � x)T =f(x) > 0 for all x, y ∈ X where

x 6¼ y.
See

▶Concave Function

▶Quasi-Concave Function
Pseudoconvex Function

Given a differentiable function f(�) on an open convex

set X, the function f is pseudoconvex if � f is

pseudoconcave.
See

▶Convex Function

▶ Pseudoconcave Function

▶Quasi-Convex Function
Pseudoinverse

▶Matrices and Matrix Algebra
Pseudorandom Numbers

A sequence of values coming from a mathematical

algorithm, which appears to be statistically drawn

independently from a uniform distribution over the

unit interval [0,1].
See

▶Random Number Generators
Pseudo-Polynomial-Time Algorithm

An algorithm whose running time is technically not

polynomial because it depends on the magnitudes of

the numbers involved, rather than their logarithms.
See

▶Computational Complexity
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Introduction

Public policy analysis refers to the activities, methods,

and tools that are used to give aid, advice, and support in

the context of public policymaking. It covers a wide

range of activities conducted with differing primary

objectives and perspectives. Mayer et al. (2004)

introduced a conceptual framework – the hexagon

framework – that classifies the policy analysis activities

in a structured manner. According to the hexagon

framework, an analyst providing policy support may

carry out six major clusters of activities, each having

different objectives. The six objectives, represented as

the vertices of the hexagon given in Fig. 1, are:

• Research and analyze: This type of activity aims for

the generation of knowledge that can be used later

for policy purposes. The major objective is to

understand certain policy-relevant phenomena,

and develop insights about them.

• Design and recommend: In certain situations the

analyst can assist the decision-making process by

designing alternative solutions to a problem and

analyzing and possibly weighing the consequences
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Public Policy Analysis, Fig. 1 Overview of objectives of

policy analysis (Mayer et al. 2004)
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of these alternative solutions. The main question

here is more about evaluating a set of

interventions, or changing the system that is

related to the already known phenomena. In other

words, there is a certain action orientation that ends

with a policy choice or recommendation.

• Provide strategic advice: In certain situations, an

analysis can be a strategic, client-oriented activity.

The analyst can advise the client on the most

effective strategy for achieving certain goals

given a certain political constellation, i.e., the

environment in which the client operates, the

likely counter-steps of opponents, etc.

• Mediate: A given policy problem generally

involves multiple parties that have different views

and perspectives regarding the issue. Addressing

the problem and coming up with an effective

(i.e., accepted by all parties) policy may require

the understanding of the other parties’

perspectives. Hence, the task for the policy analyst

may be mediating these multiple parties and

promoting communication among them within

a policymaking or decision-making process.

• Democratize: This type of policy-analytic activity

aims mainly at acquiring and maintaining the

involvement of all related parties in the policy

process in order to make it as democratic as

possible. This includes assuring the flow of proper

information to all stakeholders, and the provision of

opportunities for them to have their say regarding the

policy issue.

• Clarify arguments and values: The main objective

of this type of policy analysis activity is the

elicitation of mindset, norms, and values of the
stakeholders involved in the problem at hand. In

these situations, the analyst can support or help

move forward the decision-making process by

analyzing the values and argumentation systems

that underpin the social and political debate.

In real-life cases and projects, a policy analyst will

combine one or more of these activities, albeit not all at

the same time. Traditional policy analysis is focused

on the ‘design and recommend’ vertex (see Walker

2000). The approach related to this objective is

detailed below, and expanded upon in Thissen and

Walker (2013). Its primary purpose is to assist

policymakers in choosing a preferred course of action

to implement in a complex system from among

multiple alternatives under uncertain conditions.

The word “assist” emphasizes that policy analysis

is used by policymakers as a decision aid, just as

checklists, advisors, and horoscopes can be used as

decision aids. Policy analysis is not meant to replace

the judgment of the policymakers (any more than an

X-ray or a blood test is meant to replace the judgment

of medical doctors). Rather, the goal is to provide

a better basis for the exercise of that judgment by

helping to clarify the problem, presenting the

alternatives, and comparing their consequences in

terms of the relevant costs and benefits.

The word “complex” means that the system

being studied contains so many variables, feedback

loops, and interactions that it is difficult to project the

consequences of a policy change. Also, the alternatives

are often numerous, involving mixtures of different

technologies and management policies, and

producing multiple consequences that are difficult to

anticipate, let alone predict.

The word “uncertain” emphasizes that the choices

must be made on the basis of incomplete knowledge

about (a) the future world, (b) the model of the

relevant system for that future world, (c) the outcomes

from the system, and (d) the weights that the various

stakeholders will put on the outcomes. This situation is

sometimes referred to as “deep uncertainty”.

Policy analysis is performed in government, at all

levels; in independent policy research institutions,

both for-profit and not-for-profit; and in various

consulting firms. It is not a way of solving a specific

problem, but is a general approach to problem

solving. It is not a specific methodology, but it makes

use of variety of methodologies in the context of

a generic framework.



1. Identify Problem

2. Specify Objectives

3. Decide on Criteria

4. Select Alternatives

5. Analyze Alternatives

6. Compare Alternatives

7. Implement Chosen Alternative

8. Monitor and Evaluate Results

Public Policy Analysis, Fig. 2 Steps in a policy analysis study

(Source: Walker 2000)
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The Policy Analysis Steps

The policy analysis process generally involves

performing the same set of logical steps, not always

in the same order (Walker 2000; Miser and Quade

1985, p. 123). The steps, summarized in Fig. 2, are:

1. Identify the problem. This step sets the boundaries

for what follows. It involves defining the system

of interest, identifying the questions or issues

involved, fixing the context within which the

issues are to be analyzed and the policies will have

to function (this is often done by using “scenarios”),

clarifying constraints on possible courses of action,

identifying the people who will be affected by

the policy decision (the “stakeholders”), and

discovering the major operative factors.

2. Identify the objectives of the new policy. Loosely

speaking, a policy is a set of actions taken to solve

a problem. The policymaker(s) and stakeholders

have certain objectives that, if met, would “solve”

the problem. In this step, the policy objectives are

determined. (Most public policy problems involve

multiple objectives, some of which conflict with

others.)

3. Decide on criteria (measures of performance and
cost) with which to evaluate alternative policies.

Determining the degree to which a policy meets

an objective involves measurement. This step

involves identifying consequences of a policy that

can be measured (either quantitatively or

qualitatively) and that are directly related to the

objectives. It also involves identifying the costs

(negative benefits) that would be produced by

a policy, and how they are to be measured.

4. Select the alternative policies to be evaluated. This

step specifies the policies whose consequences are

to be estimated. It is important to include as many as

stand any chance of being worthwhile. If a policy is

not included in this step, it will never be examined,

so there is no way of knowing how good it may be.

The current policy should be included as the “base

case” in order to determine how much of an

improvement can be expected from the other

alternatives.

5. Analyze each alternative. This means determining

the consequences that are likely to follow if

the alternative is actually implemented, where the

consequences are measured in terms of the criteria
chosen in Step 3. This step usually involves using

a model or models of the system.

6. Compare the alternatives in terms of projected costs

and benefits. This step involves ranking the

alternatives in order of desirability and choosing

the one preferred. If none of the alternatives

examined so far is good enough to be

implemented (or if new aspects of the problem

have been found, or the analysis has led to new

alternatives), return to Step 4.

7. Implement the chosen alternative. This step

involves obtaining acceptance of the new

procedures (both within and outside the

government), training people to use them, and

performing other tasks to put the policy into effect.

8. Monitor and evaluate the results. This step is

necessary to make sure that the policy is actually

accomplishing its intended objectives. If it is not,

the policy may have to be modified or a new study

performed.

The individual steps in the process are described in

detail by Miser and Quade (1985, Chap. 4), Quade

(1989, Chap. 4), Walker (2000), and Enserink et al.

(2010).
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OR/MS and Public Policy Analysis

Policy analysis is closely related to operations

research; in fact, in many respects it grew out of

operations research as it was being applied at the

RAND Corporation and other applied research

organizations in the 1960s and 1970s. Miser (1980)

and Majone (1985) describe this evolution. In the

beginning, operations research techniques had been

applied primarily to problems in which there were

few parameters and a clearly defined single objective

function to be optimized (e.g., aircraft design

and placement of radar installations). Gradually,

the problems being analyzed became broader and

the contexts more complex. Health, housing,

transportation, and criminal justice policies were

being analyzed. Single objectives (e.g., cost

minimization or single variable performance

maximization) were replaced by the need to consider

multiple (and conflicting) objectives (e.g., the impacts

on health, the economy, and the environment and

the distributional impacts on different social or

economic groups). Non-quantifiable and subjective

considerations had to be considered in the analysis

(Schlesinger 1967, provided an early discussion of

this issue). Optimization was replaced by satisficing.

Simon (1969, pp. 64–65) defined satisficing to mean

finding an acceptable or satisfactory solution to

a problem instead of an optimal solution. He said that

satisficing was necessary because “in the real world we

usually do not have a choice between satisfactory and

optimal solutions, for we only rarely have a method of

finding the optimum.”

Operations research techniques are among the many

tools in the policy analyst’s took kit. The analyses and

comparisons of alternative policies are usually carried

out with the help of mathematical and statistical

models. Simulation, mathematical programming, and

queueing theory are among the many tools that are

used in policy analysis study. But modeling is just

one part of the process; all of the steps are important.

The policy analysis process has been applied to

a wide variety of problems. Miser and Quade (1985,

Chap. 3) provide examples of some of these, including

improving blood availability and utilization,

improving fire protection (for this, see also Walker

et al. 1979), protecting an estuary from flooding,

and providing energy for the future. More generally,
the policy analysis approach has been used in the

formulation of policies at the national level, including

national security policies, transportation policies, and

water management policies (e.g., Goeller and the

PAWN Team 1985). Other examples that illustrate

the approach can be found in a variety of

publications, including Drake et al. (1972), House

(1982), Mood (1983), Pollock et al. (1994), Miser

(1995), and Walker et al. (2008).
See

▶Choice Theory

▶Cost Analysis

▶Cost-Effectiveness Analysis

▶Decision Analysis

▶Decision Making and Decision Analysis

▶Deep Uncertainty

▶Exploratory Modeling and Analysis

▶Multi-attribute Utility Theory

▶ Practice of Operations Research and Management

Science

▶RAND Corporation

▶ Satisficing

▶ Systems Analysis
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Pull System

Production system in which work is released into the

production facility based on the current state of the

facility, which includes information such as available

inventory, work in process, and realized demand.
See

▶CONWIP

▶Kanban

▶ Production Management
Pure-Integer Programming Problem

A mathematical programming problem in which all

variables are restricted to be integer. Usually refers to

a problem in which the constraints and the objective

function are linear.
See

▶Mixed-Integer Programming Problem (MIP)
Push System

Production system in which work is released into the

system according to forecasted demand, usually based

on a schedule prepared in advance.
See

▶ Production Management
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