
G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 73–83, 2009.
© Springer-Verlag Berlin Heidelberg 2009

CelOWS: A Service Oriented Architecture to Define,
Query and Reuse Biological Models

Ely Edison Matos1, Fernanda Campos1,2, Regina Braga1,2,
 Rodrigo Weber1,3, and Daniele Palazzi1,2

1 Master Program in Computational Modeling
2 Software Quality Research Group

3 Computational Physiology Laboratory
Federal University of Juiz de Fora - Juiz de Fora – Minas Gerais – Brazil

{ely.matos,fernanda.campos,regina.braga,
rodrigo.weber}@ufjf.edu.br,
daniele.palazzi@ice.ufjf.br

Abstract. The amount of information generated by biological research has lead
to an intensive use of models. Mathematical and computational modeling needs
accurate description to share, reuse and simulate models as formulated by origi-
nal authors. In this paper, we introduce the Cell Component Ontology - CelO,
expressed in OWL-DL. This ontology captures both the structure of a cell
model and the properties of functional components. We use this ontology in a
Web project – CelOWS - to describe, query and compose CellML models. It
aims to improve reuse and composition of existent components and allow se-
mantic validation of new models.

Keywords: Semantic web services, ontology, SOA, e-Science.

1 Introduction

Intense research in biological science has generated great volume of data. Tools,
methods and techniques improve the understanding of new functions, structures and
processes related to biophysics and physiology. The increase of the computational
power and the use of numerical methods stimulate the development and the applica-
tion of more complex models [1]. These models allow the combination of different
physical experiments and in different scales into a computational simulation, provid-
ing an accurate view of the studied phenomena.

The computational simulation of a model involves two important aspects. The first
one is the model representation. Although diagrams, literal description and equations
can be used to publish the models, typographical errors, as well as the necessary con-
ditions to the simulation may generate fatal errors. The second aspect is concerned to
the implementation phase. The necessity to apply advanced numerical methods cre-
ates a barrier for the effective use and study of the model.

These questions have stimulated the development of CellML [2], a markup lan-
guage for representing biological models. Based on XML (eXtensible Markup Lan-
guage), CellML specifies elements that can be used to represent a model in a formal

74 E.E. Matos et al.

way, without ambiguities, legible for humans and computer-readable. The mathemati-
cal equations are represented in MathML, which makes it independent of a specific
implementation language. CellML can be used to represent, store and share models.
However, the CellML approach does not provide mechanisms to make component
reuse an easy going step.

This research is aimed at using and discussing ontologies and semantic rules for crea-
tion, validation, storage and sharing of biological models, through the service oriented
architecture - CelOWS. It allows the storage, research, reuse, composition and execution
of described models using the CelO (Cell Component Ontology) ontology. The main goal
of the CelOWS is the composition of a new model from the reuse of different models from
a specific repository. The CelO ontology, described in OWL-DL [3], aims to add seman-
tics to the models. It allows the representation of the intrinsic knowledge, to improve its
validation, reuse components from other models, automate some composition processes
and develop model repositories where queries are semantically carried out.

The remainder of the paper is organized as follows. The next section discusses the
background of the work. Section 3 presents the proposed CelO ontology and its main
elements. Section 4 describes the CelOWS architecture, use cases, validation process
and examples of application. Related works are presented in Section 5, while Section
6 concludes the paper.

2 Related Concepts

In this research context, biological models are related to mathematical and
computational representation of some biological properties. In the field of physiology
and electrophysiology the functional elements of the system are generally represented
by an abstraction named “component”. Each component is a mathematical model that
aims to represent the behavior of the biological element. The interaction between the
biological elements is represented by the association of different components.

The electrophysiology models currently span from simple models of the electric
activation based on polynomials to three-dimensional complex models [4]. The cell
components models can be represented through diagrams and have a series of
associated equations. Diagrams and text descriptions, however, can have
typographical errors or incorrect initial or contour conditions to the simulation. These
concerns were recently addressed via the development of the CellML language for
representing biological models.

CellML establishes a standard format for defining and sharing biological models.
The models are then represented as an interconnected network of components. Each
component represents a biological element of interest as, for example, the cell mem-
brane or an ionic channel. From the viewpoint of computational representation, a
component is a unit that can interact, add or encapsulate other components.

A model receives a name and an unique identification (cmeta: id) used to identify the
model URI. The mathematical equations are expressed in MathML and they describe the
behavior of each component in the model. A variable is a nominated entity associated to
a component, representing amounts used in the equations. An initial value and some
attributes (units, public and private interfaces, etc.) can be associated to a variable. Con-
nections between components are represented through the variables mapping.

 CelOWS: A Service Oriented Architecture 75

3 Cell Component Ontology - CelO

Ontology can be described as a formal and explicit specification of a shared concep-
tualization [6] [7]. The ontology construction implies in acquiring the domain knowl-
edge and collecting the appropriate information that formally defines the domain
terms. The CelO ontology can be extended for the Biology area, but by now it focus
on the sub-domain of cardiac electrophysiology. This restriction aims to diminish the
complexity level and allow a gradual evaluation of the ontology, in terms of its com-
pleteness and functionality.

The specific goal of the CelO ontology is to describe the semantic of biological
models. The use of the semantic to express the intrinsic model knowledge aims to
improve its validation, reuse other models components, automate the processes of
models composition and construct Web repositories with semantic queries. The struc-
ture of the ontology aims its integration with simulations of CellML models, using
tools as AGOS [8] and PCEnv [9].

For the development of the CelO ontology the Methontolgy methodology was
adopted, which includes four phases [10]: specification, conceptualization, formaliza-
tion and implementation. In the specification activity a document was defined with
the ontology goals and main terms. During the conceptualization phase a set of repre-
sentations organized the domain knowledge: terms glossary, concepts classification
tree, diagrams of binary relationship and concepts dictionary. The activities of formal-
ization and implementation phases were developed and the ontology built using the
Protegé tool. The maintenance and evolution will occur whenever modifications in
the ontology structure are necessary (Fig. 1)

The CelO ontology has three general classes in its top level and its structure pro-
vides three essential types of knowledge: SIEntity (quantities and units associated to
variables of the model), DomainEntity (Concepts of the Biological domain) and
ModelEntity (Model components and interfaces).

Fig. 1. Intermediate representation for the CelO ontology: (a) part of a classification concepts
tree; (b) diagram of binary relationship of some concepts

76 E.E. Matos et al.

In this paper we present only the ModelEntity subclasses. The complete CelO on-
tology and the performed tests are available in http://celo.mmc.ufjf.br.

The ModelEntity class and its subclasses (Fig. 2) define the used concepts in the
biological model representation. The goal is to have a high level description, making
reference to the CellML models for the simulation activity.

A challenging issue in the CelOWS architecture is to treat a model as a web service
that has interfaces and can “be executed” (through simulation). The ModelService
class provides a way of organizing the model vision as a service. Its structure is simi-
lar to OWL-S ontology [11], for semantic description of web service. An instance of
the ModelService exists for each model and is associated to an instance of ModelPro-
file, ModelGrounding and ModelProcess.

ModelProfile gives information about the model: components association with
some specific compartment of the cell and the biological entities associated to the
model. ModelGrounding specifies the associated models, in case of a simulation. The
CellMLModel class stores the URI of the associated CellML model. ModelProcess
indicates how the model can be used, which are the input parameters (ModelParame-
terIn) and output ones (ModelParameterOut) that are associated to the interface
model (ModelInterface). These parameters are directly associated to the model vari-
ables and can be used in the simulation or composition processes. ModelType is a
generic class, used to characterize the biological problem of the model and its mathe-
matical modeling.

ModelObject groups objects that compose a model and that are directly related to
the underlying model. Equation names equations that implement the math model,
expressed in MathML. Variable represents model variables. ModelVariable de-
scribes the variables roll in model equations and ComponentVariable is related to
the variable of each model component. These variables can be used in the interface
of the component (InterfaceVariable) or be local (LocalVariable). DomainVariable
associates model variables with concepts of the DomainEntity class. Model repre-
sents the model itself, it can be atomic (only one component) or composed (two or
more components). Component represents model components, that can be described
in the proper model (InternalComponent) or can make reference to external ones
(ExternalComponent). A model can be composed simultaneously by internal and
external models.

The semantic rules are used to infer knowledge that is implicit in existing
CellML models. The association between component variables and ontology indi-
viduals are defined and extracted from details in the CellML model. For example,
the information may be extracted from the name of a variable and from prede-
fined knowledge. For instance, we may have a rule that forbids the association of
variables without dimension to chemical elements. Actually the rules can be also
used to validate semantically the model in terms of consistency and completeness.
A validation example is if the components group follows the anatomical hierar-
chy. Some rules of the CelO ontology, written in SWRL, are presented in Fig. 3:

 CelOWS: A Service Oriented Architecture 77

Fig. 2. Parcial representation of the CelO ontology in Protegé

Fig. 3. Examples of the CelO ontology rules

Fig. 4. Partial view of CelOWS framework architecture

78 E.E. Matos et al.

There are different languages to represent the ontologies. Our research uses OWL ,
which is recommended by the W3C as the standard language used for web semantics
projects. For inferences on individuals of the ontology the SWRL (Semantic Web
Rule Language) was used [12]. SWRL makes possible the enrichment of the ontology
with information not directly processed by the inference engine. This language was
select because it is based on OWL.

4 CelOWS: An Architecture for e-Science Applications

The CelO ontology is the base for querying and composition of biological models in a
service oriented architecture named CelOWS. This architecture uses the concepts of
ontology repository and semantic web services. CelOWS aims to provide an infra-
structure to register, research, recovery, compose and execute (simulate) biological
models using ontologies. The combination of semantic description of components, in
a standard format that allows their composition with other components, to models that
can be simulated by existing tools, brings a great flexibility for the modeling proc-
esses in e-science projects.

CelOWS is implemented as a web service. This allows the repositories distribution
and facilitates its use in scientific workflows and grid environments. Each model is
also encapsulated in a web service, so it is able to be executed remotely (independ-
ently or composed with other components) or it can simply inform its localization
where the local execution code can be found.

A general vision of the CelOWS architecture is presented in Fig. 4. The CelO URI
represents the ontology model. The architecture considers three different tiers:
• CelOWS: Implemented as a web service, can be installed in different sites, allow-

ing the distribution of the repositories, and is interface independent, as it facilitates
the integration with existing tools.

• Backend: it is the services tier, used by the CelOWS to access the database (Ce-
lOWS-DB) and the execution tools to simulate CellML models.

• Client: implements the user interface and it can be developed in any language with
access to web services.

The architecture offers four services for its users: a) Registry: From the URI given
by the user, the model is then stored in a database.; b) Compose: The user gives XML
files with the specification of the models that must be composed and the composition
architecture (how the components will be connected among themselves). A new
model is generated and stored in the database; c) Query: The user makes a SPARQL
query [13] and receives, as a result, the models, components or variable that attends it;
d) Execute: The user gives the URI model and the parameters to be used (from a pre-
vious query). From the given URI of the CellML model and a simulation tool is lo-
cated, the computing is then executed and the results returned.

The CelOWS services are distributed in four layers: a) Client Manager: Responsi-
ble for all users interaction, implementing the Facade project pattern. Its purpose is to
supply only one input/output point in the system, so customers do not have access to
the internal structure of the CelOWS. b) Storage Manager: Responsible for the stor-
age/recovery processes of the ontology in the database, and queries carried out by the

 CelOWS: A Service Oriented Architecture 79

user, encapsulating the access to the data base. c) Ontology Manager: Responsible for
the inference on the models, as well as for providing an API (Application Program
Interface) to access CelO ontology. d) Execution Manager: Responsible for the exe-
cution of the CellML model associated with the CelO model. The access to the simu-
lation tools must be encapsulated, enabling the architecture to be independent of a
specific tool.

The use of the complete CelOWS infrastructure depends on the development of
end users applications, using graphical interfaces and encapsulating its services.

Prototype validation: To test and validate CelOWS functionalities a prototype was
built, with the following services: register, query and models composition.

Eight CellML models were used for testing the Models Composition service. For
example, the model “A Modification of the Hodgkin-Huxley Equations Applicable to
Purkinje Fibre Action and Pace-Maker Potentials” is represented in Fig. 5 through a
UML Components Diagram. The diagram presents the components and its connec-
tions through the interface parameters

Fig. 5. Model used for testing the prototype

As it can be seen in the diagram, the model is composed of eight components: en-
vironment, membrane, potassium_channel_n_gate, potassium_channel, so-
dium_channel, leak_current, sodium_channel_m_gate, sodium_channel_h_gate. Dur-
ing the tests, the model was divided, creating eight CellML files (atomic models) and
enabling eight CelO models. The original files, the membrane atomic model and the
CelO model of the membrane are available in the site (http://celo.mmc.ufjf.br).

One of the specific goals of CelOWS is the composition of atomic models. The
idea is to promote the reuse of existing components, through the composition of sim-
pler models, producing more complex ones. The composition produces a new CellML
model, through the copy of previously defined components and the automatic connec-
tion of these components.

80 E.E. Matos et al.

The composition process uses a XML configuration file to indicate which models
will be composed and the structure of the new model. The connection of the compo-
nents is made through the semantic combination of the parameters of the first compo-
nent with the parameters of the second one. It is established if both parameters
measure the same quantities, if both are associated to the same chemical element and,
finally, if both have the same name. A SPARQL query is used to find if the output
parameters are compatible to the input of the other component. As the composition
process is made through the copy of the existing models, it can be considered static
(the modification of a used model in the composition process does not modify the
composed component).

In order to validate the CellML model, generated from the composition process,
the PCEnv program version 0.3, for models simulation, was used. Graph V x Times
representing the potential action was generated from the original CellML “the
Modification of the Hodgkin-Huxley Equations Applicable you the Purkinje Fibre
Action and Pace-Maker Potentials” (Fig. 6) and with the file generated through the
composition and connection of components (Fig. 7). These graphs (as others gener-
ated during the tests) are identical, proving the validation of the composition proc-
ess.

Fig. 6. Graph V x time generated with original
CellML model

Fig. 7. Graph V x time generated with
CellML model from a CelO model

To test and validate the semantic query functionalities in CelO models, some

SPARQL queries (Fig. 8) were defined to locate variables or components that could
be used in the composition process of a new model.

Implementation details: All the CelO ontology manipulation, as well as the de-
scribed models in OWL, are in Protégé-OWL 3,4 (Editor and API) [14]. For inference
the Pellet Reasoner [15] and the Jess Rule Engine [16] were adopted. For the devel-
opment of the CelOWS we used the Eclipse, Java and PHP5 languages. For the ontol-
ogy storage in a relational database and the SPARQL queries, the SOR (Scalable
Ontology Repository) [17] was used.

 CelOWS: A Service Oriented Architecture 81

Fig. 8. SPARQL queries in ontological repository

5 Related Work

MONET Project [18] investigates the area of mathematical web services, with im-
plementation of a broker, definition of the description services language MSDL
(Mathematical Service Description Language), many domain ontologies and the com-
ponent InstanceStore [19]. The CelOWS architecture is similar to the Monet architec-
ture even though Monet does not use semantic web services. Project GENSS (Grid-
Enabled Numerical and Symbolic Services) [20] is an extension of Monet project. It
deals with the combination of grid computing and mathematician web services using
an open framework based in software agents. One of CelOWS implementation goal as
a web service is to allow its use in workflow environments for services composition
and its use in grid computing. In this way some of the GENSS project proposals could
be applied to our research. An association of ontologies and web services to support
the biological systems modelling is described in [21]. An ontology to represent the
models in OWL is presented. OWL-S is used to specify the parameterization and
semi-automatic composition of web services of the model execution. CelOWS archi-
tecture has similar goals, using, however, a more open domain ontology, the biologi-
cal one. However, OWL is not used to represent the complete model, but to describe
semantics of biological models in CellML

6 Concluding Remarks

The increasing volume and distribution of data and processes in Bioinformatics speed
up the discovery of new biological information. To manage these data and processes
in an automatic and scalable form, the use of scientific workflows is now essential.
On the other hand, the biological models have different possible representations, such
as conceptual, mathematical and computational. Although it is desirable the

82 E.E. Matos et al.

association of the workflows and modeling areas, the literature does not present spe-
cific proposals in this direction. We believe that this happens because generally the
models are considered only in their “representation” aspect, while workflows deal
with software components that can be “executed”. Our research considers the ap-
proach of these areas using innovative technologies, based on well established stan-
dards. In the aspect of “representation” Cell Component Ontology - CelO is pre-
sented, to describe the semantics to the biological models. In the aspect of “process”,
the CelOWS architecture was developed to storage, query, reuse, compose and exe-
cute these models. CelOWS follows the service oriented architecture, being itself
implemented as a web service. Some questions as scalability and performance have
not been treated yet. Future work will focus on these questions, as well as the integra-
tion with other ontologies of the biological domain.

References

1. Garny, A., et al.: CellML and Associated Tools and Techniques. Elsevier Ireland Ltd.
(2007)

2. Cell Markup Language, http://www.cellml.org
3. Bechhofer, S., et al.: OWL web ontology language 1.0 reference,

 http://www.w3.org/TR/owl-ref/
4. Nickerson, D., Hunter, P.: The Noble cardiac ventricular electrophysiology models in

CellML. Prog. Biophys. Mol. Biol. 90(1-3), 346–359 (2006)
5. Luo, C., Rudy, Y.: A Dynamic Model of the Cardiac Ventricular Action Potential - Simu-

lations of Ionic Currents and Concentration Changes. Circulation Research 74, 1071–1097
(1994)

6. Gruber, T.R.: Towards principles for the design of ontologies used for knowledge sharing.
In: Guarino, N., Poli, R. (eds.) Formal Ontology in Conceptual Analysis and Knowledge
Representation. Kluwer, Dordrecht (1994)

7. Borst, W.N.: Construction of Engineering Ontologies. Phd Thesis (1997),
 http://www.ub.utwente.nl/webdocs/inf/1/t0000004.pdf

8. Barbosa, C., Santos, R., Amorim, R., et al.: A Transformation Tool for ODE based models.
In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006.
LNCS, vol. 3991, pp. 69–75. Springer, Heidelberg (2006)

9. Physiome CellML Environment, http://www.cellml.org/downloads/pcenv
10. Fernández-López, M.: Overview of Methodologies For Building Ontologies. In: Proceedings

of the IJCAI 1999 workshop on Ontologies and Problem-Solving Methods (KRR5), Stock-
holm, Sweden (1999), http://www.lsi.upc.edu/~bejar/aia/aia-web/
4-fernandez.pdf

11. Martin, D., et al.: OWL-S: Semantic Markup for Web Services. In: W3C Member Submis-
sion November 22 (2004), http://www.w3.org/Submission/OWL-S/

12. Horrocks, I., et al.: SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. In: W3C Member Submission, May 21 (2004),

 http://www.w3.org/Submission/SWRL/
13. SPARQL Query Language for RDF. W3C Recommendation, January 15 (2008),

http://www.w3.org/TR/rdf-sparql-query/
14. Protégé-OWL – Ontology Editor for Semantic Web,

 http://protege.stanford.edu/plugins/owl/

 CelOWS: A Service Oriented Architecture 83

15. Pellet: The Open Source OWL DL Reasoner, http://pellet.owldl.com
16. JESS, the Rule Engine for the Java Platform, http://herzberg.ca.sandia.gov
17. Lu, J., et al.: SOR: a practical system for ontology storage, reasoning and search. In: Pro-

ceedings of the 33rd international Conference on Very Large Data Bases, Vienna, Austria,
September 23 - 27, 2007, Very Large Data Bases. VLDB Endowment, pp. 1402–1405
(2007)

18. MONET Consortium, http://monet.nag.co.uk
19. Bechhofer, S., Horrocks, I., Turi, D.: The OWL Instance Store: System Description. In:

Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 177–181. Springer, Heidelberg
(2005)

20. GENSS, http://genss.cs.bath.ac.uk/project.htm
21. Sun, Z., Finkelstein, A., Ashimore, J.: Using Ontology with Semantic Web Services to

Support Modeling in Systems Biology. In: International Workshop on Approaches and Ar-
chitectures for Web Data Integration and Mining in Life Sciences (WebDIM4LS), Nancy,
France (2007)

	CelOWS: A Service Oriented Architecture to Define, Query and Reuse Biological Models
	Introduction
	Related Concepts
	Cell Component Ontology - CelO
	CelOWS: An Architecture for e-Science Applications
	Related Work
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

