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Abstract

Motivation: High-content screening (HCS) technologies have enabled large scale imaging experi-

ments for studying cell biology and for drug screening. These systems produce hundreds of thou-

sands of microscopy images per day and their utility depends on automated image analysis. Recently,

deep learning approaches that learn feature representations directly from pixel intensity values have

dominated object recognition challenges. These tasks typically have a single centered object per

image and existing models are not directly applicable to microscopy datasets. Here we develop an ap-

proach that combines deep convolutional neural networks (CNNs) with multiple instance learning

(MIL) in order to classify and segment microscopy images using only whole image level annotations.

Results: We introduce a new neural network architecture that uses MIL to simultaneously classify

and segment microscopy images with populations of cells. We base our approach on the similarity

between the aggregation function used in MIL and pooling layers used in CNNs. To facilitate aggre-

gating across large numbers of instances in CNN feature maps we present the Noisy-AND pooling

function, a new MIL operator that is robust to outliers. Combining CNNs with MIL enables training

CNNs using whole microscopy images with image level labels. We show that training end-to-end

MIL CNNs outperforms several previous methods on both mammalian and yeast datasets without

requiring any segmentation steps.

Availability and implementation: Torch7 implementation available upon request.

Contact: oren.kraus@mail.utoronto.ca

1 Introduction

High-content screening (HCS) technologies that combine automated

fluorescence microscopy with high-throughput biotechnology have

become powerful systems for studying cell biology and for drug

screening (Liberali et al., 2015; Singh et al., 2014). These systems

can produce more than 105 images per day, making their success de-

pendent on automated image analysis. Previous analysis pipelines

heavily rely on hand-tuning the segmentation, feature extraction

and classification steps for each assay. Although comprehensive

tools have become available (Carpenter et al., 2006; Eliceiri et al.,

2012; Held et al., 2010) they are typically optimized for mammalian

cells and not directly applicable to model organisms such as yeast

and Caenorhabditis elegans. Researchers studying these organisms

often manually classify cellular patterns by eye (Breker et al., 2013;

Tkach et al., 2012).

Recent advances in deep learning have proven that deep neural

networks trained end-to-end can learn powerful feature representa-

tions and outperform classifiers built on top of extracted features

(Krizhevsky et al., 2012; Vincent et al., 2010). Although object

recognition models have been successfully trained using images with

one or a few objects of interest at the center of the image, micros-

copy images often contain hundreds of cells with a phenotype of

interest, as well as outliers. Training similar recognition models on

HCS screens is challenging due to the lack of datasets labeled at the

single cell level.

In this work, we describe a convolutional neural network (CNN)

that is trained on full resolution microscopy images using multiple

instance learning (MIL). The network is designed to produce feature

maps for every output category, as proposed for segmentation tasks

in Long et al. (2014). We pose cellular phenotype classification as a

MIL problem in which each element in a class-specific feature map

(approximately representing the area of a single cell in the input

space) is considered an instance an entire class specific feature map

(representing the area of the entire image) is considered a bag of

instances annotated with the whole image label. Typically binary

MIL problems assume that a bag is positive if at least one instance

within the bag is positive. This assumption does not hold for HCS

images due to heterogeneities within cellular populations and
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imaging artifacts (Altschuler and Wu, 2010). We explore the per-

formance of several global pooling operators on this problem and

propose a new operator capable of learning the proportion of in-

stances necessary to activate a label.

The main contributions of our work are the following. We present

a unified view of the classical MIL approaches as pooling layers in

CNNs and compare their performances. To facilitate MIL aggrega-

tion in CNN feature maps we propose a novel MIL method, ‘Noisy-

AND’, that is robust to outliers and large numbers of instances. We

demonstrate the utility of convolutional MIL models on an interpret-

able dataset of cluttered hand written digits. We evaluate our pro-

posed model on both mammalian and yeast datasets, and find that

our model significantly outperforms previously published results at

phenotype classification. We show that our model is capable of learn-

ing a good classifier for full resolution microscopy images as well as

individual cropped cell instances, even though it is only trained using

whole image labels. Finally, we demonstrate that the model can local-

ize regions with cells in the full resolution microscopy images and that

the model predictions are based on activations from these regions.

1.1 Related work
1.1.1 Current approaches for microscopy image analysis

Several sophisticated and modular tools (Eliceiri et al., 2012) have

been developed for analyzing microscopy images. CellProfiler

(Carpenter et al., 2006) is a popular tool that was previously used to

analyze the datasets described below. All existing tools rely on ex-

tracting a large set of predefined features from the original images

and subsequently selecting features that are relevant for the learning

task Kraus et al., 2016. This approach can be limiting for assays

that differ from the datasets used to develop these tools. For ex-

ample, recent proteome-wide studies of protein localization in yeast

resorted to evaluating images manually (Breker et al., 2013; Tkach

et al., 2012). Also, a separate toolbox has been published for

CellProfiler specifically for analyzing C. Elegan images (W€ahlby

et al., 2012).

Applying deep neural networks to microscopy screens has been

challenging due to the lack of large datasets labeled at the single cell

level. Other groups have applied deep neural networks to micros-

copy for segmentation tasks (Ciresan et al., 2012; Ning et al., 2005)

using ground truth pixel-level labels. Pachitariu et al. (2013) use

convolutional sparse coding blocks to extract regions of interest

from spiking neurons and slices of cortical tissue without supervi-

sion. These publications differ from our work as they aim to seg-

ment or localize regions of interest within the full resolution images.

Here we aim to train a CNN for classifying cellular phenotypes for

images of arbitrary size based on only training with weak labels.

1.1.2 Fully convolutional neural networks

Fully CNNs (FCNNs) have recently achieved state-of-the-art perform-

ance on image segmentation tasks (Chen et al., 2014; Long et al.,

2015). These networks build on the success of networks previously

trained on image recognition tasks (Krizhevsky et al., 2012; Simonyan

and Zisserman, 2014; Szegedy et al., 2014) by converting their fully

connected layers to 1 � 1 convolutions, producing feature maps for

each output category instead of a single prediction vector. The

pretrained networks are fine-tuned using different techniques to gener-

ate output images of the same dimension as input images from the

down-sampled feature maps. These networks are trained with pixel

level ground truth labels. Pathak et al. (2014) use MIL with a FCNN

to perform segmentation using weak labels. However, dense pixel level

ground truth labels are expensive to generate and arbitrary, especially

for niche datasets such as microscopy images. In this work we aim to

develop a classification CNN using MIL that does not require labels

for specific segmented cells, or even require the cells to be segmented.

1.1.3 Multiple instance learning

MIL deals with problems for which labels only exist for sets of data

points. In this setting sets of data points are typically referred to as bags

and specific data points are referred to as instances. A commonly used

assumption for binary labels is that a bag is considered positive if at

least one instance within the bag is positive (Dietterich et al., 1997).

Several functions have been used to map the instance space to the bag

space. These include Noisy-OR (Zhang et al., 2005), log-sum-

exponention (LSE) (Ramon and De Raedt, 2000), generalized mean

(GM) and the integrated segmentation and recognition (ISR) model

(Keeler et al., 1991). Xu et al. (2014) use the GM pooling function for

classifying features extracted from histopathology breast cancer images.

2 methods

2.1 Convolutional MIL model for learning cellular

patterns
We propose a CNN capable of classifying microscopy images of ar-

bitrary size that is trained with only global image level labels. The

weakly supervised CNN is designed to output class-specific feature

maps representing the probabilities of the classes for different loca-

tions in the input image. The CNN produces an image level classifi-

cation over images of arbitrary size and varying number of cells

through a MIL pooling layer. Individual cells can be classified by

passing segmented cells through the trained CNN or by mapping the

probabilities in class specific feature maps back to the input space.

2.2 Pooling layers as MIL
Formally, assuming that the total number of classes is Nclass for a

full resolution image I, we can treat each class i as a separate binary

classification problem with label ti 2 f0;1g. Under the MIL formu-

lation, one is given a bag of N instances that are denoted as x ¼ fx1;

� � � ;xNg and xn 2 RD is the feature vector for each instance. The

class labels ti are associated with the entire bag instead of each in-

stance. A binary instance classifier pðti ¼ 1jxjÞ is used to generate

predictions pij across the instances in a bag. The instance predictions

fpijg are combined through an aggregate function gð�Þ, e.g. noisy-

OR, to map the set of instance predictions to the probability of the

final bag label pðti ¼ 1jx1; � � � ;xNÞ. In a CNN, each activation in the

feature map is computed through the same set of filter weights con-

volved across the input image. The pooling layers then combine acti-

vations of feature maps in convolutional layers. It is easy to see the

similarity between the pooling layer and the MIL aggregation func-

tion, where features in convolutional layers correspond to instance

features fxng in MIL. In fact, if class specific feature maps are

treated as bags of instances, the classical approaches in MIL can be

generalized to global pooling layers over these feature maps.

We formulate the MIL layer in CNNs as a global pooling layer

over a class specific feature map for class i referred to as the bag pi.

Without loss of generality assume that the ith class specific convolu-

tional layer in a CNN computes a mapping directly from input images

to sets of binary instance predictions I! fpi1; � � � ;piNg. It first out-

puts the logit values zij in the feature map corresponding to instance

j in the bag i. We define the feature level probability of an instance

j belonging to class i as pij where pij ¼ rðzijÞ and r is the sigmoid

function. The image level class prediction is obtained by applying the

global pooling function gð�Þ over all elements pij. The global pooling
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function gð�Þ maps the instance space probabilities to the bag space

such that the bag level probability for class i is defined by

Pi ¼ gðpi1; pi2; pi3; � � �Þ (1)

The global pooling function gð�Þ essentially combines the in-

stance probabilities from each class specific feature map pi into a

single probability. This reduction allows us to train and evaluate the

model on inputs of arbitrary size. In the next section, we describe

the global pooling functions we explored in our experiments.

While the MIL layer learns the relationship between instances of

the same class, the co-occurrence statistics of instances from differ-

ent classes within the bag could also be informative for predicting

the bag label. We extend our model to learn relationships between

classes by adding an additional fully connected layer following the

MIL pooling layer. This layer can either use softmax or sigmoid acti-

vations for either multi-class or multi-label problems. We define the

softmax output from this layer for each class i as yi. We formulate a

joint cross entropy objective function at both the MIL pooling layer

and the additional fully connected layer defined by

J ¼ �
XNclass

i¼1

ðlog pðtijPiÞ þ log pðtijyiÞÞ: (2)

pðtijPiÞ is the binary class prediction from the MIL layer,

pðtijPiÞ ¼ Pti

i ð1� PiÞð1�tiÞ and pðtijyiÞ is either the binary or the

multi-class prediction from the fully connected layer. Our proposed

MIL CNN model is shown in Figure 1 and is trained using standard

error backpropgation.

2.3 Global pooling functions
Classifying cellular phenotypes in microscopy images presents a

challenging and generalized MIL problem. Due to heterogeneity

within cellular populations (Altschuler and Wu, 2010), imaging arti-

facts, and the large number of potential instances in an image, it can-

not be assumed that images with a negative label do not contain any

instances of the specific phenotype. A more reasonable assumption

is that bag labels are determined by a certain proportion of instances

being present. Relevant generalizations for MIL have been proposed

that assume that all instances collectively contribute to the bag label.

Here we take an approach similar to Xu and Frank (2004) in which

bag predictions are expressed as the geometric or arithmetic mean of

instances, however we adapt the the bag level formulation to model

thresholds on instance proportions for different categories.

We explore the use of several different global pooling functions

gð�Þ in our model. Let j index the instance within a bag. Previously

proposed global pooling functions for MIL have been designed as

differentiable approximations to the max function in order to satisfy

the standard MIL assumption:

gðfpjgÞ ¼ 1�
Y

j

ð1� pjÞ Noisy-or;

gðfpjgÞ ¼
X

j

pj

1� pj
= 1þ

X
j

pj

1� pj

 !
ISR;

gðfpjgÞ ¼
1

jjj
X

j

pr
j

 !1

r
Generalized mean;

gðfpjgÞ ¼
1

r
log

1

jjj
X

j

er�pj

 !
LSE:

We initially attempted to include Noisy-OR (Zhang et al., 2005)

and ISR (Keeler et al., 1991) in our analysis. We found that both are

sensitive to outliers and failed to work with microscopy datasets (as

shown in Fig. 2). LSE and GM both have a parameter r that controls

their sharpness. As r increases the functions get closer to representing

the max of the instances. In our analysis we use lower values for r than

suggested in previous work (Ramon and De Raedt, 2000) to allow

more instances in the feature maps to contribute to the pooled value.

2.3.1 Noisy-and pooling function

Since existing pooling functions are ill-suited for the task at hand,

we developed an alternative pooling function. Formally, we assume

that a bag is positive if the number of positive instances in the bag

surpasses a certain threshold. This assumption is meant to model the

case of a human expert annotating images of cells by classifying

them according to the evident phenotypes or drugs with known tar-

gets affecting the majority of the cells in an image. We define the

Noisy-AND pooling function as follows,

Pi ¼ giðfpijgÞ ¼
rðaðpi�j � biÞÞ � rð�abiÞ
rðað1� biÞÞ � rð�abiÞ

; (3)

Where pi�j ¼ 1
jjj

X
j

pij

MIL pooling layer

32 64

64

1000128
128

convolutional network

yiPig(pi1,pi2,pi3,••• )Nclass

zij 

Fig. 1. Convolutional MIL model. gð�Þ is global pooling function that aggregates instance probabilities pij
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The function is designed to activate a bag level probability Pi

once the mean of the instance level probabilities pi�j surpasses a cer-

tain threshold. This behaviour mimics the logical AND function in

the probabilistic domain and therefore we named the pooling func-

tion Noisy-AND. The parameters a and bi control the shape of the

activation function. bi is a set of parameters learned during training

and is meant to represent an adaptable soft threshold for each class

i. a is fixed parameter that controls the slope of the activation func-

tion. The terms rð�abiÞ and rðað1� biÞÞ are included to normal-

ized Pi to [0,1] for bi in [0,1] and a>0. Figure 2 shows plots of

relevant pooling functions.

2.4 Localizing cells with Jacobian maps
Researchers conducting HCS experiments are often interested in ob-

taining statistics from single cell measurements of their screens. We

aimed to extend our model by localizing regions of the full reso-

lution input images that are responsible for activating the class spe-

cific feature maps. We employ recently developed methods for

visualizing network activations (Zeiler and Fergus, 2014; Simonyan

et al., 2013) toward this purpose. Our approach is similar to

Simonyan et al. (2013) in which the pre-softmax activations of spe-

cific output nodes are back-propagated through a classification net-

work to generate Jacobian maps w.r.t. specific class predictions. Let

aðlÞ be the hidden activations in layer l and zðlÞ be pre-nonlinearity

activations. We define a general recursive non-linear back-propaga-

tion process computing a backward activation a
 

for each layer,

analogous to the forward propagation:

a
 ðl�1Þ ¼ f

@zðlÞ

@zðl�1Þ a
 ðlÞ

� �
(4)

Where f ðxÞ ¼ maxð0;xÞ; a L

ij ¼ Pi � pij

In our case, we start the non-linear back-propagation ðaL
ijÞ from

the MIL layer using its sigmoidal activations for the class i specific

feature maps fpijg multiplied by the pooling activation for each class

Pi � pij. Similar to Springenberg et al. (2014), we find that applying

the ReLU activation function to the partial derivatives during back

propagation generates Jacobian maps that are sharper and more

localized to relevant objects in the input. To generate segmentation

masks we threshold the sum of the Jacobian maps along the input

channels. To improve the localization of cellular regions we use

loopy belief propagation (Frey, 1998) in an MRF to de-noise the

thresholded Jacobian maps.

3 Results

3.1 Datasets
3.1.1 Cluttered hand written digits

We generated an interpretable dataset of images containing popula-

tions of digits from the MNIST hand written digit dataset (LeCun

et al., 1998) in order to demonstrate the effectiveness of the convo-

lutional MIL models. Each image in the dataset contains 100 digits

cluttered on a black background of 512 � 512 pixels. The dataset

contains nine categories (digits 2 f1; 2; ; 9g) and zeros are used as

distractors. To simulate the conditions in cell culture microscopy,

among the 100 digits x samples are chosen from a single category

and the remaining 100-x samples are zeros. x is fixed for each cat-

egory is equal to 10 times the digit value of the chosen category, as

shown in Figure 3. For example, an image with label four contains

40 fours and 60 zeros. We used 50 images per category for training

and 10 images per category for testing.

3.1.2 Breast cancer screen

We used a benchmarking dataset of MFC-7 breast cancer cells avail-

able from the Broad Bioimage Benchmark Collection (image set

BBBC021v1) (Ljosa et al., 2012). The images contain three channels

with fluorescent markers for DNA, actin filaments, and b-tubulin at

a resolution of 1024 � 1280 (Fig. 4). Within this dataset 103 treat-

ments (compounds at active concentrations) have known effects on

cells based on visual inspection and prior literature and can be clas-

sified into 12 distinct categories referred to as mechanism of action

(MOA). We sampled 15% of images from these 103 treatments to

train and validate our model. The same proportion of the data was

used to train the best model reported in Ljosa et al. (2013). In total

we used 300 whole microscopy images during training and 40 for

Fig. 2. MIL Pooling functions. Top, pooling function activations by ratio of fea-

ture map activated ðpi�j Þ. Bottom, activation functions learned by Noisy-AND

a10 (nand_a¼10.0) for different classes of the breast cancer dataset

1

0

Pi=4

Pi=6

Pi=7 Pi=5

Fig. 3. Class feature map probabilities for hand written digit sample. Class

specific feature map probabilities (Pi) overlaid on a sample from the cluttered

hand written digit dataset labelled as five. The model successfully classifies

regions with fives, and is not sensitive to the background or distractors
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testing. We evaluated all the images in the screen and report the pre-

dicted treatment accuracy across the treatments.

3.1.3 Yeast protein localization screen

We used a genome wide screen of protein localization in yeast (Chong

et al., 2015) containing images of 4144 yeast strains from the yeast

GFP collection (Huh et al., 2003) representing 71% of the yeast prote-

ome. The images contain two channels, with fluorescent markers for

the cytoplasm and a protein from the GFP collection at a resolution of

1010 � 1335 (Fig. 5). We sampled 6% of the screen and used 2200

whole microscopy images for training and 280 for testing. We catego-

rized whole images of strains into 17 localization classes based on

visually assigned localization annotations from a previous screen

(Huh et al., 2003). These labels include proteins that were annotated

to localize to more than one sub-cellular compartment. We evaluated

all the proteins in the screen and report the test error for the 998 pro-

teins that are localized to a single compartment and mean average pre-

cision for the 2592 proteins analyzed in Chong et al. (2015).

3.2 Model architecture
We designed the CNN such that an input the size of a typical

cropped single cell produces output feature maps of size 1 � 1. The

same network can be convolved across larger images of arbitrary

size to produce output feature maps representing probabilities of

target labels for different locations in the input image. We also

aimed to show that training such a CNN end-to-end allows the

model to work on vastly different datasets. We trained the model

separately on both datasets while keeping the architecture and num-

ber of parameters constant.

The basic CNN architecture includes the following layers:

ave_pool0_3�3, conv1_3�3�32, conv2_3�3_64, pool1_3�3, con-

v3_5�5_64, pool2_3�3, conv4_3�3_128, pool3_3�3, con-

v5_3�3_128, pool4_3�3, conv6_1�1_1000, conv7_1�1_Nclass,

MIL_pool, FC_Nclass (Fig. 1). To use this architecture for MIL we

use a global pooling function gð�Þ as the activation function in the

MIL_pool layer. gð�Þ transforms the output feature maps zi into a

vector with a single prediction Pi for each class i. We explore the

pooling functions described above (Section 2.3). All of these pooling

functions are defined for binary categories and we use them in a

multi-label setting (where each output category has a separate bin-

ary target). To extend this framework we add an additional fully

connected output layer to the MIL_pool layer in order to learn rela-

tions between different categories. For the breast cancer screen this

layer uses softmax activation while for the yeast dataset this layer

Fig. 4. Breast cancer screen. Left, sample full resolution image with epithelial MOA. Right, samples of segmented cells sampled from 12 MOA categories

Fig. 5. Yeast protein localization screen. Left, sample full resolution image with budneck, budtip, cell periphery, and cytoplasm protein localizations. Right, seg-

mented cells with protein localizations manually labelled in Chong et al. (2015)
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uses a sigmoidal activation (since proteins can be annotated to mul-

tiple localization categories).

3.3 Model training
We trained models with a learning rate of 10�3 using the Adam opti-

mization algorithm (Kingma and Ba, 2014). We extracted slightly

smaller crops of the original images to account for variability in

image sizes within the screens (we used 1000 � 1200 for the breast

cancer dataset and 1000 � 1300 for the yeast dataset). We normal-

ized the images by subtracting the mean and dividing by the stand-

ard deviation of each channel in our training sets. During training

we cropped random 900 � 900 patches from the full resolution

images and applied random rotations and reflections to the patches.

We use the ReLU activation for the convolutional layers and apply

20% dropout to the pooling layers and 50% dropout to layer

conv6. We trained the models within 1–2 days on a Tesla K80 GPU

using �9 Gb of memory with a batch size of 16.

3.4 Model evaluation
The models we trained on the cluttered hand written digits achieve

0% test error across all classes. We achieve these error rates despite

the fact images labelled as digit one actually contain 90 zeros and

only 10 ones. The reason the model doesn’t confuse zeros for ones in

these samples is because zeros also appear in images labelled with

other categories. Another important note is that since there are only

50 training samples per digit, the model only sees 500 distinct ones

during training. The classic MNIST training dataset contains 6000

cropped and centered samples per category. We achieve the superior

test performance with fewer training samples using the MIL formu-

lation because the model’s predictions are based on aggregating over

multiple instances. The model can ignore samples that are difficult

to classify but still rely on easier instances to predict the overall

image correctly. Because we use different sampling rates for each

digit category, this experiment also shows that the convolutional

MIL models are robust to different frequencies of the label class

being present in the input image. Finally, in Figure 3 we show class

specific feature map activations (Pi) for a test sample labelled as five

overlaid onto the input image. Here we see that the model

successfully classifies almost all the fives in the image and is not sen-

sitive to the background or distractors (i.e. zeros).

We evaluated the performance of models trained on each screen-

ing dataset at several tasks. For the yeast dataset (Table 1), proteins

are annotated to localize to one or more sub-cellular compartments.

We report the accuracy and mean classifier accuracy (across 17

classes) for a subset of 998 proteins annotated to localize to a single

sub-cellular compartment in both Huh et al. (2003) and Chong et al.

(2015). We also report the mean average precision for the all the

proteins we analyzed from the screen (2592) and a test set of indi-

vidual images. For the breast cancer dataset (Table 3) we report ac-

curacy on a test set of full resolution images and at predicting the

MOA of all the different treatments by taking the median prediction

across the 3 experimental replicates of the screen. For these predic-

tions we use the output from the last layer of the network.

Table 1. Yeast dataset results on whole images.

Mean average prec. Classification

Model full image Huh single

loc acc.

single loc

mean acc.

Chong et al. (2015) — 0.703 0.935 0.808

Noisy-AND a5 0.921 0.815 0.942 0.821

Noisy-AND a7:5 0.920 0.846 0.963 0.834

Noisy-AND a10 0.950 0.883 0.953 0.876

LSE r1 0.925 0.817 0.945 0.828

LSE r2:5 0.925 0.829 0.953 0.859

LSE r5 0.933 0.861 0.960 0.832

GM r1 (avg. pooling) 0.915 0.822 0.938 0.862

GM r2:5 0.888 0.837 0.922 0.778

GM r5 0.405 0.390 0.506 0.323

max pooling 0.125 0.133 0.346 0.083

Huh indicates agreement with manually assigned protein localizations

(Huh et al., 2003). Single loc acc. and single loc mean acc. indicate the accur-

acy and mean accuracy across all classes for a subset of proteins that localize

to a single compartment. Full image indicates mean average precision on full

resolution image.

Table 2. Yeast dataset results on segmented cells

Mean average precision

Model Segmented cells

with noisy labels

Segmented cells

with manual labels

CNN trained on

segmented cells

with noisy labels

0.855 0.742

Noisy-AND a5 0.701 0.750

Noisy-AND a7:5 0.725 0.757

Noisy-AND a10 0.701 0.738

LSE r1 0.717 0.763

LSE r2:5 0.715 0.762

LSE r5 0.674 0.728

GM r1 (avg. pooling) 0.705 0.741

GM r2:5 0.629 0.691

GM r5 0.255 0.258

max pooling 0.111 0.070

For the yeast dataset, we had access to cell coordinates from a previous seg-

mentation pipeline. A subset of these cropped cells was labelled manually for

Chong et al. (2015). We trained a traditional CNN on the segmented cells

with noisy, whole image level labels and compared the performance on the

manually labelled cropped cells. As an additional baseline, a traditional CNN

trained on the manually labeled cells achieves a test accuracy of 89.8%. We

evaluate our CNN-MIL models trained on whole images with whole image

level labels on classifying segmented cells [with both protein level annotations

based on Huh et al. (2003) and manual labels based on Chong et al. (2015)].

We report mean average precision across the localization classes.

Table 3. Breast cancer dataset results

Model full image treatment

Ljosa et al. (2013) — 0.94

Noisy-AND a5 0.915 0.957

Noisy-AND a7:5 0.915 0.957

Noisy-AND a10 0.958 0.971

LSE r1 0.915 0.943

LSE r2:5 0.888 0.871

LSE r5 0.940 0.957

GM r1 (average pooling) 0.924 0.943

GM r2:5 0.924 0.957

GM r5 0.651 0.686

max pooling 0.452 0.429

Full image indicates accuracy on full resolution images. Treatment indi-

cates accuracy predicting treatment MOA by taking the median over three ex-

perimental replicates.
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In addition to the performance on full resolution images, we

evaluate the performance of the models on single cropped cells

(Table 2). From a previous analysis pipeline using CellProfiler we

extracted center of mass coordinates of segmented cells and used

these coordinates to crop single cells (crop size of 64 � 64) from the

full resolution images. This dataset was annotated according to the

labels from the full resolution images and likely includes mislabelled

samples. We also report performance on 6,300 manually labelled

segmented cells (segmented cells with manual labels in table 2) used

to train the SVM classifiers described in Chong et al. (2015). For

these predictions we use the output from the MIL_pool layer.

Finally, we demonstrate that our model learns to locate regions

with cells. We generated segmentation maps identifying cellular re-

gions in the input by back-propagating activations as described in

Section 2.4 (Fig. 6). To evaluate our segmentation method we calcu-

lated the mean intersection over union (IU) between our maps and

segmentation maps generated using the global otsu thresholding

module in CellProfiler which was used in Chong et al. (2015). We

achieve a mean IU of 81.2% using this method. We found that mask

pairs with low IU were mostly incorrect using Otsu thresholding.

We also demonstrate that our model can generate class specific seg-

mentation maps by back-propagating individual class specific fea-

ture maps while setting the rest of the feature maps to zero. Figure 6

shows the Jacobian maps generated for an image with transient, cell

cycle dependent protein localizations.

4 Conclusions

Our proposed model links the benefits of MIL with the classification

power of CNNs. We based our model on similarities between the

aggregation function gð�Þ used in MIL models and pooling layers

used in CNNs. To facilitate MIL aggregation in CNN feature maps

we introduced the Noisy AND layer, a pooling function designed to

be robust to outliers and learn the area of cells required to activate a

label. This approach allows our model to learn instance and bag

level classifiers for full resolution microscopy images without ever

having to segment or label single cells. Our results indicate that con-

volutional MIL models achieve better performance across all evalu-

ations against several benchmarks.

The benchmarks we compare against include a classification

CNN with a similar architecture trained on cropped cells given

noisy whole image (bag level) labels, and a naive implementation of

convolutional MIL which uses global max pooling for gð�Þ. It’s clear

that the naive max pooling implementation, which perfectly satisfies

the standard MIL assumption, isn’t suited for convolutional MIL

applied to microscopy datasets. For the yeast dataset we compare

with results published in Chong et al. (2015) using an ensemble of

60 binary SVM classifiers. For the breast cancer dataset we compare

with results published in Ljosa et al. (2013) using factor analysis.

Our models outperform previously published results for both data-

sets without any pre and post processing steps.

We found that for all the convolutional MIL models, mean aver-

age precision is higher when evaluated on manually labelled seg-

mented cells than when evaluated on segmented cells labelled with

bag level labels (Table 2). For the model trained on segmented cells

with bag level labels, we see the opposite trend (a drop in perform-

ance when evaluating on manually labelled cells). This clearly indi-

cates the utility of the MIL pooling layer. In the MIL models, the

noisy labels are assigned to whole images and through the MIL pool-

ing layer the model can learn to associate the labels with different in-

stances in the image. The alternative baseline approach of training

on segmented cells assigns the noisy labels to each segmented cell,

forcing the model to learn incorrect patterns. The MIL models in-

stead learn to identify cells in the full resolution images that corres-

pond true phenotype categories given only the bag level annotations.

This result is also shown by the class specific Jacobian maps visual-

ized in Figure 6. We see that different patterns in the full resolution

image activate class specific output feature maps.

For all of the bag level evaluations, we see that the Noisy-AND

models perform best. We believe this can be explained by the pool-

ing functions plotted in Figure 2. Setting the scaling factors (a, r) to

lower values make the pooling functions approach mean of the
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cell periphery

cell periphery

actin

cell periphery
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endosome
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Fig. 6. Localizing cells with Jacobian maps. Top, yeast cells tagged with a protein that has cell cycle dependent localizations and corresponding Jacobian maps

generated from class specific feature maps. Bottom, segmentation by thresholding Jacobian maps and de-noising with loopy bp
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feature maps, while for higher values the functions approach the

max function. Since different phenotype categories may have vastly

different densities of cells neither extreme suites all classes. The

Noisy-AND pooling function accommodates this variability by

learning an adaptive threshold for every class, as shown in Figure 2.

The breast cancer screen differs from the yeast data in several

ways. Human cells interact and form denser cultures while yeast is

unicellular and are typically imaged at lower densities. Also, drug

treatments in the breast cancer screen affect most of the cells (Ljosa

et al., 2013) while the protein localization screen contains some lo-

calization categories that only occur transiently or in a fraction of

the imaged cells. For the breast cancer dataset (Table 3) we also see

that that Noisy-AND outperforms the previously reported treatment

accuracy (Ljosa et al., 2013).

In summary, we found that the MIL approach we developed

offers several advantages for applications requiring classification of

microscopy images. Our approach only requires a handful of

labelled full resolution microscopy images. For example, we trained

the breast cancer model with only 25 images per class. We envision

that such training sets can reasonably be included as experimental

controls in future screens. We also demonstrate that the convolu-

tional MIL models can successfully be applied to a variety of data-

sets including hand written digits, yeast cells, and mammalian cells.

The MIL models do not require any segmentation steps or per cell

labels and they can be trained and tested directly on raw microscopy

images in real-time. Finally, using the Jacobian maps we can seg-

ment cellular regions in the input image and assign predictions to

each identified region.
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